
PHYSICAL REVIEW B 107, 245109 (2023)

Incoherent transport in a model for the strange metal phase: Memory-matrix formalism
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We revisit a phenomenological model of fermions coupled to fluctuating bosons that emerges from finite-
momentum particle-particle pairs for describing the strange metal phase in the cuprates. The incoherent bosons
dominate the transport properties for the resistivity and optical conductivity in the non-Fermi-liquid phase.
Within the Kubo formalism, the resistivity is approximately linear in temperature with a Drude form for
the optical conductivity, such that the Drude lifetime is inversely proportional to the temperature. Here, we
compute the transport properties of such bosons within the memory-matrix approach that successfully captures
the hydrodynamic regime. This technique emerges as the appropriate framework for describing the transport
coefficients of the strange metal phase. Our analysis confirms the T -linear resistivity due to the umklapp
scattering that we obtained for this effective model. Finally, we provide new predictions regarding the variation
of the thermal conductivity with temperature and examine the validity of the Wiedemann-Franz law.
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I. INTRODUCTION

One of the most enduring mysteries of quantum con-
densed matter physics is arguably the strange metal phase
of the cuprate superconductors [1–3]. The conventional metal
obeys universal laws for the variation of transport coefficients
with temperature. The standard transport theory of metals
gives a simple dependence of the longitudinal σxx and Hall
σxy conductivities as a function of transport lifetime with
σxx = ne2τ/m and σxy = ne3Bτ 2/c, where n is the number of
electrons, e is the elementary charge, τ is their lifetime, m is
their mass, B is the magnetic field, and c is the speed of light.
At low temperatures, the inverse of the transport time typically
goes like τ−1 ∼ T 2; hence, the longitudinal conductivity dis-
plays σxx ∼ T −2, whereas the Hall conductivity is given by
σxy ∼ T −4. Within the Fermi liquid theory, which describes
the behavior of conventional metals, electronic quasiparticles
are the sole type of charge carriers and, therefore, the Hall
angle becomes cot θH = σxx/σxy ∼ T 2.

By contrast, the experimental data in the strange metal
phase of the cuprates display striking discrepancies with the
standard Fermi liquid picture [4–6]. First, the experimental
observations demonstrate that σxx ∼ T −1 [7] and, at the same
time, cot θH ∼ T 2 [8–10]. Therefore, the transport time in-
duced from the longitudinal conductivity scales as τ ∼ T −1,
while the “Hall lifetime” varies as τH ∼ T −2, which is com-
monly referred to as the “separation of lifetimes” in the
literature [11–13]. Furthermore, the Wiedemann-Franz law
is satisfied (with a doping-dependent overall coefficient) in
the strange metal phase almost down to T = 0 [14–16]. The
notable disagreement between the different experimental data
with the Fermi liquid paradigm makes the strange metal phase
of the cuprates one of the biggest enigmas of correlated quan-
tum matter [1,12,17–19].

The theoretical concepts which have been put forward to
explain this very unusual situation can be summarized as

follows. Quantum critical theories based on fermions inter-
acting with Landau-damped critical bosons have been widely
studied [20]. In these scenarios, electric charge is solely car-
ried by the fermions. From this perspective, two cases emerge.
First, suppose the bosons have finite momentum like in the
antiferromagnetic quantum critical theory, among others. In
that case, the fermions around the Fermi surface are partially
sensitive to the scattering via the bosons. The proportion of
the fermions that participate in such scattering is called “hot”
fermions, and the remaining part of the Fermi surface remains
insensitive to the critical bosons. Since the latter fermions do
not participate in the scattering, they are referred to as “cold”
fermions. This scenario was first identified in a seminal paper
by Hlubina and Rice [21]. This mechanism is the principal
obstacle to obtaining a linear-in-T resistivity in these models
within the clean limit. Indeed, at low enough temperatures, the
“cold” fermions short-circuit the “hot” ones, and the transport
lifetime falls back into the standard Fermi liquid paradigm
with τ−1 ∼ T 2 (see also Ref. [22] for an example of this
mechanism at play in the context of such systems with the
subsequent addition of disorder).

