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Quantum Monte Carlo study of superconductivity in rhombohedral trilayer graphene
under an electric field
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By using the constrained-phase quantum Monte Carlo method, we performed a systematic study of the
ground state of the half filled Hubbard model for a trilayer honeycomb lattice. We analyze the effect of
the perpendicular electric field on the electronic structure, magnetic property, and pairing correlations. It is
found that the antiferromagnetism is suppressed by the perpendicular electric field, especially the long-range
parts, and the dominant magnetic fluctuations are still antiferromagnetic. The electronic correlation drives a
d + id superconducting pairing to be dominant over other pairing patterns among various electric fields and
interaction strengths. We also found that the d + id pairing correlation is greatly enhanced as the on-site
Coulomb interaction is increased. Our intensive numerical results may unveil the nature of the recently observed
superconductivity in rhombohedral trilayer graphene under an electric field.
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I. INTRODUCTION

The experimental discovery of superconductivity and
correlated insulating states in magic-angle twisted bilayer
graphene (TBG) [1–3] has led to rapid development of
research focused on trilayer graphene (TLG) and multi-
layer graphene systems. Typically, there are three possible
arrangements of graphene layers: AAA stacking, ABA
stacking, and ABC stacking corresponding to hexagonal,
Bernal, and rhombohedral graphene, respectively. As inter-
layer coupling strongly modifies the linear dispersion of
monolayer graphene, the electronic structures vary in mul-
tilayer graphene films. The unique electronic structure of
multilayer graphene largely raises the possibility of serving
as a new platform for unknown physics and substantial exper-
imental efforts have gone into this field. It has been reported
that a gate-tunable Mott insulator and signatures of supercon-
ductivity are observed in a rhombohedral trilayer graphene
(ABC-TLG) heterostructures with a moiré superlattice [4–6]
and the crystal structure diagram for ABC-TLG is illustrated
in Fig. 1(a). Displacement field-tunable superconductivity
is also discovered in alternating-twist magic-angle trilayer
graphene [7]. In twisted double bilayer graphene, Shen et al.
reported the discovery and characterization of displacement
field-tunable electronic phases [8]. In twisted bilayer-bilayer
graphene, Cao et al. found a rich phase diagram with tun-
able correlated insulator states and spin-polarized phases [9].
Culmination of these recent experimental achievements has
motivated theoretical studies on exotic correlated electronic
phases in graphene superlattices [10–17].

The application of a perpendicular electric field is a
common method to change the band structure of graphene
systems. Charge carriers, electrons, or holes can be intro-
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duced into graphene through the perpendicular electric field,
which generates an interlayer potential asymmetry and can
induce an energy gap in the electronic spectrum, modifying
the electronic structure near the K point, as illustrated in
Fig. 1(b). Theoretical and experimental studies have shown
that the band structure is tunable with the perpendicular elec-
tric field in bilayer graphene [18–20], ABC-TLG [21–23], and
multilayer graphene [24–27], which offers an exciting oppor-
tunity to investigate the richer electronic structure and widen
the range of application for graphene systems in electron-
ics. More recently, experiments have reported the observation
of superconductivity and tunable magnetism in ABC-TLG
with an external electric displacement field in the stacking
direction [28,29]. The electric field changes the cubic band
structure of pristine ABC-TLG, which exhibits a rather flat
dispersion at low energy and induces layer polarization of
the electronic density, leading to a uniform and isotropic gap
between the valence and conduction bands. The observation
of superconductivity hosting gate-tuned magnetism in a clean
system without a moiré pattern can provide a new perspec-
tive on the origin of superconductivity in graphene-based
systems.

Most strikingly, two distinct superconducting phases, SC1
and SC2, have been discovered in different regions of the
phase diagram [28]. The SC1 phase emerges from a para-
magnetic normal state and respects the Pauli limit, which
implies s-wave spin-singlet superconductivity [30–32]. The
SC2 phase occurs within a fully spin-polarized, valley-
unpolarized half metal and is insensitive to an applied in-plane
Zeeman field. An acoustic-phonon-mediated superconduct-
ing mechanism [30] and electron-electron interaction-driven
superconducting mechanism [31,33] have been proposed to
explain the observed SC2 phase, but there are still puzzles, and
the pair symmetry of the SC2 phase is still under very active
debate [30–37]. In this paper, we make efforts to identify the
nature of the observed SC2 superconducting state and the
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FIG. 1. (a) Crystal structure diagram for rhombohedral trilayer
graphene (ABC-TLG). Green (yellow) dots represent sublattice A (B)
with the subscript denoting the layer index i = 1, 2, 3 of the sites.
Each A2 and B1 site, as well as each A3 and B2 site, overlap. (b) Band
structure around the K point of the honeycomb lattice. The induced
perpendicular electric field leads to a shift in the Fermi surface.

superconductivity we mention in the following refers to the
SC2 phase specifically.

