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Hall conductivity for the intrinsic anomalous quantum Hall effect in homogeneous systems is given by the
topological invariant composed of the Green function depending on momentum of quasiparticle. This expression
reveals correspondence with the mathematical notion of the degree of mapping. A more involved situation takes
place for the quantum Hall effect in the presence of external magnetic field. In this case, the mentioned expression
remains valid if the Green function is taken in a specific representation, where it becomes the infinite-dimensional
matrix [N. Imai et al., Phys. Rev. B 42, 10610 (1990)] or if it is replaced by its Wigner transformation while
ordinary products are replaced by the Moyal products [M. A. Zubkov and X. Wu, Ann. Phys. 418, 168179
(2020)]. Both these expressions, unfortunately, are much more complicated and might be useless for the practical
calculations. Here we represent the alternative representation for the Hall conductivity of a uniform system in
the presence of constant magnetic field. The Hall conductivity is expressed through the Green function taken in
Harper representation, when its nonhomogeneity is attributed to the matrix structure while functional dependence
is on one momentum that belongs to magnetic Brillouin zone. Our consideration for the interacting systems is
nonperturbative and is based on the Schwinger-Dyson equations truncated in a reasonable way. We demonstrate
that in this approximation the expression for the Hall conductivity in Harper representation remains valid, where
the interacting Green function is to be used instead of the noninteracting one. We, therefore, propose that the
obtained expression may be used for the topological description of fractional quantum Hall effect.
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I. INTRODUCTION

The first topological expression for the quantum Hall ef-
fect (QHE) conductivity has been proposed in [1] for the
ideal two-dimensional (2D) noninteracting condensed matter
systems in the presence of constant external magnetic field.
This expression is proportional to the Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) invariant, which is the integral
of Berry curvature in magnetic Brillouin zone over the oc-
cupied electronic states [2–4]. This expression also remains
valid for the description of integer intrinsic QHE in 2D topo-
logical insulators. Besides, this approach has been extended to
the three-space-dimensional (3D) topological insulators (see,
for example, [5]). The introduction of weak interactions as
well as disorder (to the ideal homogeneous system of nonin-
teracting particles) does not affect total conductivity of integer
QHE, considered as a function of chemical potential at fixed
value of magnetic field (for those values of the chemical
potential that belong to the Hall plateaus). It is important,
therefore, to express Hall conductivity through the Green
functions that are well defined within interacting theory. Such
an expression for the conductivity of intrinsic anomalous QHE
(AQHE) in (2 + 1)D systems has been given through the
Green functions in [6–8] (see also Chap. 21.2.1 in [9]). The
extension of such a construction to various 3D systems has
also been proposed [10]. The resulting expression allows to

describe the AQHE in Weyl semimetals [11–16]. The similar
topological invariants have also been discussed in [17,18].
The AQHE conductivity is given by the expressions of [6,8–
10] through the two-point Green functions also for the inter-
acting systems. The general proof of this statement has been
given in [19].

In [20] the construction of [6–8] was extended to the es-
sentially nonhomogeneous systems. It appears that the Hall
conductivity is expressed through the Wigner transformed
two-point Green function. This gives an alternative proof
that disorder does not affect the total QHE conductivity (al-
though the local Hall current is pushed by disorder towards
the boundary of the sample). It is worth mentioning that the
role of disorder in QHE has been widely discussed in the past
[2,3,21–23]. The absence of corrections due to weak Coulomb
interactions to the QHE ferromagnetic metal was discussed
in [24]. Interelectron interactions and their relation to QHE
have also been discussed long time ago (see, for example,
[7,25–27]). The proof of the absence of radiative corrections
to Hall conductivity (to all orders in perturbation theory) in the
presence of external magnetic field has been given in [28,29]
(see also [30]).

Unfortunately, the expression proposed in [20] does not
look useful for practical calculations since it contains the
Moyal product of functions defined in phase space. Another
representation of the QHE conductivity through the two-point
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Green functions has been given in [7] (see also references
therein). In principle, the idea of [7] is somehow similar
to that of [20] and of this paper: the final form of topo-
logical expression for the Hall conductivity resembles the
expression for the degree of mapping, where the mapping
is defined by the Green function. In [20] this expression is
modified replacing the ordinary product by Moyal product,
while the Green function is replaced by its Wigner trans-
form. In [7] the ordinary matrix product is used. However,
the Green function is taken in the specific representation,
when it is represented by the infinite-dimensional matrix de-
pending on momentum. Otherwise, the topological invariant
of [7] is similar to expression of this paper. Since the ma-
trix is infinite dimensional, such an expression looks useless
for the computational purposes. The advantage of expression
proposed by us in this paper is that it is composed of the
N × N matrices with finite N . Those matrices depend on
momentum.

First, we derive our expression for the Hall conductivity
for the noninteracting model. Next, we demonstrate that it
remains valid also in the presence of interactions, when the
noninteracting Green function is replaced by the complete
two-point Green function with the interaction corrections.
These corrections are taken into account nonperturbatively
through the truncated Schwinger-Dyson equation. It is well
known that interactions are able to lead the fermionic system
in the presence of external magnetic field to the fractional
QHE phases [3]. We suppose that our expression might be
used for the topological description of the QHE in these
phases. The fractional QHE (FQHE) may be observed when
disorder is decreased. Then the additional plateaus emerge in
the quantum Hall conductivity. This effect was discovered first
for the fractional conductivity equal to ν = 1

3 of the Klitzing
constant e2/h [31]. It was supposed by Laughlin that the origin
of the observed FQHE with ν = 1

3 , as well as any n = 1/q
with odd integer q, is due to the formation of the correlated in-
compressible electron liquid with exotic properties [32]. Later
the theoretical description of the other types of FQHE was
given including the FQHE with ν = 2

5 and ν = 3
7 , as a part of

the p/(2sp ± 1) series(s, p ∈ Z). It is widely believed that the
FQHE may be explained by the so-called composite-fermion
theory, in which the FQHE is viewed as an integer QHE of a
novel quasiparticle that consists of an electron that “captures”
an even number of magnetic flux quanta [33,34]. However, no
precise microscopic topological explanation of the FQHE is
given until now. We hope that this paper gives a certain hint in
this direction.

Notice that the AQHE existing without magnetic field can
also exist in fractional form [35]. The effects of interactions
within the 2D topological insulators were considered in [36].
In graphenelike sytems relation of Coulomb interactions to the
renormalization of Fermi velocity was studied, for example,
in [37]. Various questions related to interaction effects in
2D systems have been discussed in [38–40]. The interaction
corrections in 3D Weyl semimetals are discussed in [41,42]. In
this paper we consider the tight-binding models in 2D. Similar
tight-binding models have been widely considered in the past
(see, for example, in [10,39,43–45] and references therein).
For the description of various 3D tight-binding models see
[46–50].

II. HALL CONDUCTIVITY IN HARPER
REPRESENTATION (NONINTERACTING SYSTEMS)

In this section we start from the standard field-theoretic
representation of the tight-binding model for the two-
dimensional material in the presence of external magnetic
field. We will introduce the notion of magnetic Brillouin zones
in a manner slightly different from the standard one. It will be
used later in this form to express Hall conductivity as a topo-
logical invariant expressed through the Green functions. More
details of this consideration of the noninteracting systems may
be found in [51].

The simplest tight-binding Hamiltonian (for rectangular
2D lattice) in the presence of electromagnetic field has the
form

Ĥ (a†, a) = −t
∑

x

∑
j=1,2

(a†
xe−ieaAj (x)/h̄ax+e j + H.c.)

+
∑

x

ea†
xA0(x)ax. (1)

Here the sum is over the sites x of rectangular 2D lattice, e j

is the unit vector in the jth direction that connects adjacent
lattice sites. Field A0(x) is responsible for external electric
field �E = −∇A0(x).

In the following we illustrate our derivation by direct
consideration of this Hamiltonian. However, the obtained ex-
pressions for the electric current and conductivity are valid
also for the Hamiltonian of a more general form, which may
be checked easily at each step. For the present consideration
the lattice has to be rectangular. The generalization to the
lattice of general form is not described here (although such
a generalization is straightforward).

Let us denote

Q̂ =
∑

x

a+
x ∂τ ax + Ĥ (a†, a) − μN̂ (a†, a) =

∑
i j

a†
i Q̂i ja j

(2)
with the fermion number operator

N (a†, a) =
∑

x

a†
xax (3)

and derivative with respect to (imaginary) time τ (the cre-
ation and annihilation operators depend on time in Heisenberg
representation). Q̂ will be called below Dirac operator. The
partition function of the theory has the form of integral over
Grassmann-valued fields ψx(τ ):

Z =
∫

D(ψ̄, ψ )e− ∫ β

0 dτ ψ̄x (τ )Q̂xyψy (τ ). (4)

We consider the system in the presence of constant mag-
netic field, and take the electronagnetic potential in Landau
gauge A1 = 0, A2 = Bx1. Green function is given as the in-
verse to operator Q̂:

Ĝ = Q̂−1.

Let us require that magnetic field is quantized and has the form

2π

Na
ν = eaB

h̄
(5)

with mutually simple integer numbers ν and N . We define
magnetic flux quantum �0 = h̄

e 2π and � = a2B. This gives
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the following condition on the magnetic flux through the
lattice cell:

ν

N
= �

�0
. (6)

In practice for any value of B (given by a rational number
times h

ea2 ) we can choose ν and N to fulfill the above relation.
Under these conditions the magnetic Brillouin zones may be
defined, and the Dirac operator becomes N × N matrix in the
additional index. The latter representation is called Harper
representation for the considered system. Namely, we divide
the Brillouin zone into the magnetic Brillouin zones with
eigenvectors of momentum

|(u, n), v〉 ≡
∣∣∣∣u + n

2π

aN
ν, v

〉
. (7)

Here u ∈ [	,	 + 2π
aN ) is momentum along the x1 axis while

v is momentum along the x2 axis, while n = 0, . . . , N − 1. 	

may be arbitrary.
In Matsubara representation matrix elements of Dirac oper-

ator (without the term containing external electric field) with
respect to vectors defined in Eq. (7) are (for more details see
[52])

Qωm
uvnn′ = [−iωm − μ − 2t cos((u, n)a)]δn,n′

− teivaδn,n′−1 − te−ivaδn,n′+1 (8)

while

(u, n)a =
(

u + n
2π

Na
ν

)
a = ua + n

2π

N
ν, (9)

i.e.,

Qωm
p1 p2nn′ =

[
−iωm − μ − 2t cos

(
p1a + n

2π

N
ν

)]
den,n′

− teip2aδn,n′−1 − te−ip2aδn,n′+1. (10)

Here ωn are Matsubara frequencies. Notice that the derivation
of Harper representation has been given in numerous publica-
tions (for the review see, for example, [3]).

