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Topological invariant for multiband non-Hermitian systems with chiral symmetry
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Topology plays an important role in non-Hermitian systems. How to characterize a non-Hermitian topological
system under open-boundary conditions (OBCs) is a challenging problem. A one-dimensional (1D) topological
invariant defined on a generalized Brillion zone (GBZ) was recently found to successfully describe the topo-
logical property of the two-band Su-Schrieffer-Heeger model. But for a 1D multiband chiral symmetric system
under OBCs, it is still controversial how to define the topological invariant. We show in this paper by exact proof
and detailed demonstration that to acquire the topological invariant for multiband non-Hermitian models with
chiral symmetry, the GBZ as the integral domain should be replaced by a more generalized closed loop. Our work
thus establishes the non-Bloch bulk-boundary correspondence for 1D multiband chiral symmetric non-Hermitian
systems.
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I. INTRODUCTION

Recent studies on non-Hermitian systems have revealed
many new concepts and phenomena [1–13], such as non-
Hermitian skin effect [14–27], distinct differences between
the open-boundary spectra (OBS) and the correspond-
ing periodic-boundary spectra [28–32], and coalescence of
states, i.e., exception points [28,31,33–42]. Topology is
also found to play an increasingly important role in non-
Hermitian systems [11,14,22,31,37,43–75]. The central prob-
lem of non-Hermitian topological systems is the non-Bloch
bulk-boundary correspondence (BBC). Different from the
Hermitian counterparts [76–79], or non-Hermitian systems
with half-infinite boundary conditions, where the topological
invariants can be defined on the Brillouin zone (BZ) [53,55],
we have no fundamental principles to guide us to find a topo-
logical invariant to characterize a non-Hermitian topological
system under open-boundary conditions (OBCs). Even in one
dimension, the non-Bloch BBC has not been well solved yet.

For a one-dimensional (1D) non-Hermitian Su-Schrieffer-
Heeger model, a pioneer work recently proposed that the
topological invariant should be redefined on a generalized
Brillouin zone (GBZ) to capture the correct non-Bloch BBC
[14]. The idea of replacement of BZ by GBZ has been further
applied to two-dimensional systems and has been proven to be
very successful [48,71,80]. This is feasible because in these
models the GBZ is a unique closed loop or a unique closed
surface. However, for 1D multiband non-Hermitian systems
under OBCs, the situation changes completely. Generally, one
has multiple sub-GBZs [81] and especially for systems with
chiral symmetry, the OBS consists of N pairs of open arcs, and
each pair is centrosymmetric about E = 0 and corresponds to
a closed loop (sub-GBZ). It is found that in some models,
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choosing one or some of the sub-GBZs to replace BZ in
the definition of the topological invariant could not give the
non-Bloch BBC. On the other hand, the number of topolog-
ically protected edge states (TPESs) changes even when the
system is under a topologically trivial variation [47,82,83].
This means that the number of TPESs cannot be the candidate
of the invariant. Thus, how to find out the topological invari-
ant of the 1D multiband non-Hermitian systems with chiral
symmetry becomes an open problem.

In this paper we solve this problem by redefining the topo-
logical invariant ν on a more generalized closed loop Lβ in
the complex β plane and then by exactly proving the relevant
statement. We show explicitly that the number of TPESs for
systems characterized by ν can vary between |ν| and 2|ν|,
and clarify the origin of the defectiveness of the TPESs. We
discuss the implications of the conditions on the topological
phase transitions imposed by our topological invariant.

This paper is organized as follows. In Sec. II, we give a
theorem on our topological invariant and then demonstrate by
a simple model the consistency between the occurrence of the
TPESs and the invariant. In Sec. III, we give the exact proof of
our theorem and we also reveal the origin of the defectiveness
of the TPESs. In Sec. IV, we discuss the topological phase
transitions and their implications imposed by the invariant. In
Sec. V, we summarize our results.

II. TOPOLOGICAL INVARIANT AND THE THEOREM

We start from a general non-Hermitian tight-binding model
given by

H =
∑

j

M1∑
m=−M2

2N∑
μ,ν=1

| j + m〉μ(Tm)μν〈 j|ν, (1)

where Tm is the 2N × 2N hopping matrix between the mth
nearest-neighbor unit cells, | j〉μ is the localized μ orbital state
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at unit cell j, and M1 and M2 denote the hopping ranges along
the forward and backward directions, respectively. In terms of
β = eik , the non-Bloch Hamiltonian of H can be expressed as

H (β ) =
M1∑

m=−M2

Tmβ−m. (2)

Since for a given energy E , det[H (β ) − E ] can generally be
viewed as a polynomial of β and the corresponding secular
equation det[H (β ) − E ] = 0 has (p + q) β roots βi(E ) with
p = 2NM1 and q = 2NM2, we have

det[H (β ) − E ] =
∏p+q

i=1 �β − βi(E )�
β p

. (3)

These β roots are assumed to be ordered in absolute value
as |β1(E )| � . . . � |βp+q(E )|. Each βi(E ) corresponds to an
eigenvector φi, obeying the eigenequation

H[βi(E )]φi = Eφi, (4)

where i = 1, . . . , p + q. A state of energy E belonging to
the continuum OBS must obey |βp(E )| = |βp+1(E )| [28]. If
the system holds chiral symmetry, i.e., there exists a chiral
operator S satisfying {S, H (β )} = 0 with S2 = 1, then H (β )
can always take the following representation (S = σz ⊗ IN ):

H (β ) =
(

0 R+(β )
R−(β ) 0

)
, (5)

where R± is a N × N matrix. When the open system is gapful,
the E = 0 state would not belong to the continuum OBS,
which means |βp(0)| �= |βp+1(0)|. When the system is gap-
less, the E = 0 state would be connected to the continuum
OBS, with |βp(0)| = |βp+1(0)|.

In order to study the topological property of this non-
Hermitian system, it is very meaningful to consider a class
in which all the systems are topologically equivalent to it.
Any two systems in the class under OBCs can be deformed
continuously to each other without closing the gap. We de-
note this topologically equivalent class as Cν . Non-Hermitian
systems H (ρβ ) with 0 < ρ < ∞, which can be connected
continuously by similarity transformations to H (β ), obviously
belong to Cν , since they share exactly the same OBS [32].
However, different systems in the class may have a different
number of TPESs. If Cν contains a Hermitian system, then this
system under OBCs is expected to have the maximum number
of the TPESs in the class. For any closed loop Lβ one can
define the following winding number:

ν = 1

2π i

∮
Lβ

Tr(q−1dq)

= 1

4π i

∮
Lβ

dβ
d

dβ
{ln det[R+(β )] − ln det[R−(β )]}, (6)

where q comes from the standard occupation projection Q
operator [76]. Our theorem is as follows: If the closed loop
Lβ encircles the first p β roots of E = 0 with the other
q β roots being kept outside, the winding number ν gives
the topological invariant that characterizes the topological fea-
ture of the 1D chiral-symmetric non-Hermitian systems under
open boundary conditions, i.e., |ν| is equal to the minimum

number of TPESs of the systems in the topologically equiva-
lent class Cν and the number of TPESs of any system in Cν is
no more than 2|ν|.

Obviously, Lβ is not unique. A useful and convenient se-
lection of Lβ , particularly in numerical computation of the
invariant, is a perfect circle centered at the origin β = 0
with radius ρ obeying |βp(0)| < ρ < |βp+1(0)|. This is con-
sistent with Refs. [58,84,85], where the topological invariant
is proposed to be defined on a perfect circle with its radius
determined self-consistently. On the other hand, if one of the
sub-GBZs just contains the first p β roots, it can also serve as
a possible Lβ .

N = 1 is a special case which corresponds to the two-band
models and has been discussed previously in Ref. [14], where
the GBZ Cβ is proposed as the closed loop in the integral
of the winding number. This is consistent with our theorem,
since the GBZ has been proven to be the boundary between
the βp(E ) and βp+1(E ) regions for all E [86]. So for any state
of E not on the continuum OBS, the GBZ exactly encircles
only the first p β roots of E , so the GBZ is actually one of the
possible Lβ defined here. However, when N � 2, the situation
becomes much more complicated since the system generally
has 2N bands and the GBZ is composed of N closed loops
(sub-GBZs). One or several of the sub-GBZs, or even all the
sub-GBZs may be chosen as the integral loop(s), but they
are all found to be questionable. Therefore, our theorem can
be viewed as solving this problem in the case of multiband
chiral-symmetric non-Hermitian systems by choosing Lβ

instead of the GBZ as the integral loop in the definition of the
topological invariant.

