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Impedance responses and size-dependent resonances in topolectrical circuits via
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Resonances in an electric circuit occur when capacitive and inductive components are present together. Such
resonances appear in admittance measurements depending on the circuit’s parameters and the driving AC
frequency. In this study, we analyze the impedance characteristics of nontrivial topolectrical circuits such as
one- and two-dimensional Su-Schrieffer-Heeger circuits and reveal that size-dependent anomalous impedance
resonances inevitably arise in finite LC circuits. Through the method of images, we study how resonance modes
in a multidimensional circuit array can be nontrivially modified by the reflection and interference of current
from the structure and boundaries of the lattice. We derive analytic expressions for the impedance across two
corner nodes of various lattice networks with homogeneous and heterogeneous circuit elements. We also derive
the irregular dependency of the impedance resonance on the lattice size, and provide integral and dimensionally
reduced expressions for the impedance in three dimensions and above.
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I. INTRODUCTION

Electric circuit networks are extremely versatile platforms
for simulating a variety of condensed matter phenomena
through their tight-binding representations [1–3]. For in-
stance, a uniform tiling of LC oscillators composed of
capacitor and inductor pairs gives rise to an AC signal prop-
agating along an ideal transmission line, which simulates
the lattice dynamics of a one-dimensional (1D) solid-state
medium. Circuits that mimic condensed matter lattices,
known as topolectrical (TE) circuits, have been extremely
successful in demonstrating a wide range of topological and
critical condensed matter phenomena [4–20]. In these cir-
cuits, topologically protected zero modes can be measured as
impedance resonances at the resonant frequency. Beyond the
simulation of linear condensed matter systems, the simulation
of complex networks processes such as search algorithms
has also been proposed through the use of nonlinear circuit
elements [21–26].

While tight-binding lattice models are usually faithful in
representing their respective solid-state systems [27–34], their
intrinsic discreteness sometimes leads to additional anoma-
lous contributions to the impedance with no analog in the
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continuum limit. In this work, we present an analytic formula-
tion for computing the impedance across various finite circuit
arrays. We also investigate the anomalous impedance behavior
that emerges when components with different phase lags are
simultaneously present in a finite electric circuit, which we
call a heterogeneous circuit. We focus most specifically on
heterogeneous circuits in which the nodes are coupled by a
mixture of capacitors and inductors.

The electric potential distribution in electric circuit net-
works satisfies Kirchhoff’s laws and can be described by
the circuit Laplacian. The solutions of the circuit Laplacian
contain all available information about the potential distribu-
tion. Therefore, any desired computation can be performed
by solving the circuit Laplacian with appropriate boundary
conditions. Although the two-point impedance in homoge-
neous circuits has been widely studied, most results pertaining
to the condensed matter context are valid only for infinite
circuit networks [35–88]. Two issues that present challenges
in forming full analogies with condensed matter are the fi-
nite circuit boundaries (which differ from the usual open
boundary conditions) and the homogeneity of the lattice array;
while computations can certainly be performed numerically,
a comprehensive analytical expression for the impedance in
heterogeneous finite circuits has yet to be obtained. One
way to implement boundary conditions in electrostatic theory
is through the method of images, in which the boundaries
are replaced by image charges located opposite the original
charges [89–93]. As a demonstration of this approach, we
apply the method of images to periodic tilings of finite electric
circuit networks to compute the two-point impedance of the
finite circuit networks.
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While the impedance generally scales in a logarith-
mic manner with the circuit size in homogeneous cir-
cuits [39,46,64,77,86,94–96], the same is not true in heteroge-
neous circuits, where the impedance can deviate very strongly
from logarithmic scaling [97] at certain circuit sizes. The
circuit size N thus becomes a functional parameter alongside
LC and the driving AC frequency ω. These independent pa-
rameters collectively affect the impedance resonances. This is
in contrast to a waveguide or transmission line, in which the
system size does not affect the behavior of the system in ideal
cases. Moreover, the discreteness of N results in fractal-like
resonances when N is varied at fixed L and C values.

In this work, we study the size-dependent impedance reso-
nances both numerically and analytically. We derive analytic
expressions for the size-dependent impedance between two
opposite corner nodes by utilizing the method of images. To
reveal the origin of this anomalous impedance behavior, we
examine circuits with a single node per unit cell, as well as
those with nontrivial unit cells containing more than one node.
As paradigmatic examples of the latter, we present detailed
calculations for 1D and two-dimensional (2D) circuit lattices
with Su-Schrieffer-Heeger (SSH) type dimerizations. As for
homogeneous circuits with a single-type node per unit cell, we
start from a 1D circuit and build higher-dimensional circuits
by linking every node along the new direction with the same
type of component (i.e., resistor, inductor, or capacitor). In the
heterogeneous circuits section, we follow the same process
but introduce at least two different types of components with
different phase shifts. Finally, we discuss the emergent fractal-
like structures that arise from the violated logarithmic scaling
in LC circuits.

II. FORMALISM FOR THE TWO-POINT IMPEDANCE

We first review the generic derivation of the expression
for the two-point impedance in terms of the eigenvalues and
eigenvectors of the circuit Laplacian [43,44,46,75,94,98,99].
A RLC circuit can be represented as a graph in which the
vertices of the graph represent the voltage nodes and the edges
represent the couplings between the nodes due to R, L, and C
components between the nodes. Under driving at a single AC
frequency ω, the circuit can be mathematically represented by
its Laplacian matrix J , which relates the currents injected into
the nodes with the voltages at each node via

I = JV, (1)

where I is a vector of the currents injected into each node
and V the corresponding vector of the node voltages. The
Laplacian matrix for a circuit can be obtained simply by
writing Kirchhoff’s current law at each voltage node. For
example, consider a simple circuit consisting of two volt-
age nodes connected by a single capacitor with capacitance
C. Applying Kirchhoff’s current law at the two nodes gives
I1 = iωC(V1 − V2) and I2 = iωC(V2 − V1) where Ia and Va

are the injected current and voltage at node a, respectively.
Using Eq. (1) and these relations between the node current
and voltages, the Laplacian matrix J of this simple circuit is
then given by J = iωC( 1 −1

−1 1 ). By definition, the impedance
between two nodes i and j is the factor of proportionality

between the voltage difference Vi − Vj that develops between
the two nodes when a current of magnitude I is injected into
node i and extracted at node j:

Zi j = Vi − Vj

I
. (2)

To determine the impedance between two nodes, the volt-
ages Vi and Vj have to be determined. To achieve this, we
employ the circuit Green’s function G, which is defined as
the pseudoinverse of the circuit Laplacian G = J−1. Using the
Green’s function, Eq. (1) can be rewritten as V = GI . The
electrical voltage at node i can thus be expressed as

Vi =
N∑
j

Gi jI j, (3)

where Gi j is the (i, j)th element of the pseudoinverse matrix
G. By setting Ii = I and I j = −I in Eq. (3), Eq. (2) can be
rewritten as

Zi j =
∑
k=i, j

GikIk − GjkIk

I
, (4)

which gives

Zi j = Gii + Gj j − Gi j − Gji. (5)

By resolving in the space of eigenstates, J can be written
in terms of its right eigenvectors |ψk〉, left eigenvectors 〈ψk|,
and eigenvalues λk as J = ∑

k |ψk〉λk〈ψk|. In general, |ψk〉 �=
〈ψk|†, when J is not Hermitian. However, |ψk〉 = 〈ψk|† holds
in the following special cases: (i) in a purely LC circuit,
where J is anti-Hermitian and the λk’s are imaginary, and
(ii) in a purely resistive circuit, where J is Hermitian and the
λk are real. For a general RLC circuit, the λk are complex,
and the general relation G = ∑

k |ψk〉(λk )−1〈ψk| holds. Note
that because G is defined as the pseudoinverse of J , any
zero eigenvalues are excluded from the sum if they exist.
Writing |ψk〉 as a column vector of the node voltages |ψk〉 =
{ψk1, ψk2, . . . , ψkN } where N is the total number of nodes,
Eq. (5) can rewritten as

Zi j =
∑

k,λk �=0

|ψki − ψk j |2
λk

, (6)

where λk is the corresponding eigenvalue of the Laplacian,
and the | . . . | norm is the biorthogonal norm. Any arbitrary
two-point impedance can then be numerically calculated using
Eq. (2), (5), or (6).

III. METHOD OF IMAGES FOR ANALYTIC IMPEDANCE
FORMULAS ACROSS BOUNDED CIRCUIT LATTICES

In this section, we review and derive the general analytical
formalism for calculating the impedance between two edge
or corner nodes in finite discrete circuit lattices based on the
method of images and discuss their impedance behaviors. The
method of images is needed to put finite-lattice impedance
computations, which are not easily represented by exact an-
alytic formulas due to the lack of translation symmetry, on
equal footing with periodic lattices. We shall illustrate the
approach with exemplary circuit arrays with nontrivial unit
cells, such that the tiling of the periodic images is not trivial.
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FIG. 1. Lattice structures of illustrative SSH circuits and their periodic image lattices for finite-lattice impedance computations. (a) The
1D SSH circuit comprises two capacitors (C1 and C2) and two nodes (s1 and s2) in a unit cell. (b) The superlattice comprising the physical and
image 1D SSH circuits is denoted by the blue dashed box, so constructed such that the impedance through a finite single block is recast into
a problem with periodically placed injected and extracted currents. The green and purple dashed boxes denote the physical circuit and its unit
cell, respectively. (c) The physical 2D SSH circuit consisting of two kinds of capacitors with capacitances C1 (bold) and C2 (thin) connecting
the nodes along the horizontal direction and two kinds of inductors with inductances L1 (bold) and L2 (thin) linking the nodes along the vertical
direction. The four distinct nodes in a unit cell (purple dashed square) s1, s2, s3, and s4 are represented as magenta, yellow, orange, and cyan
circles, respectively. To measure the corner-to-corner impedance, current is injected at node s1 of unit cell (N + 1, N + 1) and extracted at node
s4 of unit cell (2N, 2N ) [also see the matrix representation in Eq. (21)]. (d) The infinite periodic lattice tiling of the (2N )2-unit cell superlattice
consisting the image and physical circuits (blue dashed square), which is constructed such that the impedance across the finite lattice can be
expressed in terms of translation-invariant momentum contributions. The nodes at which current is injected and extracted are denoted with
green and black outlines, respectively.