The conductivity averaged over the system area may be
calculated easily through the response of electric current to
electric field. Current averaged over the system area is

〈 ˆ̄Ji〉 = 1

L2

∑
x

〈Ĵi(x)〉 = 1

Z
1

βL2

δZ
δAi

= 1

βL2

δ lnZ
δAi

. (11)

We assume here that the system has rectangular form with the
linear size L. This expression may be represented as

〈 ˆ̄Ji〉 = − 1

βL2

∑
ωn

Tr

[
δQ̂
δAi

Ĝ

]
, (12)

where δAi is homogeneous external electromagnetic potential.
The response of electric current to constant external electric
field E gives conductivity. Therefore, we consider the re-

sponse of Dirac operator and Green function to electric field:

Q̂ → Q̂′ = Q̂ + δ
�E Q̂ = Q̂ + ∂Q̂

∂Ei
Ei. (13)

And the average conductivity is given by

σ̄i j = 1

βL2

∑
ωn

Tr

[
∂Q̂
∂Ai

Ĝ
∂Q̂
∂Ej

Ĝ

]
. (14)

Next, we come to Matsubara representation and insert into
this expression the completeness relation that introduces the
magnetic Brillouin zone (see also Appendix A):

1 =
N−1∑
n=0

∫ ∞

−∞
du

∫ 2π
a

0
dv

∣∣∣∣u + n
2π

aN
ν, v

〉

×
〈
u + n

2π

aN
ν, v

∣∣∣∣θ (u − 	)θ

(
	 + 2π

Na
− u

)
. (15)

As a result we obtain the expression for conductivity through
Q and G written in Harper representation.

At low temperature T → 0 the sum over Matsubara fre-
quencies may be replaced by an integral

∑
ωm

→ 1
2πT

∫
dω:

σ̄i j = − e2

2π h̄4π2N

∫
dω

∫
BZ

d p1

∫
BZ

d p2

× Tr

[
∂Qω

p1 p2

∂ pi
Gω

p1 p2

∂Qω
p1 p2

∂ω
Gω

p1 p2

∂Qω
p1 p2

∂ p j
Gω

p1 p2

]

= − e2

2π h̄4π2N

∫
dω

∫
BZ

d p1

∫
BZ

d p2

×
N∑

a,..., f =1

[
∂Qω

p1 p2ab

∂ pi
Gω

p1 p2bc

∂Qω
p1 p2cd

∂ω

× Gω
p1 p2de

∂Qω
p1 p2e f

∂ p j
Gω

p1 p2 f a

]
. (16)

Notice that although Dirac operator Q is taken here in Harper
representation the integrals in the above expression are within
the whole Brillouin zone. Here by Qω

p1 p2
we denote N × N

matrix with components Qω
p1 p2ab (a, b = 1, . . . , N).

For the antisymmetric (Hall) part of conductivity we obtain
(see also [52])

σ̄ AS
i j = εi j

e2

h

1

N

εabc

24π2

∫
dω

∫
BZ

d p1d p2

× Tr

[
∂Qω

p1 p2

∂ pa
Gω

p1 p2

∂Qω
p1 p2

∂ pb
Gω

p1 p2

∂Qω
p1 p2

∂ pc
Gω

p1 p2

]
. (17)

This is the main result of our paper. It is valid for the
noninteracting tight-binding fermionic system of general form
although the derivation has been illustrated by consideration
of the model with the Hamiltonian of Eq. (1). In Eq. (17)
the integral is over the whole Brillouin zone where ma-
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FIG. 1. Energy spectra of N = 3, with u = 2. In the x axis: x = V .

trix elements of Q obey periodic boundary conditions. As a
result, the given expression is topological. It has been de-
rived for the system defined on rectangular lattice with the
magnetic flux through the elementary lattice cell given by a
rational number ν/N times elementary magnetic flux. One
can see that the Hall conductivity may be represented in
the form of the product σH = e2

h
1
N N where N is the inte-

ger topological invariant composed of the N × N matrices
Q. For the noninteracting systems this invariant should be
equal to the integer multiple of N in order to provide the
integer QHE.

We expect that Eq. (17) remains valid also for the case
of an interacting system, where matrix G is replaced by
the complete propagator defined in the magnetic Brillouin
zone. In this case, the value of N is not necessarily equal
to the integer multiple of N . This way we may obtain
the topological description of the fractional quantum Hall
effect.

III. NUMERICAL RESULTS IN
NONINTERACTING SYSTEMS

A. Diophantine equation

In this section we illustrate the general expressions ob-
tained above by numerical results obtained for the system with
the one-particle Hamiltonian of the form

Ĥ (a†, a) = v1

∑
x

(a†
xe−ieaA1(x)/h̄ax+e1 + H.c.)

+ v2

∑
x

(a†
xe−ieaA2(x)/h̄ax+e2 + H.c.)

+
∑

x

ea†
xA0(x)ax (18)

with the two different hopping parameters v1 and v2.
We consider the case of constant magnetic field originated

from potential

A1(x1, x2) = Bx2, A2(x1, x2) = 0.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5
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to
po

. n
um

.

FIG. 2. Topological number vs chemical potential (expressed in
lattice units), for the case of N = 3 and u = 2.

The values of magnetic flux through the lattice cell are chosen
to be equal to 1/N of elementary flux �0 = h/e. The two pos-
sibilities are considered: with N = 3 and N = 4. We calculate
numerically the spectrum of the system, and the value of Hall
conductivity using the obtained above expression

σ̄ AS
i j = εi j

e2

h

1

N

εabc

24π2

∫
dω

∫
BZ

d p1d p2

× Tr

[
∂Qω

p1 p2

∂ pa
Gω

p1 p2

∂Qω
p1 p2

∂ pb
Gω

p1 p2

∂Qω
p1 p2

∂ pc
Gω

p1 p2

]
. (19)

In both cases we reproduce the known result for spectrum (that
results from the solution of Harper equation). Moreover, in the
case when the chemical potential belongs to the gap, we repro-
duce the value of Hall conductivity that might me obtained
alternatively using the solution of Diophantine equation.
This confirms the validity of the derived general expres-
sion for the Hall conductivity as an integral in the Brillouin
zone.

Recall that the standard method for calculation of Hall
conductivity gives

σH = e2

h
tr,

where tr is the solution of Diophantine equation

r = Nsr + νtr

for integer r, sr, tr . In our case N = 3 or 4 while ν = 1.
Here |tr | � N/2, while r = 1, . . . , N . One can check that both
for N = 3 and 4 there are two nontrivial solutions of this
equation with tr = ±1. This pattern is reproduced by our
numerical results and is illustrated by Figs. 1, 2, 3,
and 4.

B. The case of N = 3

In this section, we consider the topological number σH

defined above, in the presence of magnetic field B, which
satisfies Ba2 = φ0/3. Here, φ0 is the magnetic flux quantum
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φ0 = h/e. For simplicity we use here unities with h̄ = e = 1.
In these units the value of conductivity is quantized as an
integer multiple of 1/(2π ).

If one switches on a small electric field E along the x axis,
according to Eq. (13) the Hall current density along the y axis

J2 is given by

J2 =
∫ +∞

−∞

dE

2π

∫ +π/3

−π/3

d p1

2π

∫ +π

−π

d p2

2π
Tr G(p)

∂Q

∂ p2
, (20)

where Q is the matrix

⎛
⎜⎜⎝

E − 2v1cos(p1) −v2eip2 −v2e−ip2

−v2e−ip2 E − 2v1cos(p1 + 2π/3) −v2eip2

−v2eip2 −v2e−ip2 E − 2v1cos(p1 − 2π/3)

⎞
⎟⎟⎠.

In the leading order, G = G(1)(p) which is given by

G(1)(p) = i

2
G(0) ∂Q

∂ pi

∂G(0)

∂ p j
Fi j, (21)

with G(0) = 1/Q and i, j ∈ {0, 1}. Therefore, G(1) =
(i/2)G(0)(∂1Q∂0G(0) − ∂0Q∂1G(0) )(iE ), and

J2 = −E
2

∫ +∞

−∞

dE

2π

∫ +π/3

−π/3

d p1

2π

∫ +π

−π

d p2

2π

×TrG(0)

(
∂Q

∂ p1

∂G(0)

∂ p0
− ∂Q

∂ p0

∂G(0)

∂ p1

)
∂Q

∂ p2
. (22)

With the help of Mathematica, we obtained

Tr

[
G(0)

(
∂Q

∂ p1

∂G(0)

∂ p0
− ∂Q

∂ p0

∂G(0)

∂ p1

)
∂Q

∂ p2

]

= 6
√

3u2i
E − U

E3 − 12+3u3

4 E − V
, (23)

where U = u
4 cos(3p1) + 1

2 cos(3p2) and V = u3

4 cos(3p1) +
2 cos(3p2), with u = 2v1/v2. Note that if one wants to take
chemical potential into account, one will change E into E +
μ. From the denominator of Eq. (23), we can find the energy

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−4

−3

−2

−1

0

1

2

3

4

V/w2

E

FIG. 3. Energy spectra of N = 4, with x = V/w2, and u = 2.

spectra of the system. The energy levels will be the solutions
of the cubic equation 4(E/2α)3 − 3(E/2α) = V/2α3, with
α = √

u2 + 4/2. Explicitly, the solutions (from small to big)
are given by

E1 = 2α cos

(
θ + 2π

3

)
,

E2 = 2α cos

(
θ − 2π

3

)
,

E3 = 2α cos

(
θ

3

)
, (24)

with θ = arccos(V/2α3) ∈ [0, π ], see Fig. 1.
The next step is to calculate the Hall conductivity from

Eq. (20). Our method is to integrate dE analytically and then
compute the integral d2p numerically. Taking the case of
μ < inf{E2}, as an example, we replace E by E + μ + iδp
with δp = η �[E1(p) − μ]. Applying residue theorem to the

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8
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0.4

0.6

0.8
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FIG. 4. Topological number vs chemical potential (expressed in
lattice units), for the case of N = 4 and u = 2.
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integration of dE , we obtained

J2 =
√

3E
∫ +π

−π

da

2π

∫ +π

−π

db

2π
(E1 − E2)−2(E3 − E1)−2

×
[

1 − 2(U − E1)

(
1

E1 − E2
− 1

E3 − E1

)]
, (25)

where Ei’s are the roots, but as the functions of variables
a = 3p1 and b = 3p2. Then using MATLAB, we obtained the
numerical results shown in Fig. 2, via numerical integration.

