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Intrinsically multilayer moiré heterostructures
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We introduce trilayer and multilayer moiré heterostructures that cannot be viewed from the “moiré-of-moiré”
perspective of helically twisted trilayer graphene. These “intrinsically trilayer” moiré systems feature periodic
modulation of a local quasicrystalline structure. They open the door to realizing moiré heterostructures with
vastly more material constituents because they do not constrain the lattice constants of the layers. In this
manuscript, we define intrinsically multilayer patterns, provide a recipe for their construction, derive their local
configuration space, and connect the visual patterns to physical observables in material systems.
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I. INTRODUCTION

The observation of superconductivity and correlated insu-
lators in twisted bilayer graphene [1,2] launched the study of
“moiré materials,” where two-dimensional materials with the
same [1–35] or similar [36–45] lattice constants are stacked
at a small relative twist angle. This paradigm is naturally ex-
tended to trilayer stacking and beyond, both with some layers
aligned [24,46–51] and with multiple twist angles [52–58].
Recently it has also been extended to stacking at angles nearby
a large commensurate twist angle [59–62]. In all cases, the
moiré pattern is obtained from layers with either the same or
similar lattice constant (or a commensurate supercell). In this
paper, we lift that restriction.

We introduce moiré patterns made from stacking more
than two layers in which no two layers separately display a
moiré pattern (see Table I). We call these patterns “intrinsi-
cally trilayer moiré” (or more generally, “intrinsically N-layer
moire”) because, unlike twisted trilayer graphene, the moiré
pattern disappears if any one layer is removed. As we will
explain, intrinsically trilayer moiré patterns cannot be viewed
from the “moiré of moiré” perspective often used to describe
twisted trilayer graphene [52].

Intrinsically N-layer moiré patterns have an important
advantage over bilayer moiré patterns because they do not im-
pose a constraint on lattice constants. This vastly increases the
space of possible material combinations. Specifically, moiré
patterns in bilayer systems require the constituent materials
to have nearly the same lattice constant or to be nearly com-
mensurate. In contrast, intrinsically N-layer moiré patterns
can be constructed from virtually arbitrary combinations of
materials.

In the present work, we focus on the crystal structure
of intrinsically N-layer moiré heterostructures, postponing a
study of electronic structure to future work.

We begin by reviewing the origin of moiré patterns. In
Sec. II, we provide an intuitive picture of how moiré patterns
arise in real space. We explain the construction for bilayers
and then offer a naïve generalization to multilayers. In Sec. III,
we argue that reciprocal space provides a more natural and

concise characterization, from which we derive both bilayer
and N-layer moiré patterns.

We then focus on multilayer heterostructures. In Sec. IV,
we return to real space to resolve an apparent contradiction:
the momentum-space perspective implies that periodic moiré
patterns of more than two layers exist, but the naïve general-
ization of bilayer configuration space [63,64] fails to indicate
these patterns, in part because the local structure is generally
quasicrystalline rather than crystalline. Consequently, we de-
velop a more nuanced notion of configuration space, in which
some apparent degrees of freedom disappear on moiré wave-
lengths. We discuss physical properties that are a function of
this configuration space; lattice relaxation is one example.

Finally, in Sec. V, we discuss experimental probes and
propose physical realizations of intrinisically N-layer moiré
patterns.

Throughout, we assume a three-, four-, or sixfold rotation
symmetry shared between all layers of the moiré heterostruc-
ture. In the absence of this symmetry, the generic moiré
pattern will be stripes rather than a 2D pattern.

II. CONFIGURATION SPACE FOR BILAYERS:
MOIRÉ PATTERNS IN REAL SPACE

Moiré patterns are intuitively understood in real space as
a slow modulation of the local lattice structure. The set of all
possible local environments is known as configuration space
[63,64]. The configuration space approach extends beyond
linear transformations of perfectly rigid crystals to include
lattice relaxation effects. However, the approach becomes sub-
tle for heterostructures of multiple layers or different lattice
constants.

In this section, we review configuration space in the sim-
plest case of bilayers with near-identical lattices. We then
extend the formalism to bilayer systems perturbed from a
commensurate stacking. Finally, we offer a “naïve configu-
ration space” for trilayer systems, and briefly discuss how
it leads to the complex patterns observed in twisted trilayer
graphene. (Later, in Sec. IV, we will provide a more complete
accounting of configuration space in systems with more than
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TABLE I. Summary of moiré heterostructures: the “intrinsically
trilayer” moiré patterns we introduce occur at large twist angle and
with three or more layers.

Types of
moiré
patterns

Small twist Large twist

Two layers

Twisted bilayer
graphene

Near-commensurate
TBLG

Three or
more layers

Twisted trilayer
graphene

Intrinsically trilayer
moiré

two layers and explain the breakdown of the naïve configura-
tion space.)

A. Two square lattices

Consider two stacked periodic layers. There are two cases
to consider: when the two layers share a common (larger)
period, and when they do not. If they do share a common
period, we call the structures commensurate. If they do not,
we call them incommensurate.

In Fig. 1, we illustrate a small commensurate pattern
formed by two square lattices at a relative twist angle of ap-
proximately 6.7◦ about a square corner. This aligns the square
corners of the unit cell (8,9) of one layer with (9,8) of the
other, forming the commensurate superlattice outlined in red.
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FIG. 1. A moiré lattice of two square layers twisted at 6.7329◦.
Commensurate lattice in red, moiré lattice in blue.
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FIG. 2. A moiré lattice of two hexagonal layers with unit-length
interatomic distance stacked with a relative twist angle of 5◦. Red and
blue circles indicate an “AA-stacked” region where hexagons align
and an “AB-stacked” region where they are offset, respectively.

However, in the center of each red supercell is a location
that looks very similar to the corners, where the unit cells are
also aligned at the center of the square cells rather than at a
vertex. This smaller grid of locations where the square-centers
are aligned defines the moiré lattice, outlined in blue. Thus
the visual moiré cell, which enjoys an approximate transla-
tion symmetry, is smaller than the commensurate unit cell,
which exhibits an exact translation symmetry. In general, the
visual pattern will either be the same size or smaller than the
commensurate cell (although for two identical square lattices,
the moiré cell is always smaller by at least a factor of

√
2,

regardless of twist angle.
The commensurate cell size is highly sensitive to angle

and exists only on a dense subset of angles. Computing the
size of a commensurate cell as a function of twist angle is
analogous to determining the size of the minimal denominator
of a fraction as a function of the value of that fraction [65,66].

The moiré cell, however, varies smoothly with twist angle
for small twist angles. At sufficiently large twist angles, the
moiré cell becomes smaller than a unit cell, which indicates
that the moiré pattern ceases to exist and no visual pattern
arises.

This example shows how a moiré pattern arises from the
two layers being stacked at different “local relative transla-
tions” at different positions, i.e., in the brighter regions, the
lattices are stacked atom-on-atom, while in the darker regions,
the lattices are stacked atom-on-void. The moiré lattice is
defined by the collection of points where the two layers align
in either configuration.

B. Local configuration space: Two identical layers

The space of relative translations of the aligned layers
defines the local configuration space. For instance, TBLG ex-
hibits regions of AA and AB stacking, as well as intermediate
regions, as illustrated in Fig. 2.
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For two identical layers, the local configuration space is de-
fined with respect to relative translations of the two untwisted
layers, as we will now describe. Although the idea is intuitive
in this case, developing the mathematical infrastructure care-
fully here will elucidate the more complicated situations we
consider later.

1. Configuration space as differences of relative coordinates

In the simplest setup where the two untwisted layers have
identical lattice vectors, we define the local configuration c(r)
in terms of the relative coordinates xi of each layer. The rela-
tive coordinate xi(r) is a two-component vector that specifies
where the position r resides in the unit cell of layer i. Thus xi is
determined by the matrix Ai, whose columns are the (twisted)
lattice vectors of layer i, as

xi(r) = A−1
i r mod I, (1)

where “mod I” means “modulo the columns of I” (i.e., mod
{(1, 0), (0, 1)}). The local configuration is then defined as the
difference between the two relative coordinates

c(r) = x2(r) − x1(r) mod I, (2)

= (
A−1

2 − A−1
1

)
r mod I. (3)

While the functions xi vary on the scale of the original lattice,
for a small twist or lattice mismatch, c(r) varies much more
slowly, and the period of c(r) defines the moiré lattice. There-
fore the moiré lattice vectors are given by the columns of the
matrix

AM = (
A−1

2 − A−1
1

)−1
(4)

in the case where the inverse exists. If the inverse does not
exist, then there is not a 2D moiré pattern.

In the case where the two layers are identical and twisted
by a relative angle θ , one can simplify further by writing
A1,2 = R(±θ/2)A, where R(θ ) is the rotation matrix. The
moiré lattice vectors then simplify to

AM = [R(θ/2) − R(−θ/2)]−1A = 1

2 sin(θ/2)
R

(
π

2

)
A. (5)

In other words, the moiré lattice vectors are rotated by π/2
compared to the original lattice vectors A and scaled up by a
factor of 1/(2 sin(θ/2)).