In the context of electrostatic theory, the electric potential
distribution inside an area of interest in the vicinity of a
grounded conducting plate can be obtained by placing an im-
age charge reflected across the conducting plate [89–93,100–
103]. The image charge causes the surface of the plate to be-
come equipotential (which is considered zero for a grounded
conductor) and thus satisfy the boundary conditions of a
grounded conducting plate.

Inspired by this approach, we apply an analogous idea
by placing image circuits symmetrically about our desired
circuit to replicate the boundary conditions satisfied by a
finite circuit under open boundary conditions [93,104]. The
translation and inversion symmetries obeyed by the original
and image circuits in our method force the voltage potentials
at the boundary nodes of the original and the image circuits
to be the same [see Fig. 2(b)]. The equal potentials at the
boundary nodes result in zero current flow across the bound-
aries between the physical and image circuits, and therefore
replicates the boundary condition of zero current flow across
the open physical boundaries of the finite bounded circuit.
The potential distribution of the original circuit is then the
same as that of the finite circuit with physical boundaries. This
is the key insight that underlies our derivation of analytical
expressions for the potential profiles of circuits with open
boundaries via the method of images.

A. Example: 1D SSH circuits

To illustrate how the method of images yields exact an-
alytical expressions, we first consider sufficiently nontrivial
circuit arrays in which each unit cell contains more than

one type of node, such as the 1D and 2D topological
Su-Schrieffer-Heeger (SSH) circuits. In such lattices, the tran-
sitions from the topologically trivial to nontrivial phases are
accompanied by strong impedance resonances at the resonant
frequency [4–6,8,18,105–107]. However, our focus here is on
their edge-to-edge (1D SSH) and corner-to-corner (2D SSH)
impedance profiles rather than the topological impedance
characteristics.

The 1D SSH circuit consists of unit cells in which each
unit cell contains two distinct nodes labeled as s1 and s2 where
the nodes are connected to each other by intracell capacitors
of capacitance C1 and intercell capacitors of capacitance C2

[see Fig. 1(a)]. The corresponding 2 × 2 circuit Laplacian of
a periodic 1D SSH circuit in momentum space is therefore
written as

LSSH
1D (k1) = iω

(
C1 + C2 −C1 − C2e−ik1

−C1 − C2eik1 C1 + C2

)
, (7)

where ω is the driving AC frequency and k1 is the crystal
momentum along the x direction. We label the nodes in the
SSH chain as r̃ = (r, μ) where μ ∈ (s1, s2) denotes the node
within each unit cell, r = n1a1 denotes the location of the unit
cell with a1 being the unit vector along the length of the chain
and n1 the coordinate of the unit cell, and the tilde on r̃ denotes
a composite index consisting of both the location of the unit
cell and the sublattice site.

To investigate the behavior of the impedance as the circuit
size increases, we consider the impedance between node s1

in the leftmost unit cell and node s2 in the rightmost unit
cell in the 1D SSH chain circuit. Note that the circuit size
is increased unit cell by unit cell so as to preserve lattice
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uniformity. Therefore, N refers to the number of unit cells
throughout this study. Henceforth, we shall call the actual
circuit with open boundaries [the green dashed rectangles in
Figs. 1(b) and 1(d)] the physical lattice or the physical circuit,
the image(s) of the actual circuit the image lattice(s) or the
image circuit(s), and the block containing physical and image
circuits [the blue dashed rectangles in Figs. 1(b) and 1(d)]
the superlattice or the supercircuit. To obtain the voltages in
a finite SSH chain containing N unit cells that result from
current injection at the leftmost node and current extraction
at the rightmost node, we place an image chain of the same
length to the left of physical chain circuit, but importantly
reflected about the chain boundary so that no current flows
across it due to reflection symmetry. We then inject current
at the rightmost node of the image circuit and the leftmost
node of the physical circuit, and extract the injected current at
the leftmost node of the image circuit and the rightmost node
of the physical circuit, as shown in Fig. 1(b). The impedance
between any two lattice points can then be obtained using by
Eq. (2) once the voltage distribution is known.

To determine the voltage distribution explicitly, we uti-
lize Ohm’s law, which states that the current distribution
J = σE where the electric field is given by E = −∇V .
Therefore, the current distribution can be written as J =
−z−1∇V , where z, the uniform impedance between each
node, is the inverse of the electrical conductivity σ . Owing
to Kirchhoff’s current law, the current density is also writ-
ten as ∇J = I[δ(r′,ν)∈r̃in (r, μ, r′, ν) − δ(r′,ν)∈r̃out (r, μ, r′, ν)]
where δ denotes the Kronecker delta and I represents the
current magnitude. After performing the relevant substitu-
tions, we arrive at a Poisson-type equation. Here, because the
Green’s function satisfies ∇2G(r, μ, r′, ν ) = −δ(r, μ, r′, ν )
by definition [58,69,108–111] (note that we have rewritten the
circuit Green’s function G of Sec. II in the quasicontinuum
picture to facilitate the discussion), the voltage at sublattice
node μ of the unit cell at location r is found as

V (r, μ) = I

( ∑
(r′,ν)∈r̃in

G(r, μ, r′, ν)−
∑

(r′,ν)∈r̃out

G(r, μ, r′, ν)

)
,

(8)
where

r̃in ∈ {(Na1, s2), ((N + 1)a1, s1)},
r̃out ∈ {(1a1, s1), (2Na1, s2)} (9)

denote the nodes where the currents are injected (r̃in) and
extracted (r̃out). The spatial Green’s function G(r, μ, r′, ν) in
Eq. (8) can be determined by applying the discrete Fourier
transform given by

G(r, μ, r′, ν) = 1

(2N )D

∑
k

G(k)[μ,ν]e
ik·(r−r′ ), (10)

where the momentum space index k = k1a1 in which k1 =
n1π/N and n1 varies over a 2N period and G(k)[μ,ν] is the
matrix element of the pseudoinverse of the momentum-space
circuit Laplacian [for this example, it is LSSH

1D (k1) given in
Eq. (7)]. D represents the circuit dimension. We then tile the
2N unit cells comprising the physical and image circuits to
form an infinite-sized lattice with a period of 2N . Therefore,
the Green’s function and the circuit Laplacian are constructed

for the superlattice with a period of 2N such that the symmet-
ric current injections and extractions in this periodic infinite
lattice lead to a symmetric spatial voltage distribution with the
period of 2N ; hence, the current entering the physical circuit
cannot leak out through the boundaries of the physical circuit.
Accordingly, the open boundary condition for the physical
circuit with N unit cells is satisfied. To realize this, we use
the current distribution Eq. (9) with Eq. (8) to determine the
voltage at the leftmost node of the physical circuit as

V (r = N + 1, μ = s1) = I (G((N + 1), s1, (N ), s2)

+ G((N + 1), s1, (N + 1), s1)

− G((N + 1), s1, (1), s1)

− G((N + 1), s1, (2N ), s2)), (11)

and that at the rightmost edge node as

V (r = 2N, μ = s2) = I (G((2N ), s2, (N ), s2)

+ G((2N ), s2, (N + 1), s1)

− G((2N ), s2, (1), s1)

− G((2N ), s2, (2N ), s2)). (12)

To find the voltages explicitly, we insert the momentum-space
Green’s function given in Eq. (10) into Eqs. (11) and (12)
so that the impedance between the two edge nodes can be
calculated as ZSSH

1D = V ((N + 1), s1) − V ((2N ), s2). At this
point, we utilize the inversion and translation symmetries
[i.e., J (r) = J (−r) and J (r) = Jᵀ(r) (where the superscript ᵀ
denotes the transpose operation), respectively] that our circuit
possesses [47,96,110–112]. Because of the infinite periodic
tiling, these symmetries imply that the voltage at the nodes
where current is injected has the same magnitude as that
at the nodes where current is extracted but with the oppo-
site sign, i.e., V (r̃ ∈ r̃in ) = −V (r̃ ∈ r̃out ). Therefore, by using
these symmetries and performing the relevant substitutions,
the voltages at the edge nodes are found to be

V ((N + 1), s1)

= −V ((2N ), s2) = I

4N

2N∑
n1=1

× (ein1π − 1)
[
C2(1 − e−in1π ) + C1

(
1 − e−in1πein1π/N

)]
iωC1C2[1 − cos(n1π/N )]

,

(13)

where we introduced r = n1a1 and k = k1a1 where k1 =
n1π/N . Here, because ein1π − 1 = 0 when the integer n1 is
even, the summation is performed only for odd n1s. By con-
sidering ZSSH

1D = 2V ((N + 1), s1)/I = −2V ((2N ), s2)/I , and
by means of trigonometric conversions [e.g., 1 + ein1π/N =
1 + cos(n1π/N ) + i sin(n1π/N ) where the sine function can
be neglected because of its zero contribution to the real part of
the impedance], the edge-to-edge impedance as a function of
the circuit size N is given by

ZSSH
1D (N ) = 1

N

∗∑
k1

2C2/C1 + (1 + cos k1)

−iωC2(1 − cos k1)
. (14)
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As before, k1 = n1π/N where n1 is varied over the super-
lattice, i.e., n1 ∈ {1, 2, . . . , 2N}; however, the summation is
restricted over n1 ∈ odd because of the above-mentioned sum-
mation rule, which the asterisk (∗) on the summation operator
indicates.

Using the same procedure, the edge-to-edge impedance in
a circuit where the C1 capacitors are replaced by capacitors
with capacitance C and the C2 capacitors by inductors with
inductance L is obtained as

ZSSHL
1D (N ) = 1

N

∗∑
k1

2 − ω2CL(1 + cos k1)

−iωC(1 − cos k1)
. (15)

These formulas provide the impedance between nodes s1 and
s2 in the leftmost and rightmost unit cells, respectively. Note
that our sum includes a total of N points, which corresponds
to the N unit cells.