C. The case of N = 4

In this section, we consider the case of N = 4, i.e., the
magnetic field B satisfies Ba2 = φ0/4, with φ0 = h/e. If one
switches on a small electric field E along the x axis, the Hall
current density along the y axis J2 is given by

J2 =
∫ +∞

−∞

dE

2π

∫ +π/4

−π/4

d p1

2π

∫ +π

−π

d p2

2π
Tr G(p)

∂Q

∂ p2
, (26)

where Q is the matrix (
Q11 Q12

Q21 Q22

)
(27)

with

Q11 =
(

E − 2v1cos(p1) −v2eip2

−v2e−ip2 E − 2v1cos(p1 + π/2)

)
, (28)

Q12 =
(

0 −v2e−ip2

−v2eip2 0

)
, (29)

Q21 =
(

0 −v2e−ip2

−v2eip2 0

)
, (30)

Q22 =
(

E − 2v1cos(p1 + π ) −v2eip2

−v2e−ip2 E − 2v1cos(p1 − π/2)

)
.

(31)

Using Mathematica, we obtained

Tr

[
G(0)

(
∂Q

∂ p1

∂G(0)

∂ p0
− ∂Q

∂ p0

∂G(0)

∂ p1

)
∂Q

∂ p2

]

= 16u2i
E (E2 + U )

[E4 − (u2 + 4)E2 + V ]2
, (32)

where U = u2

4 [1 − cos(4p1)] + [1 − cos(4p2)] and

V = u4

8 [1 − cos(4p1)] + 2[1 − cos(4p2)], with u = 2v1/v2.
Note that if one wants to take chemical potential into account,
one will change E into E + μ. From the denominator of
Eq. (32), we can find the energy spectra of the system. The
energy levels will be the solutions of the quadratic equation
E4 − (u2 + 4)E2 + V = 0. Explicitly, the solutions (from
small to big) are given by

E1 = −(w +
√

w2 − V )1/2,

E2 = −(w −
√

w2 − V )1/2,

E3 = (w −
√

w2 − V )1/2,

E4 = (w +
√

w2 − V )1/2 (33)

with w = u2/2 + 2, see Fig. 3.

The next step is to calculate the Hall conductivity from
Eq. (26). Our method is to integrate dE analytically and then
compute the integral d2p numerically. Taking the case of
μ < inf{E2}, as an example, we replace E by E + μ + iδp
with δp = η �[E1(p) − μ]. Applying residue theorem to the
integration of dE , we obtained

J2 = 2u2E
∫ +π

−π

da

2π

∫ +π

−π

db

2π
(E1 − E2)−2(E1 − E3)−2

×(E1 − E4)−2
[
3E2

1 + U − 2
(
E3

1 + UE1
)
H

]
, (34)

where H = 1
E1−E2

+ 1
E1−E3

+ 1
E1−E4

, and Ei’s are the roots, but
as the functions of variables a = 4p1 and b = 4p2. Then using
MATLAB, we obtained the numerical results shown in Fig. 4,
via numerical integration.

IV. QUANTUM HALL EFFECT IN (2+1)D
IN THE PRESENCE OF INTERACTIONS:

PERTURBATION THEORY

Our consideration proposed in this section is based es-
sentially on those of [29]. We will see that the expression
for Hall conductivity through the Green functions remains
valid in the presence of interactions if those interactions are
taken into account within perturbation theory. (Noninteract-
ing Green function is to be substituted in the noninteracting
expression instead of the noninteracting Green function.) It
appears, however, that since the value of Hall conductivity
is a topological invariant, its value cannot be changed by
interactions taken into account perturbatively when coupling
constant grows smoothly from zero to a given value, unless
the phase transition is encountered. Indeed, the perturbation
corrections taken into account order by order cannot modify
the value of Hall conductivity.

We consider a finite-sized, periodic, lattice-regularized
fermionic system in (2+1)D in the presence of interactions.
Formally the system may be regarded as being defined on
a 2D torus in the spatial directions. Finite periodicity in
imaginary time corresponds to a system at finite temperature.
Infinite-size limits may later be taken both for the spatial and
the imaginary time directions. The latter limit corresponds
to a transition to zero temperature. The theories under con-
sideration include exchange by scalar bosons. The particular
cases are Yukawa interaction, Coulomb interaction, as well
as a fermion four-point interaction. The most important case
here is the Coulomb interactions, which give the dominant
contribution to formation of FQHE.

The action of the free-fermion system is taken to be of the
form

S0 =
∫

dτ
∑
x′,x

ψ̄x′ (τ )Qψ

x′,xψx(τ ). (35)

Operator Q here is of a general form. For concreteness we
give below the particular form that corresponds to an idealized
system defined on the rectangular lattice [this systems differs
somehow from the one of Eq. (2)]. Anyway, as in the above
sections, here the results will not depend on the particular
form of Q.
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The part of the action comprising the interacting theories
may have, for example, the following forms:

Sη = S0 +
∫

dτ
∑
x,x′

φx′ (τ )Qφ

x′,xφx(τ )

− η
∑

x

ψ̄x(τ )ψx(τ )φx(τ ), (36)

Sα = S0 − α

∫
dτ

∑
x′,x

ψ̄x′ (τ )ψx′ (τ )V (x′ − x)ψ̄x(τ )ψx(τ ),

(37)

Sλ = S0 − λ

∫
dτ

∑
x′,x

ψ̄x′ (τ )ψx′ (τ )W (x′ − x)ψ̄x(τ )ψx(τ )

(38)

which correspond, respectively, to exchange by a scalar boson
field φ (in this case we also need to add the action of this field
itself, the term containing operator Qφ), and the particular
forms of this interaction: Coulomb interactions and contact
four-fermion interactions.

Here are particular examples of the fermion action and the
scalar boson action:

Qψ

x′,x = i[i∂τ − (A3)x(−iτ )]δx′,x

− 1

2

∑
i=1,2

[(1 + σ i )δx′,x+ei e
iAx+ei ,x

+ (1 − σ i )δx′,x−ei e
iAx−ei ,x ]σ 3 (39)

+ i(m + 2)δx′,xσ
3, (40)

Qφ

x′,x = ∂2
τ δx′,x +

∑
i=1,2

[δx′,x+ei + δx′,x−ei − (M2 + 4)δx′,x],

(41)

V (x′ − x) = 1

|x′ − x| , W (x′ − x) = 1. (42)

The parameters m and M represent the fermion and boson
masses, respectively. Furthermore, we employ the notation
Au,v = ∫ u

v
A ds where the integral is along the straight line

connecting u and v. In this section we consider the field A
depending on continuous coordinates because we are going
to use Wigner-Weyl calculus. The expressions represent the
respective action at finite temperature with imaginary time
τ = it ∈ [− β

2 ,
β

2 ] and imaginary-time periodicity of β = 1
T

for temperature T . The respective expressions at zero temper-
ature are obtained by replacing τ with t and taking the limit
T → 0.

The fermions are also coupled to a classical external source
given by an electromagnetic gauge field Aμ which is included
already in S0. This electromagnetic field comprises a constant
external electric field E , a constant external magnetic field
B orthogonal to the spatial directions. The respective contri-
butions will be split by AE=0 and AE , where E denotes the
constant external electric field, respectively, while their sum
is represented by A. We will assume here that spatial inhomo-
geneities are insignificant on the scale of the lattice spacing
and that sums over lattice sites may be well approximated by
spatial integrals. We further work in lattice units assuming
a rectangular lattice structure. For a rectangular lattice with

lattice spacing a we therefore set a = 1. Furthermore we use
the system of units with k = h̄ = 1, where k is the Boltzmann
constant and h̄ the reduced Planck constant. Electric charge of
electron is included into the definition of the electromagnetic
field.

Let us consider the case of spatial homogeneity first. The
electromagnetic current in the free theory is given by the
variation of the effective action with respect to the external
electromagnetic gauge field. Under the assumption that the in-
verse propagator Qψ is a function of the combination p − A(x)
only it follows that

Jk
0 (x) = δ ln(Z )

δAk (x)

= −
∫

d3 p1d3 p2Tr

(
(G0)(p1, p2)

∂ (Q0)(p2, p1)

∂ pk

)
(43)

at zero temperature with partition function

Z =
∫

D(ψ̄, ψ )e−S0 (ψ̄,ψ ). (44)

At finite temperature the integral over the time component
of momentum space simply becomes a sum over Matsubara
modes divided by β = 1

T with temperature T . We employ the
notation

�x′,x = i[i∂τ − (A3)x(−iτ )]δx′,x,

(T i
+)x′,x = − 1

2 (1 + σ i )δx′,x+ei e
iAx+ei ,x σ 3 = (Li

+)x′,xeiAx+ei ,x ,

(45)

(T i
−)x′,x = − 1

2 (1 − σ i )δx′,x−ei e
iAx−ei ,x σ 3 = (Li

−)x′,xeiAx−ei ,x

(46)

in order to decompose the inverse propagator Qψ

x′,x. In Landau
gauge we have A1(x) = 0 and A2(x) = Bx1, while A3(x) =
−Exl with l = 1, 2. The associated Fourier-transformed
quantities T̃ i

±(p′, p) and L̃i
±(p′, p) defined by

(T i
±)x′,x =

∫
d2 p′√
(2π )2

d2 p√
(2π )2

eip′x′
T̃ i

±(p′, p)e−ipx, (47)

(Li
±)x′,x =

∫
d2 p′√
(2π )2

d2 p√
(2π )2

eip′x′
L̃i

±(p′, p)e−ipx (48)

are related by

T̃ i
±(p′

1, p′
2, p1, p2) = L̃i

±(p′
1, p′

2, p1 ± Bδi,2, p2) (49)

in Landau gauge. It can be observed that the magnetic field in-
duces a relative shift in momentum space between the Fourier
transforms of T i

± and Li
±.