We take a four-band (N = 2) model as an example to illus-
trate the theorem. The variations of the OBS with parameter
λ are shown in Fig. 1(a), while the topological invariant ν

calculated by Eq. (6) is shown in Fig. 1(b). The nontrivial
regions given by ν agree very well with that predicted by
the direct numerical diagonalization of the open chain of the
system. For more details, see Appendix D.

III. PROOF OF THE THEOREM

Here we give the proof of our theorem. We will derive
the solutions of the isolated E = 0 state under OBCs and
then connect its degeneracy to the topological invariant ν we
defined. For a gapful system, the E = 0 state does not belong
to the continuum OBS, which means |βp(0)| �= |βp+1(0)|. We
start from a system with property |βp(0)| < 1 < |βp+1(0)|.
If the non-Hermitian system H (β ) we study does not have
this property, one can always choose a H (ρβ ) system as the
starting one, since its β roots of E = 0 are just those of H (β ),
but scaled by a factor ρ−1. Thus for a 1D open chain with L
unit cells, the wave function of a state with energy E = 0 can
be expanded as the superposition of its p + q eigenmodes φi:

ψ( j) =
p∑

i=1

ci[βi(0)] jφi +
q∑

i=1

ci+p[βp+i(0)] j−Lφp+i, (7)

where j represents the jth unit cell with 1 � j � L, and ci is
the superposition coefficient of the eigenmodes φi.

Now we turn to the boundary conditions. We consider a
simplified case where both TM1 and T−M2 are invertible. If this
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FIG. 1. An example exhibiting the consistency between the
occurrence of zero modes and our topological invariant. (a) Ab-
solute value of energy of the states under OBCs as a function
of parameter λ, where the thick lines denote the topological zero
modes. (b) Topological invariant ν versus λ. Here R± = t±

0 + t±
x σx +

t±
y σy + t±

z σz, where t+
0 = 4 + 1.5β+, t+

x = 4 + 2.5/β+, t+
y = −i +

0.5i/β+, t+
z = 3 + 0.5β+ and t−

0 = 4.5 + 1.5/β−, t−
x = 3 + 2.5β−,

t−
y = −i + 0.5iβ−, t−

z = 2.5 + 0.5/β− with β± = 4∓λβ. The inset
gives the perfect circle in the β plane used to calculate the invariant at
a certain λ, with the solid circles (diamonds) being β roots of E = 0
from detR+ = 0 (detR− = 0).

is not the case in practice, for a gapful system, one can slightly
change them to be invertible without closing the gap and so
without changing the topological property of the system. By
introducing M1 extra unit cells near the left boundary and M2

extra unit cells near the right boundary, the range of j in ψ( j)
is changed to be −M1 + 1 � j � L + M2, and the OBCs now
become (see Appendix A)

ψ(0) = ψ(−1) = . . . = ψ(−M1 + 1) = 0,

ψ(L + 1) = ψ(L + 2) = . . . = ψ(L + M2) = 0. (8)

Below we first study the case in the thermodynamic limit and
then we take the effect of a finite and sufficiently large L into
account. As L → ∞, the OBCs can be expressed as

p∑
i=1

ci[βi(0)] jφi = 0, j = 0,−1, . . . ,−M1 + 1,

q∑
i=1

ci+p[βi+p(0)] jφi+p = 0, j = 1, 2, . . . , M2. (9)

These two sets of equations can be reexpressed as ML|L〉 =
0 and MR|R〉 = 0, where |L〉 = (c1, c2, . . . , cp)T and |R〉 =
(cp+1, cp+2, . . . , cp+q )T , respectively, and the p × p matrix

ML and the q × q matrix MR are given below:

ML = (	1,L,	2,L, . . . , 	p,L),

MR = (	p+1,R,	p+2,R, . . . , 	p+q,R),
(10)

with 	i,L ≡ (φi, β
−1
i φi, . . . , β

−M1+1
i φi )T , 	i,R ≡ (βiφi,

β2
i φi, . . . , β

M2
i φi )T . Whether ML or MR is singular

determines directly whether there exists an E = 0 solution.
The detailed form of ML or MR relies on that of H (β )

in the presence of chiral symmetry, Eq. (5). Let φi = (ui, vi )T .
The eigenequation for E = 0 becomes

R+(βi(0))vi = 0,

R−(βi(0))ui = 0,
(11)

where i = 1, . . . , p + q. If βi(0) comes from the kth root of
detR+ = 0, then (βi(0), φi ) is also denoted as (β+

k (0), φ+
k )

with φi = (0, vi )T . Otherwise βi(0) may come from the
kth root of detR− = 0, so (βi(0), φi ) is also denoted as
(β−

k (0), φ−
k ) with φi = (ui, 0)T . Therefore, among the (p +

q) β roots, half is from detR+ = 0 and half from detR− = 0.
In the first (last) p (q) roots we assume there are p1 (q1) roots
from detR+ = 0 and p2 (q2) roots from detR− = 0. Naturally
we have p1 + p2 = p, q1 + q2 = q, and p1 + q1 = p2 + q2 =
(p + q)/2. Among p1, p2, q1, and q2, only one is independent
and so by introducing an integer w they can be parametrized
as follows:

p1 = p/2 + w, p2 = p/2 − w,

q1 = q/2 − w, q2 = q/2 + w. (12)

Our topological invariant ν defined in Eq. (6) can then be
given by

ν = (p1 − p2)/2 = w. (13)

So we have to prove that a state of system de-
noted by w must possess at least |w| TPESs. Let
	±

i,L ≡ (φ±
i , (β±

i )−1φ±
i , . . . , (β±

i )−M1+1φ±
i )T and 	±

i,R ≡
(β±

i φ±
i , (β±

i )2φ±
i , . . . , (β±

i )M2φ±
i )T , and by performing some

matrix column exchanges on ML or MR, the two matrices
would be equivalently changed to be

ML → (	+
1,L, . . . , 	+

p1,L,	−
1,L, . . . , 	−

p2,L) ≡ (	+
L,	−

L),

MR → (	+
p1+1,R, . . . , 	+

p1+q1,R,	−
p2+1,R, . . . , 	−

p2+q2,R)

≡ (	+
R,	−

R) (14)

with |L〉 also being changed to be |L〉 →
(c+

1 , . . . , c+
p1

, c−
1 , . . . , c−

p2
)T ≡ (C+,C−)T , where C+ (C−)

represents the row vector which contains all the components
c+

i (c−
i ) in |L〉. Accordingly, |R〉 is also changed to be

|R〉 → (c+
p1+1, . . . , c+

p1+q1
, c−

p2+1, . . . , c−
p2+q2

)T ≡ (D+, D−)T .
One particular feature to be noted is that if detML �= 0, we

must have p1 = p2 = p/2, namely, w = 0. To prove this state-
ment, we assume that, for example, p1 > p2. Since for any
	+

i,L-like vector with p components, one half of its compo-
nents are zero due to φi = (0, vi )T , the dimension of the space
spanned by this kind of vectors is at most p/2. So the rank of
ML is at most p/2 + p2 < p, leading to the contradiction that
detML = 0. Similarly, one can prove that if detMR �= 0, one
must have w = 0.
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We note that the solutions of ML|L〉 = 0 or MR|R〉 = 0
are actually solutions of the E = 0 state for the half-infinite
system with left-open boundary or right-open boundary. But
different systems in the same topologically equivalent class
may have a different number of solutions, due to the exis-
tence of nontopological edge states. To exclude these edge
states not protected by chiral symmetry, the number of so-
lutions must be minimized by continuously deforming the
system without closing the gap. In Appendix B we demon-
strate another generic important feature that by keeping
the open system gapful, one can continuously vary R±(β )
by continuously moving the β roots of E = 0, to make
RankML and RankMR maximized. Therefore, for any state
of system under OBCs, it can always be made to be a
topologically equivalent state with RankML and RankMR
being maximized. After this rank maximization process, for
a state denoted by w, we have RankML = p/2 + (p/2 −
|w|) = p − |w|, and RankMR = q/2 + (q/2 − |w|) = q −
|w|. According to linear algebra theory, both ML|L〉 = 0 and
MR|R〉 = 0 have |w| independent solutions. These solutions
correspond to the |w| left-localized TPESs or the |w| right-
localized TPESs when the system is under the left-open or
right-open half-infinite boundary conditions. Thus the rank
maximization process can be understood as a modification of
the system which eliminates the solutions which are not pro-
tected by chiral symmetry, since the original state of system
denoted by w may have more solutions if the ranks of ML
and MR are not being maximized.