B. Example: 2D SSH circuit

We now proceed with a higher-dimensional circuit in
which all the principal directions are nontrivial. For exam-
ple, a 2D SSH circuit can be constructed by extending the
1D SSH circuit along the new y direction. We first consider

a capacitive 1D SSH circuit with intracell coupling C1 and
intercell coupling C2. We then extend the circuit along the y
direction by using two inductances L1 and L2 to connect the
nodes along the vertical direction, as shown in Fig. 1(c). The
resultant unit cell [dashed purple square in Fig. 1(c)] has four
distinct nodes denoted as s1 to s4 in which nodes s1 and s4 are
located at opposite corners of the unit cell. Since preserving
the uniformity of the unit cells requires the circuit size to be
increased in multiples of the unit cells, the corner-to-corner
impedance is measured between node s1 in the first unit cell
and node s4 in the unit cell at the opposite corner of the 2D
SSH circuit. The circuit Laplacian for a periodic 2D SSH
circuit in momentum space is written as

LSSH
2D (k1, k2) = iω

⎛
⎜⎜⎝

	 
 � 0

∗ 	 0 �

�∗ 0 	 


0 �∗ 
∗ 	

⎞
⎟⎟⎠, (16)

where 
 = −C1 − C2e−ik1 , � = 1
ω2L1

+ 1
ω2L2

e−ik2 , and 	 =
C1 + C2 − 1

ω2L1
− 1

ω2L2
. Similar to the 1D SSH circuit, we

evaluate the voltage distribution for the impedance measure-
ment by introducing image circuits around the physical circuit
[Fig. 1(d)], injecting current at r̃in, and extracting current at
r̃out where

r̃in ∈ {((N + 1, N + 1), s1), ((N, N + 1), s2), ((N + 1, N ), s3), ((N, N ), s4)},
r̃out ∈ {((1, 1), s1), ((2N, 1), s2), ((1, 2N ), s3), ((2N, 2N ), s4)}. (17)

Here, the spatial positions of the nodes at which current is injected and extracted are written in the form of ((n1a1, n2a2), sα )
where α = (1, 2, 3, 4) and n2 and a2 are the coordinate and unit vector along the y direction, respectively. The voltage V (r =
(N + 1, N + 1), μ = s1) at the lower left corner of the physical circuit [see Fig. 1(d)] is thus given by

V (r = (N + 1, N + 1), μ = s1) = I (G
(
(N + 1, N + 1), s1, (N + 1, N + 1), s1) + G((N + 1, N + 1), s1, (N, N + 1), s2)

+ G((N + 1, N + 1), s1, (N + 1, N ), s3) + G((N + 1, N + 1), s1, (N, N ), s4)

− G((N + 1, N + 1), s1, (1, 1), s1) − G((N + 1, N + 1), s1, (2N, 1), s2)

− G((N + 1, N + 1), s1, (1, 2N ), s3) − G((N + 1, N + 1), s1, (2N, 2N ), s4)). (18)

Similarly, the voltage at the upper right corner of the physical circuit is given by

V (r = (2N, 2N ), μ = s4) = I (G((2N, 2N ), s4, (N + 1, N + 1), s1) + G((2N, 2N ), s4, (N, N + 1), s2)

+ G((2N, 2N ), s4, (N + 1, N ), s3) + G((2N, 2N ), s4, (N, N ), s4) − G((2N, 2N ), s4, (1, 1), s1)

− G((2N, 2N ), s4, (2N, 1), s2) − G((2N, 2N ), s4, (1, 2N ), s3) − G((2N, 2N ), s4, (2N, 2N ), s4)).
(19)

We now employ the discrete Fourier transform given
in Eq. (10) to evaluate Eqs. (18) and (19) explic-
itly. Because of the aforementioned circuit symmetries,
the potential difference between the nodes at two op-
posite corners when the nodes are connected by a cur-
rent source is V ((N + 1, N + 1), s1) − V ((2N, 2N ), s4) =
2V ((N + 1, N + 1), s1) = −2V ((2N, 2N ), s4). By substitut-
ing Eq. (10) into Eq. (18) [Eq. (19)], the voltage at the
lower left (upper right) corner node can be obtained. The
two-point impedance between opposite corner nodes is
given by ZSSH

2D (N ) = 2V ((N + 1, N + 1), s1) or ZSSH
2D (N ) =

−2V ((2N, 2N ), s4), for which we provide the full impedance
expression in Appendix A. Although the analytical expression

looks complicated, it demonstrates the utility of the method of
images technique. The resulting voltage distribution over the
superlattice reflects the inversion and translation symmetries
of the circuit. We now present an example of the spatial
voltage distribution in the superlattice containing the physical
2D SSH circuit and its image copies.

1. Spatial voltage distribution of the 2D SSH circuit

To show how the symmetric current injection and extrac-
tion over a periodic superlattice gives rise to equal potentials
between the boundary nodes of the image and physical cir-
cuits, we present the spatial voltage distribution for a periodic
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FIG. 2. The matrix representation of the periodic circuit Lapla-
cian of the 2D SSH circuit for N = 2 and its spatial voltage
distribution for N = 10. (a) While the admittances between the node
links are represented by the red, green, blue, and black squares in
the off-diagonal elements, the darker red squares in the diagonal
elements represent the total node conductance. (b) Spatial voltage
distribution matrix of the 2D SSH circuit for N = 10 presented as
a density plot. The red dashed lines separating the entire matrix
into four blocks represent the boundaries between the physical and
image circuits. The colors of the squares represent the magnitude
of the voltage potential. Identical colors on both sides of the red
dashed lines imply that there are zero potential differences between
the boundary nodes. The red and white circles with black frames
represent the nodes where the current is injected and extracted,
respectively.

2D SSH circuit. The spatial voltage distribution can be calcu-
lated using the numerical Laplacian formalism [Eq. (1)]

V = (
Jperiodic

2D-SSH

)−1
I2D-SSH, (20)

where the voltage matrix (V ) over the periodic superlattice
is obtained by performing the matrix multiplication of the
inverse Laplacian matrix (Jperiodic

2D-SSH) and the current matrix
(I2D-SSH). The current matrix corresponding to the 2D SSH
circuit shown in Fig. 1(d) is written as

I2D-SSH = I

− 1 0 · · · 0 0 0 0 · · · 0 −1
0 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 1 1 0 · · · 0 0
0 0 · · · 0 1 1 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
− 1 0 · · · 0 0 0 0 · · · 0 −1

2N×2N

.

(21)
The matrix elements framed by the red square in the upper

right block correspond to the current matrix of the physical
circuit. Because we consider an infinite lattice tiling with a
superlattice with a total period of 2N unit cells along each
direction, we employ the periodic circuit Laplacian (Jperiodic

2D-SSH).
In Fig. 2(a), we display an example of the periodic circuit
Laplacian of the 2D SSH circuit for N = 2. Therefore, the

matrix multiplication of the periodic Laplacian and the current
matrix yields the spatial voltage distribution of the 2D SSH
circuit. An example for the voltage distribution when N = 10
is given in Fig. 2(b) where the voltage matrix is presented as
a density plot. As can be seen from Fig. 2(b), the boundary
nodes of the physical circuit have the same voltages as those
of the boundary nodes of the image circuits. Due to the equal
voltage potentials between the boundary nodes, the current
injected at node N + 1 cannot flow into the image circuits and
is instead contained within the physical circuit. Therefore, the
symmetrical current engineering as an analogy of the method
of images leads to a perfectly symmetrical voltage distribution
that therefore satisfies the boundary conditions. This makes it
possible to obtain analytical expressions for finite-size circuits
by applying the method of images to an infinite periodic
lattice.

IV. SIMPLIFIED ANALYTIC IMPEDANCE FORMULAS
FOR RLC CIRCUITS WITH A SINGLE NODE PER UNIT

CELL

Here, we derive a generalized analytical expression for the
impedance between two nodes at the opposite edges in 1D and
at opposite corners in higher dimensions in homogeneous and
heterogeneous finite circuits that have a single node per unit
cell. The nodes are connected by components with an admit-
tance of zα along the αth direction where α ∈ (1, 2, . . . , D)
where D is the dimension of the circuit. We define a homoge-
neous circuit as one in which the zα’s along all the directions
have the same phase, i.e., they are either all capacitors or all
inductors, and a heterogeneous circuit as one in which the
zα’s along the different directions have different phases. To
derive a generic expression, let us first consider a 2D infinite
lattice made of image copies of a physical finite circuit [refer
to Fig. 3(b)] where the current is injected at nodes rin and
extracted from nodes rout. Using the definition of the Green’s
function GJ = −δ [Eq. (1)] and the translation invariance
of the circuit [which implies that G(r, r′) = G(r − r′)], the
voltage at any lattice point r is found to be

V (r) = I

⎛
⎝∑

r′∈rin

G(r − r′) −
∑

r′∈rout

G(r − r′)

⎞
⎠, (22)

where r = n1a1 + n2a2 with integers (n1, n2) ∈ {−(N −
1), . . . , N}, and a1 and a2 are unit vectors corresponding to
the x and y directions, respectively. Note that we define the
limits of the superlattice as {−(N − 1), . . . , N} by choice
unlike the limits of the superlattice that we define for the
1D and 2D SSH circuits. The period of the superlattice re-
mains unchanged at 2N . We now perform the discrete Fourier
transformation [i.e., G(r − r′) = 1/(2N )D

∑
k G(k)eik.(r−r′ )]

and recall G(k) = L−1(k) to determine the spatial Green’s
function G(r − r′) in Eq. (22) as

G(r − r′) = 1

(2N )2

∑
k

eik·(r−r′ )