We now treat the more general case with spatial inhomo-
geneity in detail first before reducing it to the homogeneous
case in Harper representation. In the presence of spatial inho-
mogeneities the free-theory electric current may be expressed
by the use of the Wigner transform as

Jk
0 (x) = −

∫
d3 p

(2π )3
Tr

(
(G0)W (x, p)

∂ (Q0)W (x, p)

∂ pk

)
, (50)

where the subscript 0 stands for free theory, while the
subscript W marks the Wigner transform (for its detailed
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description see [29]). Notice, that here we use the so-
called approximate version of Wigner-Weyl calculus, which
is valid in the presence of weak inhomogeneities. The defi-
nitions of Wigner transformation (Weyl symbol) are given in
Appendix B for the case of continuous systems. These defi-
nitions are used without modifications for the lattice systems
when external fields vary slowly at the distance of the order
of lattice spacing. Then the sum over the lattice points may
everywhere be replaced by integrals. In practice this approx-
imation works perfectly if magnetic field strength is much
smaller than 105 T, which takes place in all realistic solid-state
systems.

The changes of subscript 0 �→ {η, α, λ} in the current and
propagator (but not inverse propagator!) label the respec-
tive interacting theory expressions. Under the assumptions
of constant external field strength (meaning constant electric
and magnetic field) as well as functional dependencies on
p − A(x) only the periodic boundary conditions in momentum
space due to lattice regularization imply the identity

Jk
0 (x) = −

∫
d3 p

(2π )3
Tr

(
(G0)W (x, p)

∂ (Q0)W (x, p)

∂ pk

)
, (51)

−
∫

d3 p

(2π )3
Tr

(
(G0)W (x, p) �

∂ (Q0)W (x, p)

∂ pk

)
(52)

at zero temperature. The symbol � represents the Moyal star
product

� = exp

[
i

2
(
←−
∂ x

−→
∂p − ←−

∂p
−→
∂ x )

]
.

The same conclusion carries over to the interacting systems.
If the Wigner-transformed inverse propagator depends only on
the difference p − A(x), it can be shown by induction starting
from (G0)W � (Q0)W = 1 that the same follows for (G0)W .
The propagator will also be a polynomial in both electric
and magnetic fields from which we discard all but the terms
linear in the electric field and assume small electric field in the
discussion of the quantum Hall effect.

As soon as the electromagnetic field is allowed to vary
spatially, the insertion of the Moyal star product in place of
ordinary multiplication is only allowed for the consideration
of the space- and time-averaged current (where we introduce
imaginary-time extent β and periodicity in time)

J̄k
0 = 1

βL2

∫
d3x Jk

0 (x) (53)

in the absence of constant electric field. How to include it will
be discussed below. The parameter L represents the spatial
extension of the torus in each direction. This also carries over
to the interacting theories.

At finite temperature and in thermal equilibrium the
Wigner transformations of the Dirac operator as well as
the (interacting) Green function do not depend explicitly
on imaginary time. The momentum-space integral for the
time component becomes a sum over discrete Matsubara
modes. The Moyal star product is then only acting on spa-
tial coordinates and their respective momenta. The previous
considerations for the case of zero temperature carry over
identically, except for the case of constant external electric
field whose presence is essential for the quantum Hall ef-

fect. The continuous functional dependence on p − A(x) of
the involved functions can no longer be used for the time
component to insert the Moyal star product in place of or-
dinary multiplication, as there appears no longer an integral
over the momentum variable corresponding to the temporal
component. A spatial averaging does also not amend this
problem, as spatial periodicity is not fulfillable in the presence
of a constant electric field. This has not been an issue at zero
temperature for constant field strength, however. At both zero
and nonzero temperatures, the electric field explicitly breaks
the periodicity assumption which requires resolution.

A solution may be provided by the following Gedanken-
experiment. Divide the torus into two identical parts whose
boundary is orthogonal to the external constant electric field
which we assume to point in one of the two torus directions
(there is no rotational invariance). Then switch the direction
of the electric field within one half. This restores spatial
periodicity in the direction of the electromagnetic field. It is
important to note that we will assume that fermions in both
halves are coupled equally to the external electric field, while
their mutual interactions may be different in the two halves.
More precisely we will shortly assume that the mutual interac-
tions vanish in one half, while they are present in the other. In
this way it will be possible to conclude the nonrenormalization
of the electric conductivity in the quantum Hall effect from
that of the electric current.

Under the mentioned circumstances (including the setup
presented within the Gedankenexperiment) the replacement of
ordinary multiplication with the star product and vice versa is
allowed anywhere in the integrated expressions. The periodic-
ities in momentum and coordinate space are conserved under
multiplication with the Moyal star product. We may therefore
make use of the results of [29] on the nonrenormalization of
the electric current.

Starting from the expression of the current in Eq. (50)
we employ expansion in the assumed small contribution F E

within the identity

(G0)W (x, p) � (Q0)W [p − A(x)] = 1. (54)

We write (G0)W = ∑∞
n=0(G0)n

W with (G0)n
W ∝ (F E )n and

keep only terms of the orders n = 0, 1. This leads to

(G0)0
W (x, p) � (Q0)W [p − A(x)] = 1 (55)

and

(G0)1
W (x, p) ≈ − i

2
(G0)0

W (x, p) �
∂ (Q0)W [p − A(x)]

∂ pμ

�
∂ (G0)0

W (x, p)

∂ pν

F E
μν (56)

with F E
μν = ∂μAE

ν (x, p) − ∂νAE
μ(x, p). The contribution to the

current proportional to electric field strength may then be
expressed within this approximation as

Jk
0 (x) ≈ i

2

∫
d3 p

(2π )3
Tr

(
(G0)0

W (x, p) �
∂ (Q0)W [p − A(x)]

∂ pμ

�
∂ (G0)0

W (x, p)

∂ pν

∂ (Q0)W [p − A(x)]

∂ pk

)
F E

μν. (57)
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The only nonzero components of the field strength are
F E

l3 = −F E
3l = iEl for an electric field in direction l with

l = 1, 2. The ordinary product in (57) may be replaced by
a Moyal star product for the averaged current (53), as the
electric field is no longer contained within the propagator as
well as the inverse propagator. In linear response theory we
can omit in A(x) the contribution of electric field, and define
Wm(x, p) = (G0)0

W (x, p) � ∂pm (Q0)W [p − AE=0(x)] it follows
that

J̄k
0 = εi jk

σ0

2i
F E

i j = εklσ0El ,

σ0 = 1

3!
εabc

∫
d3x

βL2

d3 p

(2π )3
Tr(Wa � Wb � Wc). (58)

The perturbative nonrenormalization theorem proven in [29]
allows to draw conclusions on the average current in (58) in
the interacting theories. Take a ∈ {η, α, λ}. Define the renor-
malized current

J k
aa(x) = −

∫
d3 p

(2π )3
Tr

(
(Ga)W (x, p)

∂

∂ pk
(Qa)W (x, p)

)
(59)

with (Qa)W = (Q0)W − (�W )a, where �a is the self-energy

J̄ k
aa = 1

βL2

∫
d3x J k

aa(x). (60)

At the same time we have

J k
a (x) = −

∫
d3 p

(2π )3
Tr

(
(Ga)W (x, p)

∂

∂ pk
(Q0)W (x, p)

)
(61)

and

J̄ k
a = 1

βL2

∫
d3x J k

a (x). (62)

In place of (54) we further have the identity

(Ga)W (x, p) � (Qa)W (x, p) = 1 (63)

in the presence of interactions.
The nonrenormalization theorem [29] shows that J̄ k

aa =
J̄ k

a = J̄k
0 . We now come back to the above Gedankenexper-

iment. Mark the half incorporating mutual interactions by I
and that without mutual interactions by II . The total averaged
current J k

a of the considered system may be written as

J k
a = (J I )k

persistent,a + (J II )k
persistent,0 + εkl

(
σ I

a El − σ II
0 El

)
.

(64)

By the first two summands we denote persistent current contri-
butions which may already arise in the absence of an external
electric field. According to the Bloch theorem the appearance
of these terms is not allowed in many relevant systems (those
to which it applies). For the Hall conductivity only the last
two contributions to the current are of interest, where the pro-
portionality constants are the respective conductivities. The
nonrenormalization of the current by interactions then implies

σ I
a = σ II

0 (65)

and therefore the nonrenormalization of the conductivity.
It is important to note that the conductivity derived from

J k
aa is a topological invariant and not that derived from J k

a .

The proof of the topological invariance underlines this, as
we make use of (63). The proof that J̄ k

a is a topological
invariant is given in Appendix C. The similar proof is valid for
the expression of σ I

a through the Wigner-transformed Green
function (see [20]):

σ I
a = 1

3!(2π )3βL2
εabc

∫
d3x

∫
dω

∫
BZ

d p1d p2Tr

×
(
G0(ω, p1, p2) �

∂Q0(ω, p1, p2)

∂ pa
� G0(ω, p1, p2)

�
∂Q0(ω, p1, p2)

∂ pb
� G0(ω, p1, p2) �

∂Q0(ω, p1, p2)

∂ pc

)
.

