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Over the last decade, the spin-1/2 Heisenberg antiferromagnet on the square-kagome (SK) lattice has attracted
growing attention as a model system of highly frustrated quantum magnetism. A further motivation for theoreti-
cal studies of this model comes from the recent discovery of SK spin-liquid compounds KCu6AlBiO4(SO4)5Cl
[M. Fujihala et al., Nat. Commun. 11, 3429 (2020)] and Na6Cu7BiO4(PO4)4[Cl, (OH)]3 [O. V. Yakubovich
et al., Inorg. Chem. 60, 11450 (2021)]. The SK antiferromagnet exhibits two nonequivalent nearest-neighbor
bonds J1 and J2. One may expect that in SK compounds J1 and J2 are of different strength. Here, we present
a numerical study of finite systems of N = 30, 36, and N = 42 sites by means of the finite-temperature
Lanczos method. We discuss the temperature dependence of the Wilson ratio P(T ), the specific heat C(T ),
the entropy S(T ), and of the susceptibility X (T ) of the J1 − J2 SK Heisenberg antiferromagnet varying J2/J1

in a range 0 � J2/J1 � 4. We also discuss the zero-field ground state of the model. We find indications for
a magnetically disordered singlet ground state for 0 � J2/J1 � 1.65. Beyond J2/J1 ∼ 1.65 the singlet ground
state gives way for a ferrimagnetic ground state, which becomes a stable Lieb ferrimagnet with magnetization
M = N/6 (UUD state) for J2/J1 � 1.83. In the region 0.77 � J2/J1 � 1.65 the low-temperature thermodynamics
is dominated by a finite singlet-triplet gap filled with low-lying singlet excitations leading to an exponentially
activated low-temperature behavior of X (T ). On the other hand, the low-lying singlets yield an extra maximum
or a shoulderlike profile below the main maximum in the C(T ) curve. For J2/J1 � 0.7 the low-temperature
thermodynamics is characterized by a large fraction of N/3 weakly coupled spins leading to a sizable amount of
entropy at very low temperatures. In an applied magnetic field the magnetization process features plateaus and
jumps in a wide range of J2/J1.

DOI: 10.1103/PhysRevB.107.245115

I. INTRODUCTION

Highly frustrated quantum antiferromagnets on two-
dimensional lattices have attracted enormous attention over
more than three decades, see, e.g., Refs. [1–5]. “Now in the
early 2020s, quantum magnetism is a mature field showing
no signs of senescence. To the contrary, there is a tremen-
dous amount of activity studying exotic magnetic phenomena
especially with strong quantum fluctuations.” [6] Over many
years the kagome antiferromagnet (KHAF) has been the holy
grail in this field. Quite recently the square-kagome antifer-
romagnet, the little brother of the kagome antiferromagnet,
has received more appreciation because several magnetic
compounds with square-kagome lattice structure have been
found, which do not exhibit magnetic order down to very
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low temperatures [7–10]. The square-kagome lattice (some-
times also called shuriken or squagome lattice) [11–14] is
a two-dimensional tiling built of squares and corner-sharing
triangles. The classical ground state of the square-kagome
Heisenberg antiferromagnet (SKHAF) is highly degenerated
(classical spin liquid). There are two nonequivalent sites A
and B as well as two nonequivalent nearest-neighbor bonds J1

and J2, see the left inset in Fig. 1. The theoretical study of the
quantum model started 20 years ago [11–13,15–17]. Already
at that time evidence for the absence of ground-state magnetic
order was found [12,13].

