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Inhomogeneous disordering at a photoinduced charge density wave transition
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Using ultrashort laser pulses, it has become possible to probe the dynamics of long-range order in solids
on microscopic timescales. In the conventional description of symmetry-broken phases within time-dependent
Ginzburg-Landau theory, the order parameter evolves coherently, with small fluctuations along an average trajec-
tory. Recent experiments, however, indicate that some systems can support a different scenario, named ultrafast
inhomogeneous disordering, where the average order parameter is no longer representative of the state on the
atomic scale. Here we theoretically show that ultrafast disordering can occur in a minimal, yet paradigmatic,
model for a Peierls instability if atomic scale inhomogeneities of both the electronic structure and the charge
density wave order parameter are taken into account. The latter is achieved using a nonequilibrium generalization
of statistical dynamical mean-field theory coupled to stochastic differential equations for the order parameter.
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I. INTRODUCTION

Symmetry breaking phase transitions are among the most
fundamental phenomena in physics, from cosmology to con-
densed matter. Understanding their dynamics in solids is
therefore of basic interest as much as it is needed to establish
pathways to control complex states of matter on ultrafast
timescales [1,2]. The conventional phenomenological under-
standing of symmetry breaking is based on Ginzburg-Landau
theory (GLT), which determines the order parameter from
a free energy density. The latter depends on the electronic
state through few variables like temperature, and it can there-
fore be rapidly modified by an excitation of the electrons.
Time-dependent GLT has been successfully used to describe
the resulting coherent dynamics of various orders, including
superconductivity and charge density waves [3–9]. Neverthe-
less, in many experiments the dynamics of ordered phases
comes with yet unresolved mysteries, including the emer-
gence of metastable states which cannot be reached along
equilibrium pathways [10–12] or dynamics which is not
governed by the free energy for the measured electronic tem-
perature [13].

A theoretical description beyond time-dependent GLT
must properly include nonthermal order parameter fluctua-
tions on various length and time scales. Including spatial
fluctuations into time-dependent GLT in fact has a profound
influence on the dynamics. For example, fluctuations of a
thermodynamically subdominant order can become observ-
able when the dominant order is transiently suppressed [14]
and they can be important for a transition to metastable states
[15]. Moreover, due to the anharmonicity of the potential,
nonthermal fluctuations can renormalize the free energy. This
can lead to a slowdown of the dynamics [16] or, in systems
with discrete symmetry breaking, to a qualitative change of
the potential [17]. Finally, even in the disordered phase, non-
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thermal order parameter fluctuations can leave characteristic
signatures in the electronic properties [18–21].

In the above mentioned extensions of GLT, the order pa-
rameter is described by a homogeneous time-dependent mean
φ0(t ), with small spatial fluctuations δφ(�r, t ) that are treated
within a Gaussian approximation, i.e., the distribution of the
fluctuations is assumed to be Gaussian around the average
φ0(t ). An entirely different paradigm, which has been put
forward in recent experimental studies [23–25], is ultrafast
inhomogeneous disordering: in this scenario, the local con-
figuration of the order parameter has a highly non-Gaussian
distribution and is therefore no longer represented by its aver-
age φ0(t ). For example, in a discrete (Z2) symmetry-breaking
transition, ultrafast inhomogeneous disordering could imply
that the local order parameter shows a transient bimodal
distribution peaked around large positive and negative dis-
placements, say φ0(t ) + �φ and φ0(t ) − �φ, respectively. In
this case, its average φ0(t ) is not representative anymore of the
distribution of the single displacements. Although this state
cannot be distinguished from a Gaussian disordered state on
the macroscopic level, by just looking at the average order
parameter, its local microscopic nature is not captured by the
Gaussian approximation, and one can expect a profoundly
different dynamics. From a different perspective, this behav-
ior corresponds to a temporary high density of atomic scale
defects in the ordered state.