We further show that when the finiteness of L is taken into
account, |w| is the minimal number of TPESs for systems in
the topological equivalent class. A large but finite L indicates
the boundary equations in Eqs. (8) should be replaced by(

ML MLR
MRL MR

)
|ψ〉 = 0,

|ψ〉 = (c1, . . . , cp, cp+1, . . . , cp+q )T ,

(15)

with MLR = (β−L
p+1	p+1,L, . . . , β−L

p+q	p+q,L) and MRL =
(βL+1

1 	1,R, . . . , βL+1
p 	p,R), followed by the same column

exchanges as ML and MR in Eq. (14). For concreteness, we
assume w � 0. Because Rank	−

L = p/2 − w, Rank	+
R =

q/2 − w, one can easily show that ML|L〉 = 0 (MR|R〉 =
0) would indicate C− = 0 (D+ = 0). This implies that the
left-localized states reside on sublattice B, while the right-
localized states reside on sublattice A [87]. This is actually
required by chiral symmetry which makes the states be the
eigenstates of the chiral operator. We denote the solutions
as |Lm〉 = (C+

m , 0)T [|Rn〉 = (0, D−
n )T ], m(n) = 1, 2, . . . ,w.

Note that each column in MLR and MRL is vanishingly
small for sufficiently large L since |βp| < 1 < |βp+1|. So
one can construct two w × w perturbation matrices MLR

and MRL, whose mn matrix entries are 〈Lm|MLR|Rn〉 and
〈Rm|MRL|Ln〉, respectively. Because D+

n is zero in |Rn〉,
only D−

n in |Rn〉 has nonzero contribution to the matrix
entry 〈Lm|MLR|Rn〉, which is then generally proportional
to [β−

k (0)]−L with k � p2 + 1 = p/2 − w + 1. Analogously,
the matrix entry 〈Rm|MRL|Ln〉 is generally proportional to
[β+

l (0)]L with l � p1 = p/2 + w. So according to the degen-
erate perturbation theory, the actual solutions for the TPESs
for a finite L are |ψ±

m〉 = (Am|L′
m〉,±Bm|R′

m〉)T , where

m = 1, 2, . . . ,w. Here |L′
m〉 and |R′

m〉 are the linear super-
positions of |Lm〉 and |Rm〉, respectively, and have been
normalized. |ψ+

m〉 is related to |ψ−
m〉 by chiral symmetry:

S|ψ±
m〉 = −|ψ∓

m〉. Am and Bm are the coefficients, and their
ratios are found to be

Bm

Am
=

√〈R′
m|MRL|L′

m〉√〈L′
m|MLR|R′

m〉 , (16)

which is proportional to (β+
l (0)β−

k (0))L/2. See Appendix D
for the detailed illustration of these features for a concrete
model. So for a relatively small L, among the 2NL states of the
open chain, 2w states belong to the isolated E = 0, while the
other states belong to the continuum OBS. However, the ratios
are very sensitive to the details of the system, and as L is suf-
ficiently large, they can be finite, but can also be vanishingly
small or approaching infinity. If one of the ratios in Eq. (16) is
not finite, the corresponding pair of TPESs can be viewed as
being coalescing into one single state (|ψ+

m〉 ∝ |ψ−
m〉) so the

final number of TPESs is actually varying from w to 2w for
systems in the same topologically equivalent class. This is the
origin of the defectiveness of the TPESs. For Hermitian sys-
tems, all the ratios are expected to be finite, and the Hermitian
open chains always have 2w TPESs localized at both ends.
In the same topologically equivalent class, there always exist
some systems which have the minimum number of TPESs: w.
Actually, the systems described by H (ρβ ) possess w TPESs,
as long as ρ is sufficiently small or large. This is because due
to the similarity transformation, all superposition coefficients
for systems of H (ρβ ) would be scaled by a factor ρ−L, com-
pared to H (β ). Therefore, for a sufficiently large (small) ρ,
the open systems described by H (ρβ ) have exactly |w| left-
(right-) localized TPESs which all reside on sublattice B (A) if
w > 0, or on sublattice A (B) if w < 0. This means the number
of TPESs is not a topological invariant, and |w| or |ν| is proved
to be the minimum number of TPESs and we then complete
the proof.

IV. TOPOLOGICAL TRANSITIONS

By varying parameters, the system would undergo topolog-
ical transitions when the invariant integer ν changes, at which
the system becomes gapless, indicating |βp(0)| = |βp+1(0)|.
At this critical point, if the change of the winding num-
ber 
ν = ±1, the state of system denoted by w would be
changed to be one denoted by w ± 1, implying |β+

p/2+|w|(0)| =
|β−

p/2−|w|+1(0)| or |β−
p/2+|w|(0)| = |β+

p/2−|w|+1(0)|. So among
βp(0) and βp+1(0), one is from detR+ = 0, the other is from
detR− = 0, and their exchange means topological transition.
We remark that when both βp(0) and βp+1(0) come from
detR+ = 0 or detR− = 0, their exchanges would not induce
topological transitions, but may drive the system to a topo-
logically equivalent state or a gapless state with exceptional
points [28]. If 
ν = ±2, similar discussion would lead to the
conclusion that at the transition point, we must have

|βp−1(0)| = |βp(0)| = |βp+1(0)| = |βp+2(0)|, (17)

and among the four β roots, two must come from detR+ = 0,
with the other two from detR− = 0. We show schematically
the general case of 
ν = ±n in Fig. 2. Now we make a few
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FIG. 2. Schematic demonstration of topological transitions with

ν = ±n, where n β roots of detR+ = 0 and n roots of detR− = 0
are exchanged, obeying |βp−n+1(0)| = . . . = |βp(0)| = |βp+1(0)| =
. . . = |βp+n(0)|.

remarks on the relationship between sub-GBZs and topo-
logical transition. At the transition point, the E = 0 state is
connected to one energy branch of the OBS, which corre-
sponds to a definite sub-GBZ. In Appendix C we prove that
near the phase transition, if this sub-GBZ is chosen as the
closed loop Lβ in the integral in Eq. (6), the change of this
newly defined winding number ν ′ at the transition point with
|βp(0)| = |βp+1(0)| would be 
ν ′ = ±1.

V. FURTHER DISCUSSION AND CONCLUSION

The phase winding of detH along the closed loop Lβ is
the sum of those of detR+ and detR−, and can be easily
checked to be zero. So the topological invariant ν can either
be expressed as the phase winding of detR+ or minus that of
detR− along Lβ . This does not mean that either R+ or R− can
independently determine the invariant because Lβ has already
contained the information about both of them. For any non-
Hermitian chiral-symmetric open system described by H (β )
with |βp(0)| �= |βp+1(0)|, the invariant ν can be computed
directly from Eq. (6), but can also be understood physically
as follows. Choose its topologically equivalent system H (ρβ )
obeying |βp(0)|/ρ < 1 < |βp+1(0)|/ρ. This new system takes
the same invariant ν but its Lβ can be chosen to the unit circle,
implying ν can now be defined on the BZ for this system. Bulk
invariants defined on the BZ in non-Hermitian systems means
that the invariants are coming from the systems under periodic
boundary conditions, and the corresponding BBC connects
them to the TPESs of the corresponding half-infinite systems.
Our topological invariant characterizes the non-Bloch BBC
which connects the invariant to the TPESs under OBCs. So
for this system, the topological invariants for the conventional
non-Hermitian BBC and non-Bloch BBC become identical.
This may shed light on the relationship between the BBC
and the non-Bloch BBC in high-dimensional non-Hermitian
topological systems.
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APPENDIX A: OBCs AND THEIR SIMPLIFICATION

The eigenequation of H (β ) can be written as

M1∑
m=−M2

Tmψ( j − m) = Eψ( j), (A1)

where M1 < j < L − M2. When 1 � j � M1, the eigenequa-
tion becomes the left-boundary conditions, which are
given by

M1−1∑
m=−M2

Tmψ(M1 − m) = Eψ(M1),

M1−2∑
m=−M2

Tmψ(M1 − 1 − m) = Eψ(M1 − 1),

...

