
PHYSICAL REVIEW B 107, 245108 (2023)

Symmetry indicators in commensurate magnetic flux
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We derive a framework to apply topological quantum chemistry in systems subject to magnetic flux. We start
by deriving the action of spatial symmetry operators in a uniform magnetic field, which extends Zak’s magnetic
translation groups to all crystal symmetry groups. Ultimately, the magnetic symmetries form a projective
representation of the crystal symmetry group. As a consequence, band representations acquire an extra gauge
invariant phase compared to the nonmagnetic theory. Thus, the theory of symmetry indicators is distinct from
the nonmagnetic case. We give examples of new symmetry indicators that appear at π flux. Finally, we apply our
results to an obstructed atomic insulator with corner states in a magnetic field. The symmetry indicators reveal a
topological-to-trivial phase transition at finite flux, which is confirmed by a Hofstadter butterfly calculation. The
bulk phase transition provides a new probe of higher order topology in certain obstructed atomic insulators.
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I. INTRODUCTION

Threading magnetic flux through a two-dimensional crys-
tal changes the single particle band spectrum into a Hofstadter
butterfly spectrum that exhibits a fractal structure with an
infinitude of mini gaps [1]. The Hofstadter butterfly is the
lattice counterpart of Landau levels in the continuum. While
the Landau levels of a continuum model are often easier to
compute than the Hofstadter butterfly of the corresponding
lattice model, diagnosing band topology in the presence of
magnetic flux requires the lattice because topological invari-
ants are defined over the entire Brillouin zone. The topology
of Hofstadter bands has been a subject of intense recent study
[2–7].

In the absence of magnetic flux, the topology of a band
structure can be classified by the theory of topological quan-
tum chemistry (TQC) [8–15]. A practical diagnosis comes
from studying the space group representations of bands at
high-symmetry momenta, which are known as symmetry in-
dicators [16]. However, in its present form, TQC cannot be
directly applied to systems in a magnetic field because it does
not account for the Aharonov-Bohm phase.

In the present manuscript we derive a framework to gen-
eralize TQC and the classification of symmetry indicators to
band structures in the presence of a rational magnetic flux per
unit cell. The workflow is shown in Fig. 1. We find that the two
key ingredients in the theory of TQC—the irreducible rep-
resentations of bands at high-symmetry points in momentum
space and the induced representations of localized orbitals in
real space—are modified from their nonmagnetic counterparts
due to the presence of magnetic flux. The essential reason for
this modification is that the commutation relations between
crystal symmetries change in the presence of magnetic flux
due to the Aharonov-Bohm phase. As a result, the symme-
try operators form nontrivial projective representations of the
space group. The earliest example of this is Zak’s magnetic
translation group [17,18]. Our theory builds on Zak’s theory
by including crystalline symmetries.

Our theory of TQC in commensurate magnetic flux is
distinct from “magnetic TQC” [15]. While magnetic TQC
classifies topological band structures according to the rep-
resentations of magnetic space groups, which describe the
symmetry of magnetically ordered crystals, magnetic TQC
does not yet accommodate magnetic flux through each unit
cell, as it deals with zero flux configurations of orbitals.

The mathematical formalism utilized in this manuscript is
also distinct from (magnetic) TQC. Specifically, (magnetic)
TQC uses the usual linear (co)representations of point groups,
which were tabulated prior to those works. In contrast, our
present study requires projective representations. The projec-
tive representations of point groups are not systematically
tabulated. We derive an algorithm to construct magnetic sym-
metry operators using irreducible projective representations
of point groups. Our algorithm provides a framework that
encompasses Zak’s magnetic translation groups [17,18], as
well as the Benalcazar-Bernevig-Hughes model [19,20]. We
then use the magnetic symmetry operators to derive symmetry
indicators for topological phases on lattices with a particular
symmetry group and subject to commensurate flux. We give
several explicit examples that have not appeared in previous
literature.

Our manuscript proceeds as follows. In Sec. II, we derive
the space group symmetry operators at rational flux in both
real and momentum space. The results are at the crux of the
theory of TQC in a magnetic field that we derive in Sec. IV.
We then use the theory to compute symmetry indicators for
magnetic layer groups, p2, p4, p3, p6, and p4/m′, at π flux
per unit cell. The strong indicator in p2 recovers an earlier
formula for the Chern number in Ref. [21], which is a stronger
version of the formula in Ref. [22]. In group p4/m′, our theory
gives rise to a new strong Z2 indicator, which is simply the fill-
ing per unit cell mod 2. This Z2 nontrivial phase is protected
by translation symmetry: the nontrivial phase does not permit
exponentially localized and symmetric Wannier functions, but
such Wannier functions exist when translation symmetries
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FIG. 1. Framework for TQC in the presence of magnetic flux. A
representation of the site-symmetry group induces a band representa-
tion of the entire space group, which is subduced to a representation
of the little cogroup at each high-symmetry momentum, i.e., the
symmetry indicator. The new element introduced by the magnetic
field is that the symmetry operators form a projective representation
of the space group. The red font indicates differences between TQC
with and without magnetic flux.

within the magnetic unit cell are broken. The Chern number
indicators for p3, p4, and p6 do not appear in earlier work.

In Sec. V, we study a tight binding model introduced in
Ref. [23] that realizes an obstructed atomic limit (OAL) on the
square lattice at zero flux. The Hofstadter butterfly spectrum
shows that the system undergoes a gap-closing phase transi-
tion at finite flux after which the corner states that were present
in the OAL phase disappear. By applying our theory of TQC
in a magnetic field to this model, we show that the gap closing
corresponds to a phase transition from an OAL to a trivial
phase that can be diagnosed by symmetry indicators.

II. MAGNETIC SYMMETRIES

In quantum mechanics the coupling of a magnetic field to
a charged particle is described by replacing the momentum
P of the particle with the canonical momentum p = P + A
in the Hamiltonian (without loss of generality, we have used
natural units and assumed positive unit charge). To account
for the Aharonov-Bohm phase, terms in the single-particle
tight binding Hamiltonian are modified by the usual Peierls
substitution:

c†
r2

cr1 �→ ei
∫ r2

r1
A(r)·drc†

r2
cr1 , (1)

where the path of the integral is the straight line connecting r1

and r2.
However, if the zero-field Hamiltonian is invariant under a

crystal symmetry ĝ : cr �→ cĝr, the Hamiltonian modified by
the Peierls substitution in Eq. (1) is not necessarily invariant
under ĝ, even if the physical system is unchanged by the sym-
metry. Consequently, the operator ĝ must be modified from its
zero-field form by a gauge transformation that accounts for
the Aharonov-Bohm phase. Specifically, the magnetic field
requires ĝ be replaced by g ≡ G̃gĝ, where G̃g = ei

∑
x λg(x)c†

xcx

is a gauge transformation that acts on the electron annihilation
operators by [2]

G̃gcrG̃−1
g = e−iλg(r)cr, (2)

G̃gc†
rG̃−1

g = eiλg(r)c†
r , (3)

where λg is a scalar function defined for each symmetry ĝ that
we will derive momentarily. Acting on terms in the Hamil-
tonian in the form of Eq. (1), G̃g has the effect of mapping
A(r) �→ A(r) + ∇λg(r).

Similar gauge transformations were introduced by Zak
for the magnetic translation operators in Refs. [17,18]. More
recently, the magnetic operators for rotations about the ori-
gin and for time-reversal symmetry were considered in
Refs. [2,21,24]. Here, we develop a general theory for any
symmetry group in the presence of a magnetic field, thereby
extending previous works to include more general rotations
and glide reflection symmetries. Doing so allows us to apply
the theory of symmetry indicators to diagnose topological
phases in the presence of a magnetic field.

We now derive the gauge transformation λg in Eq. (2): we
require that if a single-particle Hamiltonian in zero field is
invariant under a symmetry ĝ, then in the presence of a mag-
netic field that preserves ĝ, the Hamiltonian modified by the
Peierls substitution in Eq. (1) is invariant under the combined
symmetry operation g ≡ G̃gĝ, i.e., we require

g : ei
∫ r2

r1
A(r)·drc†

r2
cr1 �→ ei

∫ gr2
gr1

A(r′ )·dr′
c†

gr2
cgr1 . (4)

Acting on the left-hand side by g = G̃gĝ, using the definition
of G̃g in Eqs. (2) and (3), and equating with the right-hand side
yields

ei
∫ r2

r1
A(r)·dr+i

∫ gr2
gr1

∇λ(r′ )·dr′ = ei
∫ gr2

gr1
A(r′ )·dr′

. (5)

A few lines of algebra (detailed in Appendix A) show that
Eq. (5) is satisfied when λg(r) satisfies

∇λg(r) = A(r) − RgA(g−1r), (6)

where Rg is the point group part of g. Eq. (6) applies equally
well to uniform or nonuniform magnetic fields. For simplicity,
we restrict ourselves to the uniform field case for the remain-
der of this manuscript. Eq. (6) determines each λg up to a
constant. We choose the constant such that for translation [2]

λT (a)(r) =
∫ r

r−a
A(r′) · dr′ + B · a × r (7)

and that a 2π rotation is implemented by the identity matrix.
This choice of constants ensures that the commutation rela-
tions between translation and rotations about the origin are
the same as at zero field as we show in the Appendix B. This
choice of gauge is fixed throughout this paper; later, when
we refer to a gauge choice, we are referring to the gauge of
the vector potential. So far, we have only considered lattice
degrees of freedom; orbital and spin degrees of freedom can
be included by an extra unitary transformation in the action of
ĝ, which does not change λg. We will include these degrees of
freedom in later sections.

Equation (6), which serves as the definition of λg, is the
first key result of this manuscript. Combining it with the
spatial action of the symmetry yields the explicit form of the
magnetic symmetry operator:

g = ei
∑

x′ λg(x′ )c†
x′ cx′
∑

x

c†
ĝxcx (8)

=
∑

x

eiλg(ĝx)c†
ĝxcx, (9)
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where λg is determined by Eq. (6). The second equality holds
when g acts on the single-particle Hilbert space.

We now explain why changing λg up to a constant does not
change the representation of the magnetic symmetry operators
defined in Eq. (9). These operators furnish projective repre-
sentations of the space group. A projective representation ρ

of a group satisfies the following multiplication rule

ρ(h1)ρ(h2) = ω(h1, h2)ρ(h1h2), (10)

where h1, h2 are group elements and ω(h1, h2) is called the
2-cocycle. If ω(h1, h2) ≡ 1, then ρ is an ordinary linear rep-
resentation. In general, the magnetic symmetry operators in
Eq. (9) will have nontrivial 2-cocycles, as we show in the next
sections. The U (1) gauge freedom in Eq. (6) corresponding to
the gauge transformation λg �→ λg + Cg, g �→ eiCgg leaves the
representation in the same group cohomology class, i.e., the
transformed projective representation is equivalent to the pre-
vious one. Essential properties of projective representations
are presented in Appendix. C.

In the next two subsections, we apply this formalism to two
examples, first rederiving Zak’s magnetic translation group
and then reviewing the symmetries of the square lattice in a
magnetic field.

A. Zak’s magnetic translation group

In Refs. [17,18] Zak introduced the continuous magnetic
translation symmetries. We reproduce Zak’s result by taking
the continuum limit of Eq. (9).

Consider a two-dimensional infinite plane without a lattice
and denote operators that translate by � = �xx̂ + �yŷ by
T̂ (�) ≡ T̂ (�x,�y), where x̂ and ŷ denote the unit vectors.

We first work in the symmetric gauge: A(r) = B
2 (−ry, rx ).

Then from Eq. (6):

λT (�)(r) = B

2
(�xry − �yrx ). (11)

For continuous translations, we replace the sum
∑

x c†
T̂ (�)x

cx

in Eq. (8) with e−ipx�x−ipy�y . Then the magnetic translation by
vector � is

T (�) = ei( 1
2 B�x (ry+�y )− 1

2 B�y (rx+�x ))e−i(px�x+py�y )

= e−i((px− 1
2 Bry )�x+(py+ 1

2 Brx )�y ), (12)

where the Baker–Campbell–Hausdorff formula is considered.
Therefore, the generators of the magnetic translations in x̂ and
ŷ directions are

Kx = px − 1
2 Bry,

Ky = py + 1
2 Brx, (13)

which is exactly Zak’s definition from his 1964 paper [17].
In the remainder of the manuscript it will be easier to use

the Landau gauge A(r) = (−Bry, 0). Repeating the calcula-
tion of λg in the Landau gauge yields

λT (�)(r) = −B�yrx. (14)

One important property of the magnetic translation opera-
tors is the gauge-invariant noncommutativity:

T (�xx̂)T (�yŷ) = T (�yŷ)T (�xx̂)eiB�x�y , (15)

which reproduces the Aharonov-Bohm phase. More generally,
for two translations a1 and a2, the gauge invariant multiplica-
tion equation is [17]

T (a1)T (a2) = T (a1 + a2)e
i
2 B·(a1×a2 ). (16)

The gauge invariant phase term e
i
2 B·(a1×a2 ) is the 2-cocycle of

magnetic translations, which shows the magnetic translation
operators form a nontrivial projective representation of the
translation group.

B. Magnetic symmetries of the square lattice

As a second example, we consider discrete symmetries of
the two-dimensional square lattice using the Landau gauge
A(r) = (−Bry, 0). When B = 0, the square lattice is invariant
under the layer group p4/mmm, which is generated by a four-
fold rotation symmetry and the mirrors mx and mz. Without a
magnetic field, the system is also invariant under time-reversal
symmetry, T .

When B �= 0, only the symmetries that leave the magnetic
field invariant (fourfold rotations and mz) remain; the resulting
layer group is p4/m. To determine how these symmetries
act on the electron creation/annihilation operators, one must
compute the gauge transformation λg from Eq. (6). We sum-
marize the results in Table I . Notice that λg depends on the
rotation or inversion center; thus, it is necessary to introduce
the notation

Cn(x̄, ȳ) ≡ T (x̄, ȳ)CnT (−x̄,−ȳ) (17)

to denote an n-fold rotation about the point (x̄, ȳ); we use
Cn ≡ Cn(x̄ = 0, ȳ = 0) to denote a rotation about the origin.
We adopt analogous notation for inversions and reflections
about different points and planes.

The symmetries mx, m(110) and T flip the magnetic field
and thus are not symmetries at finite B. However, the product
of these symmetries with a magnetic flux shifting operator can
leave the system invariant at special values of flux, as we now
describe.