Inhomogeneous disordering also questions the conven-
tional assumption that, after a short relaxation, electrons
can be described by a few variables like the effective tem-
perature and the excitation density. Along with the order
parameter, in fact, also the local electronic structure may
not be well represented by averaged spectra and distribution
functions. Moreover, rapid electronic thermalization can be
inhibited in disordered systems even in the presence of in-
teractions, as for the case of many-body localization [26,27].
The intertwined evolution of the order parameter fluctua-
tions and the electronic structure may lead to unusually slow
relaxation, reminiscent of weak ergodicity breaking in trans-
lationally invariant systems due to dynamical bottlenecks and
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constraints [28–32]. A theoretical description of inhomoge-
neous disordering should therefore consider the possibility
of a nonthermal and spatially varying electronic state, while
previous simulations of dynamical symmetry breaking which
start from a microscopic description of the electrons often
neglect spatial fluctuations [33–36], with a recent exception
[37].

With the current state of theory, even a minimal model
to study inhomogeneous disordering should provide impor-
tant insights. In the present work, we solve the coupled
equations for the inhomogeneous order parameter evolution
and the nonequilibrium electron dynamics in a minimal, yet
paradigmatic model for a charge ordering transition, i.e., the
Holstein model on the infinitely coordinated Bethe lattice.
We find that already this simple model supports an inho-
mogeneous disordering scenario, which suggests that such
self-generated disorder might more generally be of impor-
tance for the photoinduced dynamics in solids. Our model also
allows one to investigate experimentally relevant aspects of
that state, in particular the in-gap spectral weight and the slow
recovery dynamics.

The article is structured as follows. In Sec. II, we introduce
the Holstein model and the approach we developed to take into
account nonequilibrium fluctuations of the order parameter.
Section III presents both equilibrium results and nonequi-
librium simulations after a photoexcitation. In Sec. IV, we
reconstruct some out of equilibrium features of the potential
energy, i.e., the potential energy barrier, without any original
assumption on its existence. Finally, Sec. V is devoted to
concluding remarks.

II. MODEL AND THEORETICAL APPROACH

We start from the Holstein Hamiltonian

H = −
∑

〈i, j〉,σ
Ji jc

†
i,σ c j,σ +

∑
j

√
2g(n j − 1)Xj + Hph. (1)

The first term describes tunneling of electrons with hopping
amplitude Ji j between nearest-neighbor sites i and j and the
second term couples the displacement Xj of a local oscillator
with the electron density nj = n j,↑ + n j,↓; c j,σ (c†

j,σ ) are anni-
hilation (creation) operators for electrons with spin σ on the
lattice site j and Hph = ∑

j
�
2 (X 2

j + P2
j ) is the Hamiltonian of

the free oscillators at each site (Einstein phonon). Because we
have in mind an evolution over several picoseconds in a solid
state environment, we also add a coupling to a thermal reser-
voir, so that electrons can pass energy to variables other than
the particular mode X . The bath is included via a dissipative
self-energy (see Appendixes A, B, and C).

On a bipartite lattice with sublattices A and B, the model
favors a symmetry-broken low-temperature state at half fill-
ing, with opposite displacement 〈Xj〉 = ±X0 for sites j on
the two sublattices, and a gap in the electronic spectrum.
We consider the model on an infinitely coordinated Bethe
lattice at half filling, which allows for an exact solution
within dynamical mean-field theory (DMFT) [38,39]. The
noninteracting electronic density of states has a semiellip-
tic shape D(ε) = 4

πW 2

√
W 2 − 4ε2 with bandwidth W . One

can analyze the dynamics after an excitation in terms of the
local displacements Xj (t ) and the local electronic Green’s

function Gj (t, t ′), which determines the local spectral func-
tion A j (ω, t ) = − 1