The same formalism applies to aligned layers with a small
difference in their lattice constants. For example, if A2 =
(1 + δ)A1, then Eq. (4) can be simplified without any matrix
algebra to AM = 1+δ

δ
A1 (neglecting the overall sign). General-

izing to the case of two layers with a small lattice mismatch
arranged with a slight twist angle yields Eq. (1) in Ref. [67].
Equation (4) in this paper also allows for anisotropic lattice
mismatch, as might be induced by a strain.

2. Configuration space as a quotient of translation groups

More abstractly, configuration space is equivalently de-
fined as the space of nontrivial translations of the lattices
before twisting, as we now explain. A combination of trans-
lations is “trivial” if it differs from zero translation of each
layer by the simultaneous translation of all layers by the same
amount.

In other words, consider the two identical lattices before
twisting. Denote the group of translations of each layer mod-
ulo lattice translations by Ti. (Note Ti will be isomorphic to the
torus T 2 = R2/Z2.) Similarly denote the group of translations
of the two lattices simultaneously (modulo translations that
preserve the shared pretwist lattice) as T12. The space of con-
figurations is the space of translations of each layer, modulo
simultaneous translations of the two layers:

Tconfig = T1×T2/T12. (6)

This space of configurations is itself a torus.
We now relate this space to the moiré pattern. Suppose we

transform each layer by a linear transformation Mi, e.g., for
twist, Mi = R(θi ). In terms of the matrices of lattice vectors
before and after twisting,

Mi = AiA
−1. (7)

We now interpret this transformation as a position-dependent
translation, which will give the Ti-coordinate in Eq. (6).

To find the translation of one layer associated with a point
r0 in real space, consider the map which first transforms
physical space, then transforms back but centered at r0. (For
example, for a twist by θ , first twist about the origin by θ , then
twist back around r0 by −θ .) Conceptually, the first transfor-
mation sets up the twisted system, and the latter realigns the
layers without further translating r0.

Algebraically, understanding that “transform around r0”
can be written as “translate r0 to the origin, transform, then
translate back,” the translation is given by

r → M−1
i (Mir − r0) + r0 = r − (

M−1
i − I

)
r0, (8)

which is a translation because it takes the form r → r − a.
This translation is then taken modulo the pretwist lattice vec-
tors to get the element of T1.

Doing this for each layer yields the translation opera-
tors that determine a point in configuration space defined by
Eq. (6). Modding out by simultaneous translations in Eq. (6)
yields the relative translation difference between the two lay-
ers,

c̃(r) = (
M−1

2 − M−1
1

)
r mod A, (9)

where A is the shared lattice before twisting. This is in one-to-
one correspondence with the characterization of configuration
space in Eq. (3). The moiré unit cell is given by

AM = (
M−1

2 − M−1
1

)−1
A, (10)

which is exactly Eq. (4). Written in this way, the moiré lattice
is “factored” into one term, M−1

2 − M−1
1 , that depends on the

transformations but not the original lattice, and another term,
A, that depends on the lattice but not the transformations. The
second term can be interpreted as the size of configuration
space and the first as the rate at which the moiré pattern
explores that space.

C. Generalization to near-commensurate twisting

Now instead of two identical layers, consider two layers
that form a small (i.e., not moiré) commensurate supercell.
Applying a small twist or lattice mismatch produces a moiré
pattern. For instance, two square lattices whose side lengths
differ by a factor of

√
2 form a commensurate supercell when
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FIG. 3. Moiré pattern from two square lattices with side lengths
1 and

√
2 arranged with a relative twist angle of 42◦.

arranged at a 45◦ relative orientation; when twisted by an an-
gle near 45◦, they form a moiré pattern as illustrated in Fig. 3.
A second example is two identical honeycomb lattices twisted
near a commensurate angle that is not a multiple of 60◦, as
discussed in Ref. [60]; near-21.8◦ TBLG is shown in Fig. 4.

The abstract description of configuration space described
in Eq. (6) extends to this case with only one minor modi-
fication: instead of considering the translations as acting on
the lattices at zero twist, consider them at the relevant com-
mensurate stacking. Hence, the Ti are now defined modulo
the individual lattices at the commensurate stacking, whereas
T12 is defined modulo the lattice vectors of the commensurate
structure.

An argument for the size of the moiré pattern comes from
Eq. (9) and the subsequent discussion. A linear transformation
(e.g., twist) performed on a near-commensurate structure ex-
plores the configuration space at the same rate as the structure
formed by performing the same transformation on a zero-
degree stacked structure. However, the configuration space of
the former is (perhaps counterintuitively) smaller, for reasons
we now explain heuristically.

The size of configuration space in the case of two layers
stacked to form a supercell can be sensibly guessed from
Eq. (6). Let Ai, AC , Acs, and AM denote the areas of the
unit cell of layer i, the commensurate supercell, configuration
space, and the moiré unit cell, respectively. Replacing each
translation group in Eq. (6) by the area of the corresponding
torus yields

Acs = A1A2

AC
. (11)

FIG. 4. A moiré pattern formed by two unit triangular lattices arranged with a relative twist of 22.4◦ (21.8◦ + 0.6◦). The resulting triangular
moiré lattice has a unit cell of side length 36.1, shown in green. The moiré pattern is subtle, alternating between regions with individual
sixfold-symmetric “centers” (red) and regions with triplets of “centers” connected in a triangle (blue). A larger picture of the moiré pattern is
shown in Fig. S2-1 [68].
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Exploiting the fact that Ai = | det(Ai )| and guided by the
intuition that A in Eq. (10) should be generalized to some
“configuration space lattice,” the area of the moiré cell is

AM = 1∣∣ det
(
M−1

2 − M−1
1

)∣∣ A1A2

AC
. (12)

The intuition that we should use the configuration space lat-
tice follows from factoring Eq. (10) as described in the text
following that equation. [We give a rigorous description of
how to find the “configuration space lattice vectors” Acs in
Appendix B and prove that they are indeed the analog of A in
Eq. (10).]

As a concrete example, consider two identical lattices
twisted at an angle θ away from a commensurate stacking
where the commensurate cell is a factor of N larger in area
than the original unit cell (for instance, in near-21.8◦ TBLG,
the commensurate cell is 7 times larger in area than the orig-
inal graphene cell). The size of Ti does not depend on how
the layers are stacked, but T12 will be a factor of N larger in
area when they are twisted θ away from the commensurate
stacking compared to when the layers are stacked at an overall
twist angle of θ . Therefore, according to Eq. (11), the config-
uration space, which is defined modulo T12, would be a factor
of N smaller. Since the matrices M1,2 in the denominator of
Eq. (12) depend only on θ and not on the supercell or original
lattice, it follows that, contrary to the most obvious intuition,
for two specified 2D layers, the larger the commensurate cell,
the smaller the moiré pattern.

In Appendix B, in addition to formally deriving Eq. (11),
the relative coordinates of heterostructures nearby a supercell
configuration are derived, generalizing Eq. (9).

D. A naïve approach to configuration space
with more than two layers

We now try to apply the idea of configuration space as
the translation of each layer modulo overall translations to
heterostructures with more than two layers. We call this notion
“naïve configuration space” (in contrast to a more nuanced
notion to be given in Sec. IV). For instance, in the case of
three identical layers near zero stacking, as in twisted trilayer
graphene, the local configuration space is a four-dimensional
torus:

Tconfig = T1×T2×T3/T123. (13)

In general, the local configuration space of N arbitrarily
twisted layers (with respect to a reference configuration) is
a (2N − 2)-dimensional torus:

Tconfig =
(∏

i

Ti

)
/Tall. (14)

Because this configuration space has dimension greater
than two, we do not generally expect that it is fully explored.
The consequence is a complex structure of overlapping moiré
patterns (illustrated for twisted trilayer graphene in Fig. 1(b)
of Ref. [69]), and the four-dimensional space will generally
be the correct parameter space for many layers twisted near a
single commensurate structure of all layers (as can be seen in,
e.g., Ref. [53]).

As the next section will show, however, there are moiré
patterns that arise when multilayer structures are twisted near
special incommensurate configurations. In these cases, more
care is required to define which configurations are distinct in a
way that will manifest on moiré length scales: Tconfig as written
in Eq. (14) is not correct because Tall is not the correct space
by which to mod out.

III. MOIRÉ IN FREQUENCY SPACE

An alternative to defining a moiré pattern in real space
is to define it by the appearance of low-frequency modes in
momentum space. This approach is discussed at length in
Ref. [70]; here we summarize by focusing on the modes of
a black-and-white image. However, the content is much more
general; see Appendix A for details.

Consider a layered material as a set of transparencies
placed over a light source. The atomic structure defines a local
transmission coefficient Ti(r) that specifies how much light
layer i lets through at point r. For a black-and-white image,
Ti(r) = 1 wherever the layer’s image is white and Ti(r) = 0
where it is black; this paradigm extends to grayscale images
using opacities between zero and one.