A lattice Hamiltonian coupled to a magnetic field is pe-
riodic in B: the period corresponds to the minimal magnetic
field such that every possible closed hopping path encloses an
integer multiple of 2π flux. Let φ denote the magnetic flux per
unit cell and � = 2πn its periodicity, where n is an integer.
Following Ref. [2], we define the unitary matrix U that shifts
φ �→ φ + � by

U = ei
∑

x′ λU (x′ )c†
x′ cx′ , (18)

λU (r) =
∫ r

r0

Ã(r) · dr, (19)

where r0 is a reference lattice point and Ã is the magnetic
vector potential corresponding to � flux, i.e., ∇ × Ã = �.

Notice that for any symmetry g that flips φ �→ −φ, the
product Ug is a symmetry in the special case where φ = �/2.
In the case of the square lattice, the products Umx, Umy, and
UT are recovered as symmetries of the system at the special
value of φ = �/2. We list the gauge transformations for Umx

and Umy at φ = �/2 in Table I.
In the special case of a square lattice and Landau gauge,

λU = −�yx, where x = (r − r0) · x̂. Since � is a multiple of
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TABLE I. The gauge transformation λg(x, y) for symmetries of the square lattice in Landau gauge. For each symmetry g in the first row,
the second row lists the symmetry in the notation {Rg|τg}, where ĝ : r �→ Rgr + τg. The third row provides λg from Eq. (6).

g T (�x x̂) T (�yŷ) C2(x̄, ȳ) C4(x̄, ȳ) I (x̄, ȳ) Umx (x̄) Umy(ȳ)

ĝ = {Rg|τg} {0|(�x, 0)} {0|(0,�y )} {Ĉ2|(2x̄, 2ȳ)} {Ĉ4|(x̄ + ȳ, ȳ − x̄)} {Î|(2x̄, 2ȳ)} U {m̂x|(2x̄, 0)} U {m̂y|(0, 2ȳ)}
λg(x, y) 0 −B�yx −2Bȳ(x − x̄) −B(x − x̄)(y − ȳ) −2Bȳ(x − x̄) 0 −2Bȳx

+Bȳ[(y − ȳ) − (x − x̄)]

2π and x, y are integers, this phase is also a multiple of 2π .
The flux translation matrix is given by U = I, where I is the
identity matrix.

In summary, we have explicitly extended Zak’s translation
operators in a magnetic field to the discrete symmetries of the
square lattice. In Appendix D we generalize the results to the
symmetries of the triangular lattice.

C. BBH model

We apply the results of the previous section to derive
the symmetry operators in the Benalcazar-Bernevig-Hughes
(BBH) model [19,20]. The model describes spinless electrons
on a square lattice. The Hamiltonian consists of nearest-
neighbor hopping terms, whose amplitudes λx/y and γx/y are
depicted in Fig. 2. Since λx/y �= γx/y, each unit cell contains
four atoms. Further, each square plaquette has π flux, for a to-
tal flux φ = 4π per unit cell. The flux periodicity is � = 8π ,
corresponding to 2π flux per square plaquette.

We now derive the symmetry operations in the presence of
the magnetic field; these commutation relations were stated in
Refs. [19,20], but here we derive them as an application of our
formalism.

We start with the mirror symmetries: in zero field, the
Hamiltonian is invariant under mx(x̄) and my(ȳ) where x̄, ȳ are
half-integers. (The Hamiltonian is not invariant under reflec-
tions about lines containing the origin because γx/y �= λx/y.)

FIG. 2. Lattice and hopping terms of the BBH model. The black
dashed square indicates the unit cell. Blue dots indicate atoms, each
with one orbital. The origin is at the left-bottom atom in the unit
cell indicated by 0. The hopping amplitudes γx/y and λx/y are real;
the minus signs result from the magnetic flux φ = 4π , i.e., applying
Eq. (1) in Landau gauge.

These mirror reflections flip the sign of the magnetic field
and thus generically are not symmetries of the Hamiltonian
at finite flux. However, since φ = 4π = �/2, the combined
operations Umx(x̄) and Umy(ȳ) are symmetries. We showed
in the previous section that in the Landau gauge, the flux
shifting operator U = I for this model. Therefore, at φ = 4π ,
mx(x̄) and my(ȳ) are in fact symmetries of the Hamiltonian.
The effect of the magnetic field is to change their commuta-
tion relations: using Table I with U = I yields mx(x̄)my(ȳ) =
my(ȳ)mx(x̄)e4iBx̄ȳ. Since B = π and x̄, ȳ are half-integers

{mx(x̄), my(ȳ)} = 0, (20)

i.e., mirror symmetries in the BBH model anticommute.
We now consider a fourfold rotation. When γx = γy, λx =

λy, the BBH model has a fourfold rotation symmetry C4( 1
2 , 1

2 ),
as well as other fourfold rotation axes related by translation.
Since φ = �/2, the system also has an effective time-reversal
symmetry, UT ; since we established U = I for this model,
T is a symmetry even at this finite field and acts by complex
conjugation. In the absence of a magnetic field, time-reversal
pairs eigenstates with ±i rotation eigenvalues. We now show
that in the presence of a magnetic field, time-reversal pairs
eigenstates of C4(x̄, ȳ) in a more complicated way.

Since our origin is chosen such that all lattice sites have
integer coordinates, x, y ∈ Z, the phase eiλC4 in Table I takes
values of ±e−iπ/4, so that e−2iλC4 = i. Therefore, given an
eigenstate |ξ 〉 of C4(x̄, ȳ) with eigenvalue ξ , T |ξ 〉 is also an
eigenstate of C4(x̄, ȳ):

C4(x̄, ȳ)T |ξ 〉 = eiλC4 Ĉ4(x̄, ȳ)T |ξ 〉
= T e−iλC4 Ĉ4(x̄, ȳ)|ξ 〉
= T e−2iλC4 C4(x̄, ȳ)|ξ 〉
= T iξ |ξ 〉 = −iξ ∗T |ξ 〉. (21)

Thus, T pairs C4(x̄, ȳ) eigenstates with eigenvalues ξ and
−iξ ∗. This is an example of symmetry operators acting in
unusual ways at finite field.

III. MOMENTUM SPACE REPRESENTATIONS

We now define how the magnetic symmetry operators act
in momentum space. This requires first defining how the sym-
metries act on Bloch wave functions and then labeling the
Bloch wave functions by irreducible representations (irreps)
of the symmetry group at each momentum point. However, in
the presence of magnetic flux, we cannot immediately define
the Bloch wave functions because Bloch’s theorem does not
apply when the translation operators do not commute.

To apply Bloch’s theorem, we define an enlarged “mag-
netic unit cell,” chosen to contain an integer multiple of 2π
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FIG. 3. Examples of (a) a q-by-1 unit cell and (b) a q-by-q unit
cell, taking q = 2.

flux. The translation vectors that span the magnetic unit cell
are referred to as magnetic translation vectors. From Eq. (15),
the magnetic translation operators commute and thus can be
simultaneously diagonalized, forming an abelian subgroup
TM of the full translation group T . Consequently, Bloch’s
theorem applies to the magnetic unit cell and eigenstates of the
Hamiltonian can be labeled by wave vectors in the magnetic
Brillouin zone.

In Sec. III A, we define the Fourier transformed electron
creation and annihilation operators in the magnetic unit cell.
The operators necessarily have a “sublattice” index because
the magnetic unit cell contains more than one nonmagnetic
unit cell.

In Sec. III B, we address how to label the Bloch wave func-
tions by irreps of the little cogroup at each momentum. Here
we encounter another subtle point: since the little cogroup is
defined as a quotient group obtained from the space group
mod magnetic translations, the little cogroup only has a group
structure if the magnetic translation group is a normal sub-
group of the space group. Thus, not all magnetic unit cells
are equal: to label Bloch wave functions by irreps of the little
cogroup, we must choose a magnetic unit cell such that TM

is a normal subgroup. After addressing this issue, we explain
how to find the irreducible projective representations of the
little cogroup.

A. Symmetries in the magnetic Brillouin zone

We first consider the minimal magnetic unit cell in Landau
gauge, which is a q-by-1 unit cell [see Fig. 3(a)]. For this
choice of unit cell, the magnetic translation group TM is
generated by T (x̂) and T (qŷ).

Now consider the layer group p2, generated by C2 and
lattice translations, for which TM is a normal subgroup. C2

acts identically to the nonmagnetic case, mapping a Bloch
wave function at k to one at −k. However, T (ŷ) acts in an
unusual way, by mapping kx to kx + φ. This can be under-
stood as follows: let |k〉 be an eigenstate of T (x̂) such that
T (x̂)|k〉 = eikx |k〉. Then T (ŷ)|k〉 is also an eigenstate of T (x̂),
with eigenvalue kx + φ, i.e.,

T (x̂)[T (ŷ)|k〉] = ei(kx+φ)T (ŷ)|k〉. (22)

Thus, T (ŷ) shifts the eigenvalue of T (x̂) by eiφ . Nonetheless,
both C2 and T (ŷ) have the usual property that a Bloch state at
k is mapped to another Bloch state at k′.

This is not the case for the layer group p4, with respect to
which TM is not a normal subgroup. As we will show below,
the symmetry operator C4 mixes a Bloch state at k into a

linear combination of Bloch states at other momenta, forming
a q2-dimensional representation. Thus, we are motivated to
consider a q-by-q unit cell [see Fig. 3(b)], where, although
the magnetic unit cell is larger, the symmetry matrices are
the same size as in the q-by-1 case. In Appendix E, we show
that the representations obtained from these two choices of
magnetic unit cell are the same up to a unitary transformation.
However, the q-by-q unit cell is a more suitable to apply
topological quantum chemistry because the corresponding
magnetic translation group is a normal Abelian subgroup of
the layer group p4. We now consider the q-by-1 and q-by-q
unit cells in detail for the group p4 to illustrate these points.

1. q-by-1 unit cell for p4

We first consider the q-by-1 unit cell shown in Fig. 3(a).
The coordinates of lattice sites are labeled by (x, y) =
(Rx, qRy + j) where Rx, Ry ∈ Z, j = 0, . . . , q − 1. The
Fourier transformed electron creation and annihilation oper-
ators are defined by

c†
R, j,α = q

(2π )2

∫
dkei(kxRx+kyqRy )c†

k, j,α, (23)

cR, j,α = q

(2π )2

∫
dke−i(kxRx+kyqRy )ck, j,α, (24)

where α labels orbital degrees of freedom on each site. For
now, we ignore the α degree of freedom, but will add it later
when necessary. The magnetic Brillouin zone is a torus with
kx ∈ [0, 2π ), ky ∈ [0, 2π/q).

Using the Fourier transforms in Eqs. (23) and (24), we find
the action of the symmetry operators in momentum space.
A translation by one (nonmagnetic) lattice vector in the ŷ
direction is implemented by

T (ŷ) = q

(2π )2

∑
j

∫
dk eiky c†

k+(φ,0), jck, j−1. (25)

Unlike the nonmagnetic case, T (ŷ) does not leave each k point
invariant: it maps (kx, ky) to (kx + φ, ky ). Translations by the
magnetic lattice vectors do leave k invariant.

We now consider the fourfold rotation operator. Using the
function λC4 in Table I,

C4 = q

(2π )2

∫
dk
∑
j, j′

q−1∑
n=0

1

q
ei(φ j j′−(ky+2πn/q) j−kx j′ )

× c†
(kx,ky ), jc(ky+2πn/q, −kx mod 2π/q), j′ . (26)

Thus, the situation for C4 is much worse than for T (ŷ): C4 does
not rotate one k point to another, but instead mixes a state
at (kx, ky) into a linear combination of states at the different
points (ky + 2πn/q,−kx ) n = 0, 1, . . . , q − 1.

2. q-by-q unit cell for p4

We now consider the q-by-q unit cell shown in Fig. 3(b).
The coordinates of lattice sites are labeled by (x, y) = (qRx +
jx, qRy + jy) where Rx, Ry ∈ Z label a magnetic unit cell and
jx, jy = 0, . . . , q − 1 label the coordinates of atoms within.
The Fourier transformed electron creation and annihilation
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operators are defined by

c†
R,j,α =

(
q

2π

)2 ∫
dkei(kxqRx+kyqRy )c†

k,j,α, (27)

cR,j,α =
(

q

2π

)2 ∫
dke−i(kxqRx+kyqRy )ck,j,α. (28)

Again we omit the orbital degrees of freedom α in this sec-
tion. The magnetic Brillouin zone is a torus with kx, ky ∈
[0, 2π/q).

Using the Fourier transforms in Eqs. (27) and (28) and
plugging λg from Table I into Eq. (9), the magnetic T (ŷ) and
C4 symmetries are [2]

T (ŷ) =
(

q

2π

)2 ∫
dk eiky

∑
jx, jy

e−iφ jx c†
k, jx, jy

ck, jx, jy−1 (29)

and

C4 =
(

q

2π

)2 ∫
dk
∑
jx, jy

e−iφ jx jy e−i(C4k·j−k·j′ )

× c†
(−ky,kx ), jx, jy

c(kx,ky ), j′x, j′y , (30)

where j′ = ( j′x, j′y) is a function of jx, jy that satisfies j′x = jy
mod q and j′y = − jx mod q. In Eqs. (29) and (30), the action
of the symmetry operator on k is identical to its action in the
absence of a magnetic field, i.e., translation leaves k invariant
and a rotation in space rotates k. This is an improvement over
the q-by-1 magnetic unit cell [Eqs. (25) and (26)], for which
a rotation mixed a Bloch state into a linear combination of
several Bloch states.

B. Irreps at high-symmetry points

We now address how to determine irreps of the symmetry
group at each momentum. A Bloch wave function at a partic-
ular momentum k transforms as a representation of the little
group at k, denoted Gk, which consists of all the space group
operations that leave k invariant up to a reciprocal lattice
vector:

Gk = {g ∈ G|gk ≡ k}, (31)

where ≡ is defined by equality up to a reciprocal lattice vector.
Since the lattice translations are always represented by Bloch
phases in the representations, it is useful to label the wave
functions by irreps of the little cogroup, defined as

G̃k = Gk/TM . (32)

As mentioned above, for the little cogroup to satisfy the def-
inition of a group, TM must be a normal subgroup of Gk,
i.e., for all g ∈ Gk, t ∈ TM , g−1tg ∈ TM . One can check that
for the q-by-1 unit cell, the magnetic translation group is a
normal subgroup of the layer group p2, but it is not normal
for the layer groups containing three- or fourfold rotations
(because, for example, C−1

4 T (x̂)C4 = T (ŷ)−1, which is not in
the magnetic translation group for the q-by-1 unit cell). Thus,
we use the q-by-q unit cell for layer groups with three- or
fourfold rotations.