Compared to the determinant quantum Monte Carlo
(DQMC) method [38], the constrained-path quantum Monte
Carlo (CPMC) method is believed to be the more appro-
priate approach where the sign problem is avoided by the
constrained-path approximation. We focus on the supercon-
ducting pairing correlation and magnetic correlation in the
ground state of ABC-TLG. Our simulation shows that the
system exhibits a short-range antiferromagnetic correlation at
half filling and the superconducting pairing correlation with
the d + id wave dominates over other pairing symmetries
with the perpendicular electric field. For further study, we also
considered the effect of the on-site Coulomb interaction U
and it is found that the superconducting pairing correlation
with d + id wave symmetry is enhanced by the existence of
U . Our study provides a starting point for further theoretical
and experimental investigations of correlation effects and su-
perconductivity in ABC-TLG.

II. MODEL AND METHODS

We study the half filled Hubbard model with an electric
field on the ABC-TLG lattice, which is sketched in Fig. 1(a).
The corresponding microscopic model is written as follows:

H = − t
∑
〈i j〉σ

3∑
l=1

[a†
ilσ b jlσ + H.c.]

− t⊥
∑

iσ

[b†
i1σ ai2σ + b†

i2σ ai3σ + H.c.]

+ ε

2

∑
iσ

(a†
i2σ ai2σ + b†

i2σ bi2σ )

+ ε
∑

iσ

(a†
i3σ ai3σ + b†

i3σ bi3σ )

+ U
∑

i

3∑
l=1

(nilA↑nilA↓ + nilB↑nilB↓),

(1)

where a†
ilσ (ailσ ) creates (annihilates) electrons at site Ra

li of
the l (l = 1, 2, 3) layer with spin σ (σ =↑,↓) on sublat-
tice A, as well as b†

ilσ (bilσ ) acting on electrons of sublattice
B. Occupy number operators nilAσ = a†

ilσ ailσ and nilBσ =
b†

ilσ bilσ . t denotes the in-plane hopping amplitude between
nearest-neighbor (NN) and t⊥ is the interlayer hopping am-
plitude in the direction perpendicular to the NN bond. We
set t = 1 as the default energy scale. Previous calculations
and experiments [21,39–41] indicate that t = 2.7–3 eV and
t⊥ = 0.3–0.4 eV. Accordingly, t⊥ = 0.1t is used in later sim-
ulations. U is the on-site Hubbard repulsive interaction and ε

is the potential difference, denoting the effect of the applied
perpendicular electric field. The current experimental work
on trilayer graphene shows that one can tune the potential
difference up to the eV scale [4,5,28,29,33]. For this reason,
we selected 0.1t → 1.0t as the parameter range for ε.

Our simulations are mostly performed on the lattice of
L = 4 with periodic boundary conditions. L is the linear di-
mension of the lattice. The number of lattice sites in each layer
is 2 × 3L2, where the number 2 means two inequivalent trian-
gular sublattices and the number 3 means that each triangular
sublattice is consistent of 3 rhombus lattices with L2 sites; the
rhombus lattice approximately describes the unit cell as shown
in Fig. 9. The total number is equal to NS = 3 × 2 × 3L2. For
the case of half filling, the total electron number is also equal
to 3 × 2 × 3L2.