(66)

V. INTERACTING SYSTEMS: NONPERTURBATIVE
ANALYSIS

A. Groenewold equation and its iterative solution
for the interacting systems

Let Ĝ be the interacting two-point Green function. The
renormalized Dirac operator Q̂ is defined as a solution of
equation

Q̂Ĝ = 1. (67)

Weyl-Wigner transformation results in the interacting version
of Groenewold equation

QW (x, p) � GW (x, p) = 1. (68)

We assume here that all external fields vary slowly, i.e., these
variations may be neglected at the distance of the order of
lattice spacing. Then the Weyl symbol of bare (noninteract-
ing) Dirac operator has the functional dependence QW [x, p −
A(x)] in the presence of constant external field Ai(x) (cor-
responding to the field strength Fi j). Here the coordinate
dependence caused by the other external fields is given by
direct dependence on x. Function QW (x, p) with interaction
corrections can be represented as

QW (x, p) = Q(0)
W (x, p − A(x))

+Q(1)
(i j)W (x, p − A(x))Fi j + · · · . (69)

The ellipsis represents the terms proportional to the higher
powers of F and the derivatives of F . This expansion is valid
under the condition |λ2Fi j | � 1, where λ is the correlation
length associated with the given interacting system. This ex-
pansion is reasonable, at least, when we consider the DC
conductivity, i.e., the response of the current to sufficiently
small external electric field. The correlation length associated
with bare Dirac operator is typically equal to the lattice spac-
ing. In the presence of interactions the correlation length may
become much larger, of the order of the existing dimensional
parameters of the system.

In the similar way the solution of Groenewold equa-
tion (68) for the interacting Green function (up to the terms
linear in F ) is given by

GW (x, p) ≈ G (0)
W (x, p) + G (1)

(i j)W Fi j,
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where G (0)
W (x, p) is solution of reduced Groenewold equa-

tion [i.e., the one without A(x)]):

G (0)
W (x, p) � Q(0)

W (x, p) = 1.

The first-order term in the derivative of A is more complicated
than in the case of noninteracting Green function:

G (1)
(i j)W = i

2

[
G (0)

W �
(
∂piQ(0)

W

)
� G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W

]
Fi j

−G (0)
W � Q(1)

(i j)W � G (0)
W Fi j . (70)

B. Topological expression for J k
aa(x)

Let us consider the “renormalized” electric current

J k
aa(x) = −

∫
d3 p

(2π )3
Tr

(
(Ga)W (x, p)

∂

∂ pk
(Qa)W (x, p)

)
.

(71)

It differs from the precise expression by the substitution of
the renormalized velocity operator instead of the bare one. In
Appendix D we prove the nonhomogeneous version of Ward
identity

�
μ
W (P, x|0) = −i

∂

∂ pμ

QW (p, x)|p=P. (72)

Here �
μ
W (P, x|k) is the (Wigner-transformed) renormalized

vertex for the emission of photon carrying momentum k
by nonhomogeneous system of electrons (those that ex-
ist in the presence of both external electric and external
magnetic fields). The physical meaning of � is the renor-
malized velocity operator. Therefore, we can represent
J k

aa(x) as

J k
aa(x)=

∫
d p3

1

(2π )3

d p3
2

(2π )3
ei(p1−p2 )x〈�̄(p1)�k (p1, p2, 0)�(p2)〉.

(73)

We obtain the following term with the linear response to
external field strength:

J k
aa(x) = − i

2

∫
M

d3 p

(2π )3
tr

{[
G (0)

W �
(
∂piQ(0)

W

)
�G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W

]
∂pkQ(0)

W

}
Fi j

+
∫
M

dD p

(2π )D
tr

{[
G (0)

W � Q(1)
(i j)W � G (0)

W

]
∂pkQ(0)

W

}
Fi j

−
∫
M

dD p

(2π )D
tr

{
G (0)

W ∂pk

[
Q(1)

(i j)W

]}
Fi j . (74)

Averaging the local current over the whole system volume we
get

J̄ k
aa = − i

2

1

βV

∫
d3x

∫
M

d3 p

(2π )3
tr

{[
G (0)

W �
(
∂piQ(0)

W

)
�G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W ∂pkQ(0)
W

+ 2iG (0)
W � Q(1)

(i j)W � G (0)
W ∂pkQ(0)

W

− 2iG (0)
W ∂pk

[
Q(1)

(i j)W

]}]
Fi j . (75)

In the above expression the star product may be inserted. As
a result, the last two terms cancel each other, and we are left
with

J̄ k
aa = εkl σ̃H El ,

where El is electric field while

σ̃H = 1

6

εi jk

βV

∫
d3x

∫
M

d3 p

(2π )3
tr G (0)

W �
(
∂piQ(0)

W

)
�G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W � ∂pkQ(0)
W . (76)

C. Difference between J k
aa(x) and J k

a (x)

The original expression for electric current (with the non-
renormalized velocity operator) results in

J̄ k
a = εklσH El ,

where

σH = 1

6

εi jk

βV

∫
d3x

∫
M

d3 p

(2π )3
tr G (0)

W �
(
∂piQ(0)

W

)
�G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W � ∂pk Q(0)
W . (77)

The difference with the expression for σ̃H is in the bare Dirac
operator Q standing instead of Q. The difference between the
two expressions is

σH − σ̃H = 1

6

εi jk

βV

∫
d3x

∫
M

d3 p

(2π )3
tr G (0)

W �
(
∂piQ(0)

W

)
�G (0)

W �
(
∂p jQ(0)

W

)
� G (0)

W � ∂pk �
(0)
W . (78)

For the electron self-energy we have the Schwinger-Dyson
equation

�W (x, z) =
∫

d3x′d3z′D(x, z′)G (0)(x, x′)�(x′, z|z′). (79)

Here D (x, z′) is the complete interacting propagator of an
excitation that provides interactions.

In practice a certain nonperturbative treatment of the prob-
lem may be achieved already in the rainbow approximation,
when the renormalized vertex is replaced by the bare one
while the renormalized propagator of scalar excitation is re-
placed by the bare propagator.

�W (x, p) ≈
∫

d3k

(2π )3
DW (k)G (0)

W (x, p − k). (80)

In this approximation we obtain (in the presence of both
magnetic and electric fields)

J k
a (x) − J k

aa(x)

≈ −
∫
M

d3 p

(2π )3
tr GW ∂pk �W

=
∫
M

d3 p

(2π )3
tr ∂pkGW �W

=
∫
M

d3 p

(2π )3

d3k

(2π )3
tr ∂pkGW (x, p)GW (x, p − k)DW (k)

=
∫
M

d3 p̄

(2π )3

d3k

(2π )3
tr ∂p̄kGW (x, p̄ + k)DW (k)GW (x, p̄)
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=
∫
M

d3 p̄

(2π )3

d3k̄

(2π )3
tr ∂p̄kGW (x, p̄ − k̄)DW (−k̄)GW (x, p̄)

=
∫
M

d3 p̄

(2π )3

d3k̄

(2π )3
tr ∂p̄kGW (x, p̄ − k̄)DW (k̄)GW (x, p̄)

=
∫
M

d3 p

(2π )3
tr GW ∂pk �W . (81)

This expression vanishes identically, and as a result the two
current densities J k

a (x) and J k
aa(x) coincide in this approx-

imation. As a result also the responses of those currents to
external electric field coincide, and we come to the coinci-
dence of σH and σ̃H in this approximation.

Now let us come to the approximation, when renormalized
vertex � is replaced by the bare one, while scalar boson
propagator remains complete:

�W (x, p) ≈
∫

d3k

(2π )3
DW (x, k)G (0)

W (x, p − k). (82)

This approximation is much more powerful than the rainbow
approximation, and we suppose that it is able to catch the basic
nonperturbative properties of Coulomb interactions, including
those that lead to formation of the FQHE. In this approxima-
tion

J k
a (x) − J k

aa(x)

≈ −
∫
M

d3 p

(2π )3
tr GW ∂pk �W

=
∫
M

d3 p

(2π )3
tr ∂pkGW �W

=
∫
M

d3 p

(2π )3

d3k

(2π )3
tr ∂pkGW (x, p)GW (x, p − k)DW (x, k)

=
∫
M

d3 p̄

(2π )3

d3k

(2π )3
tr ∂p̄kGW (x, p̄ + k)DW (x, k)GW (x, p̄)

=
∫
M

d3 p̄

(2π )3

d3k̄

(2π )3
tr ∂p̄kGW (x, p̄ − k̄)DW (x,−k̄)GW (x, p̄).

(83)

The difference with the case of rainbow approximation is the
presence of dependence of DW (x, k) on x.

Let φ represent the real-valued field, which is responsible
for the interactions. Coulomb interactions, contact four-
fermion interactions, and Yukawa interactions, as well as a
lot of other types of interactions, are described by such field.
Then

DW (x, k) = 1

Z

∫
d3y e−iyk

∫
Dφ Dψ̄ Dψ

× e−S[ψ̄,ψ,φ]φ(x + y/2)φ(x − y/2), (84)

Here S is the action depending on the fields. One can see that

DW (x,−k) = 1

Z

∫
d3y eiyk

∫
Dφ Dψ̄ Dψ

× e−S[ψ̄,ψ,φ]φ(x + y/2)φ(x − y/2)

= 1

Z

∫
d3y e−iyk

∫
Dφ Dψ̄ Dψ

× e−S[ψ̄,ψ,φ]φ(x − y/2)φ(x + y/2) = DW (x, k).

(85)

Therefore, we obtain

J k
a (x) − J k

aa(x) ≈ −
∫
M

d3 p

(2π )3
tr GW ∂pk �W

=
∫
M

d3 p

(2π )3
tr GW ∂pk �W = 0. (86)

We come to the conclusion that in this approximation as well
the value of σH does not differ from σ̃H . Notice that although
this is still an approximation, it is already out of the pertur-
bation theory. The value of Hall conductivity is then given by
Eq. (76).