L(k)
, (23)

where k = (k1a1 + k2a2) is the momentum-space index
where ki = niπ/N where i = (1, 2) and ni ∈ {−(N −
1), . . . , N}. Notice that, because we derive an analytical
expression for the circuit that has a trivial unit cell (i.e., the
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FIG. 3. Circuit lattices of different dimensionalities and their method of image implementations. The impedance is measured (a) edge to
edge in the 1D circuit and (b)–(d) corner to corner in the 2D and higher-dimensional circuits. Red and gray blocks represent the physical and
image circuits constructing a periodic infinite lattice. Each superlattice consisting of a physical circuit and image circuits is marked by the
magenta dashed lines in each illustration. The cyan and orange dots indicate the spatial positions of the nodes at which the current is injected
and extracted, respectively. We label the corner nodes in the 2D square and 3D cube circuits as Nα such that Na is the diagonally opposite
corner node to node 1 in every circuit. (b) The bigger red dots on the red plate denote the corner nodes Nc and Nb along the x and y directions,
respectively. (c) The lower (upper) gray circle focuses on the node clusters where the current is injected (extracted). The red circles in the gray
circles indicate the nodes belonging to the physical circuit, i.e., nodes 1 and Na. (d) An illustrative representation of the 4D hypercube circuit.
The input and output currents are not drawn to avoid excessive clutter. These circuits are homogeneous when the links are all resistive with
admittances of 1/Ri, all capacitive with admittances of zi = iωCi, or all inductive with admittances zi = 1/(iωLi ) [here i = (1, 2, . . . , D)], but
are heterogeneous when at least two distinct admittances with opposite phases such as z1 = iωC and z2 = 1/(iωL) are present.

circuit is made of a single-type node), the momentum-space
Laplacian can take the role of momentum-space Green’s
function since G(k) is no longer a matrix but is instead
just the reciprocal of L(k). To achieve a symmetric voltage
distribution over the superlattice, the current is injected and
extracted at the nodes as depicted in Fig. 3(b):

rin ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},
rout ∈ {(N, N ), (N + 1, N ), (N, N + 1), (N + 1, N + 1)},

(24)

where (n1, n2) is a shorthand notation for r = (n1a1 + n2a1).
From Eqs. (24) and (22), the node voltage V(r) can be found
through

V (r) = I (G(r) + G(r + a1) + G(r + a2) + G(r + u)

− G(r + Nu) − G(r + Nu + a1)

− G(r + Nu + a2) − G(r + Nu + u)), (25)

where u = a1 + a2 denotes the unit vector for 2D lattices. To
proceed, we insert the Green’s function defined in Eq. (23)
into (25) to obtain the voltages at crosswise nodes 1 and
Na where 1 = 1a1 + 1a2 and Na = Na1 + Na2. As men-
tioned, the translation symmetry in our circuit implies that
V (r) = −V (−r). Thus, the voltage difference between nodes
1 and Na is V (1) − V (Na) = 2V (1) = −2V (Na). Therefore,

we find the voltage at the corner nodes as

V (1) = −V (Nα ) = I

4N2

∑
n1

∑
n2

1

L(k)

× (1 − eiπ (n1+n2 ) )(1+ eiπn1/N + eiπn2/N + eiπ (n1+n2 )/N ).
(26)

Notice that the term (1 − eiπ (n1+n2 ) ) in the numerator of
Eq. (26) is zero when (n1 + n2) is even and is 2 when
(n1 + n2) is odd . Therefore, this term can be replaced by 2
provided that the summation is restricted to odd (n1 + n2).
After simplifying Eq. (26), the impedance between the corner
nodes 1 and Na in a 2D square circuit, as a function of circuit
size N , can be written as

Z1,Na
2D (N ) = 2

N2

∗∑
k

cos(k1/2) cos(k2/2) cos[(k1 + k2)/2]

L(k)
,

(27)

where the asterisk on the sum operator indicates that k =∑
i kiai where ki = niπ/N and i = (1, 2) and a restricted

summation over odd (n1 + n2). L(k) represents the corre-
sponding 2D circuit Laplacian. One can then calculate the
two-point impedance for both 2D homogeneous and heteroge-
neous circuits by simply assigning the corresponding circuit
Laplacian to Eq. (27). This equation is also valid for the
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impedance between any pair of corner nodes as long as the
summation is taken over n2 ∈ odd for Z1,Nb

2D and n1 ∈ odd for
Z1,Nc

2D . This is because in the derivation of the expressions
for Z1,Nb

2D or Z1,Nc
2D , one arrives at Eq. (26) with the factor

(1 − ein2π ) in the numerator for Z1,Nb
2D and (1 − ein1π ) for

Z1,Nc
2D because, for example, the current distribution when the

current is injected and extracted at nodes 1 and Nc is written
as rin ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} and rout ∈ {(N, 0), (N +
1, 0), (N, 1), (N + 1, 1)}, respectively. (Here, Nb = Na1 and
Nc = Na2 are the vertical and horizontal opposite corner
nodes to the lower left node 1 = 1a1 + 1a2, respectively
[see Fig. 3(b)].) Therefore, there are contributions to the
impedance only when n1 ∈ odd for Z1,Nc

2D or n2 ∈ odd for
Z1,Nb

2D . From here, we can deduce that the Fourier com-
ponent(s) of the principal direction(s) corresponding to the
corner node only contribute to the impedance when its (their)
summation is odd.

Inspired by the derivation for the impedance formula for
the 2D square circuit [Eq. (27)] and taking into account the
summation rule for the impedance between different corner
nodes, we can obtain a general analytical expression for the
corner-to-corner impedance of both D-dimensional homoge-
neous and heterogeneous circuits as

Z (N ) = 2

ND

∗∑
k

(∏D
i=1 cos(ki/2)

)
cos

(∑D
i=1 ki

/
2
)

(∑D
i=1 λi(1 − cos(ki )

) + zgnd
/

2
, (28)

where λi is the admittance of the coupling along each di-
rection, D represents the dimension of the circuit, and k =∑D

i=1 kiai where ki = niπ
N where ni ∈ {1, 2, . . . , 2N} and i =

(1, 2, . . . , D). The asterisk sign (∗) on the summation operator
implies that the impedance computation must be performed
considering the summation rule. For example, since the
diagonally opposite corner nodes can only be defined by
considering all the spatial indices ni, one must take the sum-
mation over (n1 + n2 + · · · + nD) ∈ odd. To uniformly attach
a grounding component of a single type to every node in
the circuit, the admittance zgnd can be assigned a nonzero
admittance if desired, but it will be set to 0 if not. Note that
because of the translation symmetry of the periodic infinite
lattice, for simplicity, we can relabel the superlattice bound-
aries as ni ∈ {1, 2, . . . , 2N} instead of {−(N − 1), . . . , N}.
The corner-to-corner impedance between any pair of cor-
ners in a homogeneous or heterogeneous circuit can thus be
calculated using Eq. (28) by simply setting the λi’s in the
denominator to the admittance values of the coupling along
each principal direction. We will now apply this generalized
expression to homogeneous and heterogeneous circuits in the
following sections. We only consider passive circuit elements
such as capacitors, inductors, and resistors, which can only
store or dissipate energy1 pumped into the circuit.

1But see the experiment in Ref. [135], which demonstrates that such
passive RLC elements can bring about nonlocal impedance responses
in suitably designed circuits.

FIG. 4. Impedance across two opposite (edge) corner nodes of
homogeneous (1D), 2D, 3D, 4D, and 5D circuits. All the circuits
are constructed from only a single type of capacitor C and we
set C = 1 μF for all impedance computations. (The edge-to-edge
impedance in the 1D chain circuit is normalized by Z/10 for il-
lustration.) While the impedance between two edge nodes in a 1D
chain circuit scales linearly with the size, the impedance between
two opposite corner nodes scales logarithmically in 2D finite circuits
and rapidly approaches a finite saturation value in three dimensions
or higher, as further detailed in Appendix C.

V. IMPEDANCE RESULTS FOR HOMOGENEOUS RLC
CIRCUITS WITH TRIVIAL UNIT CELLS IN VARIOUS

DIMENSIONS

In general, the corner-to-corner impedance of a homoge-
neous circuit constructed from passive components can be
expected to increase uniformly with the circuit size because
the components operate at the same phase (i.e., their admit-
tances have the same sign). Since passive components cannot
pump energy into the circuit, we intuitively expect the circuit
to behave like a waveguide as the circuit size increases. To
illustrate this, we consider a 1D circuit constructed from a
single type of circuit element with admittance z1 and calculate
the impedance between the two opposite edge nodes as new
unit cells are added. Employing Eq. (28) with D = 1, λ1 = z1,
zgnd = 0, and 2 cos2(k1/2) = 1 + cos(k1), the edge-to-edge
impedance in 1D homogeneous circuits is obtained as

Zhom
1D (N ) = 1

N

∗∑
k1

1 + cos k1

z1(1 − cos k1)
, (29)

where the asterisk means that k1 = n1π/N and n1 ∈
{1, 2, . . . , 2N} and n1 ∈ odd. Here, the impedance takes real
values if the nodes are connected by resistors and takes
imaginary values if z1 corresponds to either a capacitor with
an admittance of iωC or an inductor with an admittance of
1/(iωL). Regardless of the component represented by z1, the
impedance increases linearly with the circuit size, as shown
in Fig. 4. Note that Eqs. (14) and (15) provide the same edge-
to-edge impedance as Eq. (29) when only one type of circuit
element is present in the circuit and when N is increased in
steps of 2. This is because while a unit cell consists of two
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FIG. 5. Nearest-neighbor impedance distribution in 1D, 2D, and
3D homogeneous bounded circuit arrays, with higher impedances
near the boundaries. The impedance is calculated between a node
and its horizontal nearest neighbor (NN). Every cell on the density
plot is colored according to the overall impedance between that node
and its NN. The total impedance at a node decreases approaching the
center, and increases approaching the boundaries. All the circuits are
made of only a single type of capacitor with capacitance C which is
set as C = 1 μF.

nodes for Eqs. (14) and (15), a unit cell comprises only a
single node for Eq. (29).

We now extend the 1D chain circuit to a 2D square circuit
in which the nodes are connected by components with admit-
tance z1 along the horizontal direction and by components
with admittance z2 along the vertical direction. The cor-
responding circuit Laplacian becomes L2D(k1, k2) = z1(1 −
cos k1) + z2(1 − cos k2). The two-point impedance for 2D cir-
cuits can be obtained by recalling Eq. (28) with k1 = n1π/N
and k2 = n2π/N and z1 and z2 set to iωC for capacitors, 1

iωL
for inductors, and 1/R for resistors. Note that z1 and z2 must
have the same phase (i.e., both are capacitors, inductors, or
resistors; or capacitors + resistors; or inductors + resistors) in
order to preserve the homogeneous structure of the circuit. We
can intuitively expect the impedance of the 2D homogeneous
circuits to scale logarithmically with the circuit size (Fig. 4)
because every addition of a new layer of unit cells results
in a uniform increment in the overall impedance between
two corner nodes with Z = ∫ N

ρ dN ′
N ′ ∼ z ln N . Aside from the

corner-to-corner impedance, the impedance between two first
nearest-neighbor nodes (NNs) along the horizontal or vertical
directions also scales uniformly with the size. Figure 5 shows
that the impedance between NNs is highest at the corner nodes
and lower approaching the bulk nodes. This is because the cur-
rent is pushed to the boundaries and accumulates there as it is
reflected by the boundaries in a finite network. This trend also
applies to higher dimensions such as 3D, 4D, 5D, and beyond,
for which interesting new phenomena can arise, and which can
be feasibly implemented via circuits [7,10,11,13,15,113].