We adopt the constrained-path quantum Monte Carlo
(CPMC) method [42–47] to study the pairing symmetry and
magnetic properties. In the CPMC method, the ground-state
wave function |φ〉 is projected from an initial wave function
|�0〉 by a branching random walk in an overcomplete space of
constrained Slater determinants |�0〉. The constrained Slater
determinant spaces have positive overlaps, where the trial
wave function is already known. Therefore, we can write
|�0〉 = ∑

φχ (φ)|φ〉 in such a space, where χ (φ) > 0. After
the random walk, we obtain an ensemble of φ, named ran-
dom walkers. Thus |�0〉 is distributed in the sense of Monte
Carlo sampling of χ (φ). A constrained-path approximation
is adopted to prevent the sign problem. In this work, we
focused on closed-shell cases and the corresponding free-
electron wave functions were chosen to be |�T 〉. In a typical
CPMC run, the average number of random walkers is set to
be 600 and the time step �τ = 0.05; 40 blocks of 320 Monte
Carlo steps are used to ensure statistical independence. After
the simulations reach equilibrium, the expectation values for
some physical observable O are estimated based on the back-
propagation (BP) technique [43]. A comparison of the results
obtained from different BP steps indicates that 40 BP steps
can ensure convergence in the regime U < 4.0t .

III. RESULTS AND DISCUSSION

We first examine the impact of the electric field on the
band structure, Fermi surface, and density of states (DOS). At
ε = 0, as shown in Fig. 2(a), the three valence bands marked
by red, black, and cyan lines are almost degenerate and the
three conduction bands exhibit similar behavior, which are
marked by orange, green, and blue lines. At ε = 1, the orig-
inally nearly degenerate bands split, as shown in Fig. 2(b),
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FIG. 2. (a), (b) Band structures, (c) density of states, and
(d) Fermi surfaces of the noninteracting Hubbard model on the ABC-
TLG for different potential differences ε. The coordinates of 	, M,
and K shown in (a) and (b) are (0,0), (0, 2π√

3
), and ( 2π

3 , 2π√
3

). The
green dashed lines represent the positions of the Fermi levels. The
blue and red curves shown in (c) indicate the density of states and
filling density and the solid and dashed lines represent ε = 0.0 and
ε = 1.0, respectively. The color bar shown in (d) represents ε over a
range of 0 < ε < 1.

and the Fermi level shifts upwards by approximately 0.5 eV.
Figure 2(c) clearly shows that the DOS near the Fermi level
is dramatically increased and that the van Hove singularity
(VHS) is split as ε increases from 0 to 1. As shown in
Fig. 2(d), it is clear that the Fermi surface gradually expands
from a point to a large ring surrounding the K point with
increasing ε. Superconductivity has been found in regimes
where the normal-state Fermi surface (FS) has an annular
shape; an annular FS is beneficial for an electronic mechanism
for superconductivity driven by repulsive Coulomb interac-
tions [48–52]. The phenomenon of the increasing ring around
the K point in FS indicates that the electric field favors super-
conductivity.

Next, we discuss the impact of the electric field on the
magnetic property of the studied system. To examine how the
magnetic order develops at half filling, we compute the anti-
ferromagnetic (AFM) spin structure factor, which is defined
as

S(q) = 1

Ns

∑
dd ′

∑
i j

∑
l

εdd ′eiq(ild − jld ′ )〈Sild S jld ′ 〉, (2)

where d or d ′ denotes the sublattice index. Sild = nild↑ −
nild↓, εdd ′ = 1 for d = d ′, and εdd ′ = −1 for d 
= d ′. The
peaks in this quantity are related to the dominant spin order-
ing. As shown in Fig. 3(a), for both ε = 0.1 and ε = 1.0, we
observe a peak at the 	 point related to AFM fluctuations.
The association of 	 with AFM (rather than FM) is due to the
additional factor εd,d ′ in the structure factor, which changes
sign in opposite sublattices. Moreover, this peak is weakly
suppressed as ε changes from 0.1 to 1.0.

FIG. 3. (a) Spin structure factor S(q) is shown as a function of
momentum at U = 3 on the L = 4 lattice. (b) Intralayer NN spin
correlation function as a function of potential difference ε at U = 3.
(c) Intrasublattice and (d) intersublattice long-range spin correlations
versus distance r/a. Results are obtained at U = 3, L = 4. The green
dashed lines indicate the position of 0.0. The inset: averaged electron
density of each layer 〈n〉 versus potential difference ε.