VI. TRANSITION TO HARPER REPRESENTATION
IN INTERACTING SYSTEMS

Next, we will rewrite the momentum-space integration
in Eq. (76) by introducing magnetic Brillouin zones (as in
Sec. II). The goal will be to absorb the magnetic field within
the Harper representation. This is due to the fact that the
constant magnetic field in a finite-sized system is quantized
according to B = 2π ν

N with mutually simple integers ν and N .
The introduction of magnetic Brillouin zone using an example
of 1D system is given in details in Appendix A. It may be
extended in a straightforward way to the 2D systems.

The interacting theories were considered for inhomoge-
neous (magnetic) field configurations within the Wigner-Weyl
formalism in [20]. The treatment of homogeneous systems,
which have been discussed in Harper representation in Sec. II,
are therefore just a special case of this setup. We may therefore
apply the nonrenormalization theorem also for the current
and conductivities expressed in Harper representation. This
is done in the following. We remark that each Moyal star
product may be replaced by ordinary multiplication in the
expressions derived within the inhomogeneous framework.
The Wigner-transformed propagator as well as its inverse
lack explicit spatial dependence in the case of a spatially
homogeneous system. This is because their momentum-space
matrix elements become diagonal. We will finally write both
the averaged current and the conductivity in Harper represen-
tation. Once the transition to Harper representation is made,
the magnetic field will have been absorbed completely into
the matrix structure. We will mark those matrices by using
bold letters. The matrices in Harper representation then do
not inherit diagonality as do the continuous variables be-
cause of the matrix index shift induced by the magnetic field.
Since this rewriting is identical for both free and interacting
theories, we again omit the subscript used to distinguish be-
tween them. We will write the expression at zero temperature
only.

Below we omit index a for brevity. The averaged current
may be rewritten as follows:
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J̄ k = − 1

T L2

∫
d3x

d3 p

(2π )3
Tr

(
GW (x, p) �

∂QW (x, p)

∂ pk

)
= + 1

T L2

∫
d3x

d3 p

(2π )3
Tr

(
GW (x, p) �

δQW (x, p)

δAk

)

= + 1

T L2

∫
d3x

d3 p

(2π )3
Tr

[(
Ĝ δQ̂

δAk

)
W

]
= + 1

T L2
Tr

(
Ĝ δQ̂

δAk

)
= + 1

T L2

∫
d3 p′d3 p Tr

(
G(p′, p)

δQ(p, p′)
δAk

)

= − 1

T L2

∫
d3 p′d3 p Tr

[
G(p′, p)

( ∂

∂ pk
+ ∂

∂ p′
k

)
Q(p, p′)

]

= − 1

T L2

∫
dω′dω

∫
BZ

d p′
1d p1

∫
BZ

d p′
2d p2Tr

[
G(ω′, p′

1, p′
2, ω, p1, p2)

( ∂

∂ pk
+ ∂

∂ p′
k

)
Q(ω, p1, p2, ω

′, p′
1, p′

2)

]

= − 1

T L2

∫
dω dω′

N−1∑
n′,n=0

∫
BZ
N

dk′
1dk1

∫
BZ

dk′
2d p2Tr

[
Gn′n(ω′, k′

1, k′
2, ω, k1, k2)

( ∂

∂kk
+ ∂

∂k′
k

)
Qnn′ (ω, k1, k2, ω

′, k′
1, k′

2)

]

(87)

= − 1

(2π )3

∫
dω

∫
BZ
N

dk1

∫
BZ

d p2Tr

(
G(ω, k1, p2)

∂Q(ω, k1, p2)

∂ pk

)

= − 1

(2π )3N

∫
dω

∫
BZ

d p1d p2Tr

(
G(ω, p1, p2)

∂Q(ω, p1, p2)

∂ pk

)
. (88)

Here the results of Appendix A are used in order to replace an integral over the Brillouin zone by the integral over the
magnetic Brillouin zone and the sum over the integer number that runs from 1 to N . Finally, the integral over each magnetic
Brilloin zone is extended to the whole Brillouin zone, while the result is divided by N . We also have

Qnn′ (ω, k1, k2, ω
′, k′

1, k′
2) = δ(2)(k − k′)δ(ω − ω′)Qnn′ (ω, k1, k2)

and ( ∂

∂kk
+ ∂

∂k′
k

)
Qnn′ (ω, k1, k2, ω

′, k′
1, k′

2) = δ(2)(k − k′)δ(ω − ω′)
∂

∂kk
Qnn′ (ω, k1, k2).

Note that to get to the last equality of Eq. (88) from the previous line we used that integration over different magnetic Brillouin
zones induces a shift in the Harper matrices which is rendered equal to the unshifted case due to the trace. Thus, integration
is equal for each magnetic Brillouin zone. The diagonality of both propagator and its inverse in momentum space induces two
delta functions. Half of them are being used to reduce the number of integrations by half. This leaves behind coincident delta
functions which are regularized by the finite system size according to

δ(p − p) = T L2

(2π )3
. (89)

We may employ the same manipulations for the conductivity as those used for the current. The conductivity may be brought into
Harper representation by the following sequence of equalities:

σH = 1

3!
εabc

∫
d2x

L2

d3 p

(2π )3
Tr(Wa � Wb � Wc)

= 1

3!
εabc

∫
d3x

T L2

d3 p

(2π )3
Tr

[
G0

W (x, p) � ∂paQ0
W (x, p) � G0

W (x, p) � ∂pbQ0
W (x, p) � G0

W (x, p) � ∂pcQ0
W (x, p)

]

= − 1

3!
εabc

∫
d3x

T L2

d3 p

(2π )3
Tr

(
G0

W (x, p) �
δ

δAa
Q0

W (x, p) � G0
W (x, p) �

δ

δAb
Q0

W (x, p) � G0
W (x, p) �

δ

δAc
Q0

W (x, p)

)

= − 1

3!
εabc

∫
d3x

T L2

d3 p

(2π )3
Tr

[(
Ĝ0 δQ̂0

δAa
Ĝ0 δQ̂0

δAb
Ĝ0 δQ̂0

δAc

)
W

]
= − 1

3!T L2
εabcTr

(
Ĝ0 δQ̂0

δAa
Ĝ0 δQ̂0

δAb
Ĝ0 δQ̂0

δAc

)

= − 1

3!T L2
εabc

∫
d18 puvwxyzTr

(
G0(pu, pv )

δQ0(pv, pw )

δAa
G0(pw, px )

δQ0(px, py)

δAb
G0(py, pz )

δQ0(pz, pu)

δAc

)

= − 1

3!T L2
εabc

∫ ′
d18 puvwxyzTr

(
G0(pu, pv )

δQ0(pv, pw )

δAa
G0(pw, px )

δQ0(px, py)

δAb
G0(py, pz )

δQ0(pz, pu)

δAc

)

= − 1

3!(2π )3
εabc

∫
dω

∫
BZ
N

dk1

∫
BZ

d p2Tr

(
G0(ω, k1, p2)

δQ0(ω, k1, p2)

δAa
G0(ω, k1, p2)

δQ0(ω, k1, p2)

δAb
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×G0(ω, k1, p2)
δQ0(ω, k1, p2)

δAc

)

= 1

3!(2π )3
εabc

∫
dω

∫
BZ
N

dk1

∫
BZ

d p2Tr

(
G0(ω, k1, p2)

∂Q0(ω, k1, p2)

∂ pa
G0(ω, k1, p2)

∂Q0(ω, k1, p2)

∂ pb

×G0(ω, k1, p2)
∂Q0(ω, k1, p2)

∂ pc

)

= 1

3!N (2π )3
εabc

∫
dω

∫
BZ

d p1d p2Tr

(
G0(ω, p1, p2)

∂Q0(ω, p1, p2)

∂ pa
G0(ω, p1, p2)

∂Q0(ω, p1, p2)

∂ pb

×G0(ω, p1, p2)
∂Q0(ω, p1, p2)

∂ pc

)
(90)

The superscripts 0 signify E = 0 in both propagator and inverse propagator. The prime at the integral marks a different integration
region, namely, that over the magnetic Brillouin zone for the first spatial momenta. The diagonality of both propagator and
inverse propagator cancel five of the six momentum integrations, while the sixth delta function cancels the volume factor in the
denominator in the same way as for the current. Note that again the cancellation only happens for the continuous integrations,
as the magnetic field induces nondiagonality in the Harper matrices. The nonrenormalization of the first expressions in the two
sequences of equalities then trivially imply that of the last one in Harper representation.

VII. CONCLUSIONS AND DISCUSSION

In this paper we considered the fermionic systems in two space dimensions. First we restrict our consideration to the nonin-
teracting systems defined on rectangular lattices. The consideration is illustrated by the model with the simplest Hamiltonian of
Eq. (1). However, our results are valid for the tight-binding Hamiltonian of a more general type.

We consider the given systems in the presence of constant external magnetic field such that the magnetic flux through the
lattice cell is equal to

� = ν

N
× �0,

where �0 is a quantum of magnetic flux �0 = h/e. We divide the Brillouin zone into the magnetic Brillouin zones with
eigenvectors of momentum given by Eq. (7). Harper representation of Hamiltonian is its representation in the basis of Eq. (7). In
this representation Hamiltonian Ĥ is diagonal in u and v but is not diagonal in n. For the simplest tight-binding model of Eq. (1)
the lattice Dirac operator Q = −iω + Ĥ in Harper representation has nonzero matrix elements with the transitions between the
adjacent values of n. In a more general case, the lattice Dirac operator in Harper representation has the form with the transitions
between any possible pairs of n, but remains diagonal in u and v. Dirac operator Q becomes the N × N matrix depending on u
and v. The Green function G = Q−1 also becomes the N × N matrix. Both Q and G defined in this way belong to the magnetic
Brillouin zone, which is N times smaller than the whole Brillouin zone, i.e., u ∈ [	,	 + 2π

aN ), while v ∈ [0, 2π
a ). It is worth

mentioning that matrix Q obeys specific boundary conditions that depend on n.
However, we are able to extend the definition of matrices Q and G to the whole Brillouin zone. After this extension matrix Q

obeys periodic boundary conditions in the whole Brillouin zone. As a result we are able to represent the Hall conductivity of the
given system as

σH = e2

h

1

N
N . (91)

Here N is the topological invariant composed of the N × N matrices Q and G:

N = 1

3!(2π )2
εabc

∫
dω

∫
BZ

d p1d p2Tr

(
G(ω, p1, p2)

∂Q(ω, p1, p2)

∂ pa
G(ω, p1, p2)

∂Q(ω, p1, p2)

∂ pb
G(ω, p1, p2)

∂Q(ω, p1, p2)

∂ pc

)
.