π
ImGR

j (ω, t ) and the local distribution
function Fj (ω, t ) = G<

j (ω, t )/[2π iA j (ω, t )]. A DMFT solu-
tion which enforces a spatially homogeneous order param-
eter and treats the electron-lattice interaction perturbatively
gives coherent order-parameter oscillations after an impul-
sive electronic excitation, as qualitatively expected from
time-dependent GLT [22]. Here, we allow for an arbitrary
distribution of Xj and Gj . The nonperturbative solution of
the dynamics in this case is facilitated by the following steps
(additional details are reported in the Appendixes). (i) Be-
cause the relevant phonon timescale 1/� is slow compared
to the electronic timescale, the exact Keldysh action for the
oscillator displacement Xj at a given site j can be replaced
by a stochastic equation of motion [40]. The coupling of the
oscillator to the electronic density fluctuations is replaced by a
damping −γ j (t )Ẋ j (t ) and a stochastic force ξ j (t ) in the white
noise limit 〈ξ j (t )〉 = 0 and 〈ξ j (t )ξ j′ (t ′)〉 = Kj (t )δ j, j′δ(t − t ′)
(further details about the derivation of these contributions to
the equation of motion can be found in Appendix B and in
Ref. [41]). The total force on the oscillator at site j is therefore

f j = −�2Xj −
√

2g�(〈n j〉 − 1) − γ j Ẋ j +
√

�ξ j, (2)

where the first two terms are Hooke’s law and the standard
mean-field (Ehrenfest) force. The damping constant γ j and
the noise amplitude Kj are determined self-consistently by
the retarded and Keldysh components of the local electronic
density-density correlation function at site j [40]. (ii) After
the phonon is replaced by the stochastic variable Xj , the local
electronic Green’s function Gj becomes a stochastic quantity
itself and one must solve the electron dynamics in the pres-
ence of a time-dependent disorder. This is achieved using a
nonequilibrium generalization of statistical DMFT [42–44].
For the infinitely coordinated Bethe lattice, this implies that
the DMFT hybridization function on a given site is deter-
mined by an average over the Green’s function on the opposite
sublattice (see Appendix A for further comments on nonequi-
librium statistical DMFT). In the simulations, we explicitly
treat 128 representative sites on the A and B sublattices, which
give access on the full distribution of local properties. In
order to solve the electron dynamics on timescales which
are much longer than the intrinsic electron hopping time, we
use a quantum Boltzmann equation consistent with DMFT
(see Appendix C for a discussion on the quantum Boltzmann
equation) [45]. The simulation of the electron dynamics is
done here explicitly because a priori it is not clear whether
electrons locally thermalize in the disordered state. For ex-
ample, the exact solution of the disordered Falikov-Kimball
model predicts nonergodic behavior if the system remains
isolated [46].

III. NUMERICAL SIMULATIONS

In the following, we choose representative parameters,
with the noninteracting bandwidth W = 1 eV to define the
energy scale, � = 0.05 eV (bare phonon period τ ∼ 80 fs)
and g = 0.1 eV [corresponding to a dimensionless coupling
constant λ = 4g2/(�W ) = 0.8]. All energies are understood
in eV unless otherwise stated. We first analyze the equilibrium
properties of the model. To prepare an equilibrium state, we
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FIG. 1. Equilibrium solution of the model. (a),(b) Stochastic evolution of Xj in the stationary equilibrium phase at a temperature T = 29 K
corresponding to the ordered phase (a) and at T = 967 K in the disordered phase (b). The vertical axis labels the 256 representative sites j,
grouping together sites of the same sublattice. Note that there is no correlation between the representative sites; their labeling is arbitrary.
(c) Average 〈X 〉α for the two sublattices α = A, B as a function of temperature (dots). Solid lines correspond to a fit 〈X 〉A,B = ±C

√
Tc − T

in the ordered phase, with Tc ≈ 527 K. The shaded areas represent the confidence interval of each 〈X 〉α , with semiamplitude given by the
variance σα = √〈X 2〉α − 〈X 〉2

α . 〈X 〉α has to be intended as an average over all the N = 128 sites in sublattice α = A, B and over all the
times: 〈X 〉α ≡ Et [ 1

N

∑N
j=1 Xj,α (t )], where Et [. . . ] is the expectation value over time. (d),(e) Electronic spectra at T = 29 K and T = 967 K,

respectively. Continuous blue and red lines are the average spectral functions taken over all the impurities belonging to a given sublattice.
Green lines show the results of a static mean-field solution with the same order parameter as obtained within the stochastic approach and
dashed blue and red lines correspond to the perturbative DMFT solution of Ref. [22] (see discussion). The inset in (e) shows a portion of the
Bethe lattice with coordination number 4.

