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We develop a dynamical mean-field theory approach for the spiral magnetic order, changing to a local
coordinate frame with preferable spin alignment along the z axis, which can be considered with the impurity
solvers treating the spin diagonal local Green’s function. We furthermore solve the Bethe-Salpeter equations for
nonuniform dynamic magnetic susceptibilities in the local coordinate frame. We apply this approach to describe
the evolution of magnetic order with doping in the t-t ′ Hubbard model with t ′ = 0.15, which is appropri-
ate for the description of the doped La2CuO4 high-temperature superconductor. We find that with doping
the antiferromagnetic order changes to the (Q, π ) incommensurate one and then to the paramagnetic phase. The
spectral weight at the Fermi level is suppressed near half filling and continuously increases with doping. The
dispersion of holes in the antiferromagnetic phase shows qualitative agreement with the results of the t-J model
consideration. In the incommensurate phase we find two branches of hole dispersions, one of which crosses the
Fermi level. The resulting Fermi surface forms hole pockets. We also consider the dispersion of the magnetic
excitations, obtained from the nonlocal dynamic magnetic susceptibilities. The transverse spin excitations are
gapless, fulfilling the Goldstone theorem; in contrast to the mean-field approach the obtained magnetic state is
found to be stable. The longitudinal excitations are characterized by a small gap, showing the rigidity of the
spin excitations. For realistic hopping and interaction parameters we reproduce the experimentally measured
spin-wave dispersion of La2CuO4.
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I. INTRODUCTION

The properties of a two-dimensional antiferromagnet
doped by holes became one of the central interests in
condensed-matter physics starting in the high-Tc era. Despite
the fact that the commensurate long-range magnetic order
is quickly destroyed by doping (see, e.g., Refs. [1,2]), the
short-range magnetic order is present in high-Tc compounds.
The observed short-range magnetic order is incommensurate
with the preferred wave vector Q = (π, π − δ) and small
incommensurability parameter δ [1–5]. This short-range order
is considered to be one of the viable scenarios for pseudo-
gap formation [6–14]. The incommensurate magnetic order
is also observed on frustrated lattices, such as the triangular
lattice [15,16].

Although the long-range magnetic order is absent at sub-
stantial doping in high-Tc compounds, studying the properties
of long-range commensurate and incommensurate magnetic
ordered states in the two-dimensional Hubbard model rep-
resents a certain interest since such order models properties
of the paramagnetic phase with pronounced magnetic cor-
relations. As a result, mean-field studies were performed to
investigate the commensurate [17,18] and incommensurate
spiral [19–25] magnetic orders in the doped square lattice
Hubbard model. Incommensurate magnetic order on the same
lattice was later studied within the slave-boson approach in
Ref. [26]. The latter studies [22–24,26] showed, however,

that the incommensurate magnetically ordered states in the
hole-doped Hubbard model are thermodynamically unstable
within the mean-field approach, which yields a phase separa-
tion [24,26] of incommensurate magnetic order into domains
with incommensurate and commensurate magnetic states.
However, the above-discussed mean-field approaches do not
consider (or consider only approximately for the slave-boson
approach) the effect of local electronic correlations, which are
important for sufficiently strong Coulomb repulsion.

The dynamical mean-field theory (DMFT) approach offers
the possibility of studying commensurate [27] and incom-
mensurate spiral [28,29] magnetic orders while taking into
account local magnetic correlations. While the commensurate
magnetic order within the DMFT approach for the square
lattice Hubbard model is also shown to suffer from phase
separation [30], a detailed analysis of the possibility of incom-
mensurate magnetic order in the doped Hubbard model on the
square lattice was not performed, to our knowledge, except for
the case of only nearest-neighbor hopping [28]. Moreover, to
analyze the stability of incommensurate magnetic order, non-
local dynamic magnetic susceptibilities should be considered.
While a general formalism for calculating such suscepti-
bilities was recently proposed [31], its application to the
incommensurate magnetically ordered phase is challenging.

In the present paper we reformulate the dynamical mean-
field theory approach for the treatment of an incommensurate
spiral magnetic order in the Hubbard model in a way that
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allows using impurity solvers which treat spin diagonal lo-
cal Green’s functions. We furthermore apply the formalism
of Ref. [31] to treat nonlocal magnetic static and dynamic
susceptibilities. We consider the square lattice Hubbard model
with nearest- and next-nearest-neighbor hopping and calculate
the sublattice magnetization and incommensurability param-
eter as a function of doping and obtain longitudinal and
transverse magnetic excitation spectra.

The plan of the paper is as follows. In Sec. II we formulate
the model and present the method to treat commensurate and
incommensurate ordered states. In Sec. III we present the
results for the Fermi surfaces, the hole dispersion, and the dis-
persion of longitudinal and transverse magnetic excitations,
obtained from the dynamic spin susceptibility. In Sec. IV
we present our conclusions. In the Appendix we discuss the
relation of the considered approach to the static mean-field
theory.