The second possibility within the fermion-boson quantum
critical scenario is that the whole Fermi surface becomes
“hot”; namely, that the critical bosons have zero momentum
so that every fermion at the Fermi surface can participate
in the scattering via the bosons (like in the Ising-nematic
quantum critical theory, among others). Here all the fermions
are “hot”; there is no issue with a possible “short-circuiting”
with cold species. A caveat with this scenario is that a T -
linear resistivity needs to be clearly obtained within the clean
limit, with the temperature dependence of the resistivity vary-
ing from sublinear at high temperatures to quadratic at low
enough temperatures [23]. Altogether, accounting for such a
linear-in-T resistivity with only fermions as charge carriers
is challenging. New proposals then emerged, introducing new

2469-9950/2023/107(24)/245109(9) 245109-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3338-9249
https://orcid.org/0000-0002-6470-2816
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.245109&domain=pdf&date_stamp=2023-06-06
https://doi.org/10.1103/PhysRevB.107.245109


PANGBURN, BANERJEE, FREIRE, AND PÉPIN PHYSICAL REVIEW B 107, 245109 (2023)

strongly coupled fixed point models within the Planckian limit
of dissipation [19]. These very innovative scenarios (e.g.,
[17]) have in common that charge carriers are not well defined
and that the systems are analogous to a highly correlated
plasma carrying the current. Strongly correlated fixed point
models, including, e.g., the Sachdev-Ye-Kitaev (SYK) model
(see [24]), obtain the linear-in-T behavior in the resistivity
very elegantly. However, it is not clear yet how to deal with the
“two-lifetime” problem within such a scenario. Also, the dis-
cussion of the fundamental Planckian limit in these models led
to interesting holographic descriptions using hydrodynamic
modes and symmetries (see, e.g., [25]).

In the present paper, we address such a long-standing issue
by proposing a new type of bosonic excitation that can poten-
tially describe the strange metal phase in the cuprates [10,26–
31]. We would like to stress that the scenario explored below
presents a unique case where the whole picture, including
linear-in-T resistivity and the cotangent of the Hall angle,
is addressed, and contact with experiments is made possi-
ble. The physical picture underlying our phenomenological
model [32,33] can be summarized as follows: At high ener-
gies, the microscopic lattice model generates fluctuating finite
momenta bosons created from particle-particle pairs (rem-
nants of a pair-density-wave) and the constituent fermions.
These fluctuating bosons carry an electric charge of 2e and,
hence, also contribute to the charge transport. Moreover, due
to the scattering with fermions, such bosons become inco-
herent as the bosonic propagator becomes D−1(q, ω) = −iω
+ q2 + mb(T ) [where mb(T ) is the temperature-dependent
bosonic mass]. Such bosons in two dimensions indeed lead
to a T -linear contribution to the longitudinal conductiv-
ity and also the optical conductivity attains a Drude form
σ boson

xx (ω) ∼ (τ−1
boson − iω)−1, as shown in Ref. [32]. Inter-

estingly, recent study [34] reveals a bosonic strange metal
phase in nanopatterned YBCO samples. In that work, the
longitudinal conductivity shows a linear temperature and field
dependence along with a vanishing Hall coefficient, as soon
as the bosonic transport sets in [34]. Moreover, we also point
out the Ref. [26], where another charged carrier is suggested
besides the fermions. This additional charge carrier has the
experimental signature of contributing to the linear-in-T be-
havior in the longitudinal resistivity, whereas it does not
contribute to the Hall conductivity.

Indeed, since the critical bosons turn out to be particle-
hole symmetric, they do not contribute to the transverse Hall
conductivity σ boson

xy = 0. Such a general picture could explain
the experimental data if the bosons are light enough to short-
circuit the fermions for the longitudinal conductivity. Since
the fermions are also present in this model, there must be
scattering between these two excitations. As stated above,
at low temperatures, scattering via incoherent bosons with
finite momentum produces a finite lifetime for the fermions,
at least on parts of the Fermi surface, with the generation
of “hot spots” where the dominant scattering is through the
incoherent bosons, leading to a scattering rate τ−1

hot ∼ T α , with
1 < α < 1.5 [21,22]. As explained before, the part of the
Fermi surface which is unaffected by the boson scattering is
called “cold.” The modeling of the Hall conductivity on a
Fermi surface with an anisotropic lifetime has been treated
in another study to describe the strange metal phase of the

cuprates [35]. The angular average on the Fermi surface favors
[35] the “hot regions” for the Hall conductivity, leading to
an average Hall inverse lifetime τ−1

H ∼ T 3/2. Our study thus
combines the two types of excitations (bosons and fermions)
to give a new perspective to the old paradox, such that the
Hall angle becomes cot θH ∼ T 3/T ∼ T 2, consistent with the
experiments.