initialize the trajectories with Xj < 0 (Xj > 0) for j ∈ A ( j ∈
B) and let the system evolve sufficiently long to become sta-
tionary on average. Figures 1(a) and 1(b) show the stationary
stochastic evolution of the trajectories Xj at all representative
sites j at two values of the temperature. At the lower tem-
perature T = 29 K [Fig. 1(a)], the system is in the ordered
phase, and the displacements on the A and B sublattices fluc-
tuate around nonzero values of opposite sign, 〈X 〉A ≈ −2 and
〈X 〉B ≈ 2. (〈·〉α = 〈·〉 j∈α denotes the average over all sites in
sublattice α = A, B.) At the higher temperature T = 967 K
[Fig. 1(b)], the system is in the disordered phase, and the
displacements at both sublattices fluctuate around X = 0. The
dependence of the average 〈X 〉A and 〈X 〉B indicates a second
order phase transition at Tc ≈ 527 K [Fig. 1(c)]. The local
electronic density of states 〈A(ω)〉α at the two sublattices
shows a gap in the ordered phase [Fig. 1(d)], which is closed
for T > Tc [Fig. 1(e)]. Both in the ordered and disordered
phase, the fluctuations of the displacement imply that the
spectra are substantially broadened with respect to a static
mean field simulation with a homogeneous order parameter
(green solid lines).

Starting from the insulating solution at T = 145 K, we
now analyze the nonequilibrium dynamics induced by a

time-dependent protocol that simulates the photoexcitation
of the electrons from the lower to the upper energy band.
The transfer of electrons is realized by coupling an elec-
tron reservoir with occupied density of states A<

dop(ω) at
positive energies and unoccupied density of states A>

dop(ω)
at negative energies [shaded areas in Fig. 2(a)], for about
3 fs starting at t = 0 (see Appendix D for details concerning
the excitation protocol). At early times, the average distri-
bution function 〈F (ω, t )〉A assumes a nonequilibrium shape
that cannot be fitted by a Fermi-Dirac function. However,
it recovers the original form on a relatively short timescale
of about 1 ps. (In the figure, we exemplarily show quan-
tities on sublattice A; quantities on the other sublattice
behave analogously.) The early time electron dynamics can
be analyzed in terms of the excitation density, given by
the integrated occupation at positive frequencies, nex

A (t ) =∫ ∞
0 dω〈F (ω, t )A(ω, t )〉A [Fig. 2(b)]. Starting from a peak

excitation density of few percent, an almost complete decay
of nex

A due to energy dissipation of the electrons occurs within
∼1.3 ps. The average distortion 〈X 〉A − 〈X 〉B rapidly collapses
to zero after the electronic excitation, with an overshoot that
represents a strongly damped coherent dynamics [Fig. 2(b)].
After that, 〈X 〉A − 〈X 〉B remains close to zero for almost ten
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FIG. 2. Nonequilibrium evolution of the system. (a) Time evo-
lution of the electronic distribution function starting from the
equilibrium ordered state at T = 145 K. The excitation is realized by
coupling the system for a period of few fs to a photodoping reservoir
with occupied (unoccupied) density of state A<

dop (A>
dop) above (be-

low) the Fermi energy (shaded areas). (b) Short time evolution of the
difference between the sublattice averages 〈X 〉A − 〈X 〉B and of the
electronic excitation density nex

A (t ). (c) Long time evolution of the
average 〈X 〉A, together with some representative trajectories Xj .
(d) Time evolution of the average spectral function 〈A(ω, t )〉A for
the A sublattice. (e) Time evolution of Xj after the photoexcitation at
t = 0 for all trajectories.

times the electronic recovery time, up to ∼10 ps [Fig. 3(a)].
For smaller excitation densities, the order parameter

is only partially suppressed and subsequently recovers from
that value (see Supplemental Material [47]).