II. MODEL AND METHOD

We consider the Hubbard model on the square lattice

H = −
∑
i, j,σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

with hopping ti j = t between nearest neighbors (which is used
as a unit of energy) and ti j = −t ′ for next-nearest neighbors.
We consider spiral spin density wave magnetic order with
wave vector Q, which is, in general, incommensurate.

A. Derivation of DMFT equations in the spiral case

To study the model (1) we apply the DMFT approach [27].
For the commensurate case Q = (π, π ) the DMFT equa-
tions are standard (see Ref. [27]). To study incommensurate
spiral order we perform rotation of the coordinate system in
spin space by an angle θ = QRi to the local coordination
frame, in which the preferred direction of the spin alignment
is along the z direction. This is different from the approach
of Refs. [28,29], where the spins were aligned along the x
direction. The advantage of having the spin alignment along
the z direction lies in its codirection with the spin-quantization
axes. In this case the electron Green’s functions become spin
diagonal in the local coordinate frame. This allows us to use
the segment version of the continuous-time quantum Monte
Carlo (CT-QMC) solver to treat density-density interactions
(see below).

Let us consider a spiral spin density wave with spins rotat-
ing in the xz plane with wave vector Q. We consider operators
diσ and d+

iσ in a local coordinate system where all spins are
aligned along the z axis. To this end we perform the unitary
transformation(

di↑
di↓

)
=

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)(
ci↑
ci↓

)
. (2)

The on-site Hubbard interaction is SU (2) invariant,

ni↑ni↓ = d+
i↑di↑d+

i↓di↓.

Therefore, the local problem is formulated straightforwardly,

Sloc = − T
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ζ−1

σ (τ − τ ′)d+
iσ diσ

+ U
∫ β

0
dτd+

i↑di↑d+
i↓di↓, (3)

where ζσ (τ − τ ′) is the bath Green’s function.
Let us now consider the nonlocal part. We consider Fourier

transformed operators

ckσ =
∑
σ ′

(M+
σσ ′dk+Q/2,σ ′ + M−

σσ ′dk−Q/2,σ ′ )/2, (4)

where

M± =
(

1 ±i
∓i 1

)
= σ 0 ∓ σ y (5)

and σ a are the Pauli matrices. Therefore,

c+
k↑ck↑ + c+

k↓ck↓ =
∑
α,σσ ′

(d+
k+αQ/2,σMα

σσ ′dk+αQ/2,σ ′ )/2

=
∑

α

D+
k+αQ/2,αDk+αQ/2,α, (6)

where α = ±1 is the band index and we have introduced the
operators

Dk,± = (dk↑ ± idk↓)/
√

2. (7)

The kinetic term then reads∑
kσ

εkc+
kσ ckσ =

∑
kα

εk−αQ/2D+
kαDkα, (8)

where εk = −2t (cos kx + cos ky) + 4t ′ cos kx cos ky. Denoting
the self-energy in the rotated frame d+

iσ and diσ as �σ (iν), we
write the lattice Green’s function in the form

Gσσ ′
k (iν) = −〈dkσ (τ )d+

kσ ′ (0)〉iν =
(

iν + μ − �↑ − εk−Q/2+εk+Q/2

2
εk−Q/2−εk+Q/2

2i

− εk−Q/2−εk+Q/2

2i iν + μ − �↓ − εk−Q/2+εk+Q/2

2

)−1

. (9)

In the explicit form

Gσσ
k (iν) = iν + μ − (εk−Q/2 + εk+Q/2)/2 − �−σ (iν)

(φν − εk−Q/2)(φν − εk+Q/2) − [�↑(iν) − �↓(iν)]2/4
, (10)

Gσ,−σ
k (iν) = iσ (εk−Q/2 − εk+Q/2)/2

(φν − εk−Q/2)(φν − εk+Q/2) − [�↑(iν) − �↓(iν)]2/4
, (11)

where φν = iν + μ − [�↑(iν) + �↓(iν)]/2.
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The self-consistent equation reads

Gσ
loc(iν) ≡ 1

ζ−1
σ (iν) − �σ (iν)

=
∑

k

Gσσ
k (iν). (12)

As we discuss in the Appendix, in the mean-field approxima-
tion for the Anderson impurity model �σ = Un−σ , Eq. (12)
allows us to reproduce the standard mean-field approach for
the incommensurate spin density wave order. Note also that
for the commensurate case the Green’s functions Gσσ

k (iν) and
Gσ,−σ

k (iν) correspond to the intra- and intersublattice Green’s
functions in the approaches, which split the lattice into two
sublattices. This establishes the relation between the DMFT
approaches for the commensurate and incommensurate cases.

The corresponding lattice Green’s functions for Q 
= 0 read

Gkσ (iν) = −〈T ckσ (τ )c+
kσ (0)〉iν

= 1

4

∑
σ ′,α=±1

[
Gσ ′σ ′

k+αQ/2(iν) − iασ ′Gσ ′,−σ ′
k+αQ/2(iν)

]
.

(13)

Note that the resulting Green’s function does not depend on
spin projection.