Since the model of fermion-boson “soup” with charged-
two bosons is one of the few proposals for a regime with
linear-in-T resistivity and cot θH ∼ T 2, and considering the
very scarce number of studies of transport due to charged
bosons, it is important to check the universality of this regime
and to use another approach to calculate transport properties
instead of the Kubo formula implemented in Ref. [32]. In
the present paper, we revisit this problem in the context of
the hydrodynamic description used in the discussion of the
Planckian regime [25,36] and confirm our key results that
such charge-two incoherent bosons in two dimensions con-
tribute to the longitudinal conductivity as σxx ∼ T −1. To this
end, we investigate the transport properties of such bosons
using the memory-matrix technique, that successfully cap-
tures the hydrodynamic regime. Consequently, the T -linear
resistivity regime of the Landau-damped charged bosons with
finite momentum due to umklapp interactions stands on firm
ground. Finally, we provide new predictions regarding thermal
conductivity as a function of temperature in the model and
also discuss the validity of the Wiedemann-Franz law for this
system.

II. THE MODEL

We consider here a two-dimensional phenomenological
model [32] of fluctuating charge-two bosons interacting with
each other and among themselves. The bosons are in a “soup”
of fermions, and the corresponding fermion-boson scattering
affects the boson lifetime significantly (to be explained be-
low). The bosonic part of the Hamiltonian is given by

Ĥ =
∑

q

b†
q

[
|q|2
2mb

+ μ0

]
bq + λ2

2N

∑
q

QqQ−q, (1)

where μ0 and λ denote, respectively, the bare bosonic mass
term and the boson-boson interaction, and Qq = ∑

k b†
k+qbk,

where b†
k (bk) is the creation (annihilation) operator for a

boson with momentum k. The flavor indices are suppressed
to not clutter up the notation. Although the spin index is not
shown for simplicity, we allow for the possibility that the
bosons have either spin zero or spin one. As mentioned above,
the model also possesses a “background” of fermions [not
shown in the Hamiltonian of Eq. (1)] and the corresponding
fermion-boson scattering processes lead to retardation effects,
which are taken into account via the one-loop bosonic self-
energy �(ω) = −iγω, where the Landau-damping constant γ

is given by γ = g2
IN (εF )/[2π

√
(2kF Q0)2 − Q4

0], with N (εF )
being the density of states at the Fermi energy, kF the corre-
sponding Fermi momentum, Q0 the finite momentum of the
bosons, and gI the fermion-boson interaction. In a previous
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work [32], we have demonstrated using the Kubo formula that
this effective model indeed displays a quantum critical phase
with approximately T -linear resistivity and shows a Drude
form for the optical conductivity.

We now proceed to calculate the transport properties of this
effective model within the memory-matrix (MM) formalism
[37–39] (for more information about the technicalities of this
method, see, e.g., Refs. [17,23,36,40–52]). The MM approach
emerges as a more suitable framework to describe the non-
Fermi-liquid phase exhibited, since (i) it does not rely on
the existence of well-defined quasiparticles at low energies,
and (ii) it successfully captures the hydrodynamic regime that
is expected to describe the nonequilibrium dynamics of this
strongly correlated metallic phase.

Here, we will follow an approach similar to that used in
the recent work by Wang and Berg [23] to calculate transport
properties in the context of an Ising-nematic quantum critical
theory. In this way, we will project the nonequilibrium dynam-
ics of the present model in terms of slowly varying operators
that are nearly conserved. Naturally, the boson operators
nk = b†

kbk turn out to be nearly conserved in the limit of either
small λ or large N , since the equation of motion for these
operators is given by

ṅk = i[Ĥ, nk]

= 2λ2i

N

∑
q

Q−q(b†
k+qbk − b†

kbk−q) − H.c. (2)

In the MM formalism, to leading order in 1/N , the memory
matrix writes

Mkk′ (�) = 1

i�

[
GR

ṅk ṅk′ (�) − GR
ṅk ṅk′ (0)

]
, (3)

where GR
AB(�) is the retarded Green’s function for nearly

conserved operators A and B, which is calculated to zeroth
order in 1/N . The MM turns out to be a generalization of the
quasiparticle scattering rate in Boltzmann theory (but appli-
cable also to non-Fermi-liquids in which this latter quantity
cannot be defined) and enters as a retardation process in the
calculation of the optical conductivity σ (�) and the thermal
conductivity at zero electric field κ̄ (�) in the following way,

σ (�) =
∑
kk′

χJknk

(
1

Mkk′ (�) − i�χkk′

)
χJk′ nk′ , (4)

κ̄ (�) = 1

T

∑
kk′

χJQ
k nk

(
1

Mkk′ (�) − i�χkk′

)
χJQ

k′ nk′ , (5)

where Jk and JQ
k are, respectively, the electric current

and the thermal current operators of the model, with
the corresponding susceptibilities given by χJknk = ∫ β

0 dτ

〈Jk(τ )nk(0)〉, χkk′ = ∫ β

0 dτ [〈nk(τ )nk′(0)〉 − 〈nk〉〈nk′ 〉], and

χJQ
k nk

= ∫ β

0 dτ 〈JQ
k (τ )nk(0)〉.