The evolution of 〈X 〉A on a longer time scale [Fig. 2(c)]
reveals a very slow relaxation dynamics. If the order is suf-
ficiently suppressed during the excitation, the final sign of
the order parameter becomes random; while the original sign
of the order parameter is recovered in the realization shown
in Fig. 2(c), other noise realizations can lead to a reverse
(see Supplemental Material [47]). The slow dynamics can
be linked to the presence of long-living lattice defects, i.e.,
displacements Xj at specific sites j which assume an opposite
value with respect to the average displacement on the sublat-
tice of j. Indeed, even though Xj follows the average 〈X 〉A for
the majority of sites j ∈ A, a few sites behave differently [see
curves j = 0, j = 16, and j = 46 in Fig. 2(c)]. Due to the
stochastic nature of the time evolution of the displacements,
one can observe trajectories that flip back and forth from
positive to negative values, in particular for the early phase of
the dynamics. To measure the defect density, we define ndef at
a given time by counting the percentage of sites j for which Xj

has opposite sign compared to the average 〈X 〉α on the given
sublattice. Immediately after the photoexcitation, ndef grows
from zero (in the original equilibrium state) to a value close to
50% as 〈X 〉A and 〈X 〉B drop to zero [Fig. 3(a)]. Subsequently,
ndef decreases again, but some defects remain even at the latest
time of our simulation (t ∼ 100 ps). Given the large separation
of timescales between the electronic and the lattice recovery,
we expect the inclusion of a small electron-electron interac-
tion not to alter significantly the previous picture. A more
general discussion of the role of the different parameters on
the dynamics of the system can be found in the Supplemental
Material [47].

To further interpret the data one can look at the full
distribution function Pα (X ) of the local displacements X
on a given sublattice α = A, B, which is shown for var-
ious times in Figs. 3(b)–3(e). Because PA(X ) = PB(−X ),
we show the symmetrized P(X ) = [PA(X ) + PB(−X )]/2. In
the initial equilibrium state, P(X ) is peaked around the
mean order parameter 〈X 〉A ≈ −2 [Fig. 3(b)]. Shortly after
the excitation, P(X ) first becomes parity symmetric with a
broad distribution around X = 0 [Fig. 3(c)]. During the re-
laxation, the distribution then develops into a well-defined
bimodal form, which is still parity invariant, but has re-
duced weight at X = 0 [Fig. 3(d)]. This bimodal distribution
is the hallmark of the inhomogeneously disordered state.
At longer times, the asymmetric equilibrium distribution re-
covers through a gradual depletion of the minority peak
[Fig. 3(e)].

The evolution of the lattice displacements is indirectly
reflected in the spectral function, which can be observed,
e.g., in photoemission spectroscopy. The initial reduction of
〈X 〉A leads to rapid closing of the energy gap in the original
spectral function 〈A(ω, t )〉α; see curve for time t = 0.5 ps in
Figs. 3(f) and 3(g) for the A and B sublattices, respectively.
After the recovery of the nonzero average lattice displace-
ments, the gap is partly restored. However, the presence of
the defects leads to incoherent spectral weight in the gap,
which remains visible even for the longest simulation time
t = 100 ps [Fig. 2(d)].
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FIG. 3. Characterization of the nonequilibrium dynamics. (a) Early and long times dynamics (left and right panels, respectively) of
〈X 〉A − 〈X 〉B and of the defect density ndef, normalized to the total number NT of A and B lattice sites. (b)–(e) Distribution function of the
displacements at different times, as indicated by the vertical lines in panel (a). (f),(g) Local electronic spectral functions for the A and B
sublattices, respectively, at the same times as panels (b)–(e). (h) Time evolution of the activation energy from the minority to the majority
minimum and back. The left inset shows a sketch of the sublattice potential VA(X ) at different stages of the dynamics as indicated by the
vertical lines. The right inset sketches the rates �→ (�←) for the transition from minority to majority (majority to minority) displacements;
�V→(←) are the barrier heights for the transitions in the two directions.