Starting in 2013 the interest in the spin-1/2 SKHAF
has been growing as a model system exhibiting a non-
magnetic quantum ground state, magnetization plateaus,
flat-band physics near the saturation field and quantum scars
[14,17–29]. All these papers were focused on zero-
temperature properties. Only, in the early paper [16] specific-
heat data calculated by a simple renormalization group
approach were reported. The thermodynamics of the balanced
spin-1/2 SKHAF, i.e., J1 = J2 = J , has been studied quite
recently in Ref. [30] using the finite-temperature Lanczos
method (FTLM). At zero magnetic field we find that the
KHAF and SKHAF exhibit a striking similarity of the tem-
perature profile of C(T ), X (T ) and S(T ) down to very low
temperature T . Thus, for X (T ) and S(T ) an almost perfect
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coincidence for both models was observed. For the specific
heat there is a perfect agreement of the C(T ) data down to
T/J = 0.3. A characteristic feature common in both mod-
els is the existence of low-energy singlet excitations filling
the magnetic spin gap [13,31–33]. These low-energy singlets
yield a low-temperature shoulder below the major maximum
in the C(T ) profile [30,34]. We mention that such a shoulder
has been observed in a recent experiment on the kagome
quantum antiferromagnet YCu3(OH)6Br2[Brx(OH)1−x] [35].
The subtle details of the singlet excitations depending on the
shape and the size N of the finite lattices lead to deviations
between the behavior of C(T ) for both models at very low T .

Bearing in mind the recent experimental studies on
square-kagome quantum antiferromagnets [7–10] and the
nonequivalence of the nearest-neighbor bonds J1 and J2 we
may expect that for the modeling of square-kagome com-
pounds it is natural to consider a spin model with J1 �= J2.
Moreover, the J1 − J2 model is interesting in its own right as
highly frustrated model that allows us to tune the competition
between the bonds.

So far only a few papers exist, which study the zero-
temperature properties of the J1 − J2 model [18,20,23–25]
where in Ref. [23] the focus is on the magnetization process
of the J1 − J2 model with only slight deviations from the bal-
anced model, i.e., the difference between J1 and J2 is small. In
our paper we will fill the gap of missing nonzero-temperature
studies and present FTLM data for the magnetization M,
the Wilson ratio P, the specific heat C, the entropy S, and the
uniform magnetic susceptibility X of the J1 − J2 SKHAF. In
addition, we will analyze the ground state of the finite lattices
used for the FTLM studies, which allows us to get a relation
between ground-state and finite-temperature properties of the
investigated systems.

The corresponding Heisenberg Hamiltonian augmented
with a Zeeman term is given by

H = J1

∑

〈i, j〉1

si · s j + J2

∑

〈i, j〉2

si · s j + gμB B
∑

i

sz
i , (1)

where s2
i = s(s + 1) = 3/4. The J1 bonds represent the

nearest-neighbor exchange connecting A sites on the squares,
whereas the J2 bonds represent the nearest-neighbor exchange
connecting A with B sites on the triangles, see the left inset in
Fig. 1. In what follows we set J1 = 1.

The paper is organized as follows. In Sec. II we introduce
our numerical scheme. In Sec. III we present our results where
in Sec. III A we briefly discuss the ground-state properties
as well as the excitation gaps of the model, which may be
relevant for the interpretation of the low-temperature thermo-
dynamics. The results for the temperature dependence of the
Wilson ratio P(T ), the specific heat C(T ), the entropy S(T )
as well as the susceptibility X (T ) at zero magnetic field are
presented and discussed in Sec. III B. Finally, in Sec. III C
we discuss the magnetization process in an applied magnetic
field. In the last section, IV, we summarize our findings. In
two Appendixes we show the finite lattices considered in our
paper (Appendix A) and provide some additional figures to
illustrate finite-size effects (Appendix B).

FIG. 1. Main panel: Order parameter m+ as defined in Eq. (3) of
the spin-1/2 J1 − J2 SKHAF (N = 30 and 36) as a function of J2.
Left inset: Sketch of the square-kagome lattice. Here A and B label
the two nonequivalent sites and J1 and J2 label the two nonequiva-
lent nearest-neighbor bonds. Right inset: Nearest-neighbor spin-spin
correlation for N = 36: 〈si · s j〉NN,A−A = (〈s0 · s1〉 + 〈s0 · s3〉/2 and
〈si · s j〉NN,A−B = (〈s0 · s4〉 + 〈s1 · s4〉/2, see Fig. 12 for the number-
ing of sites.

II. CALCULATION SCHEME

The magnetic system under consideration is modeled by
the spin-1/2 Heisenberg Hamiltonian given in Eq. (1). We
use the conservation of the z component of the total spin
Sz = ∑

i sz
i as well as lattice symmetries, i.e., the Hilbert space

splits into subspaces characterized by the eigenvalues of Sz

(magnetic quantum number M) and of the symmetry opera-
tor, see, e.g., Refs. [36,37]. To calculate the ground state we
perform Lanczos exact diagonalization in the sector M = 0.
For that we use Schulenburg’s publicly available package
SPINPACK [38,39].