Thus, under magnetic flux, the little cogroups and their
irreps differ from their zero-flux analogues in two important

TABLE II. High-symmetry momenta (first row) and the irreps
(second row) of their little cogroup for the group p2. The third and
fourth rows list the eigenvalue of the indicated symmetry; the row is
blank if the symmetry is not in the little cogroup.

X (π/2, 0) Y (0, π/2) (0, 0) M(π/2, π/2)

Irrep X (p2)
1 X (p2)

2 Y (p2)
1 Y (p2)

2 
(p2)
1 

(p2)
2 M (p2)

1 M (p2)
2

C2 +i −i +i −i
T (ŷ)C2 +i −i +i −i

ways: first, in the presence of magnetic flux, the little cogroups
include sublattice translation symmetries; and second, the ir-
reps of little cogroups in the presence of magnetic flux are
projective representations corresponding to the 2-cocyle de-
fined by the flux.

We now study some examples: in Tables II–IV we sum-
marize the projective irreps at high-symmetry points for the
layer groups p2, p4, p4/m′ at flux φ = π . For later con-
venience we have assumed there is spin-orbit coupling, i.e.,
Cn

n = −1. Notice that the character tables are not square,
which is a general feature of projective representations. The
projective irreps corresponding to a particular 2-cocycle can
be considered as a subset of nonprojective representations of
a larger group; the character table of that larger group will be
square.

To ensure that we have found all the projective irreps, we
use the theorem by Schur [25] stating that for irreducible
projective representations with a particular 2-cocyle,∑

ρ

(dim(ρ))2 = |G̃k|, (33)

where the sum runs over all projective irreps ρ of G̃k with the
specified 2-cocyle and G̃k is the little cogroup defined above.
(Notice this formula does not apply to antiunitary groups.)

The calculation of the irreps of little cogroups are shown
in Appendix F with the (anti)commutation relations for the
magnetic symmetries shown in Appendix B. In the remainder
of this section, we sketch the calculation for the simplest
nontrivial case, layer group p2 at π flux.

For the 2-by-1 unit cell, the group of magnetic lat-
tice translations is TM = {T (n1x̂ + 2n2ŷ)|n1, n2 ∈ Z} and the
Brillouin zone is [−π, π ) × [−π/2, π/2). We now deter-
mine the high-symmetry points. Since C2 symmetry maps
(kx, ky) to (−kx,−ky ), there are four momenta that are sym-
metric under C2 up to a magnetic reciprocal lattice vector:
(0, 0), (0, π/2), (π, 0), (π, π/2). Since T (ŷ) maps (kx, ky )
to (kx + π, ky) [Eq. (22)], T (ŷ)C2 maps (kx, ky ) to (−kx +
π,−ky ). Therefore, there are four T (ŷ)C2 symmetric mo-
menta, (±π/2, 0) and (±π/2, π/2).

We derive in Appendix F that the C2 eigenvalues at (π, 0)
are the same as (0,0), while the C2 eigenvalues at (0, π/2) are
opposite of (π, π/2). The same relations hold for the T (ŷ)C2

symmetric points. In conclusion, there are two independent
C2 symmetric points,  = (0, 0) and Y = (0, π/2), and we
find that each has two one-dimensional irreps labeled by C2

eigenvalue +i, −i. There are also two independent T (ŷ)C2

symmetric points, X = (π/2, 0) and M = (π/2, π/2), and
each has two one-dimensional irreps labeled by T (ŷ)C2 eigen-
value +i, −i. Since each little cogroup contains the identity
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TABLE III. High-symmetry momenta (first row) and the irreps (second row) of their little cogroup for the group p4. Subsequent rows list
the eigenvalue of the indicated symmetry with ε = eiπ/4; the row is blank if the symmetry is not in the little cogroup.

X (π/2, 0) Y (0, π/2) (0, 0)

Irrep X1 X2 Y1 Y2 Irrep 1 2 3 4

C2 iσz −iσz iσz −iσz C4T (x̂)

(
1

i

) (
i

−1

) (−1
−i

) (−i
1

)
T (x̂) σx σx σz σz T (x̂)T (ŷ) iσz iσz iσz iσz

T (ŷ) σz σz σy σy

T (x̂)T (ŷ) −iσy −iσy −iσx −iσx

M(π/2, π/2)

Irrep M1 M2 M3 M4

C4

(
ε

ε∗

) (−ε∗

ε

) (−ε

−ε∗

) (
ε∗

−ε

)
T (x̂)T (ŷ) iσz iσz iσz iσz

element and either C2 or T (ŷ)C2, |G̃k| = 2 for these points.
Thus, Eq. (33) is satisfied, which means we have found all the
projective irreps.

IV. TOPOLOGICAL QUANTUM CHEMISTRY
IN A MAGNETIC FIELD

Finally we turn to the theory of TQC. TQC classifies topo-
logical crystalline insulators (TCIs) by enumerating all trivial
phases in each space group, where a trivial phase is defined
as one where exponentially localized Wannier functions exist
and transform locally under all symmetries. A group of bands
can be identified as a TCI if it is not in the space of trivial
phases.

Together, the Wannier functions corresponding to a single
band (or group of bands) transform as a representation of
the full space group, called a band representation [8,11,26–
30]. TQC labels each band representation by how its Bloch
wave functions transform under symmetry at high-symmetry
momenta, i.e., by a set of irreps of the little cogroup at each
high-symmetry momentum; this label is known as a symmetry
indicator [16]. Symmetry indicators provide a practical way
to identify many TCIs: specifically, a group of bands whose
irreps at high-symmetry momenta are not consistent with any
of the trivial phases must be topological.

In Sec. IV A we describe how to construct a basis of
symmetric magnetic Wannier functions. We use this basis in
Sec. IV B to derive how the space group symmetries act on the
Wannier functions; the symmetry matrices comprise the band
representation. Fourier transforming the band representation
yields its symmetry indicator.

TABLE IV. High-symmetry momenta (first row) and the irreps
(second row) of their little cogroup for the group p4/m′. The notation
�i� j indicates that �i and � j are paired by T I symmetry, where �i

is an irrep of the corresponding little cogroup with respect to layer
group p4, shown in Table III.

X (π/2, 0) Y (0, π/2) (0, 0) M(π/2, π/2)

Irrep X1X2 Y1Y2 14 23 M1M1 M3M3 M2M4

A. Magnetic Wannier functions

We now describe how to construct a basis of symmetric
Wannier functions for a magnetic unit cell. Given a site q,
which will serve as a Wannier center, the site-symmetry group
Gq is defined as the set of symmetries that leave q invariant,
i.e., Gq = {g ∈ G|gq = q}. The site-symmetry group defines
a coset decomposition of the space group,

G =
⋃
α

gαGq � TM , (34)

where G is the space group, TM is the magnetic lattice trans-
lation group, and α = 1, . . . , n, where n = |G/TM |/|Gq| is
the multiplicity of the Wyckoff position containing q. The
symmetries gα are coset representatives. The choice of coset
representatives is not unique; a different choice will yield a
band representation related to the original by a unitary trans-
formation, while the symmetry indicator is unchanged.

The coset representatives define positions qα = gαq that
form the orbit of q within the magnetic unit cell. Together,
these points are part of the same Wyckoff position, whose
multiplicity n is equal to the number of points in the orbit
of q in the magnetic unit cell. Unlike the case of zero mag-
netic field, the set of coset representatives gα includes pure
translations within the magnetic unit cell. Figure 4 shows the
Wyckoff positions for the groups p2, and p4, p4/m′.

FIG. 4. Wyckoff positions in a magnetic flux π for (a) the 2-by-1
unit cell for group p2 and (b) the 2-by-2 unit cell for the groups p4
and p4/m′. Each Wyckoff position is labeled by its multiplicity and a
lowercase letter. The general Wyckoff position, whose site-symmetry
group consists of only the identity, is not shown.
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Suppose there are nq orbitals centered at q. These or-
bitals are described by nq Wannier functions |Wi1〉, where
i = 1 . . . nq. The Wannier functions transform under symme-
tries g ∈ Gq as a projective representation ρ of Gq,

g|Wi1〉 =
nq∑
j=1

[ρ(g)] ji|Wj1〉. (35)

Applying the representatives gα in the coset decomposition of
the space group G in Eq. (34) to |Wi1〉 gives another Wannier
function

|Wiα〉 = gα|Wi1〉, (36)

localized at qα . All these Wannier functions |Wiα〉, where i =
1 . . . nq and α = 1 . . . n, form an induced representation of G,
as we now explain.

B. Induced representation

In this section, we derive how the space group symmetries
act on the Wannier functions. This provides an explicit con-
struction of a band representation with Wannier functions as a
basis. Fourier transforming the band representation gives the
irreps of the little cogroup at each high-symmetry point, i.e.,
the symmetry indicator.

Consider a group element hgα ∈ G. The coset decomposi-
tion in Eq. (34) implies that hgα can be written in the form

hgα = ei fαβ (h){E |tαβ (h)}gβg, (37)

where tαβ (h) = hqα − qβ and {E |tαβ} ∈ TM , g ∈ Gq, and
the coset representative gβ are uniquely determined by the
coset decomposition. The remaining phase factor fαβ (h) is
due to the nontrivial 2-cocycles. For the two-dimensional
systems without magnetic field, fαβ (h) ≡ 0. For the case with
magnetic field, in general fαβ (h) is nonzero.

The phase factor fαβ (h) is the new ingredient that appears
in a magnetic field and is a key result of the present work;
it does not appear in the nonmagnetic theory (for example, it
does not appear in Eq. (6) in Ref. [11]). This phase factor is
gauge invariant because it results from the commutations be-
tween rotations and translations (see Appendix B). We briefly
give two examples to show how this phase factor appears.

As a first example, consider the layer group p1 with a 2-by-
2 unit cell, corresponding to π flux. Starting from a Wannier
function centered at a general position q = (x, y), the coset
representatives in Eq. (34) can be chosen as g1 = {E |0}, g2 =
T (x̂), g3 = T (ŷ), g4 = T (x̂)T (ŷ). Now consider the left-hand
side of Eq. (37) with h = T (ŷ), gα = T (x̂). Then on the right-
hand side of Eq. (37), gβ = T (x̂)T (ŷ), g = E , and tαβ = 0.
Since T (ŷ)T (x̂) = eiπ T (x̂)T (ŷ), fαβ (h) = π .

As a second example, consider layer group p4 with a 2-
by-2 unit cell, corresponding again to π flux. Starting from a
Wannier function centered at q = ( 1

2 , 1
2 ), the coset represen-

tatives in Eq. (34) can be chosen as g1 = {E |0}, g2 = T (x̂),
g3 = T (ŷ), g4 = T (x̂)T (ŷ). Now consider the left-hand side
of Eq. (37) with h = C4, gα = T (x̂). The coset decomposition
uniquely determines gβ = T (x̂)T (ŷ), g = C4( 1

2 , 1
2 ), and tαβ =

(−2, 0) on the right-hand side of Eq. (37). Since C4T (x̂) =
ei3π/4{E |(−2, 0)}T (x̂)T (ŷ)C4(1/2, 1/2), the extra phase term
fαβ (h) = 3π/4.

As discussed at the start of Sec. IV, the set of Wannier func-
tions centered at all qα form a basis for a band representation,
which we denote ρG. Given a space group symmetry h ∈ G,
Eq. (37) determines the matrix elements of ρG(h) in the basis
of Wannier functions defiend in Eq. (36) by

ρG(h)|Wiα (r − t)〉 = ei fαβ (h)[ρ(g)] ji|Wjβ (r − Rt − tαβ )〉,
(38)

where R is the rotational part of h, ρ(g) is the given represen-
tation defined in Eq. (35), tαβ (h) = hqα − qβ and sum over
j = 1 . . . nq is implied.

Substituting the Fourier transformed Wannier functions,

|Wjβ (r − t)〉 =
∫

dkeik·t|a jβ (k, r)〉, (39)

|ajβ (k, r)〉 =
∑

t

e−ik·t|Wjβ (r − t)〉, (40)

into Eq. (38) yields

ρG(h)|aiα (k, r)〉 = ei fαβ (h)−iRk·tαβ [ρ(g)] ji|a jβ (Rk, r)〉. (41)

From Eq. (41), a representation of the little cogroup (de-
fined in Sec. III B) is determined from ρG by restricting each
matrix ρG(h ∈ G̃k ) to only the rows and column correspond-
ing to Fourier-transformed Wannier functions at k. The set
of irreps obtained at all k determines the symmetry indicator
following the procedure we introduced in Ref. [31], which is
summarized in Appendix G.

We now derive the symmetry indicator classification for a
few examples.

C. Examples

We apply our formalism of TQC in a magnetic flux to three
magnetic layer groups with π flux: p2, p4, and p4/m′. In each
case, we discuss the stable symmetry indicator classification;
the derivations are in Appendix G. We further apply our for-
malism to derive the Chern number indicators in π flux for
groups p3, p4 and p6 without spin-orbit coupling. They are
shown in Appendix H.

1. p2

For layer group p2 with π flux, we choose a 2-by-1 mag-
netic unit cell, following the discussion in Sec. III A. The
symmetry indicator has a Z4 classification. The indicator for
a particular group of bands is

index = #1 − #2 + #X1 − #X2 + #Y1 − #Y2

+ #M1 − #M2 − N mod 4, (42)

where #�i indicates the number of times the irrep �i at the
high-symmetry point � appears in the bands and N = #1 +
#2 = #X1 + #X2 = #Y1 + #Y2 = #M1 + #M2 is the filling
per magnetic unit cell.

This indicator Eq. (42) is exactly the same as the Chern
number indicator Eq. (3) in Ref. [21] in the special case of
π -flux and spinful electrons, i.e.,

eiπ (C/q−ρ̄ ) = (−)2SNw
C2

wY
C2

wX
T (ŷ)C2

wM
T (ŷ)C2

, (43)

where at flux π , q = 2; ρ̄ = N/2 is the filling per nonmagnetic
primitive unit cell; S = 1/2 is the spin (angular momentum)
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quantum number; and w�
g is the product of eigenvalues of the

symmetry g for all filled bands at momentum �.