By the definition of the transmission function, given Ti(r)
in each layer i, the resulting transmission function of the
layered structure is given by

T (r) =
∏

i

Ti(r), (15)

which defines how the resulting multilayer pattern is formed
from the patterns of the individual layers. The moiré-scale
physics emerges by extracting the low-frequency modes. In
each periodic layer i, the Fourier transform is defined by

Ti(r) =
∑

n

ci,n exp (iki,n · r), (16)

where the sum is over the reciprocal lattice vectors ki,n.
Fourier transforming Eq. (15) yields

T̂ (k) = [T̂1 ∗ T̂2 ∗ . . . ∗ T̂N ](k), (17)

where ∗ denotes the discretized convolution

[ f ∗ g](k) =
∑
n,m

cndmδ(k − kn − k′
m), (18)

so that

[T1 ∗ . . . ∗ TN ](k) =
∑

n1,...,nN

[(∏
i

ci,ni

)
δ

(
k −

∑
i

ki,ni

)]

(19)

Therefore a low-frequency (small-k) mode requires there
exist a collection of modes ni so that

∑
i ki,ni ≈ 0. This sum

is the moiré wave vector,

kM =
∑

i

ki,ni , (20)

which in turn yields the moiré wavelength and orientation.
Such a collection of modes arise naturally by consid-

ering a small deformation (twist, stretch, etc.) away from
a reference configuration where

∑
i ki,ni = 0 exactly. For a
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FIG. 5. A moiré lattice formed by two unit square lattices arranged at a relative twist of 37.5◦ (36.9◦ + 0.6◦), with a 42.7 side length
moiré cell (green square). There is a resulting pattern of “holey regions” (red square) and “knitted regions” (blue square). A larger unannotated
picture of the moiré pattern is presented in Fig. S2-2 [68].

bilayer system, k1,n + k2,m = 0 is precisely a commensura-
bility condition. The case n = m corresponds to the familiar
near-zero-degree moiré pattern for nearly identical lattices.
On the other hand, the case n �= m corresponds to a near-
commensurate moiré, which can result when the two lattices
differ in size (illustrated in Fig. 3) or are arranged near a
commensurate angle (illustrated in Figs. 4 and 5).

A. Near-commensurate example

As a concrete example, consider two square lattices ar-
ranged with a twist angle near the 36.9◦ commensurate angle,
as illustrated in Fig. 5. The lowest Fourier modes before twist-
ing are illustrated in Fig. 6; note the (1,2) mode of one layer
coincides with the (2,1) mode of the other. The magnitude of
the wave vector of these modes is |k36.9| = √

5|k0|, where k0

is the wave vector of the lowest mode of a single layer.
In general, if two modes with a wave vector of magnitude

|k| are initially aligned before twisting, then after a relative
twist by an angle θ , the difference between the two wave
vectors has magnitude

|kM | = 2 sin(θ/2)|k|, (21)

as is seen geometrically in Fig. 7 and can be derived mathe-
matically by taking k1 = −R(θ )k2 in Eq. (20).

Accordingly, the moiré pattern at 36.9◦ + θ is a factor of√
5 smaller in real space than the moiré pattern at 0◦ + θ

FIG. 6. Reciprocal space of two square lattices stacked at a
commensurate 36.9◦ twist angle. Red(blue) open circles indicate
the reciprocal lattice vectors of the top(bottom) layer; black filled
circles indicate shared reciprocal lattice vectors. Thick lines shows
that the (1,2) mode of the blue layer coincides with the (2,1) mode
of the red layer. Light gray indicates the reciprocal commensurate
lattice.
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k1

k2

kM

FIG. 7. Lowest frequency modes of two square lattices at a small
relative twist. Red and blue circles indicate reciprocal lattice vectors
of each layer. The small difference between the lowest modes k1 −
k2 gives the moiré wave vector kM , from which Eq. (21) follows.

because ∣∣k36.9+θ
M

∣∣ = 2 sin(θ/2)|k36.9|
= 2 sin(θ/2)

√
5|k0|

=
√

5
∣∣k0+θ

M

∣∣. (22)

The same result was obtained in Sec. II C through more com-
plicated arguments in real space.

The moiré patterns obtained from twisting near a com-
mensurate angle, as illustrated in Figs. 4 and 5, are fainter
than those for the corresponding structures near zero degrees
in Figs. 2 and 1, respectively. The faint pattern occurs be-
cause the higher-frequency modes have smaller amplitudes
than the lowest mode, and therefore the coefficients cndm in
Eq. (18) are smaller. (The range of visibility of different near-
commensurate moiré patterns is also illustrated in Fig. 3.2 of
Ref. [70].)

B. Intrinsically multilayer moiré

The moiré formalism in reciprocal space, i.e., Eq. (20), also
provides a requirement for a moiré pattern to exist in a mul-
tilayer heterostructure: there must exist a linear combination
of reciprocal lattice vectors in the different layers that adds
up to a vector much smaller than the reciprocal lattice vectors
of the original layers. In the following, we provide a recipe
for meeting this condition that is analogous to twisting near
commensurate structures.

First, find a stacking arrangement of the layers such that
a reciprocal lattice vector can be chosen in each layer so that
the sum over the chosen reciprocal lattice vectors in all layers
is zero, i.e.,

∑
i ki,ni = 0, where ki,ni is the chosen reciprocal

lattice vector in layer i. We call such a configuration singular
(following the terminology from Ref. [70]), which is a gener-
alization of a commensurate configuration. Note this notation

differs from Ref. [63], where incommensurate is defined as
nonsingular in our terminology.

Once a singular configuration is identified, a small twist
or stretch of each layer away from the singular configuration
results in the same sum of reciprocal lattice vectors being
nonzero but small. This small sum of the lattice vectors is
precisely a reciprocal lattice vector of the moiré lattice, as
defined in Eq. (20).

We call a moire pattern “intrinsically n-layer” if it origi-
nates from a singular configuration where no two layers are
singular. In other words, an intrinsically n-layer moiré mate-
rial is one whose singular configuration is a sum of reciprocal
lattice vectors from all layers that add to zero, but no two
vectors from that sum add to zero by themselves. Notice this is
distinct from, e.g., helically twisted trilayer graphene [52–55];
there the singular pattern is at zero twist angle, where any
two layers have reciprocal lattice vectors which add to zero.
(Patterns where some layers are aligned, such as alternating-
twisted trilayer [24,46] and twisted double bilayer graphene
[47–50], often have patterns that arise from only two mis-
aligned sets of layers, rather than more than two; moreover,
such patterns are always singular in themselves.)

An example of an intrinsically trilayer moiré pattern is
three square lattices twisted near 120◦, illustrated in Fig. 8.
The sum of the n = (1, 0) lattice vectors from each layer
vanishes, so at 120◦ there is a singular structure. Notice that
this singular structure is not commensurate; in fact, it is a
twelvefold-symmetric quasicrystal. In general, the singular
structures will be quasicrystalline, but not necessarily with
higher rotational symmetries.

1. What is a singular structure?

Since the notion of a “singular structure” is not a standard
notion of the physics literature (although it has appeared in the
mathematical literature on moiré patterns; see Ref. [70]), it is
worth spending a moment highlighting both how it is different
from a commensurate structure and how it is different from a
general twist angle.

First, a multilayer system is commensurate if the combined
system has exact translation symmetries. In other words, there
must exist lattice vectors a1,2 for the multilayer system such
that, for each layer i with lattice vectors a(i)

1,2, the vectors

a1,2 are integer linear combinations of a(i)
1,2. As shown in

Appendix D, this definition of commensurate is equivalent
to every layer being individually commensurate with the first
layer. Therefore, in an N-layer system with threefold or four-
fold rotational symmetry, commensurability imposes 2N − 2
scalar constraints (from N − 1 vector constraints) on the size
and orientation of the lattice vectors.

By contrast, consider the singularity condition
∑

i ki,ni =
0, where ki,ni are each reciprocal lattice vectors of layer i. This
imposes only two scalar constraints (one vector constraint) on
the orientations of layers, regardless of the number of layers.
For a bilayer system, the singularity condition is equivalent to
commensurability, but with more than two layers, commensu-
rability is a strictly stronger condition.

Now contrast that situation with generic twist angles.
Singular structures have a property unusual among twisted
systems: the average, long-distance properties of the system
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FIG. 8. A moiré lattice of three unit square lattices at a relative twist of 119.3◦, resulting in a moiré unit cell of side length 47 (drawn in
green). Local structures are shown at right. Top right illustrates the reciprocal lattice vectors at exactly 120◦ (left) and after the 0.7◦ deviation
from the singular structure (right, deviation exaggerated for illustration purposes), resulting in the moiré reciprocal lattice vector GM shown in
green. A larger unannotated picture of the moiré pattern is presented in Fig. S2-3 [68].

are sensitive to relative translations of the layers, as we now
explain.

Given a system with a local property f (r), the aver-
age value of that property over an area A is given by

1
|A|

∫
A f (r)d2r. If that area becomes very large, under ap-

propriate convergence conditions on f , the average value
converges to the Fourier transform of f at the origin, f̂ (0).

Suppose now that f (r) can be written as a product of
functions of each layer; e.g., for a trilayer system, f (r) =
f1(r) f2(r) f3(r), where fi(r) is periodic with the periodicity
of layer i. Notice the transmission function defined in Eq. (15)
has this property.