For the FTLM scheme we also exploit the package SPIN-
PACK as well as the conservation of Sz and the symmetries
to decompose the Hilbert space into much smaller subspaces.
The FTLM is meanwhile a well-established and accurate ap-
proach to calculate thermodynamic quantities of frustrated
quantum spin systems [30,34,40–55]. We do not present a
detailed description of the method, rather we will provide the
basics of the FTLM for convenience. Within the FTLM the
sum over an orthonormal basis in the partition function is
replaced by a much smaller sum over R random vectors:

Z (T, B) ≈
�∑

γ=1

dim(H(γ ))

R

R∑

ν=1

NL∑

n=1

e−βε (ν)
n |〈 n(ν) |ν〉|2, (2)

where the |ν〉 label random vectors for each symmetry-related
orthogonal subspace H(γ ) of the Hilbert space with γ label-
ing the respective symmetry. In Eq. (2), the exponential of the
Hamiltonian has been replaced by its spectral representation
in a Krylov space spanned by the NL Lanczos vectors starting
from the respective random vector |ν〉, where |n(ν)〉 is the nth
eigenvector of H in this Krylov space.

For more information we refer the interested reader to the
reviews [45,48] and to our recent FTLM papers of the KHAF
[34] and SKHAF [30]. A detailed discussion of the accuracy
of the FTLM can be found in Refs. [34] and [54]. Based on
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FIG. 2. Singlet-triplet and singlet-singlet gaps �t and �s of the
spin-1/2 J1 − J2 SKHAF (N = 30 and 36) as a function of J2. For a
few values of J2 data for N = 42 are added.

this knowledge, we chose the number of random vectors R
along the lines of our previous study [34].

III. SKHAF AT ZERO MAGNETIC FIELD

A. Analysis of the ground state of SKHAF on finite
lattices of N = 30 and N = 36 sites

The absence of magnetic long-range order for the balanced
s = 1/2 SKHAF (J1 = J2) was established by previous stud-
ies [13,18,20,25,28,29]. The nature of the ground state is still
under debate, candidates are a pinwheel valence-bond-crystal
ground state [18,28], a loop-six valence-bond state [20,29], or
a topological nematic spin liquid [25]. The ground-state phase
diagram of the J1 − J2 model was studied in Ref. [25] using a
Schwinger-boson mean-field theory as well as in Refs. [18,20]
using a resonating valence-bond approach.

Here we present Lanczos exact diagonalization data for
N = 30 and N = 36. Note that a brief discussion of the
ground state for N = 24 and N = 30 was already given in
Refs. [20,24]. Our ground-state data will be useful to com-
pare with the Schwinger-boson data [25] as well as for the
interpretation of the low-temperature thermodynamics.

To get an impression on possible ground-state magnetic or-
der we first consider an order parameter introduced in Ref. [2]
that measures the total strength of the overall spin-spin cor-
relations without any assumptions on possible magnetic order
with a related ordering vector Q. It is defined as

m+ = 1

N2

N∑

i, j

|〈si · s j〉|. (3)

Numerical ground-state data for m+ are depicted in Fig. 1,
main panel. It is obvious that in a wide parameter range
0 � J2 � 1.65 the order parameter m+ is approximately of
the same small size as for the balanced model (J2 = 1), which
is known to be in a nonmagnetic singlet ground state. Thus
we may argue that there is no magnetic ground-state order
for J2 � 1.65. The steep increase of m+ beyond J2 ≈ 1.65

is related to a transition from a singlet ground state to a
ferrimagnetic ground state with nonzero magnetization M.
The jumps in the m+(J2) curve visible for 1.65 � J2 � 1.83
are related to a stepwise increase of M up to M1/3 = Msat/3.
The ground state with M1/3 present for J2 � 1.83 is a fer-
rimagnetic up-up-down (UUD) state, i.e., 〈sz