(92)

Notice that this expression is valid for the tight-binding
fermionic system of general form. For the noninteracting sys-
tems this invariant should be equal to the integer multiple
of N in order to provide the integer QHE. We check this
numerically for the cases with ν = 1, N = 3, 4. The values

of Hall conductivity obtained using solution of Diophantine
equation are reproduced as it should be.

The experience of the previously known expressions for
the Hall conductivity indicates that Eq. (17) remains valid also
for the case of an interacting system. Then, matrix G is likely
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to be replaced by the complete electron propagator in Harper
representation (defined originally in the magnetic Brillouin
zone, but extended analytically to the whole Brillouin zone)
while Q = G−1. This is justified partially by the results ob-
tained by the present authors (see [19,28,29]). Namely, we
have shown that the topological invariant similar to the one
of our present Eq. (17) still represents the integer QHE con-
ductivity in the presence of interactions if the Green function
is substituted by the interacting one. The very method used in
[19,28,29] may be extended to prove the similar statement for
our Eq. (17).

Thus, we extend our consideration to the interacting sys-
tems. Here we use the so-called approximate version of
Wigner-Weyl calculus [29], which works perfectly for the
realistic solid-state systems with any form of the crystal lattice
in the presence of realistic external magnetic fields much
smaller than 105 T. First of all we recall the results of [29],
where it has been proven that expression of Eq. (76) for
the Hall conductivity remains valid when we substitute the
complete interacting Green function instead of the noninter-
acting one. This result has been obtained using perturbation
theory, and is valid to all orders. However, also in [29] it has
been proven that if the interactions are taken into account
perturbatively, this value remains equal to the one of the
noninteracting theory. Therefore, we conclude that the FQHE
cannot be described using perturbation theory: its origin is
nonperturbative.

We then consider the interactions nonperturbatively based
on the Schwinger-Dyson equations. First we prove that
Eq. (76) remains valid in the so-called rainbow approxi-
mation. Next, we prove this statement in more involved
approximation, when both fermion and scalar excitation
propagators in the Schwinger-Dyson equation are complete
noninteracting ones, while the complete one-particle irre-
ducible three-point Green function � is replaced by bare
interaction vertex. Thus, we conclude that even the nonper-
turbative treatment leads us to the obtained representation
for Hall conductivity. Next, we prove that in the case of the
clean system in the presence of constant magnetic field it is
reduced to the one of Eq. (90), i.e., to Eq. (91) with N given
by Eq. (92), which is the topological invariant composed of
the interacting Green function taken in Harper representation.
Now its value is not necessarily proportional to N , and we
may, in principle, arrive at the topological description of
fractional quantum Hall effect because the obtained value of
conductivity is given by the rational number times inverse
Klitzing constant. The denominator N of the given rational
number may, in principle, take any integer value depending on
the value of magnetic flux through the lattice cell. In practice
in the sufficiently clean system at constant value of external
magnetic field the value of Hall conductivity should depend
on the value of chemical potential. Without interactions this
dependence has the steplike form with plateaus representing
the integer QHE conductivity (in the case when μ is kept
constant while magnetic field varies the plateaus are not seen
unless the disorder is added [3]). In the presence of interac-
tions at constant magnetic field the dependence of σH on μ at
constant B will acquire plateaus corresponding to fractional
QHE. (If μ is fixed while B varies, the fractional plateaus
appear in the presence of disorder. One observes more frac-

tional plateaus when the disorder is reduced.) These are the
values of σH proportional to the ratio N /N . The values of N
should depend on μ and B stepwise, while the values of N
are fixed by the choice of B according to Eq. (6). Each step
in N corresponds to the topological phase transition caused
by nonperturbative effects of interactions. The microscopic
origin of these transitions remains a miracle to be investigated
separately. It would be interesting to calculate the values of
N directly within the existing phenomenological models of
FQHE (see, for example, [1–3,32–34]. This is, however, out
of the scope of this paper.

We would like to notice the previously proposed expres-
sions for the integer QHE conductivity in the noninteracting
systems in terms of the Green functions. In [53–55] the inter-
acting models of topological insulators have been considered.
Actually, the expressions for the QHE conductivity of [53–55]
are similar to our expression, but they are not written in Harper
representation and, therefore, are more simple. Expressions
of [56,57] differ essentially from our formula, but they also
refer to the models of topological insulators without external
magnetic field. As it was mentioned above, our expression
works for the system in the presence of external magnetic
field. The corresponding systems are nonhomogeneous and,
therefore, their consideration is more complicated.

Actually, our expression of Eq. (17) resembles the one
proposed long time ago in [7] for the systems in the presence
of uniform magnetic field. However, the important advantage
of our expression is that Gω

p1 p2
is N × N matrix while the

Green function entering topological expression of [7] is in-
finite dimensional.
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APPENDIX A: INTRODUCTION OF THE MAGNETIC
BRILLOUIN ZONE

For a single-particle 1D lattice we have in momentum
space

1 =
∫ 	+2π

	

dk|k〉〈k| =
N−1∑
n=0

∫ 	+(n+1) 2π
N

	+n 2π
N

dk|k〉〈k|

=
N−1∑
n=0

∫ 	+ 2π
N

	

dk

∣∣∣∣k + n
2π

N

〉〈
k + n

2π

N

∣∣∣∣ (A1)

≡
N−1∑
n=0

∫ 	+ 2π
N

	

dk|k, n〉〈k, n| =
N−1∑
n=0

∫
BZ
N

dk|k, n〉〈k, n|, (A2)

where the first Brillouin zone may be defined as

k ∈ [	,	 + 2π ] = BZ (A3)

with arbitrary 	. Discrete momentum corresponding to any
value of n may be represented as

2π

N
n = 2π

N
νm − 2πM ⇔ n = νm − NM (A4)
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where ν and N are mutually simple positive numbers and
m, n ∈ {0, . . . , N − 1}. We will now show that the assignment
n �→ m(n) is a bijection.

We may assume without loss of generality that 1 � ν �
N − 1 since the unique representation of any ν by ν = aN + b
with a ∈ N and b ∈ {0, . . . , N − 1} and nonzero a may be
reduced by sending M → M + a to the case a = 0. De-
fine first a map m �→ M(m) by the requirement 0 � νm −
M(m)N � N − 1. Then define a map m �→ n(m) by n(m) =
νm − M(m)N . This latter map is injective. If not we could
find m1 �= m2 such that

n = νm1 − M(m1)N = νm2 − M(m2)N ⇔ ν(m1 − m2)

= N[M(m1) − M(m2)]. (A5)

Without loss of generality (after division) we may assume that
|m1 − m2| and |M(m1) − M(m2)| are mutually simple num-
bers. All prime factors of N are therefore required to be prime
factors of |m1 − m2| as well such that |m1 − m2| � N . But
we know that by the requirement m1, m2 ∈ {0, . . . , N − 1} it
follows that |m1 − m2| < N , which is a contradiction. This
proves injectivity. Surjectivity follows since image and preim-
age space share the same finite size. This implies bijectivity
and as well bijectivity of the inverse.

Periodicity in momentum space allows to read the very
right-hand side of (A4) modulo N and therefore we may
perform the replacement n → νm as well as to sum over
m (which we will rename n) in (A1). We then obtain the
decomposition of the identity in the form

1 =
N−1∑
n=0

∫ 	+ 2π
N

	

dk

∣∣∣∣k + n
2π

N
ν

〉〈
k + n

2π

N
ν

∣∣∣∣. (A6)

In two dimensions and under the assumption of being
in Landau gauge we introduce the notation f (p1, p2) ≡
fn(k1, p2) as well as F (p′

1, p′
2, p1, p2) ≡ Fn′n(k′

1, p′
2, k1, p2)

for arbitrary functions or matrix elements in momentum space
with pi, p′

i ∈ BZ, k′
1 = p′

1 mod BZ
N , k1 = p1 mod BZ

N , and p′
1 =

k′
1 + n 2π

N = k′
1 + n 2π

N ν mod BZ as well as p1 = k1 + n 2π
N =

k1 + n 2π
N ν mod BZ with n′, n ∈ {0, . . . , N − 1}. This matrix

representation with discrete indices n′ and n is called Harper
representation. With the quantization of the magnetic field in
the form B = 2π ν

N it can then be seen that ±B induces a shift
in the Harper representation by n → n ± 1. We emphasize
that the size of the matrices in Harper representation takes as
input ν and N which are uniquely determined by the external
homogeneous magnetic field.

APPENDIX B: WEYL SYMBOL OF OPERATOR

We will derive the Ward-Takahashi identity of a fermionic
quantum field theory with spin 1

2 in the case of nonhomogene-
ity in D space-time dimensions. This nonhomogeneity may,
e.g., be due to an external electromagnetic or gravitational
field. The usual derivation of the identity in the homogeneous
case is performed in the momentum-space representation of
the theory. In the nonhomogeneous case the momentum-space
fermion propagator is no longer diagonal. We will derive
the Ward-Takahashi identity both in momentum representa-
tion and using the Wigner-Weyl calculus. We start with the

general definitions of basic quantities, derive the momentum
representation, and then the Wigner transformation of the
Ward-Takahashi identity and reduce our result for the inho-
mogeneous setup to that in the homogeneous case. We will
use the system of units with h̄ = 1.