The zeroth Fourier mode of f is determined by Fourier
modes f̂i(ki ) of each layer such that

∑
i ki = 0, as shown in

Eq. (19). If the layers are not stacked in a singular structure,
the only solution to

∑
i ki = 0 is when ki = 0 in each layer.

Therefore the average value of f in the multilayer is a product
of the average values of f in each individual layer; relative
translations of the layers have no impact on this zeroth Fourier
mode.

By contrast, for a singular structure, there exists a nontriv-
ial combination of Fourier modes in each layer that contribute
to the average value of f . For instance, consider a trilayer
system with reciprocal lattice vectors ki in each layer such

that
∑

i ki = 0. Further suppose fi = c0,i + 2c1,i cos(ki · r),
for some coefficients c0,i, c1,i. From Eq. (19), the zeroth
Fourier mode of f is

f̂ (0) = c0,1c0,2c0,3 + 2c1,1c1,2c1,3, (23)

where the factor of 2 derives from the positive and negative
contributions of the cosine. (If fi had a rotation symmetry
instead of being a 1D cosine, the factor of 2 would turn into
a 4 or 6.) Now translating each layer i by ai transforms the
zeroth Fourier mode into

f̂ (0) = c0,1c0,2c0,3 + 2c1,1c1,2c1,3 cos
(∑

ki · ai

)
, (24)

which is different for generic choices of ai.
Thus the physical consequence of a singular structure is

that local properties of the multilayer are sensitive to relative
translations. This is also true for commensurate structures,
but is not true for a general nonsingular or noncommensurate
stacking. However, notice that for a fixed set of ki, Eq. (24) is
invariant under the special set of translations ai which satisfy∑

ki · ai = 0. These special translations will be important in
developing our notion of configuration space for multilayer
systems in Sec. IV.
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As discussed in Sec. III, the condition that the physical
quantity of interest is a product of properties in each layer, i.e.,
f = f1 f2 f3 for a trilayer system, simplifies the discussion, but
can also be relaxed significantly. The more general description
is given in Appendix A.

2. Labelling singular structures

We now provide a convenient labeling schema for singular
structures. Since a singular structure is specified by a combi-
nation of reciprocal lattice vectors that adds up to zero, it can
be conveniently labeled by the integer indices of the reciprocal
lattice vectors.

Let bi,1 and bi,2 be the basis of reciprocal lattice vectors in
layer i. Then a singular structure will be specified by a set of
ni, j that satisfy the singularity condition∑

i, j

ni, jbi, j = 0. (25)

For a trilayer system, the singular structure given by ni, j is
labeled as (n1,1, n1,2; n2,1, n2,2; n3,1, n3,2). This description can
be generalized to any number of layers, including bilayers.
Note that the labeling depends on the choice of reciprocal
lattice vectors; thus, a set of ni, j combined with knowledge
of the reciprocal lattice vectors in each layer determines the
singular structure.

The ni, j for an N-layer system naturally live in Z2N . The
singularity condition in Eq. (25) defines a 1D sublattice in
this space. Assuming rotational symmetry, one choice of ni, j

yields another linearly independent ni, j after rotation. Thus
combined there is a 2D sublattice in Z2N satisfying the singu-
larity condition. It is also possible for the sublattice to have a
higher even dimension, as we will show for trilayer graphene
in Sec. III C. Regardless of dimension, we call the ni, j that
satisfy the singularity condition the zero-mode lattice, because
they correspond to combinations of Fourier modes in each
layer that contribute to the k = 0 Fourier mode of the singular
structure. Under the assumption that the sublattice is 2D and
that the degree of rotational symmetry is known, each singular
structure can be labeled by a single set of ni, j that defines one
of the basis vectors of the zero mode lattice; the other basis
vector follows from rotational symmetry.

As a few concrete examples: the standard near-zero moiré
pattern of two layers is the (1, 0; −1, 0) moiré pattern because
b1,1 − b2,1 = 0. The near-21.8◦ structure shown in Fig. 4
and the near-36.9◦ structure in Fig. 5 are both (1, 2; −2,−1)
moiré patterns because b1,1 + 2b1,2 − 2b2,1 − b2,2 = 0 in
both cases, despite their different rotational symmetry. Finally,
the intrinsically trilayer pattern illustrated in Fig. 8 would be
the (1, 0; 1, 0; 1, 0) moiré, assuming the first basis vector of
the three layers are chosen 120 degrees apart.

3. Degeneracy of singular structures

We now consider how singular structures arise in the man-
ifold of possible twists and lattice mismatches between the
layers, which we call deformation space. (More generally, we
could also include strains that break rotational symmetries
in our deformations; we call this generalization anisotropic
deformation space. However, since such deformations can
result in 1D instead of 2D moiré patterns, we neglect such

G1

G2G3

G1

G2G3

G1

G2G3

FIG. 9. Starting from a particular singular structure, a small twist
away combined with a corresponding strain results in another sin-
gular structure. These transformations yield a manifold of singular
structures rather than an isolated point, as occurs for bilayers.

transformations here and simplify our discussion by referring
to our space of isotropic deformations by the shorter term.)

Commensurate structures of bilayer systems are special
among singular structures because they are zero-dimensional
manifolds in deformation space: no small deformation of a bi-
layer singular structure yields the same singular structure. For
instance, in the simple case of aligned layers (corresponding
to the (1, 0; −1, 0) commensurate structure), no combination
of small relative mismatch or twist of the two layers will yield
another (1, 0; −1, 0) commensurate structure.

This is not, however, the case for singular structures with
more than two layers. With N layers there are 2N − 2 possible
isotropic deformations (twists and isotropic strains) of the
layers relative to each other: each layer beyond the first adds
two additional parameters (namely, strain and mismatch with
respect to the first layer). The singular structure then adds two
constraints (Eq. (25) and its rotated counterpart) on this defor-
mation space, meaning that it forms a (2N − 4)-dimensional
manifold in this space of deformations.

Intuitively, this is because there is a continuum of ways
to change the sides of the triangle that keep it a triangle. For
example, given a triangle formed by reciprocal lattice vectors,
one can deform two of the lattices by a combination of twists
and (isotropic) strains while leaving the third fixed and still
have a triangle, as illustrated in Fig. 9. In contrast, the only
way to deform the layers and preserve a singular digon formed
by the reciprocal lattice vectors of a bilayer is to perform an
overall twist or isotropic stretch of both layers simultaneously.

These singularity-preserving deformations are at the crux
of understanding what the naïve configuration space descrip-
tion in Sec. II D fails to see about intrinsically trilayer moiré
patterns, namely, why the effective parameter space seems to
be periodically spanned by the two dimensional moiré pattern
even though the naïve parameter space is four-dimensional.
The connection between these pictures will be explained in
Sec. IV C.

C. The doubly singular structure of twisted trilayer graphene

We now examine twisted trilayer graphene from the per-
spective of singular structures. Twisted trilayer graphene
arises at the intersection of two singular structures: the
(1, 0; −1, 0; 0, 0) singular structure and the (0, 0; 1, 0; −1, 0)
singular structure. In this sense, it is “doubly singular”; there-
fore, with four singularity constraints instead of the two
considered in the previous section, the combination of singu-
lar structures is zero-dimensional, not 2D like the intrinsically
trilayer pattern (the dimension is 2N − 6 instead of 2N − 4,
where N = 3 for three layers).
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θ12

θ23

(1,0,-1,0,0,0)

(0,0,1,0,-1,0)

(1,0,0,0,-1,0)

(a) δ12 = δ32 = 0

δ12 = δ32

θ12 = θ23

(1, 0,−2, 0, 1, 0)

(b) θ12 = θ23 and δ12 = δ32

FIG. 10. Several singular structures of TTLG along two specific
slices of the four-dimensional parameter space (θ12, θ23, δ12, δ32) in-
dicated by solid colored lines. The dashed green line represents the
constraint of helically twisted trilayer graphene. The bilayer singular
structures shown in the left figure deviate from helically twisted
trilayer graphene to order θ , but the trilayer singular structure shown
in the right figure only deviates to order θ2. Hence, the green singular
structure produces a moiré pattern at 1/θ2 scale, whereas the bilayer
singular structures plotted in blue/red/purple produce (competing)
moiré pattern at 1/θ scale.

Twisting relative to the singular structure in this case can
be understood as generating multiple moiré patterns simul-
taneously. Without a fine-tuned combination of twist and
mismatch, the overlapping structure of the multiple moiré
patterns complicated quasiperiodic patterns, as illustrated in
Refs. [58,69].

In the special case where the twist angles of the first
and third layers are equal and opposite, however, something
special happens: at 1

θ2 length scales, a single regular moiré
pattern is observed. This pattern is referred to as a “moiré of
moiré,” since it arises from a moiré pattern induced by the two
competing 1

θ
-scale moiré patterns.