0∑
m=−M2

Tmψ(1 − m) = Eψ(1). (A2)

When L − M2 + 1 � j � L, the eigenequation becomes the
right-boundary conditions, which are

M1∑
m=−M2+1

Tmψ(L − M2 + 1 − m) = Eψ(L − M2 + 1),

M1∑
m=−M2+2

Tmψ(L − M2 + 2 − m) = Eψ(L − M2 + 2),

...

M1∑
m=0

Tmψ(L − m) = Eψ(L). (A3)

The two sets of equations contain M1 and M2 equations,
respectively. In order to make the eigenequation, Eq. (A1),
be obeyed for all unit cells, including those near the left and
right boundaries, one can introduce extra unit cells as shown
in Fig. 3. The combination of these new equations and the
above two sets of equations leads to the following simplified
left-boundary conditions:

TM1ψ(0) = 0,

TM1ψ(−1) + TM1−1ψ(0) = 0,

...

TM1ψ(−M1 + 1) + TM1−1ψ(−M1 + 2) + · · ·
+T1ψ(0) = 0, (A4)

and right-boundary conditions:

T−M2ψ(L + 1) = 0,

T−M2ψ(L + 2) + T−M2+1ψ(L + 1) = 0,

...

T−M2ψ(L + M2) + T−M2+1ψ(L + M2 − 1) + · · ·
+T−1ψ(L + 1) = 0. (A5)
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FIG. 3. A one-dimensional open chain with L unit cells represented by solid circles, where each unit cell contains 2N internal degrees of
freedom. Here the hollow circles at both ends of the chain are the extra unit cells added for the discussion of open-boundary conditions.

If both TM1 and T−M2 are invertible, then according to the first
equations of the two sets of equations, we have ψ(0) = ψ(L +
1) = 0. From the second equations, we further have ψ(−1) =
ψ(L + 2) = 0. Using a similar argument, we would find the
following equivalent boundary equations:

ψ(0) = ψ(−1) = . . . = ψ(−M1 + 1) = 0,

ψ(L + 1) = ψ(L + 2) = . . . = ψ(L + M2) = 0. (A6)

These boundary conditions can be understood as follows:
the wave function ψ( j) at the extra unit cells denoted by
the hollow circles in Fig. 3 should all be zero. Let us
consider the system described by H (ρβ ) whose wave func-
tion is denoted by ψ̃( j). The real-space Hamiltonian Hρ of
H (ρβ ) and the real-space Hamiltonian H of H (β ) are re-
lated by a similarity transformation Hρ = S−1HS, with S =
diag(ρ1, ρ2, . . . , ρL ) ⊗ I2N . Accordingly, we have ψ̃( j) =
ρ− jψ( j) and the hopping matrices of H (ρβ ) become
Tmρ−m, so for ψ̃( j) we can obtain similar OBCs to Eq. (A6).

APPENDIX B: RANK MAXIMIZATION OF MATRICES
ML AND MR

Introduce a continuous parameter �, and R± can be viewed
as functions of �: R±(β,�) obeying R±(β, 0) = R±(β ). Here

we shall prove in this section that for a gapful open system
with |βp(0)| �= |βp+1(0)|, while keeping the system gapful,
one can always vary the parameter � to continuously modify
the positions of the β roots of detR±(β,�) = 0 to make the
rank of matrices of ML and MR in the main text maximized,
without breaking the chiral symmetry. This kind of variation
of the system is obviously a topologically equivalent one, so
the final state should share the same topological invariant ν

with the initial state.
By solving the eigenequation of E = 0,

H (β )φi = 0 →
{

R+(β )vi = 0
R−(β )ui = 0,

(B1)

we get the β roots and their corresponding eigenvectors: β+
i ,

φ+
i = (0, vi )T [β−

i , φ−
i = (ui, 0)T ], i = 1, 2, . . . , N (M1 +

M2). From all the eigenvectors vi of R+, we construct a
N (M1 + M2) × N (M1 + M2) matrix M+

N :

M+
N = (

	+
1 ,	+

2 , . . . , 	+
N (M1+M2 )

)
, (B2)

with the column vector 	+
i = (vi, (β+

i )−1vi, . . . ,

(β+
i )−M1−M2+1vi )T = (1, (β+

i )−1, . . . , (β+
i )−M1−M2+1)T ⊗ vi.

When N = 1 or in the two-band case, the matrix M+
1

becomes

M+
1 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1

(β+
1 )−1 (β+

2 )−1 . . .
(
β+

M1+M2

)−1

...
...

...
...

(β+
1 )−M1−M2+1 (β+

2 )−M1−M2+1 . . .
(
β+

M1+M2

)−M1−M2+1

⎞
⎟⎟⎟⎟⎟⎠, (B3)

which is a Vandermonde matrix, whose determinant is a well-known polynomial PV of (β+
i )−1:

detM+
1 =

∏
1�i< j�M1+M2

[(β+
i )−1 − (β+

j )−1] ≡ PV
(
(β+

1 )−1, (β+
2 )−1, . . . ,

(
β+

M1+M2

)−1)
. (B4)

If all β+
i are different from each other, then obviously

detM+
1 �= 0. Otherwise, there exist repeated β roots, then by

fixing the other roots we can easily do a parameter change to
make the repeated roots split without closing the gap, since
the two roots βp(0) and βp+1(0) with unequal magnitude are
still left unchanged. So for any state of the system, either
this state or its topologically equivalent one would always
obey detM+

1 �= 0. For later convenience, we call vectors like
(1, (β+

i )−1, . . . , (β+
i )−M1−M2+1)T ≡ 	β+

i
Vandermonde vec-

tors. The space spanned by n M-dimensional Vandermonde
vectors with different β values is n-dimensional if n < M, and
is M-dimensional otherwise.

When N � 2, each column vector vi has N components
and R+(β ) is a N × N matrix. The (kl ) element of R+(β ) is a

polynomial of β:

Rkl (β ) =
M1∑

m=−M2

t kl
m β−m, (B5)

where k, l = 1, 2, . . . , N . Design a set of continuous func-
tions of �: β+

i (�), satisfying β+
i (0) = β+

i , and

β+
1 (1) = β+

2 (1) = . . . = β+
N (1) = β̃+

1 ,

β+
N+1(1) = β+

N+2(1) = . . . = β+
2N (1) = β̃+

2 ,

...

β+
(M1+M2−1)N+1(1) = β+

(M1+M2−1)N+2(1) = . . .

= β+
(M1+M2 )N (1) = β̃+

M1+M2
. (B6)
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FIG. 4. Continuous variation of R+(β ), where the β roots of
detR+(β ) = 0 are varied continuously. The NM roots are equally
divided into M groups with the N roots in each group being finally
merged into one repeated root, where M = M1 + M2.

Here β̃+
i are the target β roots with different absolute values

satisfying |β+
(i−1)N+1| � |̃β+

i | � |β+
iN |. So all β+

i (�) are ex-
pected to be divided into M1 + M2 groups, and each group
contains N β roots which would merge into one single N-fold
root as � is varied to be 1. This is shown schematically
in Fig. 4. Now we treat all the coefficients t kl

m as unknown
variables which can be viewed as functions of �: t kl

m (�). They
can be found by solving the equations detR+(β+

i ,�) = 0,
with i = 1, 2, . . . , N (M1 + M2) and imposing the initial con-
ditions, t kl

m (0) = t kl
m . The number of nonlinear equations is

N (M1 + M2), while the number of unknown variables is
N2(M1 + M2 + 1). So for any fixed value of �, we generally
have multiple solutions of t kl

m (�), but for � = 0, we have
only one solution, t kl

m (0) = t kl
m . Thus we have found a solution

of R±(β,�), which is a continuous function of �. When
� = 1, each β̃+

i is an N-fold root of detR+(β+
i ,� = 1) =

0, indicating that its eigenspace should be N-dimensional
and so R+(β+

i ,� = 1) ≡ 0. Therefore, as varying � from
0 to 1, one would continuously transform R+(β,�) from
R+(β ) to R+(β,� = 1) ∝ β−NM1

∏
1�i�M1+M2

(β − β̃+
i )IN .