Figure 3(b) shows the intralayer NN spin correlation

SZ
NN (l ) = 1

3

∑
i, j=i+δl

〈(nild↑ − nild↓)(n jld ′↑ − n jld ′↓)〉, (3)

where the vectors δl (l = 1–3) denote the nearest neighbor
(NN) intersublattice connections and the d or d ′ denotes the
sublattice index of these nearest neighbor sites and they al-
ways have opposite values. The negative value of the NN
spin correlation indicates that the system has an AFM fluc-
tuation with a perpendicular electric field, consistent with the
conclusion of Fig. 3(a). The trend of NN spin correlation in
Fig. 3(b) suggests that the amplitudes of spin correlations are
gradually suppressed with increasing ε, but the suppression
is rather weak even at ε = 1.0. This result demonstrates that
AFM fluctuation is always the dominant magnetic fluctuation,
which is consistent with the spin structure factor in Fig. 3(a).
Moreover, the first layer and third layer have a similar up-
ward trend, while the second layer only fluctuates. The layer
symmetry is broken by the electric field as observed from
the averaged electron density of each layer 〈n〉 shown in the
inset of Fig. 3(a). The doping density of electrons in the first
layer is the same as the doping density of holes in the third
layer, resulting in their similar behavior, but the second layer
remains half filled.

To determine whether the long-range AFM fluctuation sur-
vives in the electric field, in Figs. 3(c) and 3(d), we plot the
intrasublattice spin correlations

SZ
AA(R = Ri − Rj) = 1

3

∑
l

〈(nilA↑ − nilA↓)(n jlA↑ − n jlA↓)〉
(4)
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and intersublattice spin correlations

SZ
AB(R = Ri − Rj) = 1

3

∑
l

〈(nilA↑ − nilA↓)(n jlB↑ − n jlB↓)〉
(5)

as a function of distance r/a, where a is the lattice constant. At
ε = 0.1, SZ

AA(r) displays positive values and SZ
AB(r) displays

negative values, which reveals the existence of long-range
AFM ordering. At ε = 1.0, with the increasing distance r/a,
SZ

AA(r) decreases from positive to negative and SZ
AB(r) grows

from negative to positive, indicating that the AFM ordering
is suppressed as the electric field increases and becomes de-
stroyed when r/a > 2.5.

To investigate the superconducting property, we studied the
pairing correlations for various pairing symmetries, which are
defined as

Cα (R = Ri − Rj) = 1

3

∑
l

〈�†
lα (i)�lα ( j)〉, (6)

where α stands for different pairing symmetries. Due to the
constraint of the on-site Hubbard interaction in Eq. (1), the
local pairing should be suppressed by the Coulomb repulsion;
we consider the pairing order parameter �

†
lα (i) of nearest

neighbor bonds and next nearest neighbor bonds and the near-
est neighbor bonds pairing is defined as follows:

�
†
lα (i) =

∑
l

f †
α (δl)(ali↑bli+δl↓ ± ali↓bli+δl↑)†. (7)

The next nearest neighbor bonds pairing is

�
†
lα (i) =

∑
l

f †
α (δl)(ali↑ali+δl↓ ± ali↓ali+δl↑)†, (8)

where fα (δl) in the pairing function is the form factor distin-
guishing different pairing symmetries and the −(+) sign is
associated with spin-singlet(triplet) pairing. Here, in Eq. (7),
the vectors δl (l = 1–3) denote the nearest neighbor (NN) in-
tersublattice connections (the sublattice index m 
= n) and, in
Eq. (8), δl (l = 1–6) denotes the next nearest neighbor (NNN)
intrasublattice connections (the sublattice index m = n), as
sketched in Fig. 4.

Considering the special structure of the honeycomb lattice,
three possible NN pairing symmetries are characterized by (a)
extended S(ES), (b) d + id , and (c) the p + ip wave [47,53–
57]. These extended pairing symmetries are defined with dif-
ferent phase shifts upon π/3 or 2π/3 rotations. The singlet ES
wave and NN-bond d + id pairing have the following form
factors:

fES (δl) = 1, l = 1, 2, 3, (9)

fd+id (δl) = ei(l−1) 2π
3 , l = 1, 2, 3. (10)

For the NN-bond fp+ip pairings, the form factors of the A and
B sublattices are different, where

fp+ip(δal) = ei(l−1) 2π
3 , l = 1, 2, 3, (11)

fp+ip(δbl) = ei[(l−1) 2π
3 +π], l = 1, 2, 3, (12)

for A and B, respectively, which are similar except that there
is a π phase shift. We also considered three common NNN

ES wave(a)

0

00

0

00

d+id NN(b)