This 1
θ2 -order pattern can be understood as the pattern

arising from the (1, 0; −2, 0; 1, 0) singular structure. Specif-
ically, defining k0 to be a smallest reciprocal lattice vector
of graphene, the trilayer structure where the first and third
layers are twisted a small amount in opposite directions away
from the middle layer can be described by k1 = R(θ )k0, k2 =
−2k0, and k3 = R(−θ )k0. Per Eq. (20), the moiré wave vector
is given by

kM = [R(θ ) + R(−θ ) − 2I]k0 = 2(cos(θ ) − 1)Ik0, (26)

which is of order θ2 for small θ . Hence, the moiré wavelength
is of order 1

θ2 .
Moreover, since the order-θ2 deviation is only from this

particular singular structure, and not from the “doubly sin-
gular” structure, it exhibits a single 2D moiré pattern rather
than complex overlapping structures. The relevant singular
structures are illustrated in Fig. 10.

IV. CONFIGURATION SPACE OF INTRINSICALLY
TRILAYER MOIRÉ PATTERNS

There is an apparent contradiction between the naïve con-
figuration space described in Sec. II D, which indicates that
trilayers have complex moiré patterns that cannot possibly
fit on a lattice, and the intrinsically trilayer moiré patterns
presented in Sec. III, which very clearly do so. We seek to

resolve this contradiction by a more nuanced description of
the configuration space.

The missing ingredient from the naïve configuration space
given in Eq. (14) is a collection of “nontrivial trivial transfor-
mations,” which are nontrivial in that they do not correspond
to overall translations, but trivial in that they do not change
the local moiré structure. The correct configuration space is
the set of translations of each layer modulo overall transla-
tions (i.e., simultaneous translations of all layers by the same
amount) and these new transformations.

We now describe how to find these additional transfor-
mations. We do so in a way that naturally derives not only
the dimensionality of the true configuration space, but also
explains why it is toroidal.

The intuition of the argument derives from the char-
acterization of singular structures provided in Sec. III B 1:
singular structures are those structures for which certain rela-
tive translations of the layers change the average value of local
quantities by providing phases between different contributions
to the zeroth Fourier mode of the quantity of interest, as in
Eq. (24). A moiré heterostructure can be viewed as resulting
from these different possible phases: different regions in the
moiré heterostructure correspond to different relative transla-
tions of the singular structure.

The nontrivial trivial transformations we seek to find derive
from the converse of that identification: any relative transla-
tion which does not result in a phase will make no impact
on average properties. Such relative translations that do not
result in phases, therefore, are precisely the nontrivial trivial
transformations.

We find the nontrivial trivial transformations formally
using in the frequency picture described in Sec. III. For
simplicity, we take as a concrete example the (1, 0; 1, 0; 1, 0)-
moiré on the square lattice (illustrated in Fig. 8). The Fourier
modes are indexed by Z6, but the moiré modes arise from
the zero mode lattice described in Sec. III B 2. In this spe-
cific case, the zero mode lattice is spanned by the vectors
(1,0,1,0,1,0) and (0,1,0,1,0,1), which we call n(1) and n(2)

(each of which also have indices, n(1,2)
i, j ).

A translation of layer i by ai (not necessarily a lattice
vector) will multiply the Fourier mode with indices ni, j by a
phase exp(i

∑
i, j ni, jbi, j · ai ), which follows from the discrete

Fourier transform in Eq. (19). For the relative translations
which preserve the moiré lattice, this phase vanishes when
evaluated on the zero mode lattice.

Clearly, translating each layer by the same amount, ai = a,
results in this phase vanishing on the zero-mode lattice, where∑

i, j n(k)
i, j bi, j = 0 for both k. This imposes two constraints on

the six-dimensional space.
The additional constraints are found by setting a1 = 0, at

which point the constraint is b2,i · a2 = −b3,i · a3; the sim-
plest two basis solutions are {ai = b2,i, a3 = −b3,i}. These
extra translations are most of the “nontrivial trivial transfor-
mations” we were searching for, and suffice to reduce the
dimensionality of the configuration space from four to two.
Note that this two-dimensional space is periodic, i.e., a torus
rather than a plane, because the sum

∑
i, j ni, jbi, j · ai need

not vanish identically for the phase to vanish; instead, it can
be a multiple of 2π . This periodicity ensures that the final
configuration space is indeed a torus.
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Therefore our final and most general characterization of the
configuration space is as the collection of relative translations
of the layers modulo those which act trivially on the zero
mode lattice (i.e., on the combinations of modes that con-
tribute to the zero mode in the singular structure). Thus a point
in configuration space can be understood as a pair of phases∑

i, j n(k)
i, j bi, j · ai (for k = 1, 2) that result from translating each

layer i by ai.
Note that in multiply singular structures, such as TTLG,

the moiré-generating lattice is greater than two-dimensional.
Therefore there is at least a four-dimensional manifold defin-
ing the configuration space. Consequently, one cannot regard
this configuration space as being periodically fully explored
in real space. This explains the difference between the com-
plex patterns in TTLG and the periodic moiré in intrinsically
trilayer systems.

A. Derivation of moiré lattice vectors from configuration space

We now use this configuration space to re-derive the moiré
lattice vectors for intrinsically trilayer moiré from a real space
perspective. To do so, we directly compute the map from
real space to configuration space, where configuration space
will be parameterized by [0, 1)×[0, 1), in agreement with the
convention established for bilayers in Eq. (4).

We do this in two steps. First, given a deformation from a
singular structure, we compute the relative translation of all
layers as a function of the position in real space, generalizing
the discussion surrounding Eq. (8). Then, we map these rela-
tive translations to the phases they produce (given the lattices
and indices n(1,2) of the singular structure), projecting out the
nontrivial trivial transformations in the process. These phases
can be identified, up to a normalization constant 2π , with a
point in configuration space.

Given a moiré pattern produced by transforming each layer
i of a singular structure by a matrix Mi, the translations of each
layer at a point r can be computed using the 2N-by-2 matrix

M =

⎡
⎢⎢⎢⎢⎣

M−1
1 − I

M−1
2 − I
. . .

M−1
N − I

⎤
⎥⎥⎥⎥⎦ (27)

as r → Mr.
Then, given a 2N-component vector t of translations of the

layers and a pair of singularity conditions
∑

i j n(k)
i j bi j = 0, the

phase of the singular conditions (i.e., the point in configura-
tion space) can be computed using the 2-by-2N matrix

P =

⎡
⎢⎣

∑
j n(1)

1, jb1, j
∑

j n(2)
1, jb1, j

. . . . . .∑
j n(1)

N, jbN, j
∑

j n(2)
N, jbN, j

⎤
⎥⎦

T

(28)

as t → Pt mod 2πI. Note that this map can still be defined
with more than two singularity conditions, as arises in twisted
trilayer graphene, but will map to a higher-dimensional con-
figuration space.

Using these matrices, a point r can be mapped to its point
in configuration space as

c(r) = 1

2π
PMr mod I. (29)

Therefore the moiré lattice vectors are given by the columns
of

AM = 2π (PM )−1. (30)

For a bilayer system, this calculation can be further sim-
plified because P takes a canonical form. With only two
layers, singularity implies commensurability. The singular-
ity conditions

∑
i, j n(k)

i, j bi, j = 0 define a set of lattice vectors

b̃k = ∑
j n(k)

2, jb2, j = −∑
j n(k)

1, jb1, j in reciprocal space. (These

vectors b̃k , which satisfy a commensuration requirement in
reciprocal space, are dual to the Minkowski sum of lattices
discussed in Appendix B.)

Letting B be the matrix with columns b̃k , the matrix P can
be written for two layers as

Pbilayer = [BT −BT ]. (31)

Therefore Eq. (29) can be expressed as

cbilayer(r) = 1

2π
BT

(
M−1

2 − M−1
1

)
r (32)

and Eq. (30) can be expressed as

AM = 2π
(
M−1

2 − M−1
1

)−1
B−T , (33)

which can be identified as the bilayer result from Appendix B
given the identification Acs = 2πB−T .

The ability to express P in terms of a single 2-by-2 ma-
trix B is what allows the “factorization” of the moiré lattice
vector computation into a twist-dependent part and a lattice-
dependent part in the case of two layers, as discussed below
Eq. (10). For more than two layers, M is in general determined
by the twist angle (or other deformation) and P by the prop-
erties of the lattices and choice of singular structure. It is only
by expressing P in terms of B that the inverse in Eq. (30) can
be reduced to a product of two separate inverses, one from the
twist and one from the lattice.

B. Configuration space and lattice relaxation

As a concrete application of configuration space, we con-
sider lattice relaxation in intrinsically trilayer moiré systems.
Lattice relaxation is usually computed by taking an average
energy density of any particular stacking configuration, then
enlarging regions of low-energy stacking while shrinking re-
gions of high-energy stackings [71].

We claim that the average energy density of a singular
structure on long wavelengths does not change under a non-
trivial trivial transformation. That is to say, structures in the
naïve configuration space (Sec. II D) that differ by a nontrivial
trivial transformation have the same energy density.

We now justify this claim. Consider the energy density of a
singular structure, ρ(r), and consider the energy density over
some large region of radius R, 1

πR2

∫
|r|<R ρ(r)d2r. As R → ∞,

this is precisely the zero-frequency mode of the Fourier trans-
form of energy density, ρ̂(k = 0). Since the nontrivial trivial
transformations preserve the zero mode lattice, they preserve
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any observable that is only dependent on that mode. In par-
ticular, they do not change ρ̂(k = 0). Therefore the average
density is only dependent on the reduced configuration space,
not the higher-dimensional naïve configuration space.