Similar to the procedure with which we constructed the 2D
homogeneous circuit, the 2D square circuit can be extended
to a 3D cube circuit by simply linking every node with an
additional component z3 along the third direction, for which
the Fourier component is written as k3 where k3 = n3π/N .
Figure 4 shows the two-point impedance behavior for homo-
geneous circuits of different dimensions as the circuit size

increases. What is most remarkable is the qualitatively dif-
ferent behavior in higher dimensionalities2: for homogeneous
circuits, while 1D and 2D circuits exhibit unique scaling
behaviors of linear and logarithmic impedance alternations
respectively, the circuits with the dimensionality of three and
above tend to saturate at some finite constant values. For
instance, the two-point impedance in the 3D cube circuit starts
saturating after N ∼ 25, as can be seen in Fig. 4. In general,
for D � 3, the impedance saturates to a finite value more
quickly as the dimensionality of the network increases. The
overall scaling in homogeneous circuits for D � 3 can be
characterized by

Z (N ) ∼ Zsat
D-dim −

(
Zsat

D-dim

)D

ND−1
, (30)

where Zsat
D-dim is the saturation value, D is the dimension of

the circuit, and N is the circuit size in terms of unit cells. To
find the Zsat

D-dim’s, we take the limit of Eq. (28) as N → ∞.
We present the full analytical expression for the saturation
values in Appendix C. The saturation values obtained from
Eq. (C4) are Zsat

3-dim = 1.440 15 �, Zsat
4-dim = 0.774 964 �, and

Zsat
5-dim = 0.542 093 �, which confirm the impedance trends

in the circuits for D � 3 in Fig. 4. For D � 3, one can an-
alytically show that in the continuum limit, the saturation
impedances can be reduced to lower-dimensional integrals,
thereby expressing lower-dimensional slices of the circuit in
terms of lumped effective resistances.

VI. IMPEDANCE RESULTS FOR HETEROGENEOUS RLC
CIRCUITS WITH NONTRIVIAL UNIT CELLS

A. 2D circuits

We now turn to heterogeneous circuits, where the corner-
to-corner impedance exhibits a peculiar scaling behavior that
differs significantly from that of homogeneous circuits. Het-
erogeneous circuits refer to circuits that have at least two
types of components for which the admittances have different
complex phases, such as capacitors and inductors. To illustrate
the scaling behavior, we first consider a homogeneous 1D
chain circuit consisting of N − 1 capacitors with the admit-
tance of z1 = iωC along the horizontal direction x. We then
connect N − 1 inductors with the admittance of z2 = 1/(iωL)
along the vertical direction y to each node in the 1D chain
circuit. This results in a two-dimensional LC circuit with
N × N nodes. To calculate the impedance across the diagonal
corner nodes, we recall Eq. (28) and assign the admittances
z1 and z2 to the λi’s such that z1 and z2 correspond to the
principal directions. The corner-to-corner impedance of the
2D LC circuit is thus given by

Zhet
2D (N ) = 2

N2

∗∑
k

cos(k1/2) cos(k2/2) cos[(k1 + k2)/2]

iωC(1 − cos k1) + 1
iωL (1 − cos k2)

,

(31)
where the asterisk on the summation operator indicates that
k = k1a1 + k2a2 where k1 = n1π/N and k2 = n2π/N and n1

2In higher-dimensional systems where nonreciprocity also accom-
panies resistive non-Hermiticity, the nonlocal response can alter the
effective dimensionality of the entire system [136,137].
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FIG. 6. Analytically and numerically calculated impedance be-
tween two opposite corner nodes in heterogeneous 2D (red), 3D
(magenta), 4D (cyan), and 2D SSH (green) circuits. Sharp peaks
emerge at a certain circuit sizes in the heterogeneous circuits,
unlike the logarithmiclike impedance scaling in homogeneous cir-
cuits. The component values are ω(C, L) = (1.7 �−1, 2 �) for
the 2D, ω(C1,C2, L) = (2.1 �−1, 1 �−1, 2.5 �) for the 3D, and
ω(C1,C2, L1, L2) = (2.5 �−1, 1.8 �−1, 2.0 �, 1.0 �) for the 4D LC
circuits, and ω(C1,C2, L1, L2) = (2.2 �−1, 1 �−1, 2 �, 1 �) for the
2D SSH circuit.

and n2 are integers satisfying (n1, n2) ∈ {1, 2, . . . , 2N} where
(n1 + n2) is odd. This equation can be used for any corner-
to-corner impedance measurement in a 2D circuit by simply
considering the following summation rules (∗): For instance,
for the impedance across two opposite corner nodes, one
must take the summation over (n1 + n2) ∈ odd, while for
the impedance between the two vertical corner nodes the
summation should be taken over n2 is odd. Apart from the
driving AC frequency ω and component parameters C and
L, which are the independent parameters in the circuit, the
circuit size N becomes an additional independent parameter
that affects the two-point impedance. It is well known that
in LC resonator circuits, resonances occur at the resonant
frequency ω = 1/

√
LC regardless of the value of N . Here, we

uncover a curious phenomenon in which strong resonances
occur only at particular circuit sizes. Figure 6 shows the oc-
currence of impedance jumps with the variation of the circuit
size in several dimensions. The origin of these impedance
resonances can be explained by considering the denomina-
tor of Eq. (31). An impedance resonance occurs when the
values of L, C, and N are such that there exist integers
n1 and n2 at which the denominator of Eq. (31) becomes
nearly zero when the terms proportional to iC and 1/iL can-
cel each other almost completely. Hence, strong resonances
occur only at certain circuit sizes. Moreover, the impedance
peaks stem not from the numerator but arise because of the
almost-vanishing denominator at particular circuit sizes in
LC circuits. Therefore, heterogeneous circuits with D > 2
can potentially exhibit more interesting circuit-size-dependent
impedance resonances since their Laplacians have more ele-
ments than that of lower-dimensional circuits leading to more
possible combinations for the cancellation in the denominator.

B. Heterogeneous circuits in 3D and higher dimensions

We next investigate higher-dimensional LC circuits start-
ing with a 3D cube circuit array. We construct a cube
circuit by extending the 2D LC square circuit along the
z direction using capacitors with the admittance z3. The
cube circuit illustrated in Fig. 3(c) therefore comprises in-
ductors with the admittance 1/(iωL) along the y direction
and capacitors with the admittances of iωC1 and iωC2

linking nodes along the x and z directions, respectively.
We calculate the impedance across the corner nodes by
using the D = 3 analog of Eq. (28) and employing the
Laplacian L3D(k1, k2, k3) = iωC1(1 − cos k1) + 1/(iωL)(1 −
cos k2) + iωC2(1 − cos k3) where ki = niπ/N where ni ∈
{1, 2, . . . , 2N} and i = (1, 2, 3). Due to the oddness of the
discrete momentum (i.e., [1 − (−1)k], refer to Eq. (26)), the
summation rule is determined by the corner nodes between
which the impedance is to be measured. For example, to
find the impedance between the diagonally opposite corner
nodes Z1,Na

3D , the summation is taken over (n1 + n2 + n3) ∈
odd; while for Z1,Nb

3D the rule is (n2 + n3) ∈ odd, for Z1,Nc
3D it

is (n1 + n3) ∈ odd, and finally for Z1,Nd
3D it is n1 ∈ odd. There-

fore, only the coordinate indices of the corner node opposite
to the node 1 contribute to the impedance calculation and only
when their sum is odd.

Similar to the 2D case, the denominator in Eq. (28) with
this Laplacian leads to an anomalously large impedance mea-
surement when there exist integer values of (n1, n2, n3) ∈
{1, . . . , 2N} where it becomes almost zero. The procedure
we have followed to build the cube circuit from the square
circuit can be extended to construct hypercube circuits. For
example, a 4D LC circuit can be constructed by introducing an
additional direction w, which is perfectly feasible in 3D space
due to the versatile connectivity of electrical circuits, without
resorting to synthetic (nongenuine) lattice dimensions. The
momentum-space Laplacian of the 4D circuit in which the
nodes along the w direction are linked by inductors with the
admittance of z4 = 1/(iωL2) is

Lhet
4D(k1, k2, k3, k4)

= iω

[
C1(1 − cos k1) − 1

ω2L1
(1 − cos k2)

+C2(1 − cos k3) − 1

ω2L2
(1 − cos k4)

]
, (32)

where ki = niπ/N where ni ∈ {1, 2, . . . , 2N} and i =
(1, 2, 3, 4). One can straightforwardly extend this circuit
further to five dimensions (5D) or higher dimensions by
invoking Eq. (28). Whereas the impedance between two
opposite corner nodes in homogeneous circuits rapidly ap-
proaches a constant saturation value, it no longer exhibits a
uniform trend in the heterogeneous cube and hypercube cir-
cuits. Instead, large impedance peaks are observed at certain
values of N . Figure 6 shows the variation of the corner-to-
corner impedance of the 4D LC circuit with the circuit size
N . Interestingly, plotting the impedance peaks due to these
size-dependent resonances against the driving frequency and
circuit size gives a pattern that is reminiscent of fractals, as
shown in Fig. 7. These fractal-like patterns are not due to
the dimensionality of the circuits but rather depend on the
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FIG. 7. Fractal-like structures emerging in the plots of the corner-to-corner impedance in heterogeneous circuits versus the circuit size N
and driving frequency ω [for (d), N versus Cg]: (a) 2D SSH circuit, (b) 2D square LC circuit with diagonal cross links (obtained numerically),
and (c) 3D cube circuit. The strong impedance resonances that appear as brighter branches are reminiscent of fractals. Despite the consideration
of parasitic and intrinsic resistances that cause a variation of the component parameters, the structures always survive robustly. (d) Impedance
diagrams for the nontrivial topolectrical 2D Chern kink circuit. The brightest impedance branches arise in the nontrivial parameter regime and
correspond to the topological zero edge modes. The circuit parameters are (ωC1, ωCy, ωL, R) = (1.2 �−1, 0.6 �−1, 0.6 �, 20 �).

homogeneity of circuits and, indeed, arise in the circuit size-
versus-parameter diagrams of heterogeneous circuits of any
dimensions, as we shall discuss in the following section.