B. Relation of the two-particle quantities in the global
and local reference frames

For the two-particle quantities of c operators we find the
following representation in terms of d operators:∑

k

c+
k σ 0,yck+q =

∑
k

d+
k σ 0,ydk+q, (14)

∑
k

c+
k σ±ck+q =

∑
k

d+
k σ±dk±Q+q, (15)

where σ± = σ z ± iσ x are the in-plane spin raising and lower-
ing matrices.

For the out-of-plane spin component y and the density
correlators we therefore have∑

k,k′
〈〈c+

k σ 0,yck+q|c+
k′σ

0,yck′−q〉〉

=
∑
k,k′

〈〈d+
k σ 0,ydk+q|d+

k′ σ
0,ydk′−q〉〉, (16)

while for the in-plane spin components we have∑
k,k′

〈〈c+
k σ ack+q|c+

k′σ
bck′−q′ 〉〉

=
∑
k,k′

〈〈d+
k σ adk+aQ+q|d+

k′ σ
bdk′−aQ−q〉〉δq+aQ,q′−bQ, (17)

where a, b = ±. We note that the in-plane and out-of-plane (or
density) excitations are generally coupled in the local coordi-
nate frame (see the next section), which also yields coupling
of these excitations in the global coordinate frame via the
nonzero correlators 〈〈c+

k σ 0,yck+q|c+
k′σ

±ck′−q′ 〉〉 at q′ = q ± Q
(cf. Ref. [22]). At the same time, the correlators in the local
coordinate frame are diagonal in momentum, which makes
this frame somewhat more advantageous than the standard
global coordinate frame considered in Ref. [22].

In the commensurate case (2Q ≡ 0) we find∑
k,k′

〈〈c+
k σ x,zck+q|c+

k′σ
x,zck′−q〉〉

=
∑
k,k′

〈〈d+
k σ x,zdk+q+Q|d+

k′ σ
x,zdk′−q−Q〉〉, (18)

which corresponds to the decoupling of longitudinal and
transverse in-plane excitations in this case (see also the next
section).

C. Calculation of the nonlocal susceptibilities
in the local reference frame

To study the two-particle properties we perform ladder
summation of the diagrams for the nonuniform dynamic sus-
ceptibility in the particle-hole channel (cf. Refs. [32–34])

χmm′
q =

∑
k,k′

〈〈d+
k,σ dk+q,σ ′ |d+

k′+q,σ ′′′dk′,σ ′′ 〉〉

=
∑
ν,ν ′

[(
χ0,mm′

q,ν

)−1

mm′δνν ′ − �mm′
ω,νν ′

]−1

μμ′, (19)

where we introduce composite indexes q = (q, iω), μ =
(ν,m), μ′ = (ν ′,m′), m = (σ, σ ′), and m′ = (σ ′′, σ ′′′). This
ladder summation is similar to that considered previously for
the paramagnetic [27,32–35] and ferro- and antiferromag-
netic [31] phases and allows us to obtain the nonuniform
dynamic susceptibilities within the DMFT approach, which
respects conservation laws (see, e.g., Refs. [32,35,36]). The
bare susceptibility is

χ0,(σσ ′ ),(σ ′′σ ′′′ )
q,ν = −T

∑
k

Gσ ′′σ
k Gσ ′σ ′′′

k+q , (20)

where we use the three-vector notations k = (k, iν) in the
nonlocal Green’s function Gσσ ′

k = Gσσ ′
k (iν) [see Eqs. (9)–

(11)]. Quantities with composite spin indexes m and m′ can be
viewed as 4 × 4 matrices with the indexes labeled in the order
↑↑, ↑↓, ↓↑, and ↓↓. The matrix-valued local irreducible
vertex � then takes the form

�̂ω,νν ′ =

⎛⎜⎜⎜⎜⎜⎝
�

||,↑↑
ω,νν ′ 0 0 �

||,↑↓
ω,νν ′

0 �
⊥,↑↓
ω,νν ′ 0 0

0 0 �
⊥,↓↑
ω,νν ′ 0

�
||,↓↑
ω,νν ′ 0 0 �

||,↓↓
ω,νν ′

⎞⎟⎟⎟⎟⎟⎠, (21)

where the components �||,⊥ in longitudinal and transverse
channels are evaluated from local vertices �||,⊥ in the corre-
sponding channel via the Bethe-Salpeter equations

�
||,σσ ′
ω,νν ′ = [(

�
||,σσ ′
ω,νν ′

)−1

λλ′ − χ0,||,σσ ′
ω,ν δνν ′

]−1

λλ′ , (22)

�⊥,σ,−σ
ω,νν ′ = [(

�⊥,σ,−σ
ω,νν ′

)−1 − χ0,⊥,σ,−σ
ω,ν δνν ′

]−1

νν ′ , (23)

where composite indexes λ = (σ, ν) and λ′ = (σ ′, ν ′), lo-
cal bare susceptibilities are χ0,||,σσ ′