In a moiré heterostructure, this implies that long-
wavelength lattice relaxations arise on the moiré scale. A
particular point r on the moiré pattern specifies a specific
stacking of the singular structure; let ρr denote the local
average energy density for that singular structure. On length
scales much longer than atomic length scales but much shorter
than the moiré length scale, we can approximate the local
energy density by ρ̂r(k = 0), i.e., the average energy density
of the singular structure formed at the point r. This is a moiré-
periodic function of r, and since long-wavelength lattice
relaxation can be extracted from the energy density, long-
wavelength relaxations are periodic on the moiré length scale.

C. Relation to singular structure degeneracy

We now connect the set of nontrivial trivial transformations
to the singular manifold in deformation space (discussed in
Sec. III B 3). In short, while we have so far been considering a
structure as a deformation from a particular singular point, it
is more accurate to consider a structure as a deviation from
the manifold of singular structures generated by including
stretch as well as twist. The nontrivial trivial transformations
correspond to moving along this manifold.

Consider the matrices M defined in Eq. (27) that map real
space to the space of translations of the individual layers. We
now make explicit the dependence on the particular deforma-
tion by writing M(m, s), where m is the moiré arrangement
of layers and s is the singular structure from which the moiré
arrangement is obtained by a small deformation.

If m = s′ is a singular configuration infinitesimally close
to s, then there is no moiré pattern and the image of M(s′, s)
consists entirely of nontrivial trivial transformations. More
precisely, for arbitrary deviations s′ that remain on the singular
manifold, d

ds′ M(s′, s)|s′=s maps all vectors in real space to
nontrivial trivial transformations of the singular structure s.

This identification of nontrivial trivial transformations and
singularity-preserving deformations has important implica-
tions for twisted multilayer moiré systems beyond trilayers.
In a trilayer system, given a reciprocal lattice vector from
each layer, there is a unique way to stack the layers (i.e., a
unique set of twist angles) that results in a singular structure,
provided such a structure is possible. This results from the
fact that given three sides of a triangle, the interior angles of
the triangle are determined. However, for four or more sides,
the side lengths do not uniquely specify the interior angles, as
shown in Fig. 11. Consequently, in a heterostructure with four
or more layers, there are multiple twist angles that result in a
singular structure.

The same moiré lattice can be formed by twisting away
from either of these configurations. Since equivalent points
on the two moiré patterns differ only by a nontrivial trivial
transformation, their moiré-scale physics is identical. This is
elaborated in Appendix A.

A similar phenomenon occurs in a trilayer system if slight
strain is included, i.e., for a given three layers, multiple
singular configurations are possible if the layers can be

G1 G2

G3G4

G1 G2

G3G4

FIG. 11. Different quadrilaterals can be formed with the same
side lengths. Consequently, a stacked four-layer system can have
multiple singular configurations with different large twist angles, i.e.,
there are different twist angles such that

∑
i Gi = 0, where Gi is

a reciprocal lattice vector in each layer. Moiré lattices formed by
twisting slightly away from these configurations exhibit the same
physics on the moiré length scale, provided the small twists are
chosen to give the same moiré lattice vectors.

isotropically strained in addition to being twisted. It may be
possible to make use of the choice in reference configura-
tion for theoretical insight or computational advantage, as
discussed briefly in Appendix E.

V. DETECTION OF INTRINSICALLY TRILAYER MOIRÉ

We now describe how to measure intrinsically multilayer
patterns experimentally. A measurement that sees the moiré
pattern must probe each layer: in an intrinsically multilayer
moiré structure, no subset of layers alone will exhibit a moiré
pattern, unlike a trilayer moiré of moiré structure.

A. Structural probes

One standard way to detect moiré patterns in bilayer sys-
tems is to use STM. However, a surface probe like STM
primarily probes the top layer of a heterostructure. This ef-
fectively probes the moiré pattern in a bilayer system because
the top layer reconstructs on the moiré scale. However, such a
reconstruction may be weak in a multilayer system due to the
large twist angles and multiple layers. Thus we expect STM to
be less effective at probing intrinsically trilayer moiré patterns
than at probing bilayer patterns.

In contrast, we expect TEM—which has already been used
to detect moiré patterns in bilayer systems [72]—to be an
ideal probe because it passes through all the layers. TEM
does not require lattice relaxation to see the moiré effect:
the pattern that results from diffraction from each layer se-
quentially reproduces the sums of reciprocal lattice vectors
discussed in Sec. III [see Eq. (20)]. Therefore intrinsically
trilayer structures will produce satellite peaks.

B. Transport: engineering flat bands
using intrinsically trilayer moiré

Transport probes of intrinsically multilayer moiré patterns
depend strongly on the electronic structure of the underlying
materials. A full study of engineering electronic structures
from intrinsically trilayer moiré is beyond the scope of this
work. Instead, we propose a few promising platforms.

1. Large-angle TBLG with a potential

As a first setup, consider twisted bilayer graphene at a large
angle. Unlike small-angle TBLG, if the K points of the two
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FIG. 12. Two layers of graphene (black) arranged with a large
twist angle generate a moiré pattern with the additional outer (blue)
layers on the exterior, which are aligned with each other. (Left) Phys-
ical configuration of the layers. (Right) The large black hexagons and
small blue hexagons indicate the BZ of graphene and the outer layers,
respectively. The reciprocal lattice vector of the outer layers couples
the K points of the graphene layers, effectively compensating for the
large twist.

layers are significantly separated in momentum space after
twisting, then interlayer hopping will couple only to high-
energy states.

This obstacle is overcome by sandwiching the large-angle
TBLG between two copies of a third insulating layer chosen
so that its reciprocal lattice vectors (almost) perfectly com-
pensate the momentum difference between the K points of
the two graphene layers. This setup is shown in Fig. 12.

If an electron feels a potential from the insulating layer as
it hops from one graphene layer to the other, then it can hop
from K in one layer to (nearly) K of the other, mimicking the
process in TBLG. However, the resulting system is slightly
different from magic angle TBLG because the Dirac cones
are rotated with respect to each other. (The relative rotation of
the Dirac cones in magic angle TBLG is small enough to be
ignored.)

A different large angle moiré bilayer graphene structure
was studied in Ref. [60]. There it was found that with one
tuning parameter, a “hyper-magic manifold” with many flat
bands and a kagome-like band structure emerges. In that pa-
per, however, the authors were limited by needing to be near a
commensurate structure. Our proposal described above avoids
that limitation, at the cost of requiring a suitable third material.

2. Two potentials imposed on a single layer

Consider a layer of graphene sandwiched between two
identical insulators. If the insulating layers are arranged at
a small relative angle, then they will impose a superlattice
potential on graphene, whose size is determined by the moiré
scale of the two layers. The effect of a superlattice potential
on graphene has been extensively studied [73–82]. Notably, an
artificially imposed potential has been shown to produce satel-
lite cones on a single layer of graphene [73] and is predicted
to produce topological flat bands in bilayer graphene [83]. A
superlattice potential on the surface of a topological insulator
may also induce correlated topological phases [84–86].

Alternately, the outer layers can be arranged to form an
intrinsically trilayer moiré pattern with the center layer. This
set-up should yield the same band structure as the previous
proposal, but with two physical differences. First, this struc-
ture’s existence is now dependent on the orientation of the
lattice in the center layer. This dependence on the center
layer enables more tunability but requires additional control.
Second, lattice relaxation effects between the two insulating

G1

G2

GM

G1

G2

GM
G3

FIG. 13. Inducing two periodic potentials (reciprocal lattice vec-
tors in blue) on a layer of graphene (BZ in black) produces a
moiré superlattice (reciprocal lattice vector in red). Left: sandwich-
ing graphene between two nearly aligned layers produces an effective
superlattice potential. The alignment of the graphene layer is unim-
portant. Right: if the two other layers are twisted at a large angle so
their reciprocal lattice vector adds to one of graphene, intrinsically
trilayer moiré can arise.

layers are likely to be very small since they are not arranged
at a small angle. Theoretically, this lack of relaxation indicates
that a rigid rotation approximation is generally more accurate
than a 1D network limit (studied in, e.g., Refs. [87–89]).

The two setups are compared in Fig. 13. Note the same
construction can couple K to K′ (rather than K to K), realizing
the kagome and honeycomb flat bands discussed in Ref. [61];
one concrete realization would be twisted trilayer graphene
near 16.78◦. From a moiré perspective, the K-to-K′ matching
corresponds to using the second harmonic (of length

√
3 times

the smallest) of the central layer to generate the moiré pattern,
rather than the lowest harmonic of that layer.

VI. CONCLUSIONS

We have presented a new kind of moiré structure, “intrinsi-
cally trilayer moiré,” which results from twisting multilayers
near certain special “singular structures.” The local structure
of such systems is quasicrystalline, but this quasicrystalline
structure is periodically modulated on long (moiré) length
scales.