VII. EMERGENT FRACTAL-LIKE RESONANCES IN
IMPEDANCE SCALING BEHAVIOR

Most physical systems do not change fundamentally as
their system sizes are varied, except for special critical sys-
tems exhibiting size-induced phase transitions [114–117].
However, in our heterogeneous circuits, we observe sharp
impedance deviations from the overall trend. Whereas special
resonances can be expected to occur because of specific mod-
ulations of the circuit parameters, the observed anomalous
impedance resonances that arise due to the system length
are unexpected. These anomalous impedance resonances can
therefore be treated as violations of the logarithmic impedance
scaling between two opposite corner nodes. Equation (6)
relates the two-point impedance to the eigensystem of the

circuit Laplacian. The most significant difference between
the eigenvalue spectrum of the Laplacians of homogeneous
and heterogeneous circuits is that heterogeneous circuits typ-
ically have very small eigenvalues that can give rise to
huge impedance readouts. Such a cancellation occurs in
heterogeneous circuits between different components with
admittance values of opposite signs, whereas no such can-
cellation occurs in homogeneous circuits as the admittance
values have the same sign. Further, our analytical formulas
show that at certain circuit sizes, there exist combinations of
the integers n1, n2, . . . , nD denoting the Fourier components
at which the denominator of the impedance expression al-
most cancels out and result in strong impedance resonances.
Most interestingly, the length-dependent impedance reso-
nances seem self-organized and exhibit a fractal-like pattern
in the impedance-length plots. As can be seen in Fig. 7, while
the strongest impedance resonances (the brightest branches)
occur along certain branches, the magnitude of the impedance
varies between the branches. While one can obtain higher
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FIG. 8. 2D LC circuit with diagonal cross connections with ca-
pacitors C2. The usual 2D LC circuit in which the horizontal and
vertical nodes are coupled with capacitors C1 and inductors L, re-
spectively, can be recovered by simply setting C2 = 0. To obtain
the fractal-like diagram [Fig. 7(b)], the impedance is numerically
measured between two opposite corner nodes as the circuit size
increases.

resolution diagrams (and spanning larger parameter spaces)
with more computational resources, the overall trends do not
change. Since the number of bulk states is defined by the
total number of nodes in the circuit, the number of branches
arising in these diagrams must be the same as the number of
bulk states. Therefore, every row corresponding to a selected
circuit size N (i.e., the impedance peaks in a row correspond-
ing to a fixed N) is indeed the projection of the zero energy
axis of the admittance spectrum. Consequently, because the
number of admittance states increases with the circuit size N ,
the number of states intersecting with the zero-axis increases,
thus resulting in the formation of curly peak lines in the
diagrams. In contrast, the topological impedance resonances,
as seen in Fig. 7(d), form straight lines because the number of
topological modes is not defined by the circuit size but rather
defined by the topological invariants. As a result, the emergent
fractal-like diagrams can be treated as a complete picture of
the resonant properties of a circuit regardless of whether it is
topological or not. We next examine two exemplary circuits to
further discuss how these fractal-like diagrams differ depend-
ing on the circuit arrays.

A. Two further examples for the emergent fractal-like
resonances

1. Example: 2D square LC circuit with diagonal connections

The heterogeneous 2D LC circuit that we have studied so
far [see Fig. 3(b)] can be made more complicated, which in
turn leads to richer fractal-like diagrams. This circuit has ca-
pacitors C1 along with the vertical direction, inductors L along
the horizontal direction, and a second capacitor C2 connecting
every node with its diagonal neighbors (see Fig. 8). Be-
cause of these cross connections, the circuit Laplacian has an
additional term representing the nearest-neighbor links
with the admittance iωC2. Therefore, the circuit Laplacian

[Eq. (31)] becomes

Lcross
2D (k1, k2) = 2iωC1(1 − cos k1) + 2

iωL
(1 − cos k2)

+ 4iωC2(1 − cos k1 cos k2), (33)

where ki = niπ/N where ni ∈ {1, 2, . . . , 2N} and i = (1, 2).
As we have discussed above, the size-dependent impedance
resonances are induced by the attenuation of the Laplacian.
Because G = J−1 and V = GI , the attenuation of the Lapla-
cian leads to voltage accumulation at the node where the
current is injected. Thus, an enormous impedance readout
(Z ∝ V ) occurs. Since the circuit Laplacian for the usual 2D
LC circuit has a simpler form as given in the denominator of
Eq. (31), it is expected that more complicated and fascinating
branches may emerge in the fractal diagram of the 2D LC
diagonally connected circuit. As can be seen in Fig. 7(b),
as the circuit size increases, many resonance branches that
emerge shape a pattern. Although the diagonal connections
result in a well-organized fractal-like diagram, we emphasize
that the diagonal links in this circuit lead to a current leakage
from the physical circuit to the image circuits. In the usual 2D
LC circuit [see Fig. 2(b)], the symmetrical current injection
and extraction ensures that the same potential exists at the
neighbor boundary nodes of the physical and image circuits
so that no current leakage occurs at the boundaries. However,
in a circuit with diagonal links, the diagonal links connect
boundary nodes with different electrical potentials, resulting
in current flow through the cross links. Therefore, it is not pos-
sible to obtain a simple analytical expression via the method
of images for the diagonally connected 2D LC circuit unless
complicated current injection and extraction engineering is
performed, which is not practical.

2. Example: 2D Chern kink topolectrical circuit

Topolectrical circuits can exhibit sophisticated physical
phases such as valley-dependent edge states [118]. For ex-
ample, the valley-dependent corner or edge states can be
modulated by setting the onsite capacitors Cg connecting
every node to the ground (refer to Fig. 9). The negative ca-
pacitance −Cg and resistance −R can be achieved by using
negative impedance converters (NICs) and negative resistance
converters (NRCs), respectively [18]. The circuit Laplacian at
the resonant frequency is written as

LChern
TE (k1, k2) = (−C1 + C1 cos k1 + 2Cy cos k2)σx

+ C1 sin k1σy + (Cg + 2R sin k2)σz, (34)

where the σα’s (α = x, y, z) represent the Pauli matrices
and where ki = 2niπ/N where i = (1, 2). As discussed in
Appendix A, although a uniform grounding mechanism
can be employed to isolate the topological states from the
bulk states, a Chern topolectrical circuit can be designed
so that it exhibits clear chiral propagating boundary states
in the admittance spectrum without a uniform grounding
mechanism. This is due to nontrivial center-of-mass pump-
ing through a Laughlin-style pumping argument [119–125],
which has been demonstrated in a variety of classi-
cal and quantum settings [17,126–130]. Here, due to the
nearest-neighbor connections and the onsite capacitors repre-
sented by the factor σz in the Laplacian, the topological states
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FIG. 9. The schematic of the 2D Chern kink circuit studied in
Ref. [118]. The circuit has two distinct nodes in a unit cell labeled as
node A (red circle) and node B (orange circle). The two nodes within
a unit cell are connected with intracell inductors, whose admittance
is equal to that of the capacitor −C1, i.e., L1 = 1/(ω2C1) = −C1.
The horizontally adjacent unit cells are connected to each other via
capacitors C1. While the vertically adjacent A nodes are coupled via
positive resistors R, two neighboring vertical B nodes are connected
via negative resistors −R realized by means of negative resistance
converters (NRCs). The circuit has also capacitors Cy connecting A-B
and B-A nodes along the y direction.

are separated despite the nonuniform grounding. Therefore,
this circuit is an ideal candidate to demonstrate impedance
resonances arising in the fractal-like diagrams due to the
topological states. For instance, the impedance resonances
stemming from the edge states clearly appear in the fractal-
like diagram as seen in Fig. 7(d). The constant-magnitude
impedance peaks can be treated as the evidence for zero-
energy topological modes since the smallest eigenvalues
always belong to these eigenstates. Aside from being the
strongest resonances, the other remarkable property of these
impedance resonances is that while the bulk states result in
curved lines with the variation of the circuit size, the topolog-
ical branches form distinctive straight lines. This is because
even though the number of bulk states increases with the
increase in circuit size, the number of topological states re-
mains constant and the position of these states depends on the
component parameters, which are fixed. Since we maintain
the same component values except for the varying element
(Cg), the topological impedance resonances appear at the same
Cg value in the fractal-like diagram.