2. p4

For layer group p4 with π flux, we choose 2-by-2 unit cell,
following the discussion in Sec. III A. The symmetry indicator
has a Z8 classification. The indicators for a particular group of
bands are determined by

index = 2#1 + 4#2 − 2#3 + #M1 + 3#M2

− 3#M3 − #M4 + 4#X1 mod 8. (44)

To understand this indicator, we compare the new index to the
symmetry indicator formula for Chern number in Ref. [22]:

ei π
2 C = (−)2SNw

C4
wX

C2
wM

C4
, (45)

which, in terms of irreps, is given by (derivation in Ap-
pendix I)

C = 2N + #1 + #3 − #2 − #4

+ 2(#M2 + #M4) mod 4, (46)

where N is always an even integer due to the two-dimensional
irreps (shown in Table III). We conclude

C = index mod 4. (47)

In fact, this Z8 index is exactly the Chern number mod 8.
This can be seen by considering a

√
2-by-

√
2 unit cell which

has lattice vectors a1 = (1, 1), a2 = (−1, 1); in this basis,
Eq. (44) is identified as the Z8 Chern number indicator in
Ref. [21].

3. p4/m′

For layer group p4/m′ with π flux, we choose 2-by-2 unit
cell, following the discussion in Sec. III A. The symmetry
indicator has a Z2 classification. The indicator for a particular
group of bands is determined by

index = N/4 mod 2, (48)

where N/4 ≡ ρ̄ is the filling per original unit cell. Notice each
band in this group is fourfold degenerate (see Table IV in
Sec. III B), and hence ρ̄ ∈ Z.

The group p4/m′ is generated by a fourfold rotation and
the product of time-reversal and inversion symmetry T I . As
is well known, T I prevents a nonvanishing Chern number
[32] and the absence of T prevents the existence of strong
topological insulator [33]. Since T and I are not separately
symmetries, there is no mirror symmetry and hence no mirror
Chern number. Thus, our stable index is a new phase that only
exists in systems with magnetic flux.

This phase is realized in the model we present in Sec. V.
However, it does not realize an anomalous gapless boundary
state because when the boundary is opened, the sublattice
translation symmetries that protect the phase are broken.

V. APPLICATION TO A QUADRUPOLE INSULATOR

In this section, we apply our results to a model on the
square lattice. At zero flux, this model is a quadrupole in-
sulator that exhibits corner states. Since the symmetries that

FIG. 5. Hofstadter spectrum of the OAL model. The gray states
are calculated with periodic boundary conditions and show the bulk
gap closing at a critical flux. The red states are calculated with open
boundary conditions and show the disappearance of the corner states
upon bulk gap closure. The spectrum is computed for dimensions
Lx = 200, Ly = 10 and parameters λ = 1, γ = 0.5.

protect the corner states are preserved in the presence of a
perpendicular magnetic field, the corner states must survive
when magnetic flux is introduced. We use the formalism
developed in the previous sections to verify the presence of
corner states using symmetry indicators. Finally, we show that
at a critical magnetic flux, the bulk gap closes and the corner
states disappear, as shown in the Hofstadter butterfly spectrum
in Fig. 5. We use the symmetry indicators to verify that when
the corner states disappear, the symmetry indicator vanishes.

Our results provide a new probe of the higher order topol-
ogy in the model, i.e., the presence of a gap closing phase
transition in the presence of a magnetic field, which may be
easier to observe than probing the corner states directly.

A. Model

We study a model proposed by Wieder et al. in Ref. [23] at
zero flux that has the same momentum space Hamiltonian as
the C4 symmetric Bernevig-Benalcazar-Hughes (BBH) model
which is at 4π flux per unit cell [19,20]. This model was given
as an example in Fig. 3 and Appendix A of Ref. [23]. Yet the
two models have some fundamental differences: While the
BBH model has four atoms per unit cell and one orbital per
atom, Wieder’s model has one atom sitting at the origin of
the unit cell and four orbitals per atom. Since the position of
atoms in the unit cell will be important when we include mag-
netic flux, the two models have different Hofstadter spectra.
Further, the BBH model describes spinless fermions, while
Wieder’s model describes fermions with spin-orbit coupling.
As a result, the symmetry representations for the two models
are different.
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In momentum space the Hamiltonian is

H (k) = {vm + t1[cos(kx ) + cos(ky)]}3

+ t2[cos(kx ) − cos(ky)]4

+ u sin(kx )1 + u sin(ky)2, (49)

where 1 = τyσy, 2 = τyσx, 3 = τz, and 4 = τx. The Pauli
matrices τ and σ together span the orbital space of each
atom. In the limit t1 = t2 = u/

√
2 = λ/

√
2 and vm = √

2γ ,
this Hamiltonian is equivalent to the BBH Hamiltonian after
a basis change. In this section, we adopt these parameters
and set λ = 1 and γ = 0.5 so that the system is a quadrupole
insulator at zero flux.

The generators of the symmetries of this Hamiltonian take
the matrix forms

C4z = τz

(
Iσ − σz

2

)
, (50)

Mx = σx, (51)

T I = σyK, (52)

where K is the complex conjugation. There is also a chiral
symmetry that anticommutes with the Hamiltonian

5 = τyσz. (53)

To incorporate the effect of a magnetic field, we need the
real space Hamiltonian, given by

H =
∑

i, j∈Z
txc†

(i+1, j)c(i, j) + tyc†
(i, j+1)c(i, j) + H.c.

+ vm3c†
(i, j)c(i, j), (54)

where tx,y are hopping matrices given by

tx = (t13 + t24)/2 − iu1/2, (55)

ty = (t13 − t24)/2 − iu2/2. (56)

When a magnetic field in the z direction is turned on, the
Hamiltonian in Eq. (54) requires the Peierls substitution [1].
Working in Landau gauge, A(x, y) = (−φy, 0) where φ = B
is the flux per unit cell and the substitution is given by

c†
(i+1, j)c(i, j) �→ e−iφ jc†

(i+1, j)c(i, j), (57)

c†
(i, j+1)c(i, j) �→ c†

(i, j+1)c(i, j). (58)

The momentum space Hamiltonian at finite flux can be ob-
tained by Fourier transforming Eq. (54) using the convention
in Eqs. (23) and (24) when the flux is rational φ = 2π p/q.

In Fig. 5, we numerically compute the Hofstadter spectrum
for this model.

B. Symmetry analysis

The model has a 2π periodicity in φ, the flux per unit
cell. At zero flux and π -flux the system is invariant under
the symmetry group p4/m′mm, while at other fluxes the sym-
metry group is p4. Using the formalism developed in this
manuscript, we apply TQC in a magnetic field to compute
the symmetry indicators at π flux. Indicators at other fluxes
are discussed in Appendix J. Ultimately, we will show that

TABLE V. Band representation of the four fourfold degenerate
bands at π -flux. The ordering of band index is from lowest energy to
highest energy, i.e., half-filling corresponds to filling bands 1 and 2.
Each irrep �i� j is four-dimensional and defined in Table IV.

Band index 1 2 3 4

irrep at  23 14 23 14

irrep at X X1X2 X1X2 X1X2 X1X2

irrep at M M2M4 M3M3 M1M1 M2M4

the symmetry indicator at π flux corresponds to an absence
of corner states, from which we deduce there must be a gap
closing phase transition at a critical flux between zero and π .

At π -flux, the magnetic unit cell is 2-by-2 and the Brillouin
zone is [−π/2, π/2] × [−π/2, π/2]. According to Sec. III A,
the fourfold rotation symmetry operators at  = (0, 0) and
M = (π/2, π/2) are

D(C4z, ) =

⎛⎜⎜⎜⎝
1

1
1

−1

⎞⎟⎟⎟⎠⊗ C4z, (59)

D(C4, M )) =

⎛⎜⎜⎜⎝
1

−1
1

1

⎞⎟⎟⎟⎠⊗ C4z, (60)

where the first matrix acts on the sublattice basis, and the C4z

matrix acts on the orbital basis as defined in Eq. (50). The
magnetic translation symmetries at k are implemented by

D(T (x̂), k) = eikx

⎛⎜⎜⎜⎝
1

1
1

1

⎞⎟⎟⎟⎠⊗ τ0σ0, (61)

D(T (ŷ), k) = eiky

⎛⎜⎜⎝
1

−1
1

−1

⎞⎟⎟⎠⊗ τ0σ0, (62)

where τ0 and σ0 are identity matrices.
The irreps of the occupied bands are listed in Table V .

Each band is fourfold degenerate because (T I )2 = −1 and
{T (x̂), T (ŷ)} = 0, as explained in Appendix F. Using the
computed irreps in Table V, the symmetry indicators are listed
in Table VI .

Below the gap at half filling, the two occupied bands to-
gether (1 ⊕ 2 in Table VI) are topologically trivial. They admit
symmetric exponentially localized Wannier functions located
at the 4a Wyckoff position. Since the atoms are also at 4a
Wyckoff position, there is no corner charge. This analysis
agrees with the Hofstadter spectrum shown in Fig. 5.

Open boundary conditions break the lattice translation
symmetries and, in particular, break the sublattice translation
symmetries within the magnetic unit cell. Once the sub-
lattice translation symmetries are broken, the little cogroup
[Eq. (32)] is identical to the nonmagnetic case. Thus, the
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TABLE VI. Symmetry indicators at π -flux. The second column
corresponds to each fourfold degenerate band individually, while
the last two columns correspond to sums of bands. The second row
shows the strong topological index in Eq. (48) is 1 mod 2 for each
band, while for two occupied/empty bands the index is 0 mod 2.
Since symmetric and exponentially localized Wannier functions exist
for the two occupied or two empty bands, in the next three rows, eq

indicates the number of Wannier functions centered at the Wyckoff
position q, computed using Eqs. (G34)–(G36) in Appendix G. If
the sublattice translation symmetry within each magnetic unit cell
is broken, then the number of Wannier functions centered at the
indicated Wyckoff positions in the lower symmetry group are shown
in Fig. 6.

Band index n = 1, 4 n = 2, 3 1 ⊕ 2 3 ⊕ 4

Z2 phase [Eq. (48)] 1 1 0 0

e4a mod 8 2 2
e4b mod 8 0 0
e8c mod 4 0 0

e1a′ mod 4 0 2 2 2
e1b′ mod 4 0 2 2 2
e2c′ mod 2 2 0 2 2

crystalline symmetry protected phases with open boundary
condition should be labeled by the usual symmetry indicators
in zero flux but with respect to the enlarged magnetic unit
cell; these indicators are computed in Ref. [31]. The results
are shown in the lower half of Table VI. In this reduced
symmetry group, the magnetic 4a Wyckoff position splits
into positions: 1a′ = (0, 0), 1b′ = (1, 1), 2c′ = (1, 0), (0, 1),
as shown in Fig. 6.

C. Corner states

The spectrum with periodic boundary condition has a gap
at half filling at φ = 0 and φ = π . This gap closes at some
φ∗ between 0 and π as shown in Fig. 5. For the spec-
trum with open boundary condition, there are higher-order
topological states when −φ∗ < φ < φ∗ that are corner lo-
calized. Due to the chiral symmetry (53), they are at zero
energy in this model. The corner states can be understood by
the nonzero quadrupole moment [19] or the nonzero filling
anomaly [23,31,34,35].

FIG. 6. (a) Wyckoff position 4a in 2-by-2 unit cell with space
group G splits into (b) Wyckoff positions 1a′, 1b′, 2c′ in the same unit
cell with symmetry group G/(T/TM ), i.e., no sublattice translations.

The corner states have fourfold degeneracy, consistent with
the nonmagnetic symmetry analysis in Refs. [31,36]. The
corner states with open boundary condition always come in
a group of d states. This degeneracy d is determined by the
point group of the finite system. Let w be the general Wyckoff
position of the point group, with multiplicity nw. Denote the
site symmetry group Gw. It has only one irrep, ρ(Gw ). The
degeneracy of corner states is [36]

d = dim(ρ(Gw )) × nw, (63)

where dim(ρ(Gw )) = 2 for spinful systems with time-reversal
symmetry that squares to −1, otherwise dim(ρ(Gw )) = 1.

In the present case, at zero flux the system is invariant
under the symmetry group p4/m′mm, while at any small flux
the symmetry group reduces to p4. For p4/m′mm and p4,
the point groups of the finite size system are 4/m′mm and
4 respectively. Each has a general Wyckoff position w with
nw = 4 and dim(ρ(Gw )) = 1; thus, Eq. (63) yields a degen-
eracy of 4 [36]. Since the degeneracy of corner states is the
same for zero flux and finite flux, the corner states do not split
when the magnetic flux is introduced. (The chiral symmetry
in this model pins the corner states to zero energy, but even in
the absence of chiral symmetry, the nonzero filling anomaly
will remain the same for 0 � φ < φ∗.)

We have also shown from the symmetry indicators that
at half filling and π flux, the system is in the trivial phase,
without corner states. Thus, the corner states must terminate
at φ = φ∗ by either a bulk or edge gap closing. There is indeed
a bulk gap closing at flux φ∗ as Fig. 5 shows. This is consistent
with the Wannier centers of the occupied bands, which can be
deduced from the symmetry indicators: the Wannier centers
are at the 4b Wyckoff position at zero flux and the 4a Wyckoff
position at π flux (see Table VI and Appendix J). Symmetries
prevent four Wannier functions from moving continuously be-
tween the 4a and 4b positions [31,37]. A discontinuous jump
of the Wannier centers implies the bulk gap closes between
zero and π flux.

In Appendix J we compute the symmetry indicator at in-
termediate flux φ = 2π/5 < φ∗ and φ = 4π/5 > φ∗ to verify
that symmetry indicators are consistent with the presence and
absence of corner states between zero and π . In Appendix K
we show that the presence and absence of corner states also
agrees with the nested Wilson loops [19].

VI. CONCLUSION

In conclusion, we derived a general framework to apply
TQC and the theory of symmetry indicators to crystalline
systems at rational flux per unit cell. Applying our results to
some simple examples at π flux revealed new symmetry indi-
cators that did not appear at zero flux. Finally, the symmetry
indicators enable us to study a quadrupole insulator at finite
field, which reveals a gap closing topological-to-trivial phase
transition as a function of magnetic field. Observing this phase
transition could be particularly promising in moiré systems
where higher flux is attainable for reasonable magnetic fields
[38–41].

While preparing our work, we became aware of a related
study [42], which gives criteria for when such a bulk gap
closing at finite flux can be predicted from the band structure
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at zero flux. The two bulk gap closings between zero and
� = 2π flux of our model in Sec. V are indicated by the real
space invariant in Ref. [42].

We note that the Zeeman term is neglected in this
manuscript. When the Zeeman term is present, the periodicity
in the flux direction is broken. Thus, there is no magnetic
time-reversal symmetry or other mirror symmetries that flip
magnetic flux. At large magnetic field where Zeeman term
dominates, the two dimensional system must be in the triv-
ial atomic limit where Wannier centers locate at the atom
positions.