ω,ν = −T Gσ
loc(iν)Gσ

loc(iν +
iω)δσσ ′ and χ0,⊥,σσ ′

ω,ν = −T Gσ
loc(iν)Gσ ′

loc(iν + iω). Finally, the

local vertices �
||(⊥),σσ ′
ω,νν ′ for both channels are obtained from

the single-impurity problem.
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Further, performing the same steps as in Refs. [33,34],
we find the irreducible susceptibility φq fulfilling the matrix
relation

χ̂q = (Î − φ̂qÛ )−1φ̂q (24)

in the form

φ̂q = χ̂0
q γ̂q + X̂q, (25)

where X̂mm′
q = ∑

ν /∈B χ0,mm′
q,ν accounts for the contribution of

frequencies beyond the considered frequency box B,

Û =

⎛⎜⎜⎝
0 0 0 −U
0 U 0 0
0 0 U 0

−U 0 0 0

⎞⎟⎟⎠, (26)

and Î is the 4 × 4 identity matrix. The triangular vertex has
the form

γ μm′
q =

∑
ν ′∈B

[
Îδνν ′ − (�̂ω,νν ′ − Ũ )χ0

q,ν

]−1

μμ′ , (27)

where Ũ = (Î − Û X̂q)−1Û . Equations (25) and (27) are used
in numerical calculations of the irreducible susceptibility φq.

In the case of the wave vector Q = (π − δ, π ) it can be
shown from the representation of the nonlocal Green’s func-
tion (9) that full susceptibility satisfies the symmetry relations

χmn
−qx,qy,ω

= ηmηnχ
mn
qx,qy,ω

, (28)

χmn
qx,−qy,ω

= χmn
qx,qy,ω

, (29)

where η↑↑ = η↓↓ = 1 and η↑↓ = η↓↑ = −1. In the commen-
surate case Q = (π, π ), in addition to symmetry relations (28)
and (29), χ̂q satisfies

χmn
−qx,qy,ω

= χmn
qx,qy,ω

. (30)

From the symmetry relations (28) and (30) it immediately
follows that in the commensurate case Q = (π, π ) the lon-
gitudinal and transverse channels are decoupled from each
other:

χσσσ,−σ = χσσ,−σ,σ = χσ,−σ,σσ = χ−σ,σσσ = 0. (31)

This decoupling was also noted in Refs. [18,31].
To solve the DMFT impurity problem and calculate local

vertices we have used the CT-QMC impurity solver, imple-
mented in the iQIST software package [37]. To obtain static
and dynamic properties we had to complete an analytical
continuation of our results from the imaginary frequency axis
to the real frequency axis. For this purpose we used the
ANA_CONT PYTHON package [38].

III. RESULTS

We consider t ′ = 0.15t , which is a typical value for
La2−xSrxCuO4, and set the temperature T = 0.1t . We cal-
culate the susceptibilities χab(q, ω) ≡ ∑

mm′ σ a
mχmm′

q σ b
m′ ,

where a, b = x, y, z. The initial wave vector Q is obtained by
providing the minimum of the minimal eigenvalue of the ma-
trix Î − φ̂QÛ at ω = 0 in the antiferromagnetic phase and then
determined self-consistently to provide the minimum of the

FIG. 1. Dependence of (a) staggered magnetization m = 〈S−
Q〉

and (b) the incommensurability parameter δ of the magnetic order on
the hole doping level x at U/t = 7.5. Triangles denote the antiferro-
magnetic state, circles indicate states with incommensurate magnetic
order, and squares represent the paramagnetic state.

minimal eigenvalue of the same matrix in the incommensurate
case.

In all calculations we find that the dominant wave vec-
tor Q = (π − δ, π ), in agreement with earlier slave-boson
studies [26] and similar to the wave vector of short-range
magnetic order observed in La2−xSrxCuO4 [1–5]. We note
that the mean-field approach [22,24] yields the dominating
phase Q = (Q, Q) at a sufficiently strong interaction U of the
order of the bandwidth, which seems to be the drawback of
neglecting correlations in this approach.

In Fig. 1(a) we plot the dependence of staggered magneti-
zation m = 〈Ŝ−

Q〉, where Ŝ± = Ŝz ± iŜx, on the hole doping
x = 1 − n at U/t = 7.5. Staggered magnetization shows
mean-field-like behavior m ∝ √

xc − x near the critical value
of hole doping level xc ≈ 0.15. Although the sublattice mag-
netization is continuous with doping, there are two different
types of states with x < xc. At low doping (x < x(Q)

c ) we
find antiferromagnetic magnetic order [marked by triangles
in Fig. 1(a)]. At intermediate values of the hole doping level
we obtain incommensurate magnetic order: the spin density
wave [circles in Fig. 1(a)]. The dependence of the degree of
incommensurability δ of the magnetic order on the doping
level x is presented in Fig. 1(b). Close to the commensurate-
incommensurate transition this dependence is quite similar
to the one observed for the short-range magnetic order in
La2−xSrxCuO4 [39,40].