When � = 1, eigenvectors vi can be chosen to be
(v1, v2, . . . , vN (M1+M2 ) ) = (IN , IN , . . . , IN ). It is easy to find
that M+

N (� = 1) = M̃+
1 ⊗ IN , where M̃+

1 is the Van-

dermonde matrix of (β̃+
i )−1, and so detM+

N (� = 1) =
PN

V ((β̃+
1 )−1, (β̃+

2 )−1, . . . , (β̃+
M1+M2

)−1) �= 0.
In a very similar way, from all the eigenvectors ui of R− one

can construct the N (M1 + M2) × N (M1 + M2) matrix M−
N :

M−
N = (

	−
1 ,	−

2 , . . . , 	−
N (M1+M2 )

)
, (B7)

with the column vectors:

	−
i = (

ui, (β−
i )−1ui, . . . , (β−

i )−M1−M2+1ui
)T

= (
1, (β−

i )−1, ..., (β−
i )−M1−M2+1

)T ⊗ ui

= 	β−
i

⊗ ui. (B8)

We also have detM−
N (� = 1) = PN

V ((β̃−
1 )−1, (β̃−

2 )−1,

. . . , (β̃−
M1+M2

)−1) �= 0, where β̃−
i is the target β at � = 1

in this case.
Under this situation, we discuss why the ranks of the

matrices ML and MR in the main text have been maxi-
mized. We take ML as an example to illustrate this fact. If
w = 0, then p1 = p2 = p/2 = NM1, q1 = q2 = q/2 = NM2.
From M+

N (� = 1), choose the first NM1 column vectors
	+

i = 	β+
i

⊗ vi. For each vector we remove the last NM2

components and replace vi by φi = (0, vi )T to obtain 	+
i,L.

These new vectors are comprised of N sets of M1-dimensional
Vandermonde vectors with each set spanning an indepen-
dent M1-dimensional space. From M−

N (� = 1), also choose
its first NM1 column vectors 	−

i = 	β−
i

⊗ ui. For each
vector we also remove the last NM2 components but re-
place ui by φi = (ui, 0)T to obtain 	−

i,L. These new vectors
are also comprised of N sets of M1-dimensional Van-
dermonde vectors with each set spanning an independent
M1-dimensional space. Obviously, the two spaces spanned
by 	+

i,L or 	−
i,L are orthogonal. Since the matrix ML =

(	+
1,L, . . . , 	+

NM1,L,	−
1,L, . . . , 	−

NM1,L) is comprised of 	+
i,L

and 	−
i,L, we have RankML = Rank(	+

1,L, . . . , 	+
NM1,L) +

Rank(	−
1,L, . . . , 	−

NM1,L) = NM1 + NM1 = p. Thus, when
w = 0, RankML is maximized to be p. Similarly, it can be
shown that RankMR is maximized to be q.

When w �= 0, p1 = NM1 + w, p2 = NM1 − w, q1 =
NM2 − w, and q2 = NM2 + w. We only consider the case of
0 < w < N for simplicity. Let us make a slight modification
on the continuous variation of �. We change the target β roots
slightly: only the (M1 + 1)th equation of Eq. (B6) is modified
to be

β+
M1N+1(1) = β+

M1N+2(1) = . . . = β+
M1N+w(1)

= β̃+
M1+1,

β+
M1N+w+1(1) = β+

M1N+w+2(1) = . . . = β+
(M1+1)N (1)

= β̃ ′+
M1+1, (B9)

where |β+
M1N+1| � |̃β+

M1+1| � |β+
M1N+w| < |β+

M1N+w+1| �
|β̃ ′+

M1+1| � |β+
(M1+1)N |. So here the (M1 + 1)th group of

β+
i (�) roots would merge into two repeated roots β̃+

M1+1

and β̃ ′+
M1+1, where the former is a w-fold root while the

latter is a (N − w)-fold root. The eigenspace of the two
roots formed by their corresponding eigenvectors vi is
w- or (N − w)-dimensional, respectively. R−(β ) is also
varied accordingly in a similar way, where the M1th
group of β−

i (�) roots would merge into two repeated
roots β̃−

M1
and β̃ ′−

M1
, with the former being a (N − w)-fold

root and the latter being a w-fold root. From M+
N (� = 1),

choose the first p1 column vectors 	+
i = 	β+

i
⊗ vi. For

each vector we remove the last NM2 components and
replace vi by φi = (0, vi )T , so we obtain 	+

i,L. These new
vectors have already contained N sets of M1-dimensional
Vandermonde vectors with each set spanning an independent
M1-dimensional space. So Rank(	+

1,L, . . . , 	+
p1,L) has been

maximized to be NM1 = p/2. From M−
N (� = 1), also

choose its first p2 column vectors 	−
i = 	β−

i
⊗ ui. For
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each vector we also remove the last NM2 components
but replace ui by φi = (ui, 0)T , so we obtain 	−

i,L.
If proper representation of vi is chosen, these new
vectors are found to be comprised of N − w sets of
M1-dimensional Vandermonde vectors with each set spanning
an independent M1-dimensional space, together with w

sets of (M1 − 1)-dimensional Vandermonde vectors with
each set spanning an independent (M1 − 1)-dimensional
space. So Rank(	−

1,L, . . . , 	−
p2,L) = NM1 − w = p/2 − w.

Therefore, we have RankML = Rank(	+
1,L, . . . , 	+

p1,L) +
Rank(	−

1,L, . . . , 	−
p2,L)= p/2+(p/2−w)= p−w, indicating

that it has been maximized. Thus, when w > 0, RankML
is maximized to be p − w. Similarly, it can be shown that
RankMR is simultaneously maximized to be q − w.

So we have proved that for a state of the open system
denoted by w in the main text, by continuously varying R±(β )
without closing the gap, the ranks of ML and MR in the main
text can be maximized to be p − |w| and q − |w|, respectively.

APPENDIX C: A THEOREM ON ±1 CHANGE AT
TOPOLOGICAL TRANSITIONS OF THE WINDING

NUMBER DEFINED ON ONE OF THE SUB-GBZs

In this section we prove that when the non-Hermitian sys-
tem is sufficiently near the topological transition point, if one
replaces the closed loop Lβ in the integral of the topological
invariant ν defined in the main text, by one of the sub-GBZs,
the change of the new winding number ν ′ at the transition
point would be 
ν ′ = ±1. The sub-GBZ chosen corresponds
to the branch of the OBS closest to the E = 0 point.

When the system under OBCs is near the topological phase
transition, the system must be nearly gapless and then one part
of its OBS must be approaching the E = 0 point. Under pa-
rameter change, the transition process can be summarized into
two scenarios, as shown in Fig. 5, where one is the inner-point
connection [19] and the other is the end-point connection. At
the critical point where the system is gapless, as shown in
Figs. 5(a2) and 5(b2), the state of the isolated point E = 0
belongs to one pair of the open arcs of the OBS and its βp(0)
and βp+1(0) would simultaneously fall on the corresponding
sub-GBZ. Now consider the situation when the system is
sufficiently close to the transition point. The sub-GBZ as a
closed loop, is composed of the βp and βp+1 points of the
energy branch of the OBS closest to E = 0. Choose a special
state E0 on the branch which is nearest to E = 0. If the system
is sufficiently close to the transition point, then E0 would be
approaching E = 0 so that its β j (E0) is nearly equal to β j (0).

Let us first consider the case where the inner points ±E0 are
going to be touching each other, as shown in Figs. 5(a1) and
5(a2). Expand the polynomial f (E , β ) ≡ det[H (β ) − E ] = 0
near E0 and its β j (E0). We have

∂ f

∂E

∣∣∣∣
[E0,β j (E0 )]


E + ∂ f

∂β

∣∣∣∣
[E0,β j (E0 )]


β = 0. (C1)

So the small deviations 
E and 
β are connected with
each other. For any two kinds of deviations (
E ,
β), and
(
E ′,
β ′), one must have


E ′/
E = 
β ′/
β. (C2)

(b1) (b2) (b3)

(a3)(a2)(a1)

ν=0 critical

critical

Im
(E
)

Im
(E
)

Re(E) Re(E) Re(E)

ν=0

ν=1

ν=1

FIG. 5. Two typical topological transition processes under pa-
rameter change in a chiral symmetric non-Hermitian system under
OBCs, where the gap closes and then opens. Each pair of arcs in
each figure represents the corresponding pair of OBSs on the E plane
closest to E = 0. The isolated solid circle at E = 0 in (a3) and (b3)
denotes the topological protected zero modes with ν denoting the
corresponding topological invariant. (a1)–(a3) Inner-point touching
process. (b1)–(b3) End-point touching process.