We point out that the thermal conductivity at zero elec-
tric current of the model (which will be denoted here by κ)

FIG. 1. The Feynman diagram for the calculation of the memory
matrix Mk,p,q showing up in Eq. (6) of the present model. The wavy
lines are the boson propagator defined in Eq. (7). The summation is
over the momenta p and q.

is given by κ = κ̄ − T α2/σ , where α is the thermoelectric
coefficient. Since we have demonstrated in a previous work
[32] that the present model has particle-hole symmetry, the
critical contribution to the thermoelectric response is expected
to vanish. Therefore, in this case, the thermal conductivity at
zero electric current will be equal to the thermal conductivity
at zero electric field (i.e., κ = κ̄).

Furthermore, for clean systems, if no coupling to the lattice
is present, the memory matrix of the model also vanishes
identically (see Appendix A). However, if umklapp terms are
taken into account, we get after contracting the vertices the
following result:

Mkk′ (�) = 8 δkk′
∑
p,q

Mk,p,q, (6)

with the corresponding Feynman diagram given by Fig. 1.

III. RESULTS

A. Evaluations

We now compute the various terms in Eqs. (4) and (5)
within our MM formalism. For convenience, we use units
such that e = kB = h̄ = 1 from now on. We start from the
renormalized propagator for the incoherent bosons given by

D−1
k = |ωn| + μk (T ), (7)

with μk (T ) = k2 + λ2

2N T . The damping term |ωn| (we have set
γ = 1) comes from the scattering via fermionic carriers, and
it is responsible for the incoherent character of the bosons.
The potential μk has a term k2, which refers to the bosonic
dispersion. Note that the bosons have a mass scaling with
temperature (the T term in μk). It comes mainly from the
Hartree diagram generated by the four-boson interaction.

We begin with the evaluation of

χJknk = vk

∫ β

0
dτ 〈nk(τ )〉〈nk(0)〉 + vkχkk, (8)

with vk = k/mb. Henceforth, we define

χ
(a)
Jknk

= vk

∫ β

0
dτ 〈nk(τ )〉〈nk(0)〉, (9)

χ
(b)
Jknk

= vkχkk. (10)
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The first term in Eq. (8) can be found to be equal to (see
Appendix B 1)

χ
(a)
Jknk

= vknB(μk )

π
ln

(
D

μk

)
, (11)

where D is the bandwidth of the boson dispersion and nB

is the Bose-Einstein distribution. Regarding the second term
in Eq. (8), we use the generalized susceptibility χkk′ = δkk′

T
∑

ωn
D2

k, which gives (see Appendix B 1)

χkk′ = δkk′
T

μ2
k

(
tanh−1 T

μk

)2

. (12)

The analytical formula of Eq. (12) has been obtained in the
critical regime where μk � T . We have used the approxima-
tion nB(x) � T/x for |x| � T , which is valid for μk � T .

B. Conductivity in the critical regime

In order to complete the evaluation of the optical conduc-
tivity, we first notice that the summations over k and k′ in
Eqs. (4) and (5) vanish identically if umklapp scattering is not
taken into account (see Appendix A). Umklapp terms with
k′ = k ± nU, with U being a reciprocal lattice wave vector,
generate a finite result for the optical conductivity. This result
is obtained by the scaling displayed in Eqs. (8)–(14) in the
critical regime. In this regime, the second term χ

(b)
Jknk

in Eq. (8)
dominates over the first term (see Appendix B 2). Moreover,
the MM evaluates to

Mkk′ (�n) = δkk′
λ4T 2

N2�n

∑
ωn,pn

∑
p,q

DpDkDp+qDk+q, (13)

which finally yields (see Appendix B 3)

Mkk′ (�) = δkk′λ4

N2

T 3

192π3μ3
k

(
μkT

μ2
k + T 2

+ tanh−1 T

μk

)
.

(14)

Lastly, the optical conductivity can be rewritten as

σ (�) =
∑

k

χkk

χ−1
kk Mkk(�) − i�

. (15)

Noticing that the typical scaling relation μk ∼ T holds in the
critical regime (because T is the only energy scale in the
problem and thus k2 ∼ T ), the summation over k in Eq. (15)
can be finally performed. Scaling arguments lead to

∑
k ∼ T ,

Mkk ∼ T 0, χkk ∼ T −1, which result in a typical form for the
optical conductivity given by

σ (�) ∼ 1

T − i�
. (16)

The aforementioned result has been further validated in the
dc limit by numerically summing over k in Eq. (15), which
confirms our results in Ref. [32].