Using analytical continuation of the self-energy �σ (ν),
which takes into account the constant and 1/ν asymptotics
of the self-energy at large frequencies [38,41], we obtain the
electron spectral functions A(k, ν) = −ImGkσ (ν)/π , as well
as the local spectral function A(ν) = ∑

k A(k, ν). In Fig. 2
we show A(ν) for various doping levels. The quasiparticle
peak is shifted below the Fermi level and corresponds to
the hole states in the antiferromagnetic or spiral spin den-
sity wave background. At very low doping we find the gap
in the spectrum at the Fermi level, which is present be-
cause of the redistribution of the spectral weight between the
Hubbard (Slater) subbands, as well as thermal activation of
the electron-hole pairs (see more details in the Appendix).
The gap is continuously filled with a further increase of the
doping. Continuous increase of the spectral weight at the
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FIG. 2. Electron local spectral functions A(ν ) at U/t = 7.5 for
various values of doping level x indicated in the legend. The inset
shows the low-energy region, containing quasiparticle peaks and the
spectral gaps.

Fermi level with doping agrees with the experimental data for
La2−xSrxCuO4 [42].

In Fig. 3 we show the contour plots of the zero energy
A(k, ν = 0) spectral functions, whose maxima show the po-
sitions of the Fermi surfaces. At small hole doping the Fermi
pockets are absent since the Fermi level lies in the gap of the
spectral function. In the incommensurate state [see Fig. 3(a)
for hole doping level x = 0.11] the Fermi surface consists
of hole pockets. It is spin independent and symmetric under
each of the transformations kx → −kx and ky → −ky. At the
same time, the Fermi surface for the paramagnetic state [see
Fig. 3(b) for hole doping level x = 0.20] is connected and has
the standard shape.

In Fig. 4 we show the hole dispersion, obtained from the
contour plots of hole spectral functions A(k,−ν), for the
antiferromagnetic state (doping x = 0.05) and the incommen-
surate state (doping x = 0.11). Hole dispersion calculated in
the antiferromagnetic state qualitatively coincides with the
results obtained for the t-J model (see, e.g., Refs. [43,44]).

FIG. 3. The zero-energy spectral functions showing the positions
of the Fermi surface in the upper right quadrant of the Brillouin zone
at U/t = 7.5. (a) The state with incommensurate magnetic ordering
at hole doping level x = 0.11. (b) Paramagnetic state at hole doping
level x = 0.20.

(a)

(b)

FIG. 4. The frequency and momentum dependence of the spec-
tral functions at negative energy, showing the dispersion relation
of holes at U/t = 7.5 in (a) the antiferromagnetic state at doping
x = 0.05, and (b) the incommensurate state at doping x = 0.11. The
Fermi level corresponds to zero energy. Positions of high-symmetry
points in the upper right quadrant of the first Brillouin zone are shown
in the inset.

However, in contrast to earlier studies, in the antiferromag-
netic state it does not cross the Fermi level. Low spectral
weight at the Fermi level, which is seen in Fig. 2, appears in
this case from the accumulation of the tails of the peaks in the
k-resolved spectral functions. At the same time, two different
hole dispersion branches are present in the incommensu-
rate case, which originate from the k ± Q/2 contributions
in Eq. (13). The lower dispersion branch in this case forms
the Fermi surface pocket. When the system changes to the
antiferromagnetic phase, the two modes merge. We have ver-
ified that in both commensurate and incommensurate cases
the main contribution to the dispersion comes from the first
term in the second line of Eq. (13) with σ ′ = ↑, i.e., the
diagonal spin-majority states. The local vertex approximation
and analytical continuation of bosonic quantities allow us to
calculate different components of the dynamic susceptibility
χ (q, ω) ≡ χq. Its matrix-valued nature in our formalism pro-
vides an opportunity to investigate different types of magnetic
excitations, which are coupled to each other for the incom-
mensurate order, as was emphasized in Ref. [22].

In Fig. 5 we show the corresponding susceptibilities in
the doped commensurate case for x = 0.05. As discussed in
Sec. II B, in the state with the commensurate antiferromag-
netic order the “longitudinal” excitations, determined by the
maximum of the susceptibility Im[χ zz(q, ω)], are decoupled
from the transverse ones, determined by Im[χ xx,yy(q, ω)].
From the χ xx,yy(q, ω) susceptibilities we obtain massless
Goldstone modes, which are related to the spontaneous sym-
metry breaking. Their spectrum broadens rapidly with the
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FIG. 5. Imaginary part of (a) the transverse χ xx,yy (logarithmic color scale) and (b) longitudinal χ zz (linear color scale) dynamic magnetic
susceptibilities as a function of the energy ω and the vector q along the path (π/2, π ) → (3π/2, π ) for the antiferromagnetic state at hole
doping x = 0.05 and U/t = 7.5.

deviation of the wave vector q from Q = (π, π ). We do not
find evidence of negative modes in the magnon’s spectrum.
This shows that the considered Q = (π − δ, π ) order is sta-
ble. The longitudinal excitations, obtained from Imχ zz(q, ω),
possess a gap of the order of 0.1t . Similar to the transverse
channel, the longitudinal excitations become less coherent
with the deviation of the wave vector q from Q.