Our work is also restricted to a spatially constant magnetic
field. It would be interesting to extend our results to a spatially
varying periodic magnetic field that maintains a commensu-
rate flux per unit cell. This more general theory might be
relevant to magnetically ordered crystals.

As a final note, we draw a connection between our results
and the theory of phase space quantization, where one seeks a
symmetric and exponentially localized Wannier basis that can
continuously reduce to points in the classical phase space by
setting the Planck constant h → 0 [43]. However, such a basis
can never be found due to the Balian-Low theorem, which
forbids the existence of exponentially localized translational
symmetric basis for any single particle [44]. The magnetic
Wannier functions in two dimensions share a similar trans-
lation group structure to the one-dimensional quantum phase
space and the nonvanishing Chern number for any single
magnetic band also forbids Wannierization [45], as we explain
in Appendix L. Thus, there is an interesting open question:
since in two dimensional magnetic systems, it is possible to
find a Wannier basis for a group of bands, we conjecture that
the continuous quantization of phase space may be realized by
constructing Wannier functions for groups of particles.
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APPENDIX A: DERIVATION OF λg IN EQ. (6)

In this Appendix, we derive Eq. (6) starting from Eq. (5),
which we rewrite here for convenience:

∫ r2

r1

A(r) · dr +
∫ ĝr2

ĝr1

∇λ(r′) · dr′ =
∫ ĝr2

ĝr1

A(r′) · dr′.

(A1)

Substituting r = ĝ−1r′ in the first term on the left-hand side of
Eq. (A1) yields∫ r2

r1

A(r) · dr =
∫ ĝr2

ĝr1

A(ĝ−1r′) · d (ĝ−1r′)

=
∫ ĝr2

ĝr1

A(ĝ−1r′) · R−1
g dr′

=
∫ ĝr2

ĝr1

RgA(ĝ−1r′) · dr′. (A2)

In the second equality we have defined the rotation Rg by the
action ĝ : r �→ Rgr + τg, from which it follows that ĝ−1 : r �→
R−1

g r − R−1
g τg, and, consequently, d (ĝ−1r′) = R−1

g dr′, since
d (R−1

g τg) = 0. Equations (A1) and (A2) together are exactly
the integral form of Eq. (6).

APPENDIX B: GAUGE INVARIANT COMMUTATION
RELATIONS BETWEEN TRANSLATION

AND ROTATION OPERATORS

In this Appendix, we derive the commutation relations for
magnetic rotation and translation symmetry operators in real
space. We show these relations are gauge invariant. The results
are used in Secs. II and IV and Appendix F.

We denote an n-fold magnetic rotation operator centered
about (x̄1, x̄2) as Cn(x̄1, x̄2). For rotations about the origin, we
simplify the notation by dropping the argument (x̄1, x̄2), i.e.,
Cn ≡ Cn(x̄1 = 0, x̄2 = 0). We define Cn(x̄, ȳ) by conjugating
magnetic translation operators with Cn

Cn(x̄1, x̄2) ≡ T (x̄1x̂1 + x̄2x̂2)CnT (−x̄1x̂1 − x̄2x̂2), (B1)

where x̂1 and x̂2 are unit vectors in the x1 and x2 directions.
This definition is a general form for any gauge choice of
vector potential. In this definition [Cn(x̄1, x̄2)]n = Cn

n is the
identity. The definition is independent of the ordering of trans-
lations. For example,

Cn(x̄1, x̄2) = T (x̄2x̂2)T (x̄1x̂1)CnT (−x̄1x̂1)T (−x̄2x̂2)

= T (x̄1x̂1)T (x̄2x̂2)CnT (−x̄2x̂2)T (−x̄1x̂1).

We now derive commutation relations between the mag-
netic rotations and translations. First, we derive a gauge
invariant commutation relation between a translation T (a)
and Cn,

CnT (a) = T (Rna)Cn, (B2)

which is the same as the commutation relation in zero field.
We now prove Eq. (B2); Ref. [46] gives a different proof of
Eq. (B2).

Equation (9) provides explicit operator forms for Cn and
T (a):

Cn =
∑

x

eiλCn (Rnx)c†
Rnxcx, (B3)

T (a) =
∑

x

eiλT (a) (x+a)c†
x+acx. (B4)
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The gauge dependence of the operators are encoded in the
definition of λg. The explicit expression of λCn and λT (a) from
Eqs. (6) and (7) in our definition are

λCn (x) =
∫ x

r0

A(x′) − RnA(R−1
n x′) · dx′

=
[∫ x

r0

−
∫ R−1

n x

R−1
n r0

]
A(x′) · dx′, (B5)

λT (a)(x) =
∫ x

x−a
A(x′) · dx′ + B · a × x, (B6)

where r0 is a reference point that will cancel below.
Plugging into Eq. (B2) and considering the action on single

particle states, the equation holds when the phase terms on
both sides are equal, i.e.,

λCn [Rn(x + a)] + λT (a)(x + a)

= λT (Rna)(Rn(x + a)) + λCn (Rnx). (B7)

Applying Eq. (B5) yields

λCn [Rn(x + a)] − λCn (Rnx)

=
[∫ Rn(x+a)

r0

−
∫ x+a

R−1
n r0

−
∫ Rnx

r0

+
∫ x

R−1
n r0

]
A(x′) · dx′

=
[∫ Rn(x+a)

Rnx
+
∮

RnC
−
∫ x+a

x
−
∮
C

]
A(x) · dr

=
[∫ Rn(x+a)

Rnx
−
∫ x+a

x

]
A(x) · dr, (B8)

where the path C is a triangle whose vertices are R−1
n r0, x,

x + a. The last equality follows because the two closed loops
enclose the same amount of flux. Then applying Eq. (B6)
yields

λT (Rna)[Rn(x + a)] − λT (a)(x + a)

=
[∫ Rn(x+a)

Rnx
−
∫ x+a

x

]
A(x) · dr. (B9)

The two expressions are equal, proving Eq. (B2).
Combined with the gauge invariant relation for magnetic

translations [Eq. (16) in the main text],

T (a1)T (a2) = T (a1 + a2)e
i
2 B·(a1×a2 ), (B10)

Equation (B2) implies that the phases that appear in the com-
mutation relations between Cn(x̄1, x̄2) and T (a) are all gauge
invariant. For example, for twofold and fourfold magnetic
rotations on a square lattice,

C2(x̄, ȳ)T (�x̂) = T (−�x̂)C2(x̄, ȳ)e−2iB�ȳ,

C2(x̄, ȳ)T (�ŷ) = T (−�ŷ)C2(x̄, ȳ)e2iB�x̄,

C4(x̄, ȳ)T (�x̂) = T (�ŷ)C4(x̄, ȳ)e−iB�(x̄+ȳ),

C4(x̄, ȳ)T (�ŷ) = T (−�x̂)C4(x̄, ȳ)eiB�(x̄−ȳ), (B11)

and

C2(x̄1, ȳ1)C2(x̄2, ȳ2) = C2(−x̄2,−ȳ2)C2(−x̄1,−ȳ1)

× e4iB(x̄1 ȳ1−x̄2 ȳ2+x̄2 ȳ1−x̄1 ȳ2 ),

C4(x̄1, ȳ1)C4(x̄2, ȳ2) = C4(−ȳ2, x̄2)C4(ȳ1,−x̄1)

× eiB((x̄1+x̄2 )2−(ȳ1−ȳ2 )2 ). (B12)

These relations are used when we study irreducible represen-
tations in Sec. III B and topological quantum chemistry in
Sec. IV.

APPENDIX C: PROJECTIVE REPRESENTATION

In general, a projective representation ρ of a group G
satisfies

ρ(g1)ρ(g2) = ω(g1, g2)ρ(g1g2) (C1)

for all g1, g2 ∈ G, where ω(g1, g2) is called the 2-cocycle (or
Schur multiplier, or factor system). When ω(g1, g2) ≡ 1, the
representation is an ordinary linear representation.

Under a gauge transformation of ρ by ρ ′(g) = f (g)ρ(g),
2-cocyles satisfy the cocycle condition ω′(g1, g2) =
f (g1g2) f (g1)−1 f (g2)−1ω(g1, g2), which defines an
equivalence class [ω(g1, g2)] of cocycles. The classification
of the equivalence classes is determined by the group
cohomology.

In the remaining part of this section, we explain the
standard way to derive irreducible projective representations
through the group extension. The magnetic symmetries can
be viewed as projective representations of the nonmagnetic
symmetries. These projective representations are projected
from the ordinary representations of a larger group that can
be described as a group extension of the nonmagnetic group.
For example, the continuous magnetic translations form the
Heisenberg group Heis. It is extended from the nonmagnetic
translations R2 by the abelian group U (1). There are many
irreducible representations of Heis, but only some of them are
compatible with the 2-cocycles, which are the phases due to
gauge transformations of the magnetic symmetries. For ex-
ample, the trivial irreducible representation is not compatible
with the particular 2-cocycles.

We now describe the group extension for the translation
symmetries on a square lattice as a concrete example. Con-
sider a model with only nearest neighbor hopping. Then the
phase introduced by the magnetic translations in Eq. (15)
with commensurate magnetic flux φ = 2π p/q belongs to Zq.
We first consider the extension of full translation group T =
Z × Z by Zq. This real space Heisenberg group is defined by
the central group extension, which is a short exact sequence

, (C2)

where each arrow is a group homomorphism and im(i) =
ker(π ). Next we consider the momentum space Heisenberg
group Heisk (for the q-by-q unit cell), which is the sublattice
translation group T/TM extended by Zq. Its defining central
group extension is

. (C3)
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TABLE VII. The gauge transformation λg(x, y) for symmetries of the sixfold symmetric triangular lattice in Landau gauge. For each
symmetry g in the first row, the second row lists the symmetry in the notation {Rg|τg} and the third row provides λg from Eq. (6).

g T (�1x̂1) T (�2x̂2) C2(r̄1, r̄2) C6(r̄1, r̄2) C3(r̄1, r̄2)

ĝ = {Rg|τg} {0|(�1, 0)} {0|(0, �2)} {Ĉ2|(2r̄1, 2r̄2)} {Ĉ6|(r̄1 + r̄2, −r̄1)} {Ĉ3|(2r̄1 + r̄2, r̄2 − r̄1)}
λ(r1, r2) 0 −φ�2r1 −2φr̄2(r1 − r̄1) −φ

(
(r1 − r̄1)(r2 − r̄2) + (r1−r̄1 )2

2

) −φ
(
(r1 − r̄1)(r2 − r̄2) + (r2−r̄2 )2

2

)
+φr̄2(r2 − r̄2) −φr̄2[(r1 − r̄1) − (r2 − r̄2)]

It can be shown that this Heisk is an extra special group of
order q3. It has q2 1-dimensional irreducible representations
and q − 1 q-dimensional irreducible representations [47]. The
abelian group Zq acts trivially on the 1-dimensional irreps.
Thus, the projective representations are projected from the q-
dimensional representations. Therefore, the momentum space
states satisfying magnetic translation symmetries are q-fold
degenerate. For example, at π flux, Heisk is isomorphic to
the group D4 and the irreducible projective representation
of translations Z2 × Z2 is projected from the only two-
dimensional irreducible representation E of D4.

For more complicated cases with magnetic rotation sym-
metries, in principle one can use the same formalism to get the
corresponding extended group and the irreducible projective
representations of the unextended symmetry group. However,
practically it is easier to derive the irreducible projective rep-
resentations by studying the (anti)commutation relations as
shown in Appendix F.

APPENDIX D: TRIANGULAR LATTICE SYMMETRIES
IN A MAGNETIC FIELD

The Landau gauge in triangular and hexagonal lattices is
defined differently than for the square lattice. Therefore, we
discuss the magnetic symmetries of these lattices separately
here.

We consider the lattice vectors a1 = (1, 0), a2 = ( 1
2 ,

√
3

2 )
in Cartesian coordinates. The reciprocal lattice vectors are
b1 = (1,−1/

√
3), b2 = (0, 2/

√
3) in Cartesian coordinates,

where ai · b j = δi j . The vector potential for the magnetic field
in Landau gauge is A(r) = −φb1(b2 · r), where φ is the flux
per primitive unit cell. It is helpful to note the gradient in these
coordinates is ∇ = b1∂r1 + b2∂r2 .

From Eq. (6) we can compute the gauge transformation
terms λ(r1, r2), where r = r1a1 + r2a2. The results for several
spatial symmetries ĝ compatible with the triangular lattice are
summarized in Table VII .

APPENDIX E: EQUIVALENT REPRESENTATIONS
FOR THE q-BY-1 AND q-BY-q UNIT CELLS

In this Appendix, we argue that the symmetry operators
for the q-by-1 and q-by-q unit cells form equivalent q2 ×
q2-dimensional representations. We study C4 and T (ŷ) as
examples.

1. q-by-1 unit cell

As shown in Sec. III A 1, in the q-by-1 unit cell the C4

symmetry mixes a Bloch eigenstate at momentum (kx, ky)
into a linear combination of eigenstates at momenta (ky +
2π l/q,−kx ), l = 0, 1, . . . q − 1. Each momentum can be

classified by the number of other momenta it mixes with
under C4: a generic k mixes into 4q distinct momenta; (π, 0)
mixes into 2q momenta [including (0, π/q)]; and (0,0) or
(π/q, π/q) mix into q distinct momenta.

We now compute the symmetry operators for the highest
symmetry momenta, (0,0) and (π/q, π/q). The T (ŷ) and C4

symmetries will be implemented by a q2 × q2 matrix: the first
factor of q comes from the q original unit cells in the magnetic
unit cell, while the second factor comes from q different
momenta that mix into each other under C4. Specifically, fol-
lowing Eqs. (25) and (26), at the high-symmetry points k = 

or M, we choose the basis {c†
(lφ,0), j |0〉} or {c†

(π/q+lφ,π/q), j |0〉},
respectively, where l, j = 0, 1, . . . , q − 1.

As a concrete example, we write the matrix form of the
symmetry operators at φ = π flux, i.e., q = 2. A symmetry
operator g defined in the above basis takes the general form

g = q

(2π )2

∫ 2π
q

0

∫ 2π
q

0
dk

∑
l, j,l ′, j′=0,1

c†
k,l, jD(g, k)l, j;l ′, j′ck,l ′, j′ ,

(E1)

where ck,l, j = ck+l (2π/q,0), j and D(g, k)l, j;l ′, j′ is a 4 × 4 ma-
trix. (This form does not apply at momenta other than (0,0)
or (π/2, π/2); at other momenta the C4 symmetry requires a
larger matrix.)