FIG. 2. The Lorenz ratio L = κ/(σT ) (in units with kB = e = 1)
as a function of the bosonic coupling g = λ2

2N , computed within the
Kubo formalism. The same results are obtained with the memory
matrix formalism. T is fixed such that it satisfies T >

μ0
g , in order to

be in the critical regime for all coupling values used.

C. Lorenz ratio in the critical regime

The Wiedemann-Franz law [53] for the Lorenz ratio L =
κ

σT is one of the most fundamental properties of a Fermi
liquid. It states that at low temperatures

lim
T →0

L = π2

3
≡ L0, (17)

in units with kB = e = 1. It reflects the fact that energy and
charge are carried by the same degrees of freedom. To com-
pute this ratio, we compute the thermal conductivity κ using
the same method with the following substitution of the suscep-
tibility: χJQ

k nk
= εkχJknk . At the critical regime, we get within

the MM approach

κ (�) = 1

T

∑
k

ε2
k

χkk

χ−1
kk Mkk(�) − i�

. (18)

Scaling arguments lead to εk ∼ T , which finally gives for the
thermal conductivity

κ (�) ∼ T

T − i�
. (19)

In the critical regime, the incoherent boson system obeys the
correct scaling, κ

σT ∼ C, with C being a constant as T → 0.
However, although the Lorenz ratio is a constant, it does not
satisfy the Wiedemann-Franz (WF) law because the coeffi-
cient is strongly dependent on the boson-boson coupling λ2

2N
(as shown in Fig. 2) and so is model-dependent. This result is
also confirmed using the Kubo linear response in Appendix C.
In the t-J model [54] and near the heavy-fermion quantum
critical point [55], stronger violations have been observed,
where the Lorenz ratio does not saturate to a constant at low
temperatures.
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In the cuprates, the experimental situation is similar to our
findings. The Lorenz ratio is found to saturate to a constant,
both in the overdoped [14,15,56,57] and underdoped [16]
regimes, but the value of this constant depends on the oxygen
doping. This experimental fact thus constrains the bosonic
coupling λ of our model. We point out that this result can also
be traced to the fact that we considered umklapp scattering as
the sole mechanism for momentum relaxation in the present
calculation.

IV. CONCLUSIONS

In this paper, we have computed the transport properties of
an effective model when charged fluctuating bosons (charge-
two particle-particle bosons in this special case) are present at
high energies in the phase diagram of the cuprate supercon-
ductors. The main results are as follows:

(i) A regime with approximately T -linear resistivity is
obtained from the transport properties of the boson-fermion
“soup.” The charged bosons scatter with the fermions and
become overdamped via the Landau damping −iγω (where ω

is the real frequency). Optical conductivity was also evaluated
[32] and yields a Drude-like conductivity for ω < T with a
lifetime given by τxx = τb ∼ T −1. This agrees with experi-
mental observation [58].

(ii) At low temperatures, the boson transport in the con-
ductivity is “short-circuited” by the fermions that possess a
transport lifetime τ f ∼ T −2. Hence, the regime where the
bosons dominate the conductivity has a finite temperature
range, which needs to be compared with the experimental data
(this will be performed below).

(iii) Due to the particle-hole symmetry of the Landau
damped bosons, those charged bosons do not contribute to
the Hall conductivity. This finding was already part of our
previous study [32] and is also in good agreement with the
experimental study of Ref. [26]. Therefore, the fermions dom-
inate the Hall conductivity via hot-spot and cold-spot physics.
A similar situation was studied in [35], where a linear-in-
T longitudinal resistivity was assumed in parallel with “hot
spot” and “cold spot” physics to estimate the Hall conduc-
tivity. Remarkably, their phenomenological analysis agreed
with the experimental data and showed that the averaging
around the Fermi surface for the Hall conductivity integral
was weighting the hot spots more than for the longitudinal
conductivity. A simplified understanding of their results in
terms of a “lifetime picture” would be given for the Hall
conductivity from the fermions described by τxy ∼ T −3/2,
since the Hall average around the Fermi surface scans at the
same time both the hot and cold regions. Altogether, in this
regime, the cotangent of the Hall angle goes as cot θH ∼
τxx/τ

2
xy ∼ T 3/T ∼ T 2, which corresponds to the experimental

observation.
(iv) The thermal transport has also been calculated, and

in the regime analyzed here (i.e., the critical case), the strict
Wiedemann-Franz law (with the universal coefficient from
the Fermi liquid theory) is violated at low temperatures due
to the dependence on the bosonic coupling. In other words,
although the Lorenz ratio does converge to a constant at low
temperatures, the WF law is violated in view of its dependence
on the bosonic coupling. By constraining this coupling, the

WF law can be brought to agree with recent experimental data
[15], but as mentioned in the main text, there is still room for
improvement here. It would be interesting to investigate also
the effects of adding disorder via spatially random interactions
in our model.