IV. NONEQUILIBRIUM POTENTIAL ENERGY BARRIER

The long lifetime of the defects suggests that they are
protected by an energy barrier in the effective potential Vα (X ),
which describes the local dynamics of X on sublattice α. For
late times, when P(X ) shows a bimodal form, we can assume
that Vα (X ) is represented by a double well with minima for
the majority and minority displacements [see right inset in
Fig. 3(h)]. One can try to estimate these barriers from the
stochastic dynamics, assuming that the rates �→ (�←) for
the transition from minority to majority (majority to minority)
are given by the Arrhenius law �←(→) = �0e−�V←(→)/T . The

barrier heights �V←(→) for the transitions in the two direc-
tions are shown in Fig. 3(h) (see Appendix E for the extraction
of the barriers). The dynamics of the energy barriers is char-
acterized by two stages. Up to a time t ≈ 5 ps before the
symmetry breaking sets in, the potential is given by a sym-
metric double well (�V← = �V→), whose barrier increases
almost linearly with time. Once the symmetry is broken, the
barrier �V← protecting the minority sites remains intact (even
if it slowly decreases), but it is now lower than the barrier for
the other direction (�V← < �V→), supporting the metastable
character of the defects.
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An important question is the validity of the white noise
approximation made in our simulation. At equilibrium, we
can compare our results to a DMFT simulation which treats
the electron phonon in leading order perturbation theory
but keeps the full retardation effects [22]. In the high-
temperature phase, where the displacements fluctuate around
X = 0, this approach agrees remarkably well with the present
simulation regarding the broadening of the equilibrium spec-
tra [see dashed line in Fig. 1(e)]. However, the weak coupling
description cannot reproduce the bimodal phonon distribution
by construction and is blind to the inhomogeneous disor-
dering, which sets in in the nonequilibrium state. An exact
solution of the Holstein model in DMFT is possible in equilib-
rium using quantum Monte Carlo (QMC) techniques [48,49].
Above the ordering temperature, QMC has predicted a highly
non-Gaussian and even bimodal distribution P(X ) for the
Hubbard-Holstein model [48]. (Deep in the ordered phase,
we expect that the minority displacement in equilibrium has
a rather small weight and might be difficult to detect.) While
nonequilibrium QMC simulations for the long time dynamics
are not possible, our results are clearly in line with these
equilibrium findings. Finally, we expect the white noise limit
to become systematically better for smaller phonon frequen-
cies. We have performed simulations at a lower � = 0.005,
corresponding to an oscillation period τ ∼ 830 fs (keeping the
parameter g2/� fixed, which determines the phase transition
in equilibrium). One observes more coherent dynamics at
early times (few coherent oscillations of 〈X 〉A around X = 0
after the excitation) followed by a fast recovery at later times
which indicates no bimodal distribution at intermediate times
and thus a negligible value of the potential energy barrier in
this case (see Supplemental Material [47]).

V. CONCLUSIONS

In conclusion, we have shown that the dynamics in a simple
Holstein model for a Peierls charge density wave transition
can lead to ultrafast inhomogeneous disordering after pho-
toexcitation, with a bimodal distribution of the local order
parameter. Experimental signatures for a transiently disor-
dered state may be found using scattering techniques [23] or,
as our model suggests, by means of incoherent spectral weight
in the electronic spectra. One might also consider optical ex-
periments which are sensitive to local properties; e.g., if local
Raman-active modes are affected by the local order parameter,
one could map the order parameter distribution onto a non-
trivial distribution of frequencies [50] in a stimulated Raman
measurement. The stabilization of the disorder is understood
in terms of metastable defects, which are local in nature and
therefore different from the topologically stabilized defects
in the Kibble-Zurek mechanism. The occurrence of inhomo-
geneous disordering already in the simple Holstein model
suggests this phenomenon should be relevant to photoinduced
dynamics in solids more generally. In more complex systems,
the inhomogeneous disorder at short times might be a step
towards true metastability and glassy states at long times [51].
Future theoretical studies will extend the technique developed
in this work, i.e., nonequilibrium statistical DMFT with a
stochastic lattice evolution, to more realistic descriptions of

the coupled electron lattice dynamics, such as a model for
VO2 [52].
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APPENDIX A: STATISTICAL DMFT