VIII. CONCLUSION

In conclusion, we have revealed the circuit size-dependent
anomalous impedance resonances in topolectrical circuits

as well as various dimensional finite LC circuits. We ob-
served that the impedance scaling in heterogeneous circuits
differs from the logarithmiclike scaling exhibited by homoge-
neous circuits as the circuit size N increases. Conventionally,
frequency-dependent elements such as capacitors and induc-
tors are considered independent circuit parameters that can
be set individually. However, we have demonstrated that the
strong impedance resonances in our circuits are not due to
variations in these parameters, but rather to specific circuit
sizes. Therefore, the circuit size becomes an independent,
albeit not widely known, parameter that affects the impedance
behavior of the circuit. We invoked the method of images,
inspired by free-space electrostatics, as a means to calcu-
late the corner-to-corner impedance and provided a generic
exact analytical expression homogeneous or heterogeneous
circuits of any dimensions. This method naturally satisfies
the open boundary conditions because it ensures that the
potentials of the nodes at the boundaries of the physical and
image circuits are equal [see Fig. 2(b)]. The size-dependent
impedance jumps result in fractal-like patterns in the circuit
size-resonant frequency plots. The existence of these patterns
is common to all heterogeneous circuits but the details within
the patterns are unique to each dimensionality and circuit
structure. Therefore, our work establishes a framework for
further investigation of anomalous impedance behaviors in
more complex circuits, as well as their experimental realiza-
tions [131].
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APPENDIX A: EXPLICIT ANALYTICAL EXPRESSION
FOR THE IMPEDANCE OF THE 2D SSH CIRCUIT UNDER

PERIODIC BOUNDARY CONDITIONS

Here, we provide the full and explicit analytical expression
for the corner-to-corner two-point impedance of the 2D PBC
SSH circuit. The impedance can be obtained from the voltage
difference between the lower left corner [r = (N + 1, N +
1), μ = s1] and upper right corner [r = (2N, 2N ), μ = s4]
nodes given by Eqs. (18) and (19), respectively. There, to eval-
uate the voltages at the corner nodes, the Fourier-transformed
circuit Green’s function given in Eq. (10) is substituted into
Eqs. (18) and (19). Notice that when taking the inverse of
the circuit Laplacian given in Eq. (16), any component that
has zero eigenvalues should be omitted to avoid singularities.
After performing the substitutions, we arrive at

ZSSH
2D (N ) =

∑
k1

∑
k2

Numerator(k1, k2)

Denominator(k1, k2)
, (A1)
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where the numerator and denominator are explicitly given by

Numerator = 1 + (−1)1+n1+n2

2iω3L2
1L2

2

[
L1

[
4ω2L2(2C1 + 3C2) − 4 + ei(k1−k2 )ω2C1L2 − 2ω4L2

2

(
C2

1 + 4C1C2 + 2C2
2

)
+ e−ik1ω4C1C2L2

2 − e−i(k1−k2 )ω4C1C2L2
2 + e−ik2 (2 − ω2C1L2)

− eik1ω2C1L2(ω2L2(2C1 + C2) − 4) − ei(k1+k2 )ω2C1L2(ω2L2(2C1 + 3C2) − 3)

+ eik2
(
2 + ω2L2

[
C1 + 4C2 − 2ω2L2

(
C2

1 + 2C1C2 + 2C2
2

)])]
− 4ei k1

2 ω2L2
1

(
2ω2L2(C1 + C2) − 2 − ω4C1C2L2

2[1 − cos(k1)]
) × ((C1 + C2) cos(k1/2) − iC2 sin(k1/2))

+ L2{2ω2L2[2C2(1 + eik2 ) + C1(1 + eik1 + eik2 + ei(k1+k2 ) )] + cos(2k2) + 2i sin(k2)(cos(k2) − 1) − 1}],
Denominator = 4N2

ω4L2
1L2

2

( − ω8C2
1C2

2 L2
1L2

2 (cos(2k1) + 3)

+ 4ω4C1C2 cos (k1)
[
ω4C1C2L2

1L2
2 − ω2L1L2(C1 + C2)(L1 + L2) + L1L2 cos (k2) + L2

1 + L2
2 + L1L2

]
+ 4 cos (k2)

[
ω4L1L2

(
C2

1 + C1C2 + C2
2

) − ω2(C1 + C2)(L1 + L2) + 1
]

+ 4ω6C1C2L1L2(C1 + C2)(L1 + L2) − 4ω4
[
C1C2L2

1 + L1L2
(
C2

1 + 3C1C2 + C2
2

) + C1C2L2
2

]
+ 4ω2(C1 + C2)(L1 + L2) − cos (2k2) − 3

)
, (A2)

where k1 and k2 are the discrete momenta k1 = n1π/N and
k2 = n2π/N where (n1, n2) ∈ (1, 2, . . . , 2N ). Each (k1, k2)
contribution represents the impedance contribution from
the length scale (2π/k1, 2π/k2) in units of the lattice
spacing.

Aside from the usual impedance peaks stemming from the
LC resonances, a topolectrical circuit exhibits an enormous
impedance readout at the resonant frequency when the circuit
is topologically nontrivial. It is well known that topological
systems differ from the usual bulk systems owing to their
special boundary modes. These boundary states are isolated
from the bulk states and appear as mid-gap states in the
admittance spectrum. Such mid-gap topological states lie on
the zero-energy axis, and they are associated with very small
eigenvalues. Therefore, any large impedance readout at the
resonant frequency can be directly related to the topological
mid-gap zero modes when they exist [8,19]. For example, the
topological phase is defined by the ratio of two capacitors in
the usual 1D SSH circuit in Ref. [4] and the circuit displays
a nontrivial topological phase when C1/C2 < 1 and a trivial
phase when C1/C2 > 1. However, even though the mid-gap
states are protected by topological invariants such as a nonzero
integer winding number, the unequal onsite energies lead
to ill-defined invariants, hence, resulting in indistinguishable
topological states [132–134]. In the TE context, the onsite
energies are represented by the diagonal elements of the cir-
cuit Laplacian. Therefore, to unveil the topological boundary
states, the circuit requires uniform grounding such that all
the diagonal terms in the circuit Laplacian can vanish when
the driving frequency is set to the resonant frequency. Oth-
erwise, the boundary modes join the bulk modes due to the
unequal potentials at different nodes and are no longer found
as mid-gap states. To uniformly ground every node in the
circuit, an artificial treatment is required, which would not
be possible for analytical methods. Throughout this study,
since we consider an infinite periodic lattice tiled with the

original physical circuits and apply the method of images to
obtain the exact analytical expression for the physical cir-
cuit, it may not be possible to introduce uniform grounding
into the analytical two-point impedance formula. This is be-
cause the open boundary conditions are fulfilled as a direct
consequence of the method of images, which results in the
Neumann boundary condition in the circuit when the circuit
Laplacian has nonuniform diagonal elements. Therefore, al-
though the nonuniform diagonal elements representing the
grounding mechanism cause the disappearance of the mid-
gap topological states in most cases, in some examples, the
topological states can remain isolated from the bulk states and
appear in fractal-like diagrams as in Fig. 7(d).

APPENDIX B: APPLICATION OF THE METHOD OF
IMAGES TO GENERAL GEOMETRIES

The method of images can be applied to a general lattice
model to derive an analytical expression. As discussed in
the main text, the configuration of the current injection and
extraction determines the spatial distribution of node voltages.
To induce boundaries by utilizing the equipotential emerg-
ing on both sides of the symmetry axes, it is essential to
inject and extract the current symmetrically. This results in
a mirror-symmetric dispersion around the considered symme-
try axes. (Note that such a symmetrical voltage distribution
can only be achieved if inversion symmetry is present.) For
instance, since the unit cell of the 2D SSH circuit (as well
as the 2D square LC circuit) exhibits translational symmetry
along the x and y symmetry axes, the spatial potential profiles
of the physical and image circuits are mirror symmetric about
the x and y axes when there is symmetric current injection and
extraction [refer to Fig. 2(b)]. On the other hand, the symme-
try axes of a hexagonal lattice provide additional opportunities
for creating unique boundary designs by strategically posi-
tioning current injection and extraction sites with respect to
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FIG. 10. An exemplary implementation of the method of images to achieve finite circuits in a general geometry using a 2D honeycomb
lattice. (a) The rhombus-shaped finite physical circuit with N = 6. A unit cell comprises two sublattice nodes A and B, each connected by
coupling capacitance C. (b) The spatial voltage distribution response to the injected (yellow-outlined nodes) and extracted (green-outlined
nodes) current configuration. The node colors represent the relative magnitude of the voltage at each node. A mirror-symmetrical potential
distribution occurs about the vertical symmetry axis, ensuring the emergence of a boundary. (c) The resultant distribution leads to a ribbon
geometry with zigzag edges. The alternating node colors represent the voltage magnitude. (d) The measured impedance between any two nodes
outlined with magenta and cyan dashed circles is identical. The impedance increases logarithmically (inset) as the circuit size expands.

these axes. Consequently, we can achieve diverse boundary
designs by configuring the current injection and extraction
points relative to the symmetry axes in a honeycomb lattice.
To demonstrate how a symmetrical current injection and ex-
traction configuration with respect to certain symmetry axes
can be utilized to establish a boundary in general geometries,
we examine a 2D honeycomb lattice composed of two sub-
lattice nodes A and B. Our objective is to derive an analytical
expression for a ribbon geometry incorporating a honeycomb
lattice structure and zigzag edges. We begin by considering a
geometrically rhombic honeycomb lattice with a zigzag edge
design. Its momentum-space circuit Laplacian reads as

L�(k) = iωC

(
3 −(1 + e−ik1 + e−ik2 )

−(1 + eik1 + eik2 ) 3

)
,

(B1)

where C represents the coupling capacitance, ω is the driv-
ing frequency, and k1 and k2 are the momentum indices. We

proceed to tile the space with rhombus-shaped circuits and
apply currents at specific nodes to achieve a symmetrical
voltage distribution about one of the symmetry axes. Since
we initially assume a periodic lattice along each direction,
it is sufficient to achieve a symmetrical voltage distribution
around a single axis in order to obtain the desired ribbon
geometry. In Fig. 10(b), the magenta dashed lines represent
the symmetry axes under consideration. Our current injection
and extraction configuration results in a mirror-symmetric
potential distribution about the vertical symmetry axis. This
implies that the voltages of the sublattice nodes within a unit
cell along the vertical axis have equal magnitudes, ensuring no
current flows between these nodes. Since our circuit remains
periodic in both directions, the equal voltages on either side
of the vertical axis satisfy the boundary condition required
to achieve a ribbon geometry. We now move forward with
deriving an analytical expression for the two-point impedance
of the ribbon lattice. We recall Eq. (8) to determine the node
voltages and express the spatial positions of the nodes where
the current is injected and extracted, respectively, as

r̃in ∈ {((1, 1), 1), ((1, 2N ), 1), ((1, 2N ), 2), ((2N, 1), 1), ((2N, 1), 2), ((2N, 2N ), 2)},
r̃out ∈ {((N, N ), 2), ((N + 1, N ), 1), ((N + 1, N ), 2), ((N, N + 1), 1), ((N, N + 1), 2), ((N + 1, N + 1), 1)}, (B2)

where ((n1, n2), ν) is shorthand for r = (n1a1 + n2a2) where a1 and a2 are the unit vectors, n1 and n2 are the position indices,
and ν ∈ (1, 2) represents the sublattice nodes A and B, respectively. We can calculate the voltage at the first node as