i∈A〉 and 〈sz
i∈B〉

are antiparallel. To give an example, for N = 36, J2 = 2, we
have 〈sz

i∈A〉 = 0.39779 and 〈sz
i∈B〉 = −0.29558. We mention

that for the classical model the transition to the UUD state
takes place at J2 = 2, i.e., the order-by-disorder mechanism
[56,57] leads to a shift of the transition to the collinear UUD
state to smaller values of J2. Bearing in mind the Schwinger-
boson mean-field study of the ground state reporting five
ground-state phases [25] it is worth to have a closer look
at the details of the m+(J2) profile. Indeed, there are small
discontinuous changes in m+ at J2 ≈ 0.77, J2 ≈ 0.87, and
J2 ≈ 1.33 (J2 ≈ 0.74, J2 ≈ 0.83, and J2 ≈ 1.35) for N = 36
(N = 30), where the values at about 0.85 and 1.33 are close to
transition points reported in Ref. [25]. We also mention that
below J2 ≈ 0.77 the spins on B sites become weakly coupled
to the neighboring A-site spins, whereas the nearest-neighbor
correlations on the J1 bonds asymptotically approach the value
of the square-plaquette singlet ground state (see the right inset
in Fig. 1), i.e., the system enters a plaquette ground-state phase
at low values of J2.

For the low-temperature thermodynamics the spin gap
(singlet-triplet gap) �t as well as the singlet-singlet gap �s are
relevant. Corresponding data are shown for N = 30, N = 36,
and N = 42 in Fig. 2. Our data provide evidence that there is a
finite spin gap �t in the region between J2 ≈ 0.77 (J2 ≈ 0.74)
and J2 ≈ 1.65 (J2 ≈ 1.65) for N = 36 (N = 30). We notice
only a small finite-size dependence of the spin gap away
from J2 = 1, whereas in the vicinity of J2 = 1 it shrinks with
increasing N . However, it is known that �t remains finite at
J2 = 1 for N → ∞ [29]. The vanishing of the spin gap at
J2 ≈ 0.77 coincides with the above reported value at which
a small discontinuous change in m+ occurs, whereas the clos-
ing of the spin gap at J2 ≈ 1.65 is related to the emergence
of a ferrimagnetic ground state. Thus, m+ as well as �t

yield indications for ground-state phase transitions between
a gapped and a gapless phase. A similar behavior was found
in Ref. [25], where, however, the region of the gapped phase is
0.84 � J2 � 1.27. While �t determines the low-temperature
behavior of the susceptibility X , the existence of low-lying
singlet excitations within the spin gap, i.e., �s < �t , is crucial
for the low-temperature behavior of the specific heat C. From
Fig. 2 it is obvious that in the whole region with a finite spin
gap we have �s < �t . As for the balanced model J1 = J2 = 1
there are a number of singlets within the spin gap. The details
of their energy distribution will determine the temperature
profile of C at very low T .

B. Thermodynamic properties of the SKHAF on finite
lattices of N = 30 and N = 36 sites

Let us now consider the finite-temperature properties of
the model. In what follows we discuss the Wilson ratio
P, the specific heat C, the entropy S, and the uniform
susceptibility X .
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FIG. 3. Modified Wilson ratio P(T ), cf. Eq. (4), of the spin-
1/2 J1 − J2 SKHAF (N = 36). (a) J2 � 1.0, (b) J2 � 1.0.

The modified Wilson ratio is defined as [58,59]

P(T ) = 4π2T X/(3NS). (4)

It is a measure of the ratio of the density of magnetic excita-
tions with M > 0 and the density of all excitations including
singlet excitations with M = 0.

As shown for the KHAF [58,59] and for the balanced
SKHAF [30] a vanishing P as temperature T → 0 is a
hallmark of a quantum spin-liquid ground state with domi-
nating singlet excitations at low T . In contrast, for quantum
spin models with semiclassical magnetic ground-state or-
der, such as the square-lattice Heisenberg antiferromagnet,
the Wilson ratio diverges according to a power law [58,59].
We show the modified Wilson ratio in Fig. 3. For J2 =
0.8, 0.9, 1.0, 1.1, 1.2, , 1.3, 1.4, 1.5 singlet excitations are no-
ticeably below the first triplet excitation. As a result there is
an obvious downturn of P as T → 0. Also the upturn of P
as T → 0 for J2 = 1.7 and 1.8 (ferrimagnetic ground state)
is evident. More subtle is the situation for J2 < 0.8, where
the plaquette ground-state phase emerges. Here the low-lying
spectrum is dominated by the weakly coupled spins on the B
sites. which leads to a maximum in P at low temperatures,
see Fig. 3(b). This behavior can be understood by considering
the ground state in the limit of decoupled B spins, i.e., for

FIG. 4. Specific heat C/N of the spin-1/2 J1 − J2 SKHAF for
N = 36. (a) J2 � 1.0, (b) J2 � 1.0.