In the incommensurate case the longitudinal and transverse
excitations are coupled. Accordingly, we analyze the in-plane
excitations, determined by Im[χ+−(q, ω)] susceptibility of
Ŝ± spin components, and the out-of-plane component, deter-
mined by Im[χ yy(q, ω)]. In Fig. 6 we show the corresponding
susceptibilities for the incommensurate state far from tran-
sitions to paramagnetic and antiferromagnetic states. In
Im[χ yy(q, ω)] we find two Goldstone modes at wave vec-
tors q = ±Q. They merge at q = (π, π ) when the order
changes to the antiferromagnetic one. In the in-plane com-
ponent Im[χ+−(q, ω)] there is also a Goldstone mode at q =

−Q, corresponding to transverse excitations, while at q = Q
we observe a longitudinal (Higgs) mode of weaker intensity.
As in the commensurate case, this mode is gapped. Upon
approaching the paramagnetic phase (see Fig. 7) the longi-
tudinal mode softens, and the corresponding gap disappears
at the spin density wave to the paramagnet transition. Like
in the commensurate case, no evidence of instability of the
considered long-range order is obtained, such that this order
appears to be stable.

We have verified that the presented results remain quali-
tatively unchanged for larger values of U/t , except that the
incommensurate region of doping levels becomes narrower
with the increase of U/t at fixed temperature T . The consid-
ered value U/t = 7.5 corresponds to the metallic state at half
filling in the absence of long-range antiferromagnetic order,
and it is also somewhat smaller than typically considered for
cuprate high-Tc compounds. To compare the obtained magnon
dispersions with the experimental data for cuprates, in Fig. 8

FIG. 6. Imaginary part of (a) the out-of-plane χ yy and (b) the in-plane χ+− dynamic magnetic susceptibilities (logarithmic color scale) as a
function of the energy ω and momentum q along the path (π/2, π ) → (3π/2, π ) for hole doping x = 0.11 (corresponding incommensurability
δ = 0.10) and U/t = 7.5.
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FIG. 7. The same as Fig. 6 for hole doping x = 0.13 (corresponding incommensurability δ = 0.13).

we show the magnon dispersion for U = 10t . We consider
an antiferromagnetic state at small doping x = 0.01 to avoid
difficulties with analytic continuation of dynamic susceptibil-
ities at half filling. The obtained dispersion is compared to
the experimental data of Ref. [45] at half filling. We can see
that for the hopping t = 425 meV the obtained maxima of
Imχ xx,yy(q, ω) compare well with the experimental disper-
sion, including the (π, 0)-(π/2, π/2) part, whose deviation
from the flat dispersion in the linear spin-wave analysis of
the Heisenberg model was previously attributed to the ring
exchange (see, e.g., Refs. [45,46]). Taking into account the
renormalization factor of the spin-wave dispersion of the S =
1/2 two-dimensional Heisenberg model [47,48] γ = 1.157,
which originates from the magnon interaction and is not ac-
counted for by the considered ladder approximation, we find
the bare hopping, capable of describing the magnon dispersion
tbare = t/γ � 370 meV, in good agreement with the estimate
JbareU/(4t ) � tbare, considering Jbare � 152 meV [46]. The
maximum of the imaginary part of the longitudinal suscep-
tibility shows longitudinal excitation with a rather small gap
∼10 meV.

IV. CONCLUSION

In the present paper we considered the calculation of
sublattice magnetization, the incommensurability parameter,
hole dispersion, and the dynamic magnetic susceptibilities
of the square lattice Hubbard model with nearest- and
next-nearest-neighbor hopping in the antiferromagnetic and
incommensurate cases within the dynamic mean-field theory.
At small doping we obtained an antiferromagnetic insulating
state with hole dispersion, which agrees qualitatively with
that obtained previously for the t-J model. The transverse
magnetic susceptibility possesses a Goldstone mode, while
the longitudinal excitations are characterized by a small gap.

At larger doping we found an incommensurate spiral Q =
(π, π − δ) order with two branches of hole dispersions and
Fermi surfaces, having the shape of hole pockets. The out-of-
plane magnetic susceptibility possesses Goldstone modes at
the incommensurate wave vectors, while the in-plane suscep-
tibility shows both gapless Goldstone spin-wave excitations
and the longitudinal gapped excitation. The obtained long-
range order was found to be stable from the susceptibility
analysis.