This is actually the conformal property of analytic functions
in complex analysis. Now take 
E as the deviation along
the OBS, and 
E ′ as the deviation along the line segment,
as shown in Fig. 6(a1). If j is chosen to be p or p + 1, we

FIG. 6. Two deviation paths in the E plane and the corresponding
paths of their βp and βp+1 in the β plane for the two cases when
the system is sufficiently near the critical point, as shown in Fig. 5.
Here, E0 is the point on the OBS which is chosen to be the nearest
one to E = 0. One path on the E plane is the straight line segment
connecting E0 to E = 0, and the other path starting from E0 is a small
arc along the same OBS.
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FIG. 7. Open chain and its unit cells which can be divided into
two parts: sites belonging to sublattice A and those belonging to
sublattice B.

would have two deviations 
β, starting from βp or βp+1,
respectively, as shown in Fig. 6(a2). What is important is that

β at βp and 
β at βp+1 are pointing oppositely along the
sub-GBZ [32], namely, one is clockwise while the other is
anticlockwise. Therefore, according to the conformal prop-
erty, Eq. (C2), the deviation 
β ′ at βp (βp+1) would be
pointing towards the interior (exterior) of the sub-GBZ. So
among the two points βp(0) and βp+1(0), the sub-GBZ only
encloses βp(0).

For the case of the end points ±E0 touching each other, as
shown in Figs. 6(b1) and 6(b2), since βp(E0) = βp+1(E0), one
has ∂ f /∂β |[E0,βp(E0 )]= ∂ f /∂β |[E0,βp+1(E0 )]= 0. So the expan-
sion of the polynomial f (E , β ) near E0 and its βp(E0) must
be made in the second order of β and we obtain

∂ f

∂E

∣∣∣∣
[E0,βp(E0 )]


E + 1

2

∂2 f

∂β2

∣∣∣∣
[E0,βp(E0 )]


β2 = 0. (C3)

So similarly for two kinds of deviations, we must have


E ′/
E = (
β ′/
β )2, (C4)

where the two kinds of deviations 
E and 
E ′ are taken
similarly as before, as shown in Fig. 6(b1). The two
corresponding deviations of 
β ′ are found to be pointing op-
positely. Thus for βp(0) and βp+1(0) points, the sub-GBZ only
encircles βp(0).

Therefore for both cases, we have proved that among βp(0)
and βp+1(0), the sub-GBZ as a closed loop only encircles
βp(0), with βp+1(0) being kept outside. Consider a topolog-
ical transition process with 
ν = ±1. Before or after the
transition, the system would always be gapful, but is char-
acterized by different topological invariants ν. Let us denote

β i
p(0) [β f

p (0)] and β i
p+1(0) [β f

p+1(0)] for the system just be-
fore (after) the phase transition. According to our theorem,
at the transition point, one of the βp(0) and βp+1(0) points
is from detR+ = 0, while the other is from detR− = 0, and
they would exchange to induce the topological transition. So
during the phase transition, β i

p(0) would continuously change

to be β
f
p+1(0), while β i

p+1(0) would continuously change to

be β
f
p (0). Then the change of the phase winding along the

sub-GBZ for detR+ would be minus that for detR−. This indi-
cates that the change of the new winding number ν ′ defined on
the sub-GBZ would be ±1. So we complete the proof of the
statement at the beginning of this section. We remark that for
a two-band system, its GBZ naturally becomes the sub-GBZ
discussed here.

APPENDIX D: EXPLICIT MODEL EXAMPLE
EXHIBITING RELATIONSHIP BETWEEN

THE INVARIANT ν AND THE EDGE STATES

In this section, by studying an explicit model in detail, we
will follow the way in the theorem proof in the main text,
step by step, to find out the edge states for the model system
under OBCs. On the other hand, by direct diagonalization
of the Hamiltonian for the corresponding open system, we
obtain the numerical results on the edge states of E = 0. In
the following, we will compare these numerical results with
our analytical calculations, to illustrate our conclusions on the
TPESs given in the main text.

When a 2N-band non-Hermitian system with chiral sym-
metry takes the form Eq. (5) in the main text, it is convenient
to introduce the two sublattices A and B, where the first (last)
N internal degrees of freedom belong to sublattice A (B), as
shown in Fig. 7. We choose the model in the main text, which
is a four-band model with only the nearest-neighbor hoppings,
implying N = 2, M1 = M2 = 1, and p = q = 4.

First, the parameter λ is chosen to be λ = 0.1, correspond-
ing to a topologically nontrivial state with ν = −1. By solving
detH (β ) = 0, we get eight β roots of E = 0, which are
given by

β1 = β−
1 = −0.195, β2 = β+

1 = −0.401,

β3 = β−
2 = −0.495, β4 = β−

3 = 0.811,

β5 = β+
2 = −1.149, β6 = β+

3 = 2.014,

β7 = β−
4 = −2.442, β8 = β+

4 = −5.634,

(D1)

and accordingly their corresponding eigenmodes are

φ1 = φ−
1 =

⎛
⎜⎜⎝

−0.569
−0.822

0
0

⎞
⎟⎟⎠, φ2 = φ+

1 =

⎛
⎜⎜⎝

0
0

−0.664
−0.748

⎞
⎟⎟⎠, φ3 = φ−

2 =

⎛
⎜⎜⎝

−0.084
−0.997

0
0

⎞
⎟⎟⎠, φ4 = φ−

3 =

⎛
⎜⎜⎝

−0.464
0.886

0
0

⎞
⎟⎟⎠,

φ5 = φ+
2 =

⎛
⎜⎜⎝

0
0
0

1.000

⎞
⎟⎟⎠, φ6 = φ+

3 =

⎛
⎜⎜⎝

0
0

−0.409
0.912

⎞
⎟⎟⎠, φ7 = φ−

4 =

⎛
⎜⎜⎝

−0.714
−0.700

0
0

⎞
⎟⎟⎠, φ8 = φ+

4 =

⎛
⎜⎜⎝

0
0

−0.648
−0.761

⎞
⎟⎟⎠. (D2)
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FIG. 8. Space distributions of the edge states with ν = −1 and λ = 0.1. (a) Edge state ψL. (b) Edge state ψR. (c) Numerical matrix
diagonalization result of the zero-energy modes, and (d) the corresponding result after a similarity transformation with ρ = |β4β5|1/2, where
data on sublattice A (B) are colored in blue (red). We have 800 lattice sites since here L = 200 and N = 2.

Here the superscript ± indicates that the correspond-
ing β roots come from R±. So the matrices ML =
(φ+

1 , φ−
1 , φ−

2 , φ−
3 ) and MR = (β+

2 φ+
2 , β+

3 φ+
3 , β+

4 φ+
4 , β−

4 φ−
4 )

can be explicitly expressed as

ML =

⎛
⎜⎜⎝

0 −0.569 −0.084 −0.464
0 −0.822 0.996 0.886

−0.664 0 0 0
−0.748 0 0 0

⎞
⎟⎟⎠,

MR =

⎛
⎜⎜⎝

0 0 0 1.744
0 0 0 1.710
0 −0.824 3.649 0

−1.149 1.840 4.292 0

⎞
⎟⎟⎠. (D3)

It is easy to check that RankML = RankMR = 3,
namely, they have been maximized so either ML|L〉 = 0
or MR|R〉 = 0 has one independent solution, which
can be expressed as |L〉 = (c+

1 , c−
1 , c−

2 , c−
3 )T and

|R〉 = (c+
2 , c+

3 , c+
4 , c−

4 )T . The solutions are found to be
|L〉 = (0, 0.335, 0.765,−0.550)T and |R〉 = (0.922, 0.377,

0.0852, 0)T . Notice that in these expressions the decimal
numbers shown here are all retained to a few decimal places,
but in the actual calculations they have all been kept in high
precision to ensure the accuracy of the calculating results.