0

2 /34 /3

0

4 /32 /3

p+ip NN(c)

5 /3/3

0

4 /32 /3

d+id NNN(d)

0

2 /3 4 /3

2

2 /34 /3

p+ip NNN(e)

0

/3 2 /3

4 /35 /3

f NNN(f)

0

0

0

FIG. 4. Phases of the pairing symmetries on the honeycomb lat-
tice: (a) ES wave, (b) d + id with NN, (c) p + ip with NN, (d) d + id
with NNN, (e) p + ip with NNN, and (f) f NNN wave. Here, the
different colored dots denote sites of the different sublattices A and
B.

bond pairings: (d) d + id , (e) p + ip, and (f) f wave symmetry
[54,57], which have the following form factors:

fd+id (δl) = ei(l−1) 2π
3 , l = 1, 2, 3, . . . , 6, (13)

fp+ip(δl) = ei(l−1) π
3 , l = 1, 2, 3, . . . , 6, (14)

f f (δl) = ei 1+(−1)l

2 π , l = 1, 2, 3, . . . , 6. (15)

Figure 5 presents the long-range parts of various pairing
correlations as a function of ε. We sum up the correlations

FIG. 5. Pairing correlations as a function of potential difference
ε at (a) U = 0 and (b) U = 3 on the L = 4 lattice for different pairing
symmetries.
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FIG. 6. Pairing correlations as a function of pairing distance
r/a at (a) U = 0 and (b) U = 3 with ε = 0.5 for different pairing
symmetries.

whose distance is three times larger than lattice constant a
and we denote it by C̄α (r/a > 3). The reason that we look at
pairing at r/a > 3 is that, as r/a < 3, in the value of pairing
interaction mix too much contribution from the spin corre-
lation. The spin correlations decrease very fast as the lattice
distance increases. As r/a > 3, the contribution from the spin
correlation shall have little effect on the dominate pairing
correlation. One can readily see that the pairing correlation
with f pairing symmetry is much larger than other symmetries
and it is greatly enhanced with increasing ε. A comparison
between Figs. 5(a) and 5(b) shows that the f pairing symmetry
is slightly reduced as the value of U increases; in addition,
the trends for the pairing symmetries are very similar for
U = 0 and U = 3. Besides, one can find that the C̄α (r/a > 3)
are enhanced by the increasing electric field. Recalling the
suppression of long-range antiferromagnetic fluctuations that
have been shown in Figs. 3(c) and 3(d), one can conclude that
the electric field weakens the long-range antiferromagnetism
and enhances the superconductivity. The competition between
superconductivity and antiferromagnetism is an important
topic in strong correlated systems and these results may reveal
this competition in rhombohedral trilayer graphene under an
electric field.

Moreover, Fig. 6 shows Cα versus distance r/a at ε = 0.5.
For all long-range distances, the superconducting pairing cor-
relation with f wave symmetry is more dominant than that
of other pairing symmetries, which confirms the findings in
Fig. 5.

Based on the above results, our simulation results support
the notion that the system favors f pairing symmetry under
the control of a perpendicular electric field. However, previ-

FIG. 7. Vertex functions as a function of (a) distance r/a and
(b) potential difference ε for different pairing symmetries at U = 3.

ous quantum Monte Carlo studies on graphene [54,58] have
indicated that the conclusion derived from the electron pairing
correlations might be misleading due to the noninteracting
part of the Hamiltonian. Comparing Fig. 5 and Fig. 6, one can
see that interaction strength U has little impact on the shapes
of the pairing symmetries except for slightly suppressing their
values, which indicates that f wave symmetry dominates
other symmetries, which may be due to the electronic struc-
ture of the noninteracting part.

Since the interactions play an important role in the shape of
superconductivity, we are more concerned about the pairing
correlations generated from the interactions. To identify the
actual dominant pairing symmetry, we calculated the corre-
sponding vertex contribution, which is defined as follows:

Vα (R) = Cα (R) − C̃α (R), (16)

where C̃α (R) is an uncorrelated single-particle contribu-
tion, which is achieved by replacing 〈a†

li↓al j↓b†
i+δl↑b j+δl′ ↑〉 in

Eq. (6) with 〈a†
i↓a j↓〉〈b†

i+δl↑b j+δl′ ↑〉. Positive (negative) Vα (R)
signals an enhanced (suppressed) tendency for the pairing
symmetry α and we can determine the dominant pairing from
the tendency of the effective pairing correlation function.