FIG. 8. Imaginary part of (a) the transverse χ xx,yy (logarithmic color scale) and (b) longitudinal χ zz (linear color scale) dynamic magnetic
susceptibilities as a function of energy ω and the vector q along symmetric directions for the commensurate antiferromagnetic state near half
filling at hole doping level x = 0.01. The interaction U/t = 10, and t = 425 meV. The maxima of the imaginary parts are shown by the red
line, except in the vicinity of the point q = 0, where the intensity is very low and not captured by analytical continuation. The experimental
data for the spin-wave dispersion at half filling, taken from Ref. [45], are represented in the left plot by blue points with error bars.
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We also showed that close to half filling the experimentally
observed magnon dispersion can be reproduced with reason-
able values of hopping t and interaction U . The obtained
doping evolution of the Fermi surfaces and the incommen-
surability parameter δ are quite similar to those for high-Tc

cuprate superconductors, which stresses once more a possible
magnetic origin of the pseudogap. Although the considered
magnetic state is long range ordered, this order can be “hid-
den,” e.g., within the gauge theory of fluctuating spin density
wave order discussed recently in Refs. [11,12,14]. The ex-
tension of the proposed approach to the paramagnetic phase
within these gauge theories therefore represents a promising
direction of future research. This may also concern other types
of lattices, including compounds with a frustrated triangular
lattice, which are candidates for the spin-liquid phase [49–52].
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APPENDIX: RELATION TO THE STATIC
MEAN-FIELD APPROACH

The static mean-field treatment in the considered approach
is conveniently formulated by considering the (frequency-
independent) mean-field approximation for the self-energy of
the impurity Anderson model �σ = Un−σ . The correspond-
ing occupation numbers are obtained from the equation

nσ = T
∑

ν

1

ζ−1
σ (iν) − Un−σ

. (A1)

Exploiting the self-consistency equation (12), we obtain

T
∑
k,ν

Gσσ
k (iν) = nσ . (A2)

Defining the mean-field order parameter

� = �↓ − �↑
2

= Um, (A3)

where the local magnetization m = (n↑ − n↓)/2, and tak-
ing into account the form of the Green’s function (10), the
summation over frequencies in Eq. (A2) can be performed
analytically and yields the equation

1

U
=

∑
k

f (Ev (k)) − f (Ec(k))
2E−(k)

, (A4)

where

Ec,v (k) = ε+(k) ± E−(k) − μ̃, (A5)

E−(k) =
√

ε2−(k) + �2, (A6)

ε±(k) = 1

2
(εk−Q/2 ± εk+Q/2), (A7)

f (ε) = [exp(ε/T ) + 1]−1 is the Fermi function, and μ̃ = μ −
(�↑ + �↓)/2. Equation (A4) allows one to determine the

FIG. 9. Electron local spectral functions A(ν ) near the Fermi
level for U/t = 7.5, T = 0.1t , and hole doping levels x = 0.02 and
x = 0.05 obtained using the mean-field approach (black squares).
The shaded area under the dashed line, showing A(ν ) f (ν ), represents
partial occupancy of electronic states due to thermal smearing. The
results of the DMFT approach from Fig. 2 are shown by red circles.

order parameter � (the chemical potential μ̃ is fixed by the
total number of particles) and coincides with the correspond-
ing mean-field equation of Refs. [17–25].

Analogously, the ladder summation of diagrams for sus-
ceptibilities, considered in Refs. [17,18,20–23,25], can be
reproduced for an infinite (finite) frequency box consider-
ing the bare two-particle irreducible vertices �̂ω,νν ′ = Û (Ũ ),
where the matrix Û (Ũ ) is defined in Eq. (26) [after Eq. (27)].
This also implies the triangular vertex γ μm′

q = δmm′ in the
mean-field approximation.

The density of states of the lower Slater (valence) band
Ev (k) in the mean-field approach for parameter values t ′ =
0.15t , U = 7.5t , and T = 0.1t , considered in the main text,
is shown in Fig. 9. For the purpose of the comparison to the
DMFT approach we fix the wave vector to Q = (π, π ). At
the considered small doping and finite temperature the Fermi
level lies within the spectral gap; thermal activation of holes
in the valence band results in an occupancy smaller than 1,
corresponding to the chosen hole doping level. This effect of
thermal smearing is illustrated in Fig. 9 by the shaded area
under the mean-field spectral function, which represents the
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fraction of occupied states. With increasing hole doping, the
Fermi level shifts closer to the valence band. This behavior of
the spectral function in the mean-field approach is preserved
also for small deviations of magnetic order from the Néel
state.

While previous mean-field studies [22–24] showed that at
the mean-field level the spiral phases are thermodynamically
unstable at sufficiently strong interaction and show the regions
of negative susceptibilities, as we discussed in the main text,
this drawback of the mean-field theory is cured in the dynami-
cal mean-field theory approach. As also discussed in Ref. [53],
the static mean-field solution is not quantitatively correct for
the symmetry-broken phases even in the limit of weak cou-
pling. In particular, for the antiferromagnetic case, already at
sufficiently small interaction, the DMFT solution differs from
that of the static mean-field approach due to the development
of the frequency dependence of the self-energy [54]. The same
is expected for the incommensurate phases.