From the two solutions one can see that |L〉 only contains
the coefficients of φ−, while |R〉 only contains those of φ+.
This indicates that |L〉 is a left-localized state residing on
sublattice A, while |R〉 is a right-localized one residing on
sublattice B. By using these coefficients, the corresponding
real-space normalized wave functions ψL and ψR can be
written as

ψL( j) ∝
L∑

j=1

c−
1 (β−

1 ) jφ−
1 + c−

2 (β−
2 ) jφ−

2 + c−
3 (β−

3 ) jφ−
3 ,

ψR( j) ∝
L∑

j=1

c+
2 (β+

2 ) j−Lφ+
2 + c+

3 (β+
3 ) j−Lφ+

3 + c+
4

+ (β+
4 ) j−Lφ+

4 . (D4)

The space distributions of these two wave functions are shown
in Figs. 8(a) and 8(b). For a finite system under OBCs, we
have two final real-space wave functions ψ± which are the
linear combinations of ψL and ψR:

ψ± = AψL ± BψR, (D5)

where ψ+ and ψ− are related by chiral symmetry: Sψ± =
AψL ∓ BψR = ψ∓. The coefficients A and B are deter-
mined by the matrices MRL and MLR, which take the
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FIG. 9. Space distributions of the zero-energy modes obtained by the numerical matrix diagonalization, with ν = 1, where data on
sublattice A (B) are colored in blue (red). (a) λ = −0.6. (b) λ = −0.9. Here L = 200.

following forms:

MRL = ((β+
1 )L+1φ+

1 , (β−
1 )L+1φ−

1 , (β−
2 )L+1φ−

2 , (β−
3 )L+1φ−

3 ),

MLR = ((β+
2 )−Lφ+

2 , (β+
3 )−Lφ+

3 , (β+
4 )−Lφ+

4 , (β−
4 )−Lφ−

4 ).

(D6)

By substituting |L〉 = (0, 0.335, 0.765,−0.550)T and |R〉 =
(0.922, 0.377, 0.0852, 0)T into the equation

B
A =

√〈R|MRL|L〉√〈L|MLR|R〉 , (D7)

one can find |B/A| ≈ |β−
3 β+

2 |L/2 = |β4β5|L/2. Here since
|β4β5| < 1, when L is sufficiently large, it will be |B| � |A|,
indicating the contribution of ψL to ψ± is much greater than
that of ψR. So for this parameter, it looks like the two TPESs
are all localized at the left boundary, and when L → ∞,
|B| will be approaching zero so that ψ+ and ψ− linked by
chiral symmetry would coalesce into one single state ψL. This
is actually the origin of the defectiveness of the TPESs. In
Fig. 8(c) we show the numerical matrix diagonalization result

of the TPESs. The two edge states are nearly overlapping, and
are found to be localized at left boundary while at the right
boundary the wave function only has a very small weight.
This is consistent with our analysis. If we perform a similarity
transformation on this model to make |β4β5/ρ

2| = 1, i.e.,
ρ = |β4β5|1/2, then this model described by H (β ) would be
transformed to one described by H (ρβ ) whose wave function
ψ̃( j) = ρ− jψ( j) and so its ratio |B/A| ≈ 1L = 1. In our anal-
ysis the two TPESs in this situation would be localized at both
ends of the open chain, consistent with the numerical results
as shown in Fig. 8(d). Meanwhile, notice that a negative
ν = −1 means |L〉 only has φ− components, while |R〉 only
has φ+ components, indicating that |L〉 (|R〉) is a left- (right-
)localized A- (B-)sublattice edge state. However, for a positive
ν = 1, the |L〉 (|R〉) state would be a left- (right-)localized B-
(A-)sublattice edge state, as mentioned in the main text. This
is because when ν = +1, all nonzero components in |L〉 (|R〉)
are φ+ (φ−) instead of φ− (φ+).

In Figs. 9(a) and 9(b), we show the case of ν = 1 with λ =
−0.6 and λ = −0.9, respectively. The eight β values for the

FIG. 10. (a) The same as Fig. 8(d), and (b) the same as Fig. 9(a), except that L = 800.
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FIG. 11. Space distributions of the edge states with ν = −2 and λ = 1. (a) One pair of the nearly overlapping zero-energy modes obtained
by the numerical matrix diagonalization, and the corresponding result after a similarity transformation with (b) ρ = |β4β5|1/2 = 0.989,
(c) ρ = 2, or (d) ρ = 1/2, respectively. Here L = 200.

two parameters are ordered as usual as follows:

|β1| = |β+
1 | < |β2| = |β+

2 | < |β3| = |β−
1 | < |β4| = |β+

3 | < 1 < |β5| = |β−
2 | < |β6| = |β+

4 | < |β7| = |β−
3 | < |β8| = |β−

4 |,
|β1| = |β+

1 | < |β2| = |β+
2 | < |β3| = |β+

3 | < |β4| = |β−
1 | < 1 < |β5| = |β+

4 | < |β6| = |β−
2 | < |β7| = |β−

3 | < |β8| = |β−
4 |,

(D8)

where the former corresponds to λ = −0.6 while the latter corresponds to λ = −0.9. When λ = −0.6, |B/A| ≈ |β4β5|L/2 =
|β+

3 β−
2 |L/2 and when λ = −0.9, |B/A| ≈ |β3β6|L/2 = |β+

3 β−
2 |L/2. In both cases, |B/A| ≈ 0.997L. In our numerical calculation,

since L = 200, |B/A| ≈ 0.74, which makes |A| slightly larger than |B|. So each TPES is localized at both boundaries of the
open chain. But when L → ∞, only the left-localized components would survive. By setting L = 800 we redo the numerical
calculation of the edge states in Figs. 8(d) and 9(a), and show the corresponding results in Fig. 10. In Fig. 10(a), the space
distribution is nearly unchanged since |B/A| ∝ 1 is also kept unchanged while in Fig. 10(b), the left-localized components are
even more dominant than the right-localized ones since the ratio |B/A| in this case becomes smaller. These results show that the
predicted ratio between the coefficients A and B is quite reasonable.

Now we choose λ = 1 to study the case of ν = −2. The eight β values are ordered as follows:

|β1| = |β−
1 | < |β2| = |β−

2 | < |β3| = |β−
3 | < |β4| = |β−

4 | < 1 < |β5| = |β+
1 | < |β6| = |β+

2 | < |β7| = |β+
3 | < |β8| = |β+

4 |.
(D9)

It is found that RankML = RankMR = 2, namely, they have been maximized so either ML|L〉 = 0 or MR|R〉 = 0 has two
independent solutions, which can be labeled as |L1〉, |L2〉 and |R1〉, |R2〉, respectively. According to degenerate perturbation
theory, let us solve ( ML MLR

MRL MR
)|ψ〉 = 0 which is equivalent to M|ϕ〉 = 0, with M being the 2|ν| × 2|ν| matrix given by

M =
(

0 MLR

MRL 0

)
=

⎛
⎜⎜⎝

0 0 〈L1|MLR|R1〉 〈L1|MLR|R2〉
0 0 〈L2|MLR|R1〉 〈L2|MLR|R2〉

〈R1|MRL|L1〉 〈R1|MRL|L2〉 0 0
〈R2|MRL|L1〉 〈R2|MRL|L2〉 0 0

⎞
⎟⎟⎠, (D10)
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where |ϕ〉 = (l1, l2, r1, r2)T . So |ψ〉 = (l1|L1〉 + l2|L2〉,
r1|R1〉 + r2|R2〉)T . We have four solutions: |ψ±

m〉 =
(Am|L′

m〉,±Bm|R′
m〉)T , where m = 1, 2. Here each

normalized |L′
m〉 (|R′

m〉) is the linear superposition of |L1〉
and |L2〉 (|R1〉 and |R2〉). |ψ+

m〉 is also connected with |ψ−
m〉

by chiral symmetry: S|ψ±
m〉 = |ψ∓

m〉. From the ratio equation

Bm

Am
=

√〈R′
m|MRL|L′

m〉√〈L′
m|MLR|R′

m〉 , m = 1, 2 (D11)

we get |B1/A1| ≈ |β4β5|L/2 = |β−
4 β+

1 |L/2 = 0.115 67
and |B2/A2| ≈ |β3β6|L/2 = |β−

3 β+
2 |L/2 = 0.000 84, with

L = 200. The numerical result for one pair of the TPESs
is shown in Fig. 11(a), while the other pair (data not
shown) shows analogous behavior in this case. We
found that the predicted ratio is consistent with the
numerical matrix diagonalization result. As before, if we
apply the similarity transformation to this system, i.e.,
H (β ) → H (ρβ ), the ratios become |B1/A1| ≈ |β4β5/ρ

2|L/2

and |B2/A2| ≈ |β3β6/ρ
2|L/2. In Fig. 11(b), we set a suitable

ρ to make one of the ratios close to 1, so the corresponding
pair of the TPESs would be localized at both ends of the open
chain. In this situation, the total number of TPESs would be
three. In Figs. 11(c) and 11(d), we set ρ = 2 and ρ = 1/2,
respectively. In either case, when L is large, among Bm and
Am, one would always be much larger than the other, and the
smaller one can be viewed as approaching zero, implying that
the number of TPESs would be equal to |ν| = 2.