J2 = 0. In this limit we get a size-independent Wilson ra-
tio P0 = limT →0 P = π2/(3 ln 2) = 4.74628. Obviously, the
height of the low-temperature maximum in P approaches P0

as decreasing J2. At very low T the Wilson ratio approaches a
constant value of about P ≈ 2. (Note, however, that our FTLM
is not appropriate to get accurate data precisely at T = 0,
because in the limit of very weakly coupled B spins very tiny
energy differences appear in the low-energy spectrum.) As
reported in Ref. [58] this behavior corresponds to a gapless
spin liquid; in particular, for the one-dimensional s = 1/2
Heisenberg antiferromagnet (Bethe chain) P0 is exactly 2
[58,60].

Let us now discuss the specific heat C(T ), the entropy
S(T ), and the uniform susceptibility X (T ). We use a loga-
rithmic temperature scale, which makes the low-temperature
features transparent, see Figs. 4, 6, and 7. In panels (a) we
show data for J2 � 1 and in panels (b) for J2 � 1. In all these
figures we also show the corresponding data for the balanced
model [30], which may serve as benchmark data. The typical
main maximum is related to the magnitudes of J1 and J2. Its
position Tmax and its height Cmax/N exhibit a quite regular
behavior, see Figs. 5(a) and 5(b).

From Fig. 5 it is also evident that Tmax and Cmax/N are
equal for N = 30 and 36 for all values of J2, i.e., the main
maximum in C(T )/N is not affected by finite-size effects, see
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FIG. 5. Features of the main maximum and the minimum below
the main maximum in the temperature profile of the specific heat
C(T )/N of the spin-1/2 J1 − J2 SKHAF (N = 30 and N = 36).
(a) Position Tmax and (b) height Cmax/N of the main maximum.
(c) Position Tmin and (d) depth Cmin/N of the minimum.

also Fig. 15 in Appendix B. For all values of J2 shown in Fig. 4
the temperature profile exhibits a low-temperature maximum
below the main maximum that indicates an extra-low-energy
scale. Though, we show in Fig. 4 only data for N = 36 this
feature is present also for N = 30 and N = 42, cf. Fig. 15
in Appendix B. Since the C(T ) curves for N = 30, 36, 42
coincide down to temperatures where this particular low-T
feature emerges, we may argue that this characteristic sur-
vives for N → ∞ either as an extra maximum or a shoulder
below the main maximum. An additional information on the
finite-size dependence of the low-T part of C(T ) is given in
Fig. 5, where we show the position Tmin [Fig. 5(c)] and the
depth Cmin/N of the minimum [Fig. 5(d)] in C(T ) below the
main maximum. The good agreement of the data for N = 30
and 36 is obvious. The special values of Tmin and Cmin/N
found for J2 = 0.8 might be attributed to the proximity to
the transition point to the plaquette phase. Interestingly, there
is also a double-maximum profile in C(T ) for J2 = 1.8 and
2.0, where the ground state is ferrimagnetic. Only beyond
J2 ∼ 3 we get a C(T ) profile with only one maximum, see
Fig. 14 in Appendix B. Let us finally mention that for some
values of J2 there is even some additional structure at very low
T � 0.02, which most likely can be attributed to finite-size
effects.