As shown in Fig. 7(a), the distance-dependent vertex con-
tribution is shown for ε = 0.5. It is clear that Vd+id (R) is larger
than the amplitude of other symmetries for all long-range
distances between electron pairs, demonstrating that the NNN
bond d + id is the dominant pairing symmetry in ABC-TLG
under the perpendicular electric field. The long-range vertex
contribution as a function of ε is also shown in Fig. 7(b). One
can see that ε leads the vertex contribution to fluctuate, but the
leading pairing symmetry does not change for all ε. Similar
to the correlations, V̄α (r/a > 3) is defined to demonstrate the
long range part of the vertex; we sum up the vertex with r/a >
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FIG. 8. Vertex function of d + id pairing symmetry as a function
of (a) distance r/a and (b) potential difference ε for different on-site
interaction U .

3, where a is the lattice constant. The values of V̄α (r/a > 3)
for the d + id wave and f wave remain positive as ε varies.
The positive effective pairing interaction indicates that there
actually exists attraction for the d + id and f pairing symme-
tries. Moreover, the d + id symmetry is almost insensitive to
the electric field, while the f symmetry gradually decreases
under the influence of the electric field. The d + id NN wave
gradually increases from a negative value to zero with increas-
ing ε and ε has a negligible effect on the vertex contribution
for other symmetries whose corresponding values are close to
zero, suggesting that it is difficult to form an effective pairing
attraction for these pairing symmetries.

FIG. 9. Sketch of the triangular sublattice of honeycomb struc-
ture for L = 4.

FIG. 10. Pairing vertex at L = 5, U = 3.0, and ε = 0.5, where
the results are qualitatively the same as L = 4.

To learn more about the NNN-d + id vertex contribution,
we examined the evolution of Vd+id with various on-site
Coulomb interactions and electric fields, as shown in Fig. 8.
We observe that the value of the vertex contribution shows
a strong increase as U is added in Fig. 8(a), indicating the
importance of electronic correlation in enhancing the d + id
superconducting order, which is consistent with a previous
study [59]. The results shown in Fig. 8(b) confirm that the
long-range part of the vertex contribution with d + id pairing
symmetry is almost independent of the electric field.

IV. CONCLUSIONS

In summary, we have studied the magnetic properties
and pairing symmetry of half filled rhombohedral trilayer
graphene under an electric field. Our simulations based on
the Hubbard model indicate that the system exhibits an an-
tiferromagnetic correlation, which is slightly suppressed with
increasing electric field. At half filling, the superconducting
pairing with d + id symmetry dominates over other pairing
symmetries. We have also analyzed the effect of the on-site in-
teraction and electric field on the superconductivity. It is found
that the dominant d + id superconducting pairing is enhanced
as the on-site interaction increases and is robust against

FIG. 11. Pairing vertex of different layers at U = 3.0 on the L =
4 lattice, where we can see that the first layer is larger than the others.
However, the tendencies of them are similar to each other.
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variations in the electric field, which supports the scenario of
superconductivity originating from strong electronic correla-
tions. Our intensive numerical results unveil a possible inter-
action driven superconductivity with d + id pairing symmetry
in rhombohedral trilayer graphene under an electric field.
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APPENDIX

To make the geometry of trilayer graphene more clear, we
now present the planar structure schematic of the triangular

sublattice of honeycomb structure with linear lattice size L =
4 in Fig. 9. The red symbols denote one of the inequivalent
triangular sublattices, the underlying honeycomb lattice is
represented by the blue dashed lines, and the unit cell forming
the triangular lattice is marked by black dotted lines which
consist of L2 sites. Here the designed triangular lattice has
3 × L2 sites, which is a 1/2 subset of the honeycomb lattice,
so the total sites of trilayer graphene could be expressed as
NS = 3 × 2 × 3 × L2.

To check the consistency at different lattice sizes, we per-
form simulations on L = 5. We can see that, in Fig. 10, the
dominance of d + id remains unchanged.

Finally, we check the layer dependence of pairing correla-
tions in Fig. 11; the second and the third layer are nearly the
same and the first layer is larger. However, the tendencies of
them are quite similar, so, in the main text, we average over
them for convenience.
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