We characterized the local configuration space of such sys-
tems, and showed that previous description of configuration
space for bilayer systems [63,64] is insufficient to provide
a real-space intuition for why these patterns arise. Our new
notion of configuration space is useful to determine lattice
relaxation effects. It also explains the 1

θ2 moiré pattern in
helically twisted trilayer graphene [52].

Finally, we connected these abstract patterns to their ma-
terial realizations. We described how to observe intrinsically
multilayer moiré structures experimentally, contrasting STM
and TEM probes’ suitability for this purpose. We also pro-
posed a few promising material realizations that may give
rise to flat bands via either interlayer or intralayer hopping
terms. Other possible future directions would be to examine
higher-order interlayer hopping processes or layers that are
individually strongly interacting.

The systems we propose thus far are the simplest cases,
and don’t take advantage of the most potent aspect of these
patterns: the ability to engineer moiré heterostructures without
regard for lattice constant. Intrinsically trilayer moiré can be
made from materials with any lattice constant combination,
and therefore enables engineering moiré heterostructures with
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material combinations not previously imaginable, including
those where the individual layers have vastly different physics.
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APPENDIX A: GENERICITY OF MOIRÉ FREQUENCIES:
BEYOND BLACK & WHITE IMAGES

In this section, we explain why moiré frequencies are
generic across a wide class of observables and not specific
to those that obey Eq. (15).

We first demonstrate that the moiré periodicities are
generic (i.e., not specific to products only) when composed
from quantities periodic in each layer. The amplitude of
the resulting Fourier modes will change, but the frequencies
themselves will remain the same. These arguments generally
follow those provided in in Ch. 2.2–2.3 of Ref. [70].

Then, we examine functions which are periodic on the
atomic scale only up to a phase, i.e., which are composed of
quantum operators located at points other than � in the Bril-
louin zone. In this case, the same argument applies with slight
adaptation. This argument also shows which combinations of
points in the Brillouin zone provide operators that vary on the
moiré length scale.

1. Generality of moiré frequencies for periodic functions

We begin with the case where the observable of interest is a
combination of periodic functions of the individual layers, but
where the combination rule is not multiplicative as in Eq. (15).
For simplicity, we will focus on bilayers, but the argument
easily extends to multilayers.

Assume our property of interest is described by
f (g1(r), g2(r)), where gi(r) is a function with the period-
icity of the ith layer and f is any function. In the case of
black-and-white images discussed in the main text, g(r) is the
transmission function and f (u, v) = uv.

The Taylor expansion of f (u, v) is given by

f (u, v) =
∑

n,m�0

cnmunvm. (A1)

It is conceptually convenient to decompose this sum into
three parts:

fu(u) =
∑
n�0

cn,0un,

fv (v) =
∑
m�1

c0,mvm,

fuv (u, v) = uv
∑

n,m�1

cn,mun−1vm−1.

(A2)

The contributions from fu and fv will have the periodicities
of layers 1 and 2, respectively, and thus do not contribute
moiré modes. However, the term fuv exhibits the same collec-
tion of Fourier modes as the simplest case of f (u, v) = uv.
This immediately follows from the fact that if the Fourier
modes of gi(r) are nonzero only on some lattice, then [gi(r)]k

has Fourier modes nonzero only on the same lattice.
Accordingly, any function which combines the two layers

nonlinearly (noting that nonlinear terms in fu and fv can be
understood as linear terms with different gi) will result in
the same set of moiré frequencies, demonstrating that the
derivation provided in Sec. III is not specific to products only.

Moreover, even if the obvious physical quantity to measure
combines linearly, subsequent nonlinearities in measurement
can generate cross-terms. For example, acoustic beats arise
with moiré frequencies (up to a factor of two) because the
human ear is sensitive to the square of pressure deviation
rather than the absolute pressure. While pressure adds linearly,
this square adds cross-terms to the quantities that are actually
measured (and is the origin of the factor of 2 for pure cosines).

These nonlinearities can even occur beyond the measure-
ment itself, instead arising at the visualization stage. For
example, a pattern that quickly oscillates between black and
white may have the same average intensity as a solid gray
(meaning the human eye can’t tell the difference at a distance),
but if instead plotted with color the moiré may manifest
anyway. (Or, in fact, even in grayscale, due to nonlinear sen-
sitivities of the human eye to light.)

2. Moiré frequences away from �

Not every quantity of interest in physics shares the period-
icity of the underlying lattice. For instance, in graphene, the
low energy physics arises from the K point, where the electron
annihilation operators under translation by R transform as
c†

K → e−iK·Rc†
K (and creation operators transform oppositely).

Accordingly, in this section, we consider products of terms
that arise away from the origin of the BZ, such as the in-
terlayer hopping term t (c†

k,1ck,2 + H.c.) in twisted bilayer
graphene. In the process, we also find which combinations of
points in the original layers’ BZs can couple to form moiré-
periodic quantities.

Consider an observable O = �iOi(r) where Oi lives at ki

in the BZ of layer i, such that

Oi(r + R) = eiki ·ROi(r) (A3)

whenever R is a lattice vector of layer i. Suppose also, for the
moment, that

∑
i ki = 0. Then, since �ie−iki ·r = 1, O(r) can

also be written as

O(r) = �iOi(r) = �iOi(r)e−iki ·r. (A4)

Each term Oi(r)e−iki ·r has the periodicity of layer i. Fol-
lowing the same argument as Sec. III, O(r) has a moiré
periodicity when

∑
i ki = 0.

If the condition
∑

i ki = 0 does not hold, then we use the
sum kT = ∑

i ki to give a phase prefactor

O(r) = �iOi(r) = eikT ·r�iOi(r)e−iki ·r. (A5)

This extra prefactor adds a periodicity of its own, which
will generally (unless kT ≈ 0) ensure that the term �iOi(r)
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oscillates on a length scale much more rapid than the moiré
length scale.

Therefore this derivation directly illustrate which sets of
points in the BZ result in moiré-scale physics when coupled,
i.e., those whose momenta add to zero. Since these points do
not lie on the reciprocal lattice, the arguments of the previous
section about genericity of moiré periodicity beyond simple
products do not apply.

In TBG, this implies that the K-to-K interlayer hopping
term has moiré periodicity (cK,1c†

K,2 has
∑

i ki = 0 at zero
twist), whereas an analogous K-to-K′ interlayer hopping term
does not (cK,1c†

K′,2 does not have
∑

i ki = 0).

APPENDIX B: NEAR-COMMENSURATE MOIRÉ

We here formalize the heuristic argument provided in
Sec. II C as to the size of the moiré structure by explicitly
defining the configuration space lattice (and the corresponding
matrix of lattice vectors Acs).

For each layer i, define the original lattice vectors as A0,i

and the lattice vectors after a small deformation as Ai. The
matrix describing the twist for layer i is then given by Mi =
AiA

−1
0,i , analogous to Eq. (7). The derivation of the translation

of each layer then proceeds exactly as follows that equation,
reproducing Eq. (8).

We now refer to the formula for configuration space,
Eq. (6), replicated here for convenience:

Tconfig = T1×T2/T12. (B1)

Recall Ti is the space of translations of layer i, and T12 is the
simultaneous space of translations of both layers (all taken be-
fore twisting and modulo lattice translations of the respective
lattices). The minor technical difficulty now is computing this
particular group.

This is simplest if we write Ti = τi/Li, where τi denote
the space of all translations of layer i (before twisting)—i.e.,
without modding out by the lattice vectors—and Li are the
translations of layer i by its lattice vectors. (Similarly define
τ12 as the simultaneous translation of both layers by arbitary
amounts and L12 as simultaneous translation by a commensu-
rate lattice vector). The key to computing the group structure
is then the identification

Tconfig = T1×T2/T12 = (τ1/L1)×(τ2/L2)

τ12/L12

=
(

τ1×τ2

L1×L2

)/(
τ12

L12

)

= τ1×τ2

τ12 · (L1×L2)

=
(

τ1×τ2

τ12

)/(
L1×L2

L12

)
. (B2)

Note × denotes direct products and · group multiplication
(i.e., performing the translations of layers sequentially). The
only subtle aspect of this proof is the identification L12 =
τ12 ∩ (L1×L2); the rest are properties of abelian groups.

We are now prepared to derive the analog of Eq. (9). The
numerator of our product indicates that we are looking for
relative translations of the two layers, as intuitively expected.
The denominator tells us that we then have to mod out by both

layers’ pretwist lattices to find the configuration space, which
is what makes the final result counterintuitive.

The commensurate version of Eq. (9) is therefore

c̃(r) = (
M−1

2 − M−1
1

)
r mod {A0,1, A0,2}, (B3)

where working modulo two lattices means that two elements
are equivalent if they differ by any combination of lattice
vectors of the two lattices. Note that if the two layers are
initially identical, such that A0,1 = A0,2 = A, then this reduces
to Eq. (9), as expected. Otherwise, however, more care is
needed to understand the consequences of working modulo
two (commensurate) lattices.