V (r = 1, μ = 1) = I (G((1, 1), 1, (1, 1), 1) + G((1, 1), 1, (1, 2N ), 1) + G((1, 1), 1, (1, 2N ), 2) + G((1, 1), 1, (2N, 1), 1)

+ G((1, 1), 1, (2N, 1), 2)+ G((1, 1), 1, (2N, 2N ), 2)− G((1, 1), 1, (N, N ), 2)− G((1, 1), 1, (N + 1, N ), 1)

− G((1, 1), 1, (N + 1, N ), 2) − G((1, 1), 1, (N, N + 1), 1) − G((1, 1), 1, (N, N + 1), 2)

− G((1, 1), 1, (N + 1, N + 1), 1)). (B3)
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By employing the momentum-space Green’s function in Eq. (10) and L−1
�(k) = G(k), the voltage at node V (r = 1, μ = 1) is

obtained as

V (r = 1, μ = 1) = 1

4iωCN2[3 − cos(k1) − cos(k2) − cos(k1 − k2)]

×
[

5[1 + cos(k1) + cos(k2)] + 2 cos(k1 − k2) + cos(k1 + k2) − cos

(
N − 1

N
(n1 + n2)π

)

− 2 cos

(
N − 1

N
(n1 − n2)π

)
− 4 cos

(
N − 1

N
n1π − n2π

)
− cos

(
N − 1

N
n1π + n2π

)
− cos

(
N − 1

N
n2π + n1π

)]
,

(B4)

where k1 = n1π/N and k2 = n2π/N . To simplify the above
equation, we assume that n1 ∈ (1, 2, 3, . . . , 2N ) and n2 ∈
(1, 3, 5, 7, . . . , 2N − 1). Owing to the translation symmetry
in our circuit, the impedance between node 1 and its cor-
responding counterpart located at the opposite edge [i.e.,
(N, N )] is given by Z�(N ) = 2V (1, 1) = 2V (N, N ). The
impedance between any pair of nodes denoted by magenta and
cyan dashed circles in Fig. 10(c) is identical, a consequence of
the symmetrical voltage distribution. In Fig. 10(d), we plot our
numerical and analytical impedance calculation results for the
ribbon circuit depicted in Fig. 10(c). There is an exact cor-
respondence between the two sets of results. Our results also
show that the logarithmic dependence of the circuit impedance
on the circuit size N applies for two-dimensional circuits
regardless of the lattice geometry [see Fig. 10(d)].

APPENDIX C: SATURATION IN HOMOGENEOUS
CIRCUITS

To find the finite saturation values in homogeneous circuits
when D > 2, let us first consider a homogeneous 3D cube
circuit constructed by a typical resistor with the resistance R
in each principal direction. Now, it is essential to determine
the electric potential at the opposite corner nodes whereby
the corner-to-corner impedance as a function of the circuit
size can be simply found by Z = 2|V |/I = 2G due to the
translation symmetry implying that V (r) = −V (−r). To im-
pose the boundary conditions, symmetrical current injection
and extraction [for example, from Fig. 3(c)] are performed
such that the impedance between two opposite corner nodes
in terms of the voltage distribution is written as

Z3D = 2(G(0, 0, 0) + G(1, 0, 0) + G(0, 1, 0) + G(0, 0, 1)

+ G(1, 1, 0) + G(1, 0, 1) + G(0, 1, 1) + G(1, 1, 1)

− G(N, N, N ) − G(N + 1, N, N )

− G(N, N + 1, N ) − G(N, N, N + 1)

− G(N + 1, N + 1, N ) − G(N + 1, N, N + 1)

− G(N, N + 1, N + 1) − G(N + 1, N + 1, N + 1)),
(C1)

where G(n1, n2, n3) is the short notation of G(r) [e.g.,
G(r) → G(0, 0, 0) or G(r + Nu + a1) → G(N + 1, N, N )],
where r = ∑D=3

i niai where ni are the integers varying from
1 to 2N and where u = a1 + a2 + a3 being the unit vector.
As accomplished in Sec. IV, the circuit Green’s function
given by Eq. (23) is inserted into the above equation. Be-

cause the circuit nodes are connected by resistors with the
admittance 1/R, the corresponding circuit Laplacian is written
as Lsat

3D(k) = (2/R)(3 − cos k1 − cos k2 − cos k3) where k =∑D=3
i kiai and where ki = niπ/N where ni ∈ {1, 2, . . . , 2N}

and i = (1, 2, 3). However, for the sake of simplicity, we
henceforth set R = 1� in the derivation. By inserting the
corresponding Laplacian substituted for G(k)−1, we arrive

Z3D(N ) = 2

(2N )3

2N∑
n1=1

2N∑
n2=1

2N∑
n3=1

(1 − eiπ (n1+n2+n3 ) )

× 8 cos
( n1π

2N

)
cos

( n2π
2N

)
cos

( n3π
2N

)
cos

( (n1+n2+n3 )π
2N

)
2
[
3 − cos

( n1π
N

) − cos
( n2π

N

) − cos
( n3π

N

)] .

(C2)

Here, we obtain the analytical formula for the corner-to-corner
impedance in the 3D homogeneous cube circuit. We can now
generalize the corner-to-corner impedance in D dimensions
and write

ZD-dim(N ) = 1

ND

2N∑
n1=1

· · ·
2N∑

nD=1

(
1 − eiπ

∑D
i ni

)

× cos
(∑D

i
niπ
2N

) × ∏D
i cos

( niπ
2N

)
D − ∑D

i cos
( niπ

N

) . (C3)

Here, D refers to the circuit dimension, ni are the Fourier
components varying between 1 and 2N along each direction,
and N is the circuit size. Notice that because we have set
R = 1� earlier, there is no term representing the unit admit-
tance. However, one can multiply the denominator of Eq. (C3)
by a unit admittance if required because the admittance is
a common factor in the Laplacian since the circuit nodes
are linked by single-type components. The impedance be-
tween two opposite corner nodes calculated through the above
expression saturates as N approaches the continuum limit,
i.e., Zsat

D-dim ≈ limN→∞ ZD-dim(N ). The presence of saturation
impedances in the large-N limit in dimensions D � 3 sug-
gests a convergent integral expression for the corner-to-corner
impedances in this regime. In the large-N limit, the evenness
and oddness of the indices should have negligible effects if
the sum can be approximated by an integral since that entails
shifts of π/N to the momenta. Noting that the factor 1 −
eiπ (

∑D
i ni ) effectively eliminates half of the terms, we have the
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approximation

ZD-dim(N → ∞) ≈ 1

πD

∫
[0,2π]D

cos
(∑D

i
ki
2

)∏D
i cos ki

2

D − ∑D
i cos ki

dDk

(C4)

for D � 3. In practice, a very small positive term
may have to be added to the dominator to make the
integral converge; physically, this corresponds to inevitable
parasitic resistances. For instance, we obtain Z3-dim(N →
∞) = 1.440 15 �, Z4-dim(N → ∞) = 0.774 964 �, and
Z5-dim(N → ∞) = 0.542 093 �, which are very close
to the values of Z3-dim(300) = 1.435 83 �, Z4-dim(50) =
0.774 739 �, and Z5-dim(40) = 0.542 011 � computed from
Eq. (C3).

Dimensional reduction of impedance formula

Interestingly, the corner-to-corner impedance can be di-
mensionally reduced to a momentum integral in a lower
number of dimensions, albeit with a seemingly more so-
phisticated integrand. To start, we separate out the last
momentum coordinate kD = k by writing the integrand
cos(

∑D
i

ki
2 )

∏D
i cos ki

2

D−∑D
i cos ki

of Eq. (C4) as (
∏D−1

i cos ki
2 )

cos k
2 cos(a+ k

2 )
D−b−cos k

where a = ∑D−1
i

ki
2 and b = ∑D−1

i cos ki. The k-dependent
fraction on the right can be integrated as follows:∫ 2π

0
cos k

2 cos(a+ k
2 )

D−b−cos k dk = π (
√

D−b+1
D−b−1 − 1) cos a. Since

∫
[0,2π]D′

cos(
∑D′

i
ki
2 )

∏D′
i cos ki

2 dDk = πD′
for any D′ (here and below,

we denote D′ = D − 1 for brevity), we obtain ZD-dim(N →
∞) ≈

−1 +
∫

[0,2π]D′

cos
(∑D′

i
ki
2

) ∏D′
i cos ki

2

πD′

√
D + 1 − ∑D′

i cos ki

D − 1 − ∑D′
i cos ki

dD′
k. (C5)

In general, we can continue with this dimensional reduction procedure to obtain ZD-dim(N → ∞) ≈
∫

[0,2π]D−d

cos
(∑D−d

i
ki
2

) ∏D−d
i cos ki

2

πD−d
fd

(
D − d −

D−d∑
i

cos ki

)
dD−d k, (C6)

where d is the number of reduced dimensions and fd (x) is a weightage function that encapsulates the effects of dimensional
reduction:

f0(x) = 1

x
, (C7)

f1(x) =
√

1 + 2

x
− 1, (C8)

f2(x) =
(x2 + 5x + 8)K

(− 4
x2+4x

) − x(x + 4)E
(− 4

x2+4x

) − 2iK
(

(x+2)2

x(x+4)

)
π

√
x(x + 4)

+ 1

π
K

(
4

(x + 2)2

)
+

2iK
(

x(x+4)
(x+2)2

)
π (x + 2)

− 1, (C9)

where E (y) = ∫ π/2
0

√
1 − y sin2 θ dθ and K (y) =∫ π/2

0 1/
√

1 − y sin2 θ dθ are elliptic integrals. Further
expressions of fd , d > 2 exist in principle, although they
would be much more complicated. Note that f0 is just the
inverse Laplacian spectrum for the unbounded circuit; the

other terms in the integrand keep track of the source and sink
as well as boundary effects, as we have obtained from the
method of images. As an illustration,

Z3-dim(N → ∞) ≈ 1

π

∫ 2π

0
cos2 k

2
f2(1 − cos k)dk. (C10)
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