In highly frustrated quantum magnets we may have a high
density of states at low excitation energies [30,34,61]. To shed
light on the density of low-lying eigenstates we present the
entropy S(T )/N in Fig. 6. We observe, that already at T ∼ 0.2
about 50% of the maximum entropy S(T → ∞) = N ln 2 is
acquired. Note that for the unfrustrated square-lattice Heisen-
berg antiferromagnetthe corresponding value at T ∼ 0.2 is
only about 10%, cf. Ref. [34]. Moreover, there is a change in

FIG. 6. Entropy S/N of the spin-1/2 J1 − J2 SKHAF for N =
36. (a) J2 � 1.0, (b) J2 � 1.0. Note that the finite entropy at T = 0
for J2 = 1.8 and 2.0 is caused by the ferrimagnetic multiplet and by
an accidental degeneracy of the ground state for some other values
of J2.

the curvature or even a plateaulike feature in the S(T ) profile
below this temperature. In particular, for J2 � 0.7 we see such
a plateau at S/(N ln 2) ∼ 0.1, which can be attributed to a high
density of states caused by the weakly coupled B spins in this
parameter region. For some values of J2 (e.g., for J2 = 2.0 and
1.2) there is a finite value of S(T = 0)/N due a degeneracy
of the ground state. However, S(T = 0)/N will become zero
as N → ∞. For more information on finite-size effects, see
Fig. 16 in Appendix B, where data for N = 30, N = 36, and
N = 42 are compared.

Next we turn to the zero-field susceptibility X displayed
in Fig. 7. For J2 values where we have a finite singlet-triplet
gap �t , see Fig. 2, X exhibits an exponentially activated
low-temperature behavior and there is a maximum in X (T ).
Its position Tmax and its height Xmax/N exhibit a quite regular
behavior, and the finite-size effects in Tmax and Xmax/N are
small, see Fig. 8. (For more information on finite-size effects,
see Fig. 17 in Appendix B, where data for N = 30, N = 36,
and N = 42 are compared.) Around J2 = 1 the position Tmax

is largest, although, it is still at a pretty low temperature
compared to Tmax = 0.935 for the square-lattice Heisenberg
antiferromagnet [62,63], which demonstrates the crucial role
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FIG. 7. Susceptibility X/N of the spin-1/2 J1 − J2 SKHAF for
N = 36. (a) J2 � 1.0, (b) J2 � 1.0.

of frustration also for the susceptibility. It is also obvious
that Tmax is directly related to the spin gap �T , compare
Fig. 8(a) and Fig. 2. Increasing J2 towards the transition to the
ferrimagnetic ground state naturally leads to a diminishing of
Tmax and an increase of Xmax/N . At J2 ∼ 1.65 we get Tmax = 0
and Xmax/N → ∞.

A similar behavior can be observed for decreasing J2

towards J2 = 0. Again the singlet-triplet gap �t becomes
smaller and it is effectively zero below J2 ∼ 0.77 (plaquette

FIG. 8. Features of the maximum in the temperature profile of
the susceptibility X (T )/N of the spin-1/2 J1 − J2 SKHAF (N = 30
and N = 36). (a) Position Tmax of the maximum. (b) Height Xmax/N
of the maximum.

FIG. 9. Main panel: Zero-temperature magnetization curves of
the J1 − J2 SKHAF with N = 36 sites and selected values of
J2. Inset: Nearest-neighbor correlation functions 〈si · s j〉NN,A−A and
〈si · s j〉NN,A−B in the 1/3 plateau state.

ground-state phase), i.e., Tmax approaches zero. However, here
the weakly coupled spins on the B sites lead to extremely
low-lying magnetic and nonmagnetic excitations. In fact, we
find that for the finite systems considered here the ground
state is still a nonmagnetic singlet but magnetic excitations
dominate the X (T )/N profile down to very low T . Thus,
the susceptibility indeed vanishes at T = 0, but X (T )/N ap-
proaches zero only at T ∼ 10−4, 10−5, 10−9 for J2 = 0.7, 0.5,
0.1, respectively.

C. Field-dependent properties

The magnetization process of strongly frustrated quantum
magnets exhibits a number of interesting features, such as
plateaus and jumps [64]. Previous studies for the balanced
model [13,14,29,30,65] report on wide plateaus at 1/3 and 2/3
of the saturation magnetization Msat. Moreover, there is the
typical macroscopic jump to saturation due to the presence of
independent localized multimagnon ground states stemming
from a flat one-magnon band [15,66–68].