Finally, we point out that although our present study might
not yet be the final solution for the strange metal phase of
the cuprates, this perspective opens a new viewpoint on the
physics of those compounds. The main idea is that at high
energy scales, due to the strong superexchange interaction
which brings the system to the regime of strong coupling,
bosons of charge zero (particle-hole) and charge two (particle-
particle) with a spectrum of wave vectors are generated. When
the temperature is lowered, some of those bosons condense
at a specific wave vector, giving rise to various orders, such
as charge modulations or stripe physics depending on the
compounds. Some bosons are unstable, like the charge-two
finite vector ones related, e.g., to pair-density-wave order. In
a recent line of ideas [59–61], the instability of the finite-
momentum charge-two bosons could be described by a theory
of “fractionalization” in which these excitations become en-
tangled, opening a gap in the antinodal region of the Brillouin
zone. In the strange metal phase, they also give rise to
the regime of T -linear resistivity described in the present
paper.

As mentioned above, it is worth plugging numbers to de-
termine the possible boundaries of the obtained strange metal
regime, which is valid above T > Tmin. We point out that
the constraint on Tmin is such that the fermions should short-
circuit the bosons for T < Tmin. So we may impose that, for
T � Tmin, we have that σ f � σb. For a rough estimate, we can
then use for the fermions that σ f = ne2τ f /m∗

f , where m∗
f is the

quasiparticle effective mass. For the bosons, since we showed
by means of scaling arguments within the MM formalism here
and also using Kubo formalism in Ref. [32] that they also
obey the Drude form for the conductivity, we have that σb =
nb(2e)2τb/mb, where mb is the mass introduced in Eq. (1).
From Fig. 2 of Ref. [35], one obtains that σ−1

f = A T 2, with
A � 5 × 10−3 µ� cm. Thus, the reasonable range allowed ex-
perimentally for Tmin is 1 K < Tmin < 10 K. If Tmin = 1 K,
one would get mb/m∗

f ∼ 0.02, whereas if Tmin = 10 K the
ratio of masses should be given by mb/m∗

f ∼ 0.2. Given the
strong mass renormalization of the fermions inside the strange
metal phase of the present model, this range of the ratio of
masses is conceivable in order to allow for a wide fluctuation
regime where the incoherent bosons dominate the transport
properties with respect to the fermions in the context of the
resistivity of this non-Fermi-liquid phase.
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APPENDIX A: DIAGRAM CONTRACTIONS

We define the vertices as follows,

and their conjugate counterpart. The vertices write

Vk =
∑
p,q

Vk,p,q,

with Vk,p,q = V a
k,p,q − V b

k,p,q − H.c. (A1)

We construct the function Mk,p,q by contracting

Mk,p,q = 〈Vk,p,q · V̄k′,p′,q′ 〉
= 〈−V a

k,p,q · V a
k′,p′,q′ − V b

k,p,q · V b
k′,p′,q′

+ V̄ a
k,p,q · V a

k′,p′,q′ + V̄ b
k,p,q · V b

k′,p′,q′

+ V a
k,p,q · V b

k′,p′,q′ + V b
k,p,q · V a

k′,p′,q′

− V̄ a
k,p,q · V b

k′,p′,q′ − V̄ b
k,p,q · V a

k′,p′,q′ + H.c.
〉
. (A2)

There are eight types of contractions:

(1)
〈
V a

k,p,q · V a
k′,p′,q′

〉 = δk,k′−qδp′,p+qδq′,−qMk,p,q,

(2)
〈
V b

k,p,q · V b
k′,p′,q′

〉 = δk,k′+qδp′,p+qδq′,−qMk,p,q,

(3)
〈
V a

k,p,q · V b
k′,p′,q′

〉 = δk,k′δp′,p+qδq′,−qMk,p,q,

(4)
〈
V b

k,p,q · V a
k′,p′,q′

〉 = 〈
V a

k,p,q · V b
k′,p′,q′

〉
,

(5)
〈
V̄ a

k,p,q · V a
k′,p′,q′

〉 = δk,k′δp′,pδq′,qMk,p,q,

(6)
〈
V̄ b

k,p,q · V b
k′,p′,q′

〉 = 〈
V̄ a

k,p,q · V a
k′,p′,q′

〉
,

(7)
〈
V̄ a

k,p,q · V b
k′,p′,q′

〉 = δk,k′−qδp′,p+qδq′,qMk,p,q,

(8)
〈
V̄ b

k,p,q · V a
k′,p′,q′

〉 = δk,k′+qδp′,p+qδq′,qMk,p,q. (A3)

Altogether, we finally have

Mkk′ (�) = 4
∑
p,q

(δk,k′ − δk,k′±q)Mk,p,q, (A4)

which vanishes if umklapp scattering is not taken into account.
Umklapp terms provide a nonzero value to Mkk′ (�), leading
to Eq. (14) presented in the main part of the paper.