The Wigner-Weyl calculus establishes a one-to-one corre-
spondence between a quantum mechanical theory defined on
a Hilbert space and its reformulation in terms of functions on
phase space. An operator Ô on Hilbert space, being a function
of the position operator x̂ and the momentum operator p̂,
is associated with a phase-space function OW (p, x), being a
function of space x and momentum p, by the definition

Ô =
∫

dDk

(2π )D

dD p

(2π )D
dDydDxOW (p, x)ei[k(x−x̂)+y(p−p̂)].

(B1)

A wave function on Hilbert space is represented in bra-
ket notation by |�〉 with configuration-space representation
�(x) = 〈x|�〉. We would like to relate the phase-space
function OW (p, x) to the configuration-space representation
of Ô denoted by O(x1, x2) = 〈x1|Ô|x2〉 as well as to its
momentum-space representation denoted by Õ(p1, p2) =
〈p1|Ô|p2〉. The configuration- and momentum-space repre-
sentations are related by

O(x1, x2) =
∫

dD p1

(2π )
D
2

dD p2

(2π )
D
2

eip1x1 Õ(p1, p2)e−ip2x2 . (B2)

In order to achieve this we calculate 〈z|Ô|�〉. Applying the
identities

〈z|eikx̂|�〉 = eikz〈z|�〉 = eikz�(z),

〈z|e−iyp̂|�〉 = e−y∂z 〈z|�〉 = e−y∂z�(z) = �(z − y) (B3)

as well as the Baker-Campbell-Hausdorff relation

e−i(kx̂+yp̂) = e−ikx̂e−iyp̂ei ky
2 (B4)

we obtain

〈z|Ô|�〉 = 〈z|
∫

dDk

(2π )D

dD p

(2π )D
dDy dDxOW (p, x)

× ei[k(x−x̂)+y(p−p̂)]|�〉

=
∫

dDk

(2π )D

dD p

(2π )D
dDy dDxOW (p, x)ei(kx+yp+ ky

2 )

× e−ikz�(z − y)

=
∫

dD p

(2π )D
dDy dDx OW (p, x)δD

(
x + y

2
− z

)
× eiyp�(z − y)

= 1

(2π )D

∫
dD p dDy OW

(
p, z − y

2

)
eipy�(z − y).

(B5)

A comparison with the configuration-space relation
〈z|Ô|�〉 = ∫

dDx O(z, x)�(x) for x = z − y implies

O(x, y) = 1

(2π )D

∫
dD p OW

(
p,

x + y

2

)
eip(x−y). (B6)
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An inversion may be performed by a change of variables R =
x+y

2 and r = x − y followed by a Fourier transformation with
respect to r. It reads as

OW (p, R) =
∫

dDy O

(
R + y

2
, R − y

2

)
e−ipy. (B7)

The analogous relation for the momentum-space represen-
tation may be obtained similarly and reads as

Õ(p, k) = 1

(2π )D

∫
dDx OW

(
p + k

2
, x

)
ei(k−p)x (B8)

with inverse

OW (p, R) =
∫

dDk Õ

(
p + k

2
, p − k

2

)
eikR. (B9)

APPENDIX C: TOPOLOGICAL INVARIANCE
OF PERSISTENT CURRENT

The proof applies to both the free and interacting theories
alike, which is why we omit the subscripts used previously to
distinguish them. Consider a variation of the averaged current:

δJk = − 1

T L2

∫
d3x

d3 p

(2π )3
δTr[GW (x, p) � ∂pk QW (x, p)]

= − 1

T L2

∫
d3x

d3 p

(2π )3
Tr[δGW (x, p) � ∂pk QW (x, p)

+ GW (x, p) � ∂pk δQW (x, p)]

= − 1

T L2

∫
d3x

d3 p

(2π )3
Tr[−GW (x, p) � δQW (x, p)

�GW (x, p) � ∂pk QW (x, p) + GW (x, p) � ∂pk δQW (x, p)]

= − 1

T L2

∫
d3x

d3 p

(2π )3
Tr[−δQW (x, p) � GW (x, p)

�∂pk QW (x, p) � GW (x, p) + GW (x, p) � ∂pk δQW (x, p)]

= − 1

T L2

∫
d3x

d3 p

(2π )3
Tr[δQW (x, p) � ∂pk GW (x, p)

+ GW (x, p) � ∂pk δQW (x, p)]

= − 1

T L2

∫
d3x

d3 p

(2π )3
∂pk Tr[δQW (x, p) � GW (x, p)]

= 0, (C1)

where we used the cyclicity of the trace and the periodicity in
momentum space.

APPENDIX D: WARD IDENTITY IN TERMS OF
WIGNER-TRANSFORMED GREEN FUNCTIONS

We will give here the generalized Ward-Takahashi identity
(following the method proposed in the textbook by Weinberg).
The vacuum state of the system is denoted by |vac〉. Our
starting point is the Green function for the electric current
Jμ(x) together with a Heisenberg picture Dirac field �n(y)
of electric charge q and its covariant adjoint �̄m(z). We define
the electromagnetic vertex function �μ for an inhomogeneous
system by∫

dDx dDy dDz e−ipxe−ik1yeik2z〈vac|T {Jμ(x)�n(y)�̄m(z)}|vac〉

≡ −iq
∫

dDl1dDl2Gnn′ (k1, l1)�μ

n′m′ (l1, l2|p)Gm′m(l2, k2)

(D1)

with time-ordering symbol T and momentum-space Dirac
propagator

−iGnm(k, l ) =
∫

dDy dDz〈vac|T {�n(y)�̄m(z)}|vac〉. (D2)

With the canonical momentum conjugate � for � as well
as the expression for the current Jμ (for one charged particle
species)

�(x) = ∂L
∂ (∂0�(x))

, Jμ(x) = −i
∂L

∂ (∂μ�(x))
�(x), (D3)

the canonical equal-time commutation relation

[�m(x, t ),�n(y, t )] = iδD−1(x − y)δmn (D4)

as well as the commutation relations

[J0(x, t ), �(y, t )] = −q�(y, t )δD−1(x − y),

[J0(x, t ), �̄(y, t )] = q�̄(y, t )δD−1(x − y) (D5)

we can derive a relation between the vertex function �μ and
the Dirac propagator S as follows. Use the previous relations
to obtain

∂

∂xμ
T {Jμ(x)�n(y)�̄m(z)}

= T {∂μJμ(x)�n(y)�̄m(z)} + δ(x0 − y0)T {[J0(x), �n(y)]�̄m(z)} + δ(x0 − z0)T {�n(y)[J0(x), �̄m(z)]}
= −qδD(x − y)T {�n(y)�̄m(z)} + qδD(x − z)T {�n(y)�̄m(z)}. (D6)

Contraction of (D1) with pμ and using the obtained quantum current conservation law then leads to (where from now on we
omit spin indices) ∫

dDl1dDl2 pμG(k1, l1)�μ(l1, l2|p)G(l2, k2) = iG(p + k1, k2) − iG(k1, k2 − p). (D7)

An alternative derivation may be given by making use of the Schwinger-Dyson equations and the relation between the conserved
current and the variation of the action under the global symmetry corresponding to charge conservation.
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To proceed act with
∫

dDk1dDk2Q(p1, k1) to the left and with Q(k2, p2) to the right of (D7). This gives

pμ�μ(p1, p2|p) =
∫

dDl1dDl2 pμδD(p1 − l1)�μ(l1, l2|p)δD(l2 − p2)

=
∫

dDl1dDl2dDk1dDk2 pμQ(p1, k1)G(k1, l1)�μ(l1, l2|p)G(l2, k2)Q(k2, p2)

= i
∫

dDk1dDk2(Q(p1, k1)G(p + k1, k2)Q(k2, p2) − Q(p1, k1)G(k1, k2 − p)Q(k2, p2))

= i

(∫
dDk1Q(p1, k1)δD(p + k1 − p2) −

∫
dDk2δ

D(p1 − k2 + p)Q(k2, p2)

)
= i[Q(p1, p2 − p) − Q(p1 + p, p2)]. (D8)

Therefore, we have

pμ�μ(p1, p2|p) = i[Q(p1, p2 − p) − Q(p1 + p, p2)]. (D9)

This is the generalized Ward-Takahashi identity in momentum-space representation.
We may now insert the relation (B8) for all momentum-space quantities into (D9). This yields

1

(2π )D

∫
dDx pμ�

μ
W

(
p1 + p2

2
, x|p

)
ei(p2−p1 )x = i

(2π )D

∫
dDx

[
QW

(
p1 + p2 − p

2
, x

)
− QW

(
p1 + p2 + p

2
, x

)]
ei(p2−p1−p)x.

(D10)

A Fourier transformation with respect to p2 − p1 together with a renaming of the momentum variables leads to

pμ�
μ
W (P, x|p) = i

[
QW

(
P − p

2
, x

)
− QW

(
P + p

2
, x

)]
e−ipx (D11)

which is the generalized Ward-Takahashi identity in phase-space representation. Consider now the limit pμ → 0. A first-order
Taylor expansion on the right-hand side of (D11) followed by the momentum limit implies the generalized Ward identity

�
μ
W (P, x|0) = −i

∂

∂ pμ

QW (p, x)|p=P. (D12)

We would finally like to reduce the results of (D9) and (D11) to the homogeneous case. In order to achieve this it is best to start
from the momentum-space representation of the identity given in (D9). In the homogeneous case the momentum-space Dirac
operator becomes diagonal G(k, l ) → G(k)δD(k − l ) and the vertex function reduces to �μ(p1, p2|p) → �μ(p1, p2)δD(p +
p1 − p2). This leads to

pμ�μ(p1, p2)δD(p + p1 − p2) = i[Q(p1)δD(p1 − p2 + p) − Q(p1 + p)δD(p1 + p − p2)]

= i[Q(p1) − Q(p2)]. (D13)

Performing an integral over the momentum p implies the homogeneous Ward-Takahashi identity in momentum space

(p2 − p1)μ�μ(p1, p2) = i[Q(p1) − Q(p2)].

The homogeneous Ward identity follows by taking the momentum coincidence limit p2 → p1 or vice versa. After a first-order
Taylor expansion on the right-hand side this limit leads to

�μ(p, p) = −i
∂

∂ pμ

Q(p). (D14)
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