Let us first present the zero-temperature magnetization
curve for selected values of J2, see Fig. 9. Both plateaus
as well as the jump to saturation known from the balanced
model are present for all values J2 � 1, whereas for J2 > 1
the jump and the related preceding 2/3 plateau are missing.
For J2 � 1 both plateau states are nonclassical valence-bond
states, cf. Refs. [13,29,30,65], where the upper plateau state
is the exactly known magnon-crystal product state, i.e., spins
on the B sites are fully polarized and the A spins on a square
occupy the lowest triplet eigenstate of the square plaquette
with Sz

plaqu = 1, for an illustration of this state, see, e.g.,
Fig. 2(a) in Ref. [69]. For J2 � 0.7 the transition between
the two plateaus becomes steplike. The jump to saturation as
well as the magnon-crystal product state are related to the
flat one-magnon band, which is the lowest one for J2 � 1.
In contrast, for J2 > 1, the flat one-magnon band is not the
lowest one, and, therefore the flat-band related features are
not present in the magnetization curve. However, the flat-band
related localized multimagnon states including the magnon
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FIG. 10. Sketch of the zero-temperature J2 − B phase diagram.
FM: ferromagnetic, 1/3-VB: M = Msat/3 (valence-bond state),
1/3-UUD: M = Msat/3 (up-up-down state), 2/3-MC: M = 2Msat/3
(magnon crystal), SC: spin canting above and below the 1/3 plateau,
red area: M = 0 (gapped phase).

crystal are still eigenstates living now as quantum scar states
somewhere in the middle of the spectrum [26].

The valence-bond state of the lower plateau is not exactly
known but it is approximately described by a product state
with fully polarized spins on the B sites and a singlet state of
the A spins on a square, see the inset in Fig. 9, where the spin-
spin correlations 〈si · s j〉NN,A−A and 〈si · s j〉NN,A−B in the 1/3
plateau state are shown. On the other hand, for J2 > 1 the 1/3
plateau state is semiclassical, namely it is the ferrimagnetic
UUD state, cf. Sec. III A and see the inset in Fig. 9.

Using the entire set of calculated magnetization curves
for N = 36 (which includes altogether 22 J2 values in the
region 0 � J2 � 2) we can construct the J2 − B phase diagram
shown in Fig. 10. The saturation magnetization (uppermost
line) is given by gμB Bsat = 2 + J2 for J2 � 1 and gμB Bsat =
3J2 for J2 � 1, and it is size independent. But also for the other
phase boundaries derived from numerical data, the finite-size
effects are very small, see Fig. 13 in Appendix B.

For elevated temperatures the experimental detection of
plateaus may become intricate, because often there is a fast
melting of plateaus and jumps, i.e., they are smeared out
already at pretty low T , see, e.g., Refs. [65,70]. Therefore,
to detect plateaus and jumps in experiments the differential
susceptibility X (T, B) = dM(T, B)/d (gμB B) as a function of
B measured at various T is more suitable, cf., e.g., Ref. [71].
Magnetization plateaus show up as pronounced minima in
X (B), however, requiring sufficiently low temperatures. On
the other hand, a jump of the magnetization leads to a high
peak in X (B) at low T .

We present the influence of the temperature on the mag-
netization curve M(B) and on the differential susceptibility
X (B) in Fig. 11 for selected values of J2. We observe that the
melting process is most rapid for J2 ∼ 1, whereas for small
and large J2 the plateaus and the jumps are still well visible at
T = 0.2. We notice that the oscillations present for J2 � 1 at
T = 0.05 (green curves) above the 1/3 plateau are finite-size
effects.

FIG. 11. Left: Finite temperature magnetization curves M(T, B)
of the J1 − J2 SKHAF with N = 36 sites for selected values
of J2. Right: Corresponding data of the differential susceptibility
X (T, B) = dM(T, B)/d (gμB B).

IV. SUMMARY AND CONCLUSIONS

In our study we performed numerical calculations of ther-
modynamic quantities such as the magnetization M(T ), the
specific heat C(T ), the entropy S(T ), and the susceptibility
X (T ) for the J1 − J2 spin-half square-kagome Heisenberg
antiferromagnet (SKHAF) by using the finite-temperature
Lanczos method (FTLM) applied to finite lattices of N = 30,
N = 36, and N = 42 sites. Since the SKHAF exhibits two
nonequivalent nearest-neighbor bonds, the extension of pre-
vious studies [16,30], which were restricted to J1 = J2, on the
generalized model with J1 �= J2 is natural with respect to ex-
perimental realization of the SKHAF, see Refs. [7–10]. More-
over, the generalized model may serve as a model allowing us
to tune the competition of antiferromagnetic bonds in a highly
frustrated spin system.