APPENDIX B: EVALUATIONS

1. Susceptibilities

After performing a spectral decomposition of the boson
Green’s function Eq. (7), the first part of the susceptibility
χJknk writes

χ
(a)
Jknk

= vk

∫ D

−D

dE

2π
nB(E )

E

E2 + μ2
k

= vk
nB(μk )

π
ln

(
D

μk

)
, (B1)

with the convention nB(E ) = exp δE/(exp βE − 1), with
δ � 1 being a regulator for negative energies.

As for the susceptibility χkk, we proceed in the same
way with a spectral decomposition of each boson propagator
given by

χkk =
∫

dE1dE2

(2π )2

nB(E1) − nB(E2)

−E1 + E2

E1

E2
1 + μ2

k

E2

E2
2 + μ2

k

�
∫ T

0

dE1dE2

(2π )2

T(
E2

1 + μ2
k

)(
E2

2 + μ2
k

)
= T

μ2
k

(
tanh−1 T

μk

)2

, (B2)

where in the second line we have used the approximation
nB(x) � T/x for |x| � T , which is valid for μk � T .

2. Remarks on the scaling of the optical conductivity

In the scaling of the optical conductivity of Eq. (4), the
two terms χ

(a)
Jknk

and χ
(b)
Jknk

behave differently. Any term pro-

portional to χ
(a)
Jknk

in the summation over the momentum in
Eq. (4) gives a UV divergence (after turning the summation
over the momentum into an integral in the thermodynamic
limit). In other words, the typical momentum of the integral
is such that μk ∼ D, where D is the bandwidth. Then, the
factor nB(μk ) ∼ nB(D) in Eq. (8) leads to an exponentially
small contribution. On the other hand, the contribution related
to χ

(b)
Jknk

in the optical conductivity integral in Eq. (4) is domi-
nated by a typical momentum such that μk ∼ T . This leads to
the result of Eq. (16).

3. Memory matrix

The MM, after spectral decomposition, writes

Mkk(�n) = λ4

N2

1

�n
T

∑
ωq

∑
p,q

∫ 4∏
i=1

dEi

2π
F (Ei )

× nB(E3) − nB(E4)

E3 − E4 + iωq

nB(E1) − nB(E2)

E1 − E2 + iωq + i�n
,

(B3)
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with F (E ) = E
E2+μ2

k
. Performing the sum over ωq, we get

Mkk(�n) = λ4

N2

1

�n

∑
p,q

∫ 4∏
i=1

dEi

2π
F (Ei )

× [nB(E1) − nB(E2)][nB(E3) − nB(E4)]

× nB(E1 − E2) − nB(E3 − E4)

E1 − E2 − E3 + E4 + i�n
. (B4)

We now perform analytic continuation i�n → � + iδ. We
obtain, after taking the limit � → 0,

Mkk(�) = λ4

N2
π

∑
p,q

∫ 4∏
i=1

dEi

2π
F (Ei )

× [nB(E1) − nB(E2)][nB(E3) − nB(E4)]

× δ(E1 − E2 − E3 + E4)
∂nB

∂E

∣∣∣∣
E1−E2

. (B5)

We now use ∂nB/∂E � −T/E2, if |E | < T , and zero
elsewhere. We have a factor −T/(E1 − E2)2, with the con-
dition that |E1 − E2| < T . We thus have E2 � E1 ± T and
form, resolving the δ function, E4 � E3 ± T . This in turn
gives nB(E1) − nB(E2) � (∂nB/∂E1)T � −T 2/E2

1 and like-
wise nB(E3) − nB(E4) � −T 2/E2

3 . Eliminating two variables
in the integral Eq. (B5), but remembering that |E1 − E2| < T
and |E3 − E4| < T , leads to

Mkk(�) = λ4

N2

π

(2π )4

∑
p,q

∫ T

−T

∫ T

−T
dE1dE3T 4

× 1(
E2

1 + μ2
p

)(
E2

1 + μ2
p+q

)(
E2

3 + μ2
k

)(
E2

3 + μ2
k+q

)
= λ4

N2

π

(2π )4 T 4
∑
p,q

Ip,qIk,q. (B6)

With (a, b) = (μp, μp+q ) for the first integral and (a, b) =
(μk, μk+q ) for the second integral, we obtain the following
result:

Ia,b = 2
∫ T

0

dx

(x2 + a2)(x2 + b2)

= 2

[
−b tan−1 T

a + a tan−1 T
b

ab(a2 − b2)

]
. (B7)

In order to go further, we need to perform the integration
over p and q. For this reason, we assume (and this can be
also checked at the end of the calculation) that the order of
magnitude of the various wave vectors is such that they are all
scaling with temperature as k ∼ q ∼ p ∼ √

T . We can thus

use μk+q � μk inside the integrals. We then have

Mkk(�) = λ4

N2

π

(2π )4 T 4Jp,q
1

μ3
k

[
μkT

μ2
k + T 2

+ tan−1 T

μk

]
,

(B8)

with

Jp,q =
∫ T

0

∫ T

0

d p2dq2(
μ2

p − μ2
p+q

)[
− 1

μp+q
tan−1 T

μp

+ 1

μp
tan−1 T

μp+q

]
. (B9)

Recalling that μp = p2 + T and μp+q = (p + q)2 + T , and
expanding tan−1(T/μp) ∼ T/μp − (T/μp)3, we get

Jp,q � T 3

3

∫ T

0

d p2d (p + q)2

μ3
pμ

3
p+q

= 1

12T
. (B10)

Putting together Eqs. (B8) and (B10), this leads to

Mkk(�) = λ4

N2

π

12(2π )4

T 3

μ3
k

(
μkT

μ2
k + T 2

+ tanh−1 T

μk

)
,

(B11)

which is the result presented in the main part of the paper.

APPENDIX C: COMPARISON WITH KUBO FORMALISM

Here, we compare the results obtained within the memory
matrix formalism with the standard Kubo formalism [62].
Following our previous work [32], the optical conductivity
and the thermal conductivity (as we pointed out in the main
text, the thermal conductivity at zero electric field κ̄ and the

FIG. 3. The electrical conductivity and thermal conductivity as
a function of T computed within Kubo formalism in units with
e = 1 and h̄ = 1. Here, we set g ≡ λ2

2N = 1. For T > μ0, in the
critical regime, the constant behavior of κ and the 1

T behavior of σ

set in.

245109-7



PANGBURN, BANERJEE, FREIRE, AND PÉPIN PHYSICAL REVIEW B 107, 245109 (2023)

thermal conductivity at zero electric current κ are equal in the
present calculation) are given, respectively, by

σ (ω) = −K0(ωn)

ωn

∣∣∣∣
iωn→ω+i0+

, (C1)

κ (ω) = − 1

T

K2(ωn)

ωn

∣∣∣∣
iωn→ω+i0+

, (C2)

with Kα computed using the spectral decomposition of the bo-
son propagator D−1(q, ωn) = |ωn| + μq(T ) used in Eq. (B1),

Kα (ωn) = −
∑

q

εα
q

∫
dE1dE2

(2π )2

nB(E1) − nB(E2)

−E1 + E2 + ωn

× E1

E2
1 + μ2

q

E2

E2
2 + μ2

q
. (C3)

Performing an analytical continuation ωn → ω + iδ and
considering the limit ω → 0, we get

Kα (ω) = T ω

4π

∑
q

εα
q

∫
dE

(2π )2

T

E2

(
E

E2 + μ2
q

)2

. (C4)

Kα can be integrated explicitly and we obtain the optical and
thermal conductivities σ and κ shown in Fig. 3.

The T dependence of μ is given by

μ ≡ μ(T ) =
{

μ0 + λ2

2N T ln
(

T
μ0

)
, for T � μ0,

μ0, for T � μ0.

(C5)

We consider the critical regime to compare our results
with those obtained from the memory matrix formalism. T
satisfies T > μ0 and T >

λ2μ0

2N ; thus, we can approximate
μ

T ≈ λ2

2N by neglecting logarithmic corrections. In this regime,
we have σ = 1

T σ̃ (μ/T ) and κ = κ̃ (μ/T ), in agreement with
the scaling obtained using the memory matrix formalism in
the critical regime in Eqs. (16) and (19). If we consider
logarithmic corrections in μ(T ), the results obtained remain
qualitatively similar up to a weak dependence on T .

In contrast to the Fermi liquid case, the Lorenz ratio
L = κ

σT = κ̃
σ̃

is not given by a universal constant but depends

on the interaction strength g = λ2

2N . This is due to the infrared
(IR) dependence on the integration over q for the optical
conductivity. Because the integral is divergent, it explicitly
depends on the IR cutoff which is μ/T , and leads to the g
dependence of L. The Lorenz ratio increases with the bosonic
coupling in this regime, as shown in Fig. 2.
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