In DMFT, the Hamiltonian (1) is mapped to a set of
Anderson-Holstein impurity problems, one for each lattice
site j [38]. These models are defined by the action S j =
Sloc

j + Shyb
j , where Sloc

j describes the coupled electronic and

lattice degrees of freedom at the isolated site j and Shyb
j =∑

σ

∫
C dt dt ′c∗

j,σ (t )� j (t, t ′)c j,σ (t ′) is the hybridization of the
electrons with a self-consistent environment defined through
the hybridization function � j . The action is formulated on the
Keldysh time contour C to describe real-time dynamics (see
Refs. [39,40] for an introduction to the Keldysh formalism).
On the Bethe lattice with coordination number Z → ∞ and
nearest neighbor hopping J0/

√
Z , � j is given by the average

of the local Green’s functions Gm at all neighbor sites m of
j, � j (t, t ′) = |J0|2

∑
m∈NN ( j) Gm(t, t ′)/Z [38]. In the present

case, we allow all sites to be inequivalent due to a stochastic
displacement of the phonons (see below). For Z → ∞ the
sum over nearest neighbors of a site j on the A (B) sublat-
tice can be replaced by a statistical average of the respective
quantity on the opposite sublattice B (A), so that �A(B)(t, t ′) =
|J0|2〈Gj (t, t ′)〉B(A); |J0| = W/4 is the quarter bandwidth of
the noninteracting density of states. In the simulation, we
keep 128 representative impurity models (representative
sites) for each sublattice and evaluate the statistical average
accordingly.

APPENDIX B: STOCHASTIC EQUATION
FOR THE LATTICE DISTORTION

To solve the impurity model, we separate its action as S j =
Sc + Scx, where Sc contains all purely electronic terms (local
contributions and hybridization), and

Scx
j = −

∫
C

dt Xj

[(
∂2

t + �2
)

2�
Xj +

√
2g(n j − 1)

]
(B1)

is the Keldysh action for the displacement Xj . The latter
describes the uncoupled dynamics of Xj and the coupling
to the density nj = ∑

σ c∗
jσ c jσ . To find an effective equa-

tion of motion for Xj which still takes into account the
electronic fluctuations, we closely follow Ref. [40] for the
derivation of the Langevin equation for a damped har-
monic oscillator: the electrons are integrated out to obtain
an action of Xj only, Xj is separated into “classical” and
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“quantum” components X cl
j and X q

j , and quadratic fluc-
tuations in X q

j are eliminated in favor of a Gaussian
noise through a Hubbard-Stratonovich transformation. The
white noise limit is taken because electronic timescales are
much faster than the phonon dynamics. In summary, this
leads to the following description for the coupled electron-
lattice dynamics. (i) The local electronic Green’s function
Gj (t, t ′) = −i〈TCc jσ (t )c†

jσ (t ′)〉S j and the connected electronic
density correlation function � j (t, t ′) = i〈TCn(t )n(t ′)〉con

S j
=

iG j (t, t ′)Gj (t ′, t ) are determined by the impurity action for
which Xj is replaced by the time-dependent X cl

j (t ). (ii)
X cl

j (t ) is determined by the equation of motion Ẍ cl
j = f j ,

with the stochastic force Eq. (2). (In the main text, we de-
note X cl

j ≡ Xj for simplicity.) The coefficients γ j and Kj

in f j are related to the electronic density correlation func-
tion � j through γ j (t ) = 2g2� Im[∂ω�R

j (ω, t )]|ω=0 + γHO

and Kj (t ) = g2� Im[�K
j (ω, t )]|ω=0 + 2T γHO; here �R

j (ω, t )
[�K

j (ω, t )] are the Wigner transform of the retarded (Keldysh)
component of � j . In the expressions, we have also added
a weak extrinsic phonon damping γHO ∼ 1

26.33 ps−1 and a
consistent noise term 2T γHO, which accounts for external dis-
sipation to a bath at the initial temperature T . A more detailed
derivation of these equations in a more general context can
be found in Ref. [41], which as a benchmark also shows
that the stochastic semiclassical approach can accurately re-
produce the phonon distributions in the thermally disordered
phase over a wide parameter regime, compared to numerically
exact quantum Monte Carlo simulations.