Here we see that we can always choose a sufficiently small
or large ρ to perform the similarity transformation so that the
number of TPESs can be reduced to the absolute value of the
topological invariant ν but is definitely not less than |ν|. If all
ratios |Bm/Am| share the same relationship, one can naturally
choose a common ρ to make all edge states be localized at
both ends, so the number of TPESs reaches its maximum
value, 2|ν|. However, in most cases of non-Hermitian systems,
this is usually unachievable, so for a general non-Hermitian
open chain with chiral symmetry, the number of TPESs would
vary from |ν| to 2|ν|.
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1009 (2018).

[39] H. Xue, Q. Wang, B. Zhang, and Y. D. Chong, Phys. Rev. Lett.
124, 236403 (2020).

[40] R. Okugawa, R. Takahashi, and K. Yokomizo, Phys. Rev. B 103,
205205 (2021).

245107-13

https://doi.org/10.1103/PhysRevB.56.8651
https://doi.org/10.1103/PhysRevB.58.8384
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevLett.113.250401
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1038/nphys4323
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevB.106.115107
https://doi.org/10.1103/PhysRevLett.128.120401
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/10.1103/PhysRevResearch.2.043167
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1038/s41467-020-18917-4
https://doi.org/10.1103/PhysRevLett.124.066602
https://doi.org/10.1103/PhysRevLett.127.116801
https://doi.org/10.1103/PhysRevB.103.045420
https://doi.org/10.1103/PhysRevB.103.L241408
https://doi.org/10.1103/PhysRevB.103.L140201
https://doi.org/10.1103/PhysRevB.106.235411
https://doi.org/10.1038/s41467-022-30161-6
https://doi.org/10.1103/PhysRevLett.129.086601
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevB.101.195147
https://doi.org/10.1103/PhysRevB.103.165123
https://doi.org/10.1103/PhysRevB.106.195425
https://doi.org/10.1103/PhysRevB.105.045422
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevE.69.056216
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1038/nature14889
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1103/PhysRevLett.124.236403
https://doi.org/10.1103/PhysRevB.103.205205


CHUN-CHI LIU, LIU-HAO LI, AND JIN AN PHYSICAL REVIEW B 107, 245107 (2023)

[41] Z. Yang, A. P. Schnyder, J. Hu, and C.-K. Chiu, Phys. Rev. Lett.
126, 086401 (2021).

[42] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue, Phys.
Rev. Lett. 126, 230402 (2021).

[43] Y. C. Hu and T. L. Hughes, Phys. Rev. B 84, 153101 (2011).
[44] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev. B

84, 205128 (2011).
[45] S.-D. Liang and G.-Y. Huang, Phys. Rev. A 87, 012118 (2013).
[46] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,

M. S. Rudner, M. Segev, and A. Szameit, Phys. Rev. Lett. 115,
040402 (2015).

[47] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[48] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[49] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,

Phys. Rev. Lett. 121, 026808 (2018).
[50] H. Jiang, C. Yang, and S. Chen, Phys. Rev. A 98, 052116

(2018).
[51] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa

Torres, Phys. Rev. B 97, 121401(R) (2018).
[52] S. Lieu, Phys. Rev. B 97, 045106 (2018).
[53] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,

and M. Ueda, Phys. Rev. X 8, 031079 (2018).
[54] C. Yin, H. Jiang, L. Li, R. Lü, and S. Chen, Phys. Rev. A 97,

052115 (2018).
[55] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X

9, 041015 (2019).
[56] J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, Phys. Rev. Lett.

123, 206404 (2019).
[57] L. Jin and Z. Song, Phys. Rev. B 99, 081103(R) (2019).
[58] K.-I. Imura and Y. Takane, Phys. Rev. B 100, 165430 (2019).
[59] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[60] L. Herviou, J. H. Bardarson, and N. Regnault, Phys. Rev. A 99,

052118 (2019).
[61] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 246801

(2019).
[62] F. K. Kunst and V. Dwivedi, Phys. Rev. B 99, 245116 (2019).
[63] T.-S. Deng and W. Yi, Phys. Rev. B 100, 035102 (2019).
[64] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue,

Nat. Phys. 16, 761 (2020).

[65] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Phys. Rev. Lett.
124, 056802 (2020).

[66] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Phys. Rev. B
101, 205417 (2020).

[67] K. Kawabata, K. Shiozaki, and S. Ryu, Phys. Rev. Lett. 126,
216405 (2021).

[68] H. Hu and E. Zhao, Phys. Rev. Lett. 126, 010401 (2021).
[69] H.-G. Zirnstein, G. Refael, and B. Rosenow, Phys. Rev. Lett.

126, 216407 (2021).
[70] Y. Cao, Y. Li, and X. Yang, Phys. Rev. B 103, 075126

(2021).
[71] Y.-X. Xiao and C. T. Chan, Phys. Rev. B 105, 075128

(2022).
[72] K. Ding, C. Fang, and G. Ma, Nat. Rev. Phys. 4, 745

(2022).
[73] J. Cheng, X. Zhang, M.-H. Lu, and Y.-F. Chen, Phys. Rev. B

105, 094103 (2022).
[74] H. Jiang and C. H. Lee, arXiv:2207.08843.
[75] L. Jezequel and P. Delplace, Phys. Rev. Lett. 130, 066601

(2023).
[76] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[77] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[78] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[79] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.

Phys. 88, 035005 (2016).
[80] J. Bartlett and E. Zhao, Phys. Rev. B 107, 035101 (2023).
[81] Z. Yang, K. Zhang, C. Fang, and J. Hu, Phys. Rev. Lett. 125,

226402 (2020).
[82] X.-R. Wang, C.-X. Guo, and S.-P. Kou, Phys. Rev. B 101,

121116(R) (2020).
[83] Y. Fu and S. Wan, Phys. Rev. B 105, 075420 (2022).
[84] K.-I. Imura and Y. Takane, Prog. Theor. Exp. Phys. 2020,

12A103 (2020).
[85] Y. Takane, J. Phys. Soc. Jpn. 91, 054705 (2022).
[86] K. Zhang, Z. Yang, and C. Fang, Phys. Rev. Lett. 125, 126402

(2020).
[87] Divide the open chain into two parts, sublattice A and sub-

lattice B, which correspond to the u and v components in φ,
respectively.

245107-14

https://doi.org/10.1103/PhysRevLett.126.086401
https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/10.1103/PhysRevB.84.153101
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1103/PhysRevA.87.012118
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevA.98.052116
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.123.206404
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevB.100.165430
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevA.99.052118
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevB.99.245116
https://doi.org/10.1103/PhysRevB.100.035102
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevLett.126.216405
https://doi.org/10.1103/PhysRevLett.126.010401
https://doi.org/10.1103/PhysRevLett.126.216407
https://doi.org/10.1103/PhysRevB.103.075126
https://doi.org/10.1103/PhysRevB.105.075128
https://doi.org/10.1038/s42254-022-00516-5
https://doi.org/10.1103/PhysRevB.105.094103
http://arxiv.org/abs/arXiv:2207.08843
https://doi.org/10.1103/PhysRevLett.130.066601
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.107.035101
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1103/PhysRevB.101.121116
https://doi.org/10.1103/PhysRevB.105.075420
https://doi.org/10.1093/ptep/ptaa100
https://doi.org/10.7566/JPSJ.91.054705
https://doi.org/10.1103/PhysRevLett.125.126402