Taking the specific symmetries g = T (ŷ) or C4,

D(T (ŷ), k) = eiky

⎛⎜⎜⎜⎝
1

1
1

1

⎞⎟⎟⎟⎠, (E2)

whose eigenvalues are eiky{+1,+1,−1,−1};

D(C4, ) = 1

2

⎛⎜⎜⎜⎝
1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

⎞⎟⎟⎟⎠, (E3)

whose eigenvalues are {+1,+1,−1,−1}; and

D(C4, (π/2, π/2)) = 1

2

⎛⎜⎜⎜⎝
1 −i 1 −i
−i 1 i −1
1 i 1 i
−i −1 i 1

⎞⎟⎟⎟⎠, (E4)

whose eigenvalues are {+1,+1,+i,−i}.

2. q-by-q unit cell

For the q-by-q unit cell, the C4 operator behaves similar
to the nonmagnetic case, in that it mixes each Bloch wave
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function into a single other Bloch wave function. The highest
symmetry points are  = (0, 0) and M = (π/q, π/q).

As in the previous section, we consider the flux φ = π as
an example. An operator g takes the general form

g =
(

q

2π

)2 ∫
dk

∑
jx, jy, j′x, j′y

c†
k, jx, jy

D(g, k) jx, jy; j′x, j′y ck, j′x, j′y .

(E5)

This form of the matrix representation D(g, k) is valid for
T (ŷ) at any k and for C4 at  = (0, 0) and M = (π/q, π/q).
From Eqs. (29) and (30),

D(T (ŷ), k) = eiky

⎛⎜⎜⎜⎝
1

−1
1

−1

⎞⎟⎟⎟⎠, (E6)

whose eigenvalues are eiky{+1,+1,−1,−1};

D(C4, (0, 0)) =

⎛⎜⎜⎜⎝
1

1
1

−1

⎞⎟⎟⎟⎠, (E7)

whose eigenvalues are {+1,+1,−1,−1}; and

D(C4, (π/2, π/2)) =

⎛⎜⎜⎜⎝
1

−1
1

1

⎞⎟⎟⎟⎠, (E8)

whose eigenvalues are {+1,+1,+i,−i}.
These eigenvalues are identical to the eigenvalues of

the symmetry operators derived for the q-by-1 unit cell in
Eqs. (E2), (E3), and (E4), which implies that the represen-
tations of the symmetry operators are the same for a q-by-1
unit cell and a q-by-q unit cell.

In conclusion: the two natural choices of magnetic unit cell
yield unitarily equivalent symmetry representations, but the
q-by-q unit cell allows the symmetry operators to act in a more
familiar way because their action on k is identical to that in
zero field.

APPENDIX F: IRREPS AT HIGH-SYMMETRY
MOMENTA FOR p2, p4, p4/m′

The irreps of little cogroups at high-symmetry momenta
for p2, p4, and p4/m′ with π flux are calculated in detail in
this section. The results are summarized in Tables II–IV in
Sec. III B.

For simplicity, we denote Tx ≡ T (x̂), Ty ≡ T (ŷ) in this
section.

In this Appendix, we will repeatedly use the gauge invari-
ant commutation relation

CnT (a) = T (Rna)Cn, (F1)

which is derived in Appendix B, and

TxTy = TyTxeiφ = −TyTx, (F2)

which is a consequence of the Aharonov-Bohm phase.
We will also use T 2

x = e2ikx , T 2
y = e2iky to derive the

(anti)commutation relations of rotation and translation
symmetries.

1. p2

We first study the p2 with φ = π and a 2-by-1 unit cell. The
magnetic lattice translation group is TM = {(n1, 2n2)|n1, n2 ∈
Z}. The little cogroup is a subgroup of p2/TM , which is
generated by C2 and Ty symmetries.

For the 2-by-1 unit cell, the Brillouin zone is [−π, π ] ×
[−π/2, π/2]. In momentum space, Ty maps (kx, ky) �→ (kx +
π, ky) because Eq. (F2) implies

TxTy|kx, ky〉 = −TyTx|kx, ky〉
= ei(kx+π )Ty|kx, ky〉. (F3)

Therefore, given a Bloch wave function |0, 0; ξ 〉 at (0,0) with
C2 eigenvalue ξ , we can construct a state Ty|0, 0; ξ 〉 at (π, 0)
with the same C2 eigenvalue:

C2Ty|0, 0; ξ 〉 = TyT −2
y C2|0, 0; ξ 〉

= ξT −1
y |0, 0; ξ 〉, (F4)

where the first equality is due to the commutation relation
Eq. (F1) and the second equality follows because the T 2

y

eigenvalue of a Bloch wave function at ky is e2iky . Similarly,
for each Bloch state at (0, π/2) with C2 eigenvalue ξ , there is
a state at (π, π/2) with eigenvalue −ξ :

C2Ty|0, π/2; ξ 〉 = TyT −2
y C2|0, π/2; ξ 〉

= ξTyT −2
y |0, π/2; ξ 〉

= −ξTy|0, π/2; ξ 〉. (F5)

It follows that although there are four C2 symmetric momenta,
only two of them have independent eigenvalues,  = (0, 0)
and Y = (0, π/2). Each Bloch wave function at those points
can have C2 eigenvalue +i or −i.

Due to the unusual behavior of Ty in Eq. (F3), the four mo-
menta invariant under TyC2 are (±π/2, 0) and (±π/2, π/2).
Similarly only two of them are independent. We choose the
two points to be X = (π/2, 0) and M = (π/2, π/2). Since
(TyC2)2 = −1, there are two irreps for each point and each
irrep has TyC2 eigenvalue +i, −i.

We summarize the irreps at all independent high-symmetry
points for the group p2 in Table II. Notice that we have used
C2

2 = −1, corresponding to spinful electrons, in the above
derivations. If C2

2 = +1, then the C2 eigenvalues will be
+1, −1.

2. p4

We now study the group p4 group with φ = π and
a 2-by-2 unit cell. The lattice translation group is TM =
{(2n1, 2n2)|n1, n2 ∈ Z}. The little cogroup is a subgroup of
p4/TM generated by C4 and Tx, Ty symmetries.

For the 2-by-2 unit cell, the Brillouin zone is
[−π/2, π/2] × [−π/2, π/2]. Tx and Ty both map (kx, ky) to
itself. Since {Tx, Ty} = 0, each irrep at generic k is at least
two-dimensional.

The two high-symmetry points invariant under C4 are (0,0)
and (π/2, π/2), while the two high-symmetry points invariant
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under C2 but not C4 are (π/2, 0) and (0, π/2). We study each
point separately.

At X = (π/2, 0), the (anti)commutation relations derived
from Eqs. (F1) and (F2), [C2, Ty] = 0, {C2, Tx} = 0, {Tx, Ty} =
0 lead to two two-dimensional irreps X1, X2 as shown in
Table III.

At Y = (0, π/2), the (anti)commutation relations derived
from Eqs. (F1) and (F2), [C2, Tx] = 0, {C2, Ty} = 0, {Tx, Ty} =
0 lead to two two-dimensional irreps Y1, Y2 as shown in Ta-
ble III.

At  = (0, 0), [C4Tx, TxTy] = 0 and {TxTy, Tx} = 0 due to
Eqs. (F1) and (F2). For a Bloch eigenstate |ξ, η〉 with eigen-
value ξ = ±1 or ±i of C4Tx and eigenvalues η = ±i of TxTy,
Tx maps it to an eigenstate of C4Tx with eigenvalue ηξ and an
eigenstate of TxTy with eigenvalue −η:

C4TxTx|ξ, η〉 = TyC4Tx|ξ, η〉
= TxT −2

x TxTyC4Tx|ξ, η〉
= Txe−2ikx ηξ |ξ, η〉
= ηξTx|ξ, η〉, (F6)

where the first equality follows Eq. (F1) and

TxTyTx|ξ, η〉 = −TxTxTy|ξ, η〉
= −ηTx|ξ, η〉 (F7)

due to Eq. (F2). The two equations pair up eigenvalues and
lead to four two-dimensional irreps 1, 2, 3, 4 as shown
in Table III.

At M = (π/2, π/2), there are (anti)commutation relations
[C4, TxTy] = 0 and {Tx, TxTy} = 0. For an eigenstate |ξ, η〉
with eigenvalue ξ = eiπ/2, e3iπ/2, e−3iπ/2, or e−iπ/2 of C4 and
eigenvalue η = +i,−i of TxTy, Tx maps it to an eigenstate of
C4 and TxTy with eigenvalues −ηξ and −η, respectively:

C4Tx|ξ, η〉 = TyC4|ξ, η〉
= TxT −2

x TxTyC4|ξ, η〉
= Txe−2ikx ηξ |ξ, η〉
= −ηξTx|ξ, η〉, (F8)

where the first line comes from Eq. (F1) and

TxTyTx|ξ, η〉 = −TxTxTy|ξ, η〉
= −ηTx|ξ, η〉 (F9)

due to Eq. (F2). The commutation relations imply four two-
dimensional irreps M1, M2, M3, M4 as shown in Table III.

3. p4/m′

We study the group p4/m′ with φ = π and a 2-by-2 unit
cell. The lattice translation group and Brillouin zone are the
same as for the p4 case. We first prove that each band is
fourfold degenerate: since T 2

x = e2ikx , Tx has eigenvalues ηeikx ,
η = ±1. A Bloch eigenstate at k, |k; η〉, is mapped by T I to
another state at k with the same eigenvalue:

TxT I|k; η〉 = T IT −2
x Tx|k; η〉

= T Iηe−ikx |k; η〉
= ηeikxT I|k; η〉, (F10)

where the first line can be derived from Table I. In the spinful
case where (T I )2 = −1, there is a Kramers degeneracy, i.e.,
T I|k; η〉 and |k; η〉 are two different states. The anticommuta-
tion {Tx, Ty} = 0 implies that Ty flips the eigenstate of Tx:

TxTy|k; η〉 = −TyTx|k; η〉
= −ηeikx Ty|k; η〉. (F11)

Combining Eqs. (F10) and (F11), we conclude that each
eigenstate is at least fourfold degenerate.

We now study the irreps at the high-symmetry points , X ,
Y , M. The role of T I is to pair the two-dimensional irreps of
the p4 group. Following the irrep lebelling scheme used for p4
in the previous section, the irreps are summarized in Table IV
and justified as follows:

At X = (π/2, 0), the commutation relations [C2, T I] = 0
and [Ty, T I] = 0 lead to one irrpe X1X2, and similarly at Y
for Y1Y2. At  = (0, 0), the commutation relations [C4, T I] =
0 leads to one irrep 12. Finally, at M = (π/2, π/2), the
relations [C4, T I] = 0 and {TxTy, T I} = 0 lead to three four-
dimensional irreps M1M1, M3M3, and M2M4.

APPENDIX G: DERIVING THE SYMMETRY INDICATOR

In this Appendix, we describe how to find the symmetry
indicator classification of a space group and how to apply it to
a group of bands to determine in which topological class the
bands belong.

At the crux of the theory is the “EBR matrix” for the space
group. Each row of the matrix corresponds to a particular
choice of q and an irrep ρ of Gq (Sec. IV B). Each column
corresponds to a particular irrep of the little cogroup at a
particular high-symmetry momentum (Sec. III B). The entry
in the matrix indicates the number of times the irrep appears in
the band representation ρG induced from ρ, as we will define
in Eq. (G1) [14,48,49].

Let A be an integer EBR matrix of the symmetry group
under consideration. Since a group of topologically trivial
bands transforms identically to a sum of Wannier functions,
its irreps at high-symmetry points satisfy

v = An, (G1)

where v j is the number of times the jth irrep appears in the
band structure [8].

Let the Smith normal form of A be given by

A = U −1DV −1, (G2)

where D is a diagonal positive integer matrix with diagonal
entries (d1, . . . , dM , 0, . . . 0), i.e., the first M entries are pos-
itive and the remaining entries are zero, and U,V are integer
matrices invertible over the integers. The stable topological
classification for the space group is given by

Zd1 × · · · × ZdM . (G3)

We seek a formula that expresses the topological invariant
(i.e., the element of Zdm of a particular group of bands) in
terms of the little cogroup irreps at high-symmetry points.
This index is given by [14,16,48–50]

index = (Uv)m mod dm, (G4)

where 1 � m � M, and dm > 1.
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The number of Wannier functions that are centered at a
particular maximal Wyckoff position w can be determined by
the following formula [31,36]:

ew =
∑
i∈w

dim(ρi )[V DpUv]i

mod gcd

⎧⎨⎩
(∑

i∈w

dim(ρi )Vi j

)∣∣∣∣∣
j>M

⎫⎬⎭. (G5)

The sum over i ∈ w indicates the sum over EBRs induced
from a representation ρi of the site symmetry group of the
Wyckoff position w; Dp is the pseudoinverse of D, a diagonal
matrix with diagonal entries (d−1

1 , . . . , d−1
M , 0, . . . , 0); and

gcd indicates the greatest common divisor.
In the following, we compute the EBR matrix and Smith

decomposition for relevant groups discussed in the main text.