The exact-diagonalization data for the ground state indicate
magnetic disorder in a wide range of J2/J1 ratios. Only for
J2 � 1.65J1 the ground state features ferrimagnetic order. In
the region 0.77 � J2/J1 � 1.65 the low-temperature thermo-
dynamics is determined by a finite singlet-triplet gap with
low-lying singlets within this gap. Therefore, the susceptibil-
ity decays exponentially to zero as temperature T → 0, while
the specific heat exhibits an extra maximum at low T related
to the singlets. For smaller values of J2/J1 � 0.7 the ground
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FIG. 12. Finite square-kagome lattices of N = 30, N = 36, and
N = 42 sites.

state becomes a plaquette ground state with weakly coupled
spins on B sites, which become asymptotically decoupled as
J2/J1 → 0. As a result, the entropy acquires already a large
amount at very low temperatures.

In nonzero magnetic field B we find well-pronounced
plateaus at 1/3 and 2/3 of the saturation magnetization and
a jump from the 2/3 plateau to saturation in the whole region
0 � J2/J1 � 1, whereas for J2/J1 > 1 only the 1/3 plateau is
present. At at low and moderate temperature the plateaus are
reflected as minima in the differential susceptibility X (B) =
dM(B)/d (gμB B) and a jump is seen as a peak in X (B). Bear-
ing in mind the numerous studies of the low-energy physics of
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FIG. 13. Widths W1/3 = gμB(B2,1/3 − B1,1/3) of the 1/3 plateau
and W2/3 = gμB(B2,2/3 − B1,2/3) of the 2/3 plateau of the J1 − J2

SKHAF for N = 30, N = 36, and N = 42.
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FIG. 14. Specific heat per site C/N for N = 30 (dashed lines)
and N = 36 (solid lines) for large values of J2. Note that in a
wide temperature range the corresponding curves for N = 30 and
36 coincide.

FIG. 15. Specific heat per site C/N for N = 30 (thin), N = 36
(middle), and N = 42 (thick). (a) J2 > 1.0, (b) J2 � 1.0. Note that
in a wide temperature range the corresponding curves for N = 30,
N = 36, and N = 42 coincide.
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FIG. 16. Entropy per site S/N for N = 30 (thin), N = 36 (mid-
dle), and N = 42 (thick). (a) J2 > 1.0, (b) J2 � 1.0. Note that in
a wide temperature range the corresponding curves for N = 30,
N = 36, and N = 42 coincide.

the related kagome Heisenberg antiferromagnet we argue that
our work may also stimulate other studies using alternative
techniques, such as tensor network methods, DMRG, numer-
ical linked cluster expansion, or Green’s function techniques
[29,72–77].
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FIG. 17. Susceptibility per site X/N for N = 30 (thin), N = 36
(middle), and N = 42 (thick). (a) J2 > 1.0, (b) J2 � 1.0. Note that
in a wide temperature range the corresponding curves for N = 30,
N = 36, and N = 42 coincide. Only for J2 = 0.8 there is a noticeable
difference around the maximum which is, however, at pretty low T .

APPENDIX A: FINITE SQUARE-KAGOME LATTICES
USED FOR THE EXACT DIAGONALIZATION AND
THE FINITE-TEMPERATURE LANCZOS METHOD

Here we provide the finite lattices studied in our paper, see
Fig. 12.

APPENDIX B: FINITE-SIZE EFFECTS

Here we present data for the widths of the 1/3 and 2/3
plateaus (Fig. 13) and show the specific heat for large values
of J2 (Fig. 14). Moreover, we provide additional information
on finite-size effects for the specific heat C(T ) (Fig. 15), the
entropy S(T ) (Fig. 16) and the susceptibility X (T ) (Fig. 17)
by comparing data for N = 30, N = 36, N = 42.
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