The spectral functions of the DMFT approach at small
doping, presented in the main text (Fig. 2), show a

quasiparticle peak with the right edge only slightly shifted
with respect to that of the lower Slater band of the mean-field
theory, but the height of the peak remains smaller than in
the mean-field theory due to partial transfer of the spectral
weight to the lower Hubbard band at negative energies (see
the comparison in Fig. 9). Although at finite temperatures the
quasiparticle peak is also not fully filled in the DMFT even
for the Fermi level position above the peak, in contrast to the
mean-field approach, the spectral weight of the quasiparticle
peak and lower Hubbard band [which we define as the in-
tegral weight w = ∫ 0

−∞ dνA(ν)] in the DMFT reduces with
doping (see Figs. 2 and 9). In particular, for x = 0.02 and
x = 0.05 we obtain for this weight w = 0.99 and w = 0.97,
respectively [55], such that in the DMFT the spectral weight
is redistributed between the lower and upper Hubbard (Slater)
subbands. Therefore, in contrast to the mean-field approach,
the DMFT approach, apart from the trivial thermal smearing,
shows an additional many-body contribution to the spectral
functions, which keeps the Fermi level inside the gap at low
doping.

[1] N. Plakida, High-Temperature Cuprate Superconductors
(Springer, Heidelberg, 2010).

[2] J. J. Wagman, G. Van Gastel, K. A. Ross, Z. Yamani, Y. Zhao,
Y. Qiu, J. R. D. Copley, A. B. Kallin, E. Mazurek, J. P. Carlo,
H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 88, 014412
(2013).

[3] S.-W. Cheong, G. Aeppli, T. E. Mason, H. Mook, S. M. Hayden,
P. C. Canfield, Z. Fisk, K. N. Clausen, and J. L. Martinez, Phys.
Rev. Lett. 67, 1791 (1991).

[4] T. E. Mason, G. Aeppli, S. M. Hayden, A. P. Ramirez, and H. A.
Mook, Phys. Rev. Lett. 71, 919 (1993).

[5] M. Matsuda, K. Yamada, Y. Endoh, T. R. Thurston, G. Shirane,
R. J. Birgeneau, M. A. Kastner, I. Tanaka, and H. Kojima, Phys.
Rev. B 49, 6958 (1994).

[6] J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80,
3839 (1998); Phys. Rev. B 60, 667 (1999).

[7] E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor. Phys. 88,
968 (1999).

[8] F. Onufrieva, P. Pfeuty, and M. Kiselev, Phys. Rev. Lett. 82,
2370 (1999); F. Onufrieva and P. Pfeuty, ibid. 82, 3136 (1999).

[9] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Phys. Rev. Lett.
114, 236402 (2015).

[10] E. A. Stepanov, L. Peters, I. S. Krivenko, A. I. Lichtenstein,
M. I. Katsnelson, and A. N. Rubtsov, npj Quantum Mater. 3, 54
(2018).

[11] W. Wu, M. S. Scheurer, S. Chatterjee, S. Sachdev, A. Georges,
and M. Ferrero, Phys. Rev. X 8, 021048 (2018).

[12] M. S. Scheurer, S. Chatterjee, W. Wu, M. Ferrero, A. Georges,
and S. Sachdev, Proc. Natl. Acad. Sci. USA 115, E3665 (2018).

[13] F. Krien, P. Worm, P. Chalupa-Gantner, A. Toschi, and K. Held,
Commun. Phys. 5, 336 (2022).

[14] D. Vilardi, P. M. Bonetti, and W. Metzner, Phys. Rev. B 102,
245128 (2020); P. M. Bonetti and W. Metzner, ibid. 106,
205152 (2022).

[15] K. Miyagawa, A. Kawamoto, Y. Nakazawa, and K. Kanoda,
Phys. Rev. Lett. 75, 1174 (1995).

[16] K. Kanoda, Phys. C (Amsterdam, Neth.) 282–287, 299 (1997).
[17] J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. B 39,

11663 (1989).
[18] A. V. Chubukov and D. M. Frenkel, Phys. Rev. B 46, 11884

(1992).
[19] M. Dzierzawa, Z. Phys. B 86, 49 (1992).
[20] A. P. Kampf and W. Brenig, J. Low Temp. Phys. 95, 335 (1994);

W. Brenig, ibid. 99, 319 (1995).
[21] R. Côté and A. M. S. Tremblay, Europhys. Lett. 29, 37 (1995).
[22] A. V. Chubukov and K. A. Musaelian, Phys. Rev. B 51, 12605

(1995).
[23] A. P. Kampf, Phys. Rev. B 53, 747 (1996).
[24] P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K.

Arzhnikov, and V. Yu. Irkhin, Phys. Rev. B 81, 094407 (2010).
[25] P. M. Bonetti and W. Metzner, Phys. Rev. B 105, 134426

(2022).
[26] P. A. Igoshev, M. A. Timirgazin, V. F. Gilmutdinov, A. K.

Arzhnikov, and V. Yu. Irkhin, J. Magn. Magn. Mater. 383, 2
(2015); J. Phys.: Condens. Matter 27, 446002 (2015).

[27] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[28] M. Fleck, A. I. Liechtenstein, A. M. Oleś, L. Hedin, and V. I.
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B. Gorshunov, S. Tomić, J. A. Schlueter, R. Hübner, T.
Hiramatsu, Y. Yoshida, G. Saito, R. Kato, T.-H. Lee, V.
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