1. p2

The basis for band representations (columns) and the basis
for coefficients of EBRs (rows) are(


(p2)
1 , 

(p2)
2 ,Y (p2)

1 ,Y (p2)
2 , X (p2)

1 , X (p2)
2 , M (p2)

1 , M (p2)
2

)
, (G6)

where �
(p2)
i is defined in Table II, and

(1Ē4a,2 Ē4a,1 Ē4b,1 Ē4b,1 Ē4c,2 Ē4c,1 Ē4d ,2 Ē4d ), (G7)

where j Ē nw is an irrep of the site symmetry group C2 of the
Wyckoff position nw. 1Ē and 2Ē have C2 eigenvalue +i and
−i, respectively. In this basis, the EBR matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 1 1 1 1 1
0 2 1 1 1 1 1 1
1 1 2 0 1 1 1 1
1 1 0 2 1 1 1 1
1 1 1 1 2 0 1 1
1 1 1 1 0 2 1 1
1 1 1 1 1 1 2 0
1 1 1 1 1 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (G8)

The Smith normal form matrices are

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (G9)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1 0 −1 0 −1 0
1 2 −1 0 −1 0 0 0

−1 −1 1 0 0 0 1 0
−1 −1 0 0 1 0 1 0
−3 −5 2 0 2 0 2 0
−1 −1 0 0 1 1 0 0
−1 −1 1 1 0 0 0 0
−1 −1 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (G10)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 −1 −1 −1
0 0 0 0 −1 −1 −1 −1
0 −1 1 0 −2 0 1 0
0 0 0 0 0 0 1 0
0 −1 0 1 −2 1 0 0
0 0 0 0 0 1 0 0
0 1 0 0 2 0 0 1
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (G11)

The stable indicator is given by Eq. (42) in the main text:

index = #1 − #2 + #X1 − #X2 + #Y1 − #Y2

+ #M1 − #M2 − N mod 4. (G12)

The symmetry indicators for Wannier centers are

e2a = 2N − #X1 − #Y1 − #M1 mod 2, (G13)

e2b = −N/2 + #Y1 mod 2, (G14)

e2c = −N/2 + #X1 mod 2, (G15)

e2d = −N/2 + #M1 mod 2. (G16)

2. p4

The basis for band representations (columns) and the basis
for coefficients of EBRs (rows) are

(1, 2, 3, 4, M1, M2, M3, M4, X1, X2), (G17)

where �i is defined in Table III, and(
1Ē4a

1 ,1 Ē4a
2 ,2 Ē4a

2 ,2 Ē4a
1 , E4b

1 ,1 Ē4b
2 ,2 Ē4b

2 ,2 Ē4b
1 ,1 Ē8c,2 Ē8c

)
,

(G18)

where j Ē nw is an irrep of the site symmetry group of the
Wyckoff position labeled by nw. 1Ē and 2Ē have C2 eigen-
values +i and −i, respectively, while 1Ē1, 1Ē2, 2Ē2, and 2Ē1

have C4 eigenvalues eiπ/4, ei3π/4, e−3iπ/4, e−iπ/4, respectively.
In this basis, the EBR matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 0 1 1 1
0 1 0 1 1 1 0 0 1 1
1 0 1 0 0 1 1 0 1 1
0 1 0 1 0 0 1 1 1 1
1 0 0 1 1 0 1 0 1 1
1 1 0 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 1 1
0 0 1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 3 1
1 1 1 1 1 1 1 1 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G19)
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The Smith normal form matrices are

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (G20)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 1 1 0 1 0 0
−1 −1 −1 0 1 1 1 1 0 0
0 −1 −1 0 1 1 1 2 −1 0

−1 −1 −1 0 2 1 1 2 −1 0
0 1 1 0 0 −1 0 −1 0 0
0 1 1 0 −1 −1 −1 −1 1 0

−1 0 1 0 0 −1 0 −1 1 0
6 4 2 0 −9 −3 −5 −7 4 0
1 1 1 1 −1 −1 −1 −1 0 0
0 0 0 0 −1 −1 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(G21)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −3 0 0 −1 −5 −1 −1
0 1 0 −2 0 0 −1 −3 −1 −1
0 0 1 −1 0 0 0 −1 −1 −1
0 0 0 1 0 0 0 1 −1 −1
0 0 0 1 1 0 0 2 1 0
0 0 0 −2 0 1 −1 −4 1 0
0 0 0 −1 0 0 0 −2 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 2 0 0 1 4 0 1
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(G22)

The stable indicators is given by Eq. (44) in the main text,

index = 2#1 + 4#2 − 2#3 + #M1 + 3#M2

− 3#M3 − #M4 + 4#X1 mod 8, (G23)

which corresponds to the 8 in the diagonal of D.
The symmetry indicators for Wannier centers are

e4a = 2(2#2 + 2#3 + #M2 + #M4 + 2#X2) mod 8,

(G24)

e4b = 2(2#2 + 2#3 − #M2 − #M4 − N/2) mod 8,

(G25)

e8c = #X1 − #X2 mod 4. (G26)

3. p4/m′

The basis for band representations (columns) and the basis
for coefficients of EBRs (rows) are

(14, 23, M1M1, M3M3, M2M4), (G27)

where �i is defined in Table IV, and(
Ē4a

1/2, Ē4a
3/2,

1Ē4b
1/2

2Ē4b
3/2,

1Ē4b
3/2

1Ē4b
3/2,

2Ē4b
1/2

2Ē4b
1/2, Ē8c

)
, (G28)

where Ē nw is an irrep of the site symmetry group of the
Wyckoff position labeled by nw. Ē4a

jz has C4 eigenvalues
e±i π

2 jz , while 1Ē4b
jz and 2Ē4b

jz correspond to eigenvalues ei π
2 jz

and e−i π
2 jz of C4( 1

2 , 1
2 ) separately. For the site-symmetry group

of the 4a position, there are two irreps Ē4a
1/2 and Ē4a

3/2, while
for the site-symmetry group of the 4b position, there are three
irreps, 1Ē4b

1/2
2Ē4b

3/2, 1Ē4b
3/2

1Ē4b
3/2 and 2Ē4b

1/2
2Ē4b

1/2. The difference
between these comes from the unusual pairing of irreps with
C4( 1

2 , 1
2 ) eigenvalues ξ and −iξ ∗ as derived in Eq. (21). For

the site-symmetry group of the 8c position, there is only one
irrep, Ē8c, with C2( 1

2 , 0) eigenvalues ±i.
In this basis, the EBR matrix is

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 2 2
1 1 1 0 2
1 0 0 1 1
0 1 0 1 1
1 1 2 0 2

⎞⎟⎟⎟⎟⎟⎠. (G29)

The Smith normal form matrices are

D =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠, (G30)

U =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
1 0 −1 −1 0
1 −1 0 0 0

−1 −1 1 1 1

⎞⎟⎟⎟⎟⎟⎠, (G31)

V =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠. (G32)

The stable indicator is given by Eq. (48) in the main text,

index1 = N/4 mod 2. (G33)

The symmetry indicators for Wannier centers are

e4a = N

2
+ 2(#M1M1 + #M3M3) mod 4, (G34)

e4b = −N

4
+ 2(#M1M1 + #M3M3) mod 4, (G35)

e8c = 0 mod 2. (G36)

APPENDIX H: CHERN NUMBER INDICATORS
WITH n-FOLD ROTATION SYMMETRY AT π-FLUX

AND NO SPIN-ORBIT COUPLING

In this section we use our theory to derive the Chern
number symmetry indicators for C4, C6 and C3 rotational sym-
metric systems in φ = π flux. We consider the case without
time-reversal symmetry or spin-orbit coupling.

1. Irreps of the little cogroups

Consider a two dimensional lattice system with Cn rotation
symmetry. We choose the q-by-q unit cell for 2π p/q mag-
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TABLE VIII. An irrep at  is labeled with ξ which has C6

eigenvalues εξ and ε̄ξ , where ε = ei2π/3.

(0, 0)

Irrep 1 2 3 4 5 6

ξ 1 eiπ/3 ei2π/3 −1 −eiπ/3 −ei2π/3

netic flux. The little cogroup at a high-symmetry momentum
point k is G̃k = Cn � Tk , where Tk = T/TM . T is generated
by T (â1), T (â2) and TM is generated by T (q̂a1), T (qâ2);
thus, |Tk| = q2. The rotation group has n elements, |Cn| = n.
Therefore, according to Eq. (33), at 2π p/q flux there are n
distinct q-dimensional projective irreps.

At π flux, we choose a basis such that the translations are
represented by

T (â1) = eik1σx, (H1)

T (â2) = eik2σy, (H2)

T (â3) = −ei(k2−k1 )σz, (H3)

where â3 = â2 − â1. For the fourfold symmetric case (n = 4),
the lattice vectors are qa1 = q(1, 0), qa2 = q(0, 1), and the re-
ciprocal lattice vectors are b1/q = (1, 0)/q, b2/q = (0, 1)/q
in Cartesian coordinates; for the three- and sixfold symmet-
ric cases (n = 3, 6), the lattice vectors are qa1 = q(1, 0),
qa2 = q( 1

2 ,
√

3
2 ), and the reciprocal lattice vectors are b1/q =

(1,−1/
√

3)/q, b2/q = (0, 2/
√

3)/q in Cartesian coordinates.
In this basis, the representation matrix for Cn is obtained

by solving the equation

CnT (a) = T (Rna)Cn (H4)

for any Cn-invariant momentum point. We further require the
Cn matrices to satisfy Cn

n = 1. Then there are n solutions
corresponding to the n overall phases ξ , each of which is a
distinct irreducible representation of G̃k . From this equation,
we find the C6, C3, and C4 matrices explicitly:

(1) The C6 symmetry operator at  = (0, 0) is

C6 = − 1
2 [σ0 + i(σx + σy + σz )]ξ, (H5)

where ξ = ei( j−1)π/3, j = 1, ..., 6 labels the irrep.
(2) The C3 operator at  and K is the square of this C6

matrix.
(3) The C4 symmetry operator at  = (0, 0) is (σx +

σy)ξ/
√

2, while the C4 symmetry operator at M = (1/2, 1/2)
is (σ0 − iσz )ξ/

√
2, where ξ = 1, i,−1,−i.

The irreps obtained by this method for the point group p6
are listed in Tables VIII , IX , and X for , K , and M,
respectively. The irreps for the point group p3 at  = (0, 0),
K = (1/3, 2/3), K ′ = (2/3, 1/3) are all isomorphic to the

TABLE IX. An irrep at K is labeled with ξ which corresponds to
C3 eigenvalues εξ and ε̄ξ , where ε = ei2π/3.

K (1/3, 2/3)

Irrep K1 K2 K3

ξ 1 ei2π/3 e−i2π/3

TABLE X. The irreps of M are given in the basis such that
T (â1) = iσy and T (â2) = σz.

M(1/2, 0)

Irrep M1 M2

C2 σz −σz

T (â2) σz σz

irreps of K in p6 shown in Table IX. The irreps for the point
group p4 are listed in Table XI . The irreps are isomorphic to
those that appear for the spinful case in Table III which could
also be derived using Eq. (H4).

The discussion above pertains to irreps of the little cogroup
of a point in momentum space. We now derive the irreps of
the site symmetry group of each Wyckoff position in real
space. Whil the site symmetry groups are the same as for the
nonmagnetic cases, and therefore, the irreps remain the same,
the elementary band representations induced from these irreps
are fundamentally different from the nonmagnetic cases. We
compute these induced representations using Eq. (41) for p4,
p6, and p3. The resulting EBR matrices are shown in the
following.

2. Chern number indicators

a. p4

For wallpaper group p4, all the irreps in the spinless cases
are isomorphic to the spinful cases. Therefore, the EBR matrix
and the symmetry indicators are the same as the spinful case
shown in Appendix G. We conclude that the indicator is

index = 2#1 + 4#2 − 2#3 + #M1 + 3#M2

− 3#M3 − #M4 + 4#X1 mod 8, (H6)

where the irreps � j are defined in Table XI.

TABLE XI. High-symmetry momenta (first row) and the irreps
(second row) of their little cogroup for the group p4. Subsequent
rows list the eigenvalue of the indicated symmetry with ε = eiπ/4.

(0, 0)

Irrep 1 2 3 4

C4T (x̂)

(
1

i

)
ε

(
i

−1

)
ε

(−1
−i

)
ε

(−i
1

)
ε

T (x̂)T (ŷ) iσz iσz iσz iσz

M(π/2, π/2)

Irrep M1 M2 M3 M4

C4

(
1

i

) (
i

−1

) (−1
−i

) (−i
1

)
T (x̂)T (ŷ) iσz iσz iσz iσz

X (1/2, 0)

Irrep X1 X2

C2 σz −σz

T (ŷ) σz σz
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b. p6

The basis for band representations (columns) and the basis
for coefficients of EBRs (rows) are

(1, 2, 3, 4, 5, 6, K1, K2, K3, M1, M2), (H7)

where �i is defined in Tables VIII, IX and X, and(
4a

1 , 4a
2 , 4a

3 , 4a
4 , 4a

5 , 4a
6 , 8b

1 , 8b
2 , 8b

3 , 12c
1 , 12c

2

)
,

(H8)

where nw
j is an irrep of the site symmetry group of the

Wyckoff position labeled by nw. 4a
j has C6 eigenvalue

ei( j−1)π/3, j = 1, ..., 6, 8b
j has C3 eigenvalue ei( j−1)2π/3, j =

1, 2, 3, and 12c
j has C2 eigenvalue +1,−1. In this basis, the

EBR matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 0 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1
1 0 0 0 1 0 1 0 1 1 1
0 1 0 0 0 1 1 1 0 1 1
1 0 1 0 0 0 0 1 1 1 1
0 1 0 1 0 0 1 0 1 1 1
0 1 1 0 1 1 1 1 2 2 2
1 0 1 1 0 1 2 1 1 2 2
1 1 0 1 1 0 1 2 1 2 2
1 1 1 1 1 1 2 2 2 4 2
1 1 1 1 1 1 2 2 2 2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (H9)

The Smith normal form matrices are

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H10)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 −1 1 1 1 −1 0
−1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 −1 1 1 1 −1 0

−1 0 −1 −1 −1 −1 1 1 1 0 0
−1 0 0 −1 −1 −1 2 1 1 −1 0
−1 0 −1 0 −1 −2 1 1 1 0 0
1 0 0 1 0 0 −1 0 0 0 0
1 0 3 −1 2 5 −2 −3 −4 2 0
2 0 10 −4 6 16 −5 −9 −13 6 0
1 1 1 1 1 1 −1 −1 −1 0 0
0 0 0 0 0 0 −1 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (H11)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 −1 5 −1 −1
0 1 0 0 0 −1 0 −2 7 −1 −1
0 0 1 0 0 0 0 −2 9 −1 −1
0 0 0 1 0 −1 0 −3 11 −1 −1
0 0 0 0 1 0 0 0 1 −1 −1
0 0 0 0 0 0 0 −4 15 −1 −1
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 2 −8 1 0
0 0 0 0 0 0 0 1 −4 1 0
0 0 0 0 0 1 0 3 −10 0 1
0 0 0 0 0 0 0 1 −4 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (H12)

The stable indicator is

index = 2#1 − 2#3 − 4#4 + 6#5 + 4#6

− 5#K1 + 3#K2 − #K3 + 6#M1 mod 12, (H13)

where the modulus corresponds to the 12 in the diagonal of D.

c. p3

The basis for band representations (columns) and the basis
for coefficients of EBRs (rows) are

(1, 2, 3, K1, K2, K3, K ′
1, K ′

2, K ′
3), (H14)
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where �i is defined in Table IX and(
4a

1 , 4a
2 , 4a

3 , 4b
1 , 4b

2 , 4b
3 , 4c

1 , 4c
2 , 4c

3

)
, (H15)

where nw
j is an irrep of the site symmetry group of the

Wyckoff position labeled by nw. nw
j has C3 eigenvalue

ei( j−1)2π/3, j = 1, 2, 3. In this basis, the EBR matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 1 1 0
1 0 1 0 1 1 0 1 1
1 1 0 1 0 1 1 0 1
0 1 1 1 0 1 0 1 1
1 0 1 1 1 0 1 0 1
1 1 0 0 1 1 1 1 0
0 1 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (H16)

The Smith normal form matrices are

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (H17)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 −1 0 0 1 0
−1 0 0 1 0 0 1 0 0
0 1 0 0 −1 −1 1 1 0
1 0 0 0 0 0 −1 0 0
2 1 0 −1 −1 0 −1 0 0
1 0 0 −1 −1 0 0 1 0
2 −2 0 −1 1 3 −4 −2 0
1 1 1 −1 −1 −1 0 0 0
0 0 0 −1 −1 −1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(H18)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2 0 0 0 −3 −1 −1
0 1 0 0 0 0 1 −1 −1
0 0 0 0 0 0 −1 −1 −1
0 0 −1 1 0 0 −2 1 0
0 0 −2 0 1 0 −4 1 0
0 0 0 0 0 0 0 1 0
0 0 −1 0 0 1 −2 0 1
0 0 1 0 0 0 2 0 1
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (H19)

The stable indicator is

index = 2#1 − 2#2 − #K1 + #K2 + 3#K3

+ 2#K ′
1 − 2#K ′

2 mod 6, (H20)

where the modulus corresponds to the 6 in the diagonal of D.