APPENDIX C: QUANTUM BOLTZMANN EQUATION

After the quantum phonon is replaced with a classical
stochastic one, one still has to solve the electron impurity
model with a time-dependent term ∝X cl

j (t )n j . The time evolu-
tion of the electronic system, on each lattice site, is provided
by a quantum Boltzmann equation (QBE) for the local en-
ergy distribution function Fj (ω, t ) = G<

j (ω, t )/[2π iA j (ω, t )]
[45]. The QBE gives an equation ∂t Fj (ω, t ) = I j,ω[F ] for the
evolution of the distribution, with scattering integral:

I j,ω[F ] = − i�<
j (ω, t ) − Fj (ω, t )2i Im �R

j (ω, t ), (C1)

where � j (ω, t ) = � j (ω, t ) + � j (ω, t ). The self-energy
� j (ω, t ) in particular incorporates the coupling between the
local electronic system and a bosonic bath, which acts as
a heat reservoir. In time, � j (t, t ′) = g2

phGj (t, t ′)Dph(t, t ′),
where Dph(t, t ′) is the propagator for noninteracting bosons

with Ohmic density of states ω

4ω2
ph

exp(−ω/ωph), ωph = 0.05,

and gph = 0.085 [53,54]. As the coupling to the bath is treated
in the weak-coupling formalism, a non-Ohmic bosonic bath
should lead to the same qualitative picture presented in the
text [55,56], i.e., a cooling of the photoexcited carriers.

APPENDIX D: EXCITATION PROTOCOL

In order to simulate a photodoping excitation, the system
is shortly coupled with a fermionic bath with density of states

Adop(ω) = A(ω − 0.625) + A(ω + 0.625) (D1)

consisting of two smooth bands with bandwidth Wbath = 1
around the energies ω0 = ±0.625. We choose A(ω) =
1
π

cos2(πω/Wbath) in the interval [ω0 − Wbath/2, ω0 +
Wbath/2]. The occupied and unoccupied density of states
have spectral shapes given by A<

dop(ω) = A(ω − ω0)
and A>

dop(ω) = A(ω + ω0), respectively [shaded areas in
Fig. 2(a)]. This fermionic bath adds a local contribution
to the electronic self-energy in Eq. (C1), given by
�

>(<)
dop (t, ω) = (−)2π iV 2(t )A>(<)

dop (ω), with time-dependent

profile V (t ) = V0 sin2(πt/t0)θ (t )θ (t0 − t ), where V0 = 0.125
(which is a function of the fluence of the pulse) and
t0 ∼ 2.63 fs (representing the pulse duration). The same
excitation protocol has been already applied in [45,57].
Moreover, the fermion bath coupling can be understood as a
microscopic model for laser excitation of electrons to/from
higher lying bands via dipolar transition matrix elements
[58,59].

APPENDIX E: DETERMINATION
OF THE ENERGY BARRIERS

To extract the energy barrier �V in Fig. 3(h) from the rates
�→(←) and the Arrhenius law, the constant �0 has been fixed
by assuming that the barrier vanishes directly after the excita-
tion, at t = 500 fs [Fig. 3(c)]; T is taken to be the final value
T = 145 K for simplicity because electronic distributions
quickly relax as shown in Fig. 2(b). To obtain the rate �←
(�→) up to a global factor, we measure, over time intervals
of �t = 526 fs, the average number nmaj and nmin of majority
and minority trajectories, as well as the number of flips �n←
and �n→ in the two directions. A trajectory is considered as
flipped when it previously has been at X < −1.5 and arrives
at X > 1.5 and vice versa. With this �← ∝ �n←/nmaj and
�→ ∝ �n→/nmin.
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