APPENDIX I: SYMMETRY INDICATOR
FOR THE CHERN NUMBER

The Chern number in a fourfold symmetric system is given
by Eq. (45) [22]:

ei π
2 C = (−)2SNw

C4
wX

C2
wM

C4
, (I1)

where S = 1/2 for spinful systems and w�
g is the product of

eigenvalues of the symmetry g for filled bands at momentum
�. We now rewrite this formula in terms of the irreps of the
little cogroups for p4.

From the irreps of p4 listed in Table III, it is evident that
wX

C2
≡ +1 for both irreps X1 and X2. For the four irreps at

M, w
M1
C4

= w
M3
C4

= +1 and w
M2
C4

= w
M4
C4

= −1, where the su-
perscript is now labeling the irrep.

We now find the C4 eigenvalues of irreps at . We know
from Appendix F that for an eigenstate |ξ, η〉 with an eigen-
value ξ of C4Tx, and η of TxTy, there is a degenerate state
Tx|ξ, η〉 with eigenvalues:

C4Tx Tx|ξ, η〉 = ξηTx|ξ, η〉, (I2)

TxTy Tx|ξ, η〉 = −ηTx|ξ, η〉. (I3)

Neither of these states is separately an eigenstate of C4, but we
can find a linear combination that is an eigenstate by solving
the eigenvalue equation

C4(α|ξ, η〉 + βTx|ξ, η〉) = λ(α|ξ, η〉 + βTx|ξ, η〉). (I4)

Using the equations above and T 2
x = 1, one finds λ = ±

√
ξ 2η.

Therefore, for the four irreps at  listed in Table III, w
1
C4

=
w

3
C4

= +i and w
2
C4

= w
4
C4

= −i.

Plug these w
�i
Cn

of irreps into Eq. (I1), we get Eq. (46)

C = 2N + #1 + #3 − #2 − #4

+ 2(#M2 + #M4) mod 4. (I5)

APPENDIX J: SYMMETRY ANALYSIS
AT OTHER FLUXES

In this section, we apply the nonmagnetic symmetry in-
dicators (i.e., ignoring the sublattice symmetries) to analyze
fluxes φ/2π = 0, 1/5, 2/5. The Wyckoff positions are de-
fined in Fig. 6(b).

For φ = 0, the layer group is p4/m′mm. The symmetry
indicators of Wannier centers are [31]

e1a′ = N − 2[M 1
2
] mod 4, (J1)

e1b′ = 2[M 1
2
] mod 4, (J2)

where N is the number of filled bands and [M 1
2
] = #M 1

2
−

# 1
2
, where #� 1

2
indicates the number of times the two-

dimensional irrep E 1
2

(C4 eigenvalues eiπ/4, e−iπ/4) appears
in the valence bands at the high-symmetry point � = , M.

For φ = 2π
5 , 4π

5 , the layer group is p4. The symmetry
indicators are [31]

e1a′ = N − [X2] + 3
2 ([M1] + [M3]) + 2[M2] mod 4, (J3)

e1b′ = [X2] − 1
2 ([M1] + [M3]) − 2[M2] mod 4, (J4)

e2c′ = − 1
2 ([M1] + [M3]) mod 2. (J5)
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TABLE XII. Evaluation of symmetry indicators in Eqs. (J1) and (J2) at half filling of the OAL model at φ = 0 (middle row) and φ = π

(last row).

φ/2π # 1
2

#M 1
2

N e1a′ mod 4 e1b′ mod 4 a1a′ η mod 4 Phase

0 0 1 2 0 2 2 2 OAL
1/2 2 3 8 2 2 2 0 Trivial

Here we use the notation [Mj] = #Mj − # j , where j =
1, 2, 3, 4 corresponds to the irrep with C4 eigenvalue
exp(i π

2 ( j − 1
2 )), and [X1] = #X1 − #1 − #3, [X2] = #X2 −

#2 − #4, where X1,2 corresponds to the irrep with C2 eigen-
values +i, −i. #� j indicates the number of times the irrep � j

appears in the valence bands at the high-symmetry point �.
The OAL phase and corner charges are indicated by the fill-

ing anomaly η. The filling anomaly is defined as the electron
number difference between neutral and symmetric configu-
rations for a symmetric finite system [20]. In the absence
of polarization, nonzero η implies that the ion charge at 1a′
Wyckoff position is not equal to the electron charge corre-
sponding to the Wannier functions centered at 1a′ [31,51]

η = Ne,neutral − Ne,symmetric mod 4,

= a1a′ − e1a′ mod 4, (J6)

where a1a′ and e1a′ are the ion charge and electron charge
in units of |e| at 1a′ position. The modulus 4 is specific for
our model. In the absence of polarization, the corner charge is
given by Qc = η/4 mod 1.

The nonmagnetic symmetry indicators of the model de-
scribed in Sec. V at 0 and π -flux are shown in Table XII.
The indicators at 2π/5 and 4π/5-flux are in Table XIII. The
symmetry indicators show that the system at 0 and 2π/5-flux
is an OAL and at 4π/5 and π flux is trivial. These results are
consistent agree with the open-boundary Hofstadter spectrum
in Fig. 5.

The filling anomaly cannot jump when C4 symmetry is
preserved, unless the bulk gap or the surface gap closes. In this
model, the bulk gap closes between 0 and π flux, as shown in
Fig. 5. The gap closing corresponds to the transition between
two distinct atomic insulating phases that have different Wan-
nier centers.

APPENDIX K: WILSON LOOP AND NESTFED
WILSON LOOP

An alternative topological invariant that characterizes the
model in Sec. V is the quadrupole moment Qxy, or equiva-
lently the Wilson loop of Wilson loop (nested Wilson loop)
[19].

For discrete tight binding models, the Wilson loop is de-
fined as [19,52,53]

[WC (k0)]mn = 〈um(k0)|
∏
k∈C

P (k)|un(k0)〉, (K1)

where P (k) =∑nocc
l=1 |ul (k)〉〈ul (k)| is the projector onto oc-

cupied bands, C is a loop in the Brillouin zone and k0 is the
base point. We consider two Wilson loops: Wx(k0

x , ky) with the
path kx : 0 → 2π and Wy(kx, k0

y ) with the path ky : 0 → 2π .
The Wilson loop matrices are not gauge invariant since they
depend on the gauge choice of Bloch wave functions. How-
ever, the eigenvalues of the Wilson loop matrices are gauge
invariant. Since Wilson loops are unitary, their eigenvalues
are unit complex number of the form e2π iν . We plot νx(ky) for
Wx(ky) and νy(kx ) for Wy(kx ) for the half filling gap for several
fluxes in Fig. 7. The eigenvalue νx(ky) has a physical mean-
ing, namely, the x coordinate of the hybrid Wannier function
|w(x, ky)〉. The polarization is determined by the trace of the
Wilson loop matrix ν [20,54]

px =
∫

ky

2π

1

2π
Im(tr logWx(ky)), (K2)

which is equal to the sum of Wilson loop eigenvalues. In our
model, polarization vanishes at half filling at any φ. A similar
expression for the quadrupole moment has been studied in
Refs. [55]. However we do not use this approach. Instead we
study the nested Wilson loop.

When the Wilson loop spectrum νx(ky) is gapped, one can
compute the nested Wilson loop of the Wilson loop eigen-
states that have gaps with other states. The eigenvalues of the
nested Wilson loop are denoted as ννx

y and ν
νy
x . For the selected

gapped Wilson loop eigenstates, the sum of the nested Wilson
loop eigenvalues determines its quadrupole moment [20]

Qxy =
nνx

occ∑
i=1

ννx
y =

n
νy
occ∑

i=1

ν
νy
x . (K3)

We choose q-by-1 unit cell for flux φ = 2π p
q to compute

the Wilson loop spectrum. In Fig. 7 we show the Wilson loop
spectrum of the 2q valence bands below half filling of the
energy spectrum.

TABLE XIII. Evaluation of symmetry indicators Eqs. (J3), (J4), and (J5) at half filling of the OAL model at φ = 2π/5 (middle row) and
φ = 4π/5 (last row).

φ/2π [X2] [M1 + M3] [M2] N e1a′ mod 4 e1b′ mod 4 e2c′ mod 2 a1a′ η mod 4 Phase

1/5 0 0 1 50 0 2 0 2 2 OAL
2/5 0 0 0 50 2 0 0 2 0 Trivial
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FIG. 7. Wilson loop spectrum for the valence bands at half-filling, directed in x direction and in y direction, as defined in Eq. (K1). The
upper row corresponds to the spectrum of Wx (ky ), while the lower two row corresponds to the spectrum of Wy(kx ). The critical flux is between
2π/5 and 4π/5.

The Wilson loop spectrum νx(ky) has a gap at half filling.
Therefore, we study the nested Wilson loop ννx

y for the q
states below this gap. We find that the quadrupole moment
Eq. (K3) for the chosen bands is 0.5 when 0 � φ < φ∗, and
0 when φ∗ < φ < π , where φ∗ is the critical flux where
the Hofstadter spectrum shows the bulk gap closing at half
filling.

We now turn to the Wilson loop spectrum νy(kx ) which has
two gaps that separate one band on the top, one band on the
bottom and 2q − 2 bands around zero. Therefore, we study the
nested Wilson loop ν

νy
x for the single band on the bottom. It

turns out that the quadrupole moment Eq. (K3) for the chosen
bands is again 0.5 when 0�φ < φ∗, and 0 when φ∗ <φ <π .

APPENDIX L: MAGNETIC WANNIER FUNCTIONS
AND BALIAN-LOW THEOREM

In this Appendix, we explain the Balian-Low obstruction of
exponentially localized Wannier functions in two dimensional
systems in a magnetic field. The key ingredient of this theorem
is the projective translation group, which bridges our two
dimensional magnetic systems and the quantum phase space
of one dimensional quantum mechanics where the theorem
was originally introduced.

Two-dimensional system under uniform magnetic field
have magnetic translation operators that are projective repre-
sentations of the translation group. The operators satisfy the
following multiplication rule

T (a1)T (a2) = T (a1 + a2)e
i
2 B·(a1×a2 ). (L1)

The magnetic unit cell encloses an integer multiple of 2π

flux, which ensures that lattice translations commute. Then the
momentum space and Bloch wavefunctions are defined. The
Bloch wavefunctions in momentum space Fourier transform
into the magnetic Wannier functions in real space.

The quantum phase space of one dimensional quantum
mechanics is labeled by two dependent variables, position x
and wave vector k = p/h̄ = −i d

dx . Now consider the transla-
tion operators in the quantum phase space, Tx(�x ) = e−ik�x ,

Tk (�k ) = eix�k . The two translations satisfy commutation re-
lation Tx(�x )Tk (�k ) = Tk (�k )Tx(�x )ei�x�k . More generally,
treating x and k on the same footing as a = (x1, x2) ≡ (x, k),
the general translations in quantum phase space satisfy the
same algebra as given by Eq. (L1),

T (a1)T (a2) = T (a1 + a2)e
i
2 a1×a2 , (L2)

where a1 × a2 = −a2 × a1 is a scalar in two dimensions.
In one-dimensional quantum mechanics, it was desired to
find a set of orthonormal basis functions that are localized
in both x and k directions and form a lattice in quantum
phase space. The functions are related by discrete translation
symmetries

gm,n(x) = eixm�k g(x − n�x ), (L3)

where g(x) is centered at (0,0) and �x�k is the size of the
unit cell. It was found that the basis is complete if and only if
�x�k = 2π [43]. Lattices satisfying this condition are called
von Neumann lattices and the basis functions are also called
“Wannier functions.” In the language of time-frequency signal
analysis, this set of basis functions {gm,n|m, n ∈ Z} is also
called a Gabor system.

In the quantum phase space (or time-frequency analysis),
there is a Balian-Low theorem [44] stating that when �x�k =
2π for the complete and orthonormal basis of Hilbert space
{gm,n|m, n ∈ Z},

either
∫ ∞

−∞
x2|g(x)|2dx = ∞

or
∫ ∞

−∞
k2 |̃g(k)|2dk = ∞, (L4)

as a consequence of the algebra in Eq. (L2) [56]. This theo-
rem forbids the existence of an exponentially localized Gabor
system.

Now return to two-dimensional systems in a magnetic
field. It is shown that there is also a Balian-Low theorem
that forbids the exponentially localized Wannier function for
one band purely due to the algebras of the translation group
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operators [57]. This result is analogous to the one that has
been understood in condensed matter physics.

For a two dimensional lattice system in a magnetic field,
each single gapped band has a nonzero Chern number as
one can see from the Streda formula. At a rational flux φ =
2π p/q, the Streda formula says [58]

ρ̄ = C
φ

2π
+ s, (L5)

where s ∈ Z for noninteracting systems without symmetry
breaking [32]. For a single gapped band ρ̄ = 1/q. Therefore,
we have C p = 1 mod q.

Interestingly, as Thouless showed in Ref. [59], when the
Chern number is nonzero, there are no exponentially localized
Wannier functions and the divergence of the variance of either
the x or y coordinate is in the form of Eq. (L4) by replacing k
with y.
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