To work modulo two lattices simultaneously is the same
as working modulo their Minkowski sum. If the set of lattice
vectors for layer i is written as Li, then the Minkowski sum of
the two lattices is defined by

L = {v1 + v2|v1 ∈ L1, v2 ∈ L2}. (B4)

This lattice can also be understood as the largest lattice con-
taining both of the original lattices as subsets, and is perhaps
most familiar as the new reciprocal lattice when one folds
the Brillouin zone from a commensurate structure. (This con-
struction is also called the DSC lattice; see, e.g., Ch. 13 of
Ref. [90].)

The key to understanding the size of the moiré pattern,
then, is that the lattice that defines the torus of configuration
space [i.e., which replaces A in Eq. (9)] is this Minkowski
sum of the original lattices. Allowing Acs = AL1+L2 , then, the
formulas for configuration space and moiré lattice follow im-
mediately as

c̃(r) = (
M−1

2 − M−1
1

)
r mod Acs (B5)

and

AM = (
M−1

2 − M−1
1

)−1
Acs. (B6)

A useful corollary of this last formula is the ability to derive
the orientation of the moiré patterns as well as their size.

1. Relative coordinate picture

We now consider the alternative picture of configuration
space in terms of relative coordinates, as defined in Eq. (2),
and generalize to this near-commensurate twisting case. The
key complication is to correctly define the relative coordi-
nates.

If one takes relative coordinates modulo the individual
layers’ lattice vectors, then the difference between the relative
coordinates [per Eq. (2)] will no longer be a slowly varying
function, hence it cannot be the quantity that is modulated by
the long-wavelength moiré pattern. A natural first alternative
is to take the relative coordinates in the commensurate cell
instead.

Define Ai, A0,i, and AC as the lattice vectors for the
post-twist layer i lattice, the pretwist layer i lattice, and the
commensurate structure, respectively. The commensurate rel-
ative coordinates xC

i (r) can be defined as

xC
i (r) = A−1

C A0,iA
−1
i r mod I. (B7)

The set of commensurate relative coordinates corresponding
to the lattice vectors of layer i can then be written as A−1

C A0,i
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mod I. (Contrasting with (1), we have three matrices instead
of one. In this case, the A0,iA

−1
i part “untwists” back to the

physical coordinates in the pretwist system, whereupon we
can then understand the commensurate cell AC . In the identical
lattice case, the untwisting and the mapping onto the shared
cell of the layers is the same step. In other words, previously,
we effectively had A−1A0,iA

−1
i , but A = A0,i, so the first two

terms cancel.)
The key physical insight to understanding configuration

space is that a relative translation between the layers by either
layer’s lattice vector preserves the configuration. For example,
a relative translation by a lattice vector of layer 1 preserves
the configuration; this is clearly necessary, since this relative
translation can be interpreted as an absolute translation of
layer 1 by one of its lattice vectors, hence a symmetry of the
system (and therefore necessarily the same configuration).

The lattice vectors of the individual layers thereby generate
a collection of relative translations which are analogous to the
additional symmetries in a magnetic space group: a relative
translation by a fraction of a commensurate cell combined
with an action on the internal degrees of freedom of each
unit cell (here a permutation of sublattice labels of each layer
rather than swapping electron spin). These symmetries are
indexed by specifying a lattice vector for each layer that lies
within the commensurate WS cell; a relative translation by the
sum of those vectors is a nonsymmorphic symmetry.

Working modulo these additional symmetries ultimately
constitutes working modulo A−1

C Acs for each layer (with Acs

given by the Minkowski sum, as described in the previous
section). Rather than working modulo these additional sym-
metries, we scale up by the inverse of this matrix, resulting in
a configuration space in relative coordinates given by

c(r) = A−1
cs

(
A0,2A−1

2 − A0,1A−1
1

)
r mod I, (B8)

= xcs
2 (r) − xcs

1 (r) mod I, (B9)

where xcs = A−1
cs A0,iA

−1
i r mod I. Therefore the picture as

the difference of relative coordinates still works, but the rel-
ative coordinates are in the lattice defined by the Minkowski
sum of the original lattices.

To conclude, the moiré lattice vectors can therefore be
computed again as

AM = (
A0,2A−1

2 − A0,1A−1
1

)−1
Acs, (B10)

which is easily seen to be equivalent to Eq. (B6) (since
A0,iA

−1
i = M−1

i ).

APPENDIX C: 1D MOIRÉ IN 2D SYSTEMS

Thus far, we have been considering layers with high shared
rotational symmetry (fourfold or sixfold). Without that sym-
metry, the moiré patterns can become more exotic.

The lower-symmetry cases have been studied in the case of
two nearly aligned layers, such as twisted rectangular lattices
[91–94]. In this case, the resulting moiré pattern also lacks
the higher rotational symmetry. However, while the anisotropy
may result in one direction visually dominating over the other
(as can be seen in Fig. 1(b) of Ref. [92]), the resulting pattern
is still periodic on a 2D lattice.

FIG. 14. Frequency modes of triangular (red circles) and square
(blue circles) lattices with the same lattice constants at zero twist.
The black filled circles indicate shared modes that yield moiré modes
after a small twist or mismatch. Note since they only align along a
1D subspace, the resulting moiré is also 1D.

However, if the layers are not identical, then they may have
frequency vectors that align only along one axis. For instance,
consider two rectangular lattices with the same lattice constant
in the x direction, but in the y direction one of the lattices is
larger by a factor of

√
2. Alternatively, consider stacking a

hexagonal and square lattice with the same lattice constant.
In these cases, configuration space is difficult to work with

because the resulting space is not a torus, but a cylinder,
unbounded in one direction. However, the formalism in mo-
mentum space is more clear.

Consider the hexagonal-on-square setup for concreteness.
As illustrated in Fig. 14, the two lattices will have one direc-
tion along which their frequency vectors agree. After a small
twist, those frequency vectors will produce a low-frequency
pattern in the orthogonal direction, resulting in a 1D moiré
pattern.

However, there is no moiré pattern in the orthogonal di-
rection. The result, to a first approximation, is a 1D set of
stripes, rather than a 2D set of spots (see Fig. 15). (A highly
anisotropic 2D moiré pattern may appear instead if there is ap-
proximate commensuration in the other frequency direction.)

A 1D moiré has been considered in the case of uniaxial
strain [95–100]. However, setups like the triangle-on-square
stacking illustrated in Fig. 15 are different than a uniaxial
strain in that they are not fine-tuned. A 1D moiré only arises
from uniaxial strain if it is purely uniaxial; any small strain in
the orthogonal direction will result in a 2D moiré, because the
1D moiré relies on having exactly matched frequency vectors
in the orthogonal direction. On the other hand, setups where
the lattice frequency vectors only align in one direction form
a 1D moiré for generic combinations of strain and twist near
the singular structure.
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FIG. 15. A unit square lattice on a unit triangular lattice at a
relative twist angle of 7◦ exhibits a 1D moiré pattern.

APPENDIX D: COMMENSURABILITY PROOF

In this Appendix, we provide a short proof that for an
N-layer system, if every layer is commensurate with layer
1, then there is an overall commensurate structure (assuming
threefold or fourfold rotational symmetry). We begin with the
argument for a trilayer system.

We will show that given a trilayer system where layers 1
and 2 are commensurate (with commensurate WS cell C12

and lattice L12) and layers 1 and 3 are commensurate (with
commensurate WS cell C13 and lattice L13), there exists a
commensurate unit cell for all three layers.

To prove this, consider the C12 and the (finite) collection
of points within that cell corresponding to lattice vectors of
layer 1. All points in L13 must map onto this (finite) set under
the quotient map by L12. Therefore, by pidgeonhole principle,
there must be two points in L13 that map to the same point in
C12. Their difference (in the original space), therefore, must
be an element of L12. Since it is also an element of L13, it is
a commensurate lattice vector of the whole system, showing
that the system as a whole has commensurate lattice vectors.
This completes the proof.

The general case follows by induction: take a commensu-
rate unit cell for layers 1-N , and enlarge to fit the (1, N + 1)
unit cell in exactly the same way. The same argument easily

generalizes to other combinations of layers being commensu-
rate.

APPENDIX E: OPTIMAL SINGULAR STRUCTURES

Suppose we have a stack of N layers that generate a moiré
pattern from lowest harmonics. Take the lattice vectors of
layer i to form the columns of the matrix Ai. For suitable
choices of those lattice vectors, the moiré lattice vectors can
be written

AM =
(∑

i

A−1
i

)−1

. (E1)

Take a nearby singular configuration to measure with re-
spect to, with (corresponding) lattice vectors forming the
columns of Bi; note the specific configuration is not deter-
mined by the Ai. The map Mi = AiB

−1
i then determines the

relative translation of the lattice, as discussed in Sec. IV C.
Suppose now that we choose our singular structure Bi

(near Ai) such that, for each layer i, Mi satisfies the condition

MiAM = AiZ (E2)

for Z some integer matrix which satisfies the rotation symme-
try of the original lattices.

Typically, if one “undoes” the small deformation to iden-
tify the singular structure, the different equivalent points on
the moiré pattern will differ by a nontrivial trivial transfor-
mation. In this case, however, the stackings will be identical,
not identical up to those additional transformations. In other
words, for any two moiré-equivalent points, deforming the
lattices back to the special singular configuration centered
about either point will yield the same quasicrystal structure
(not just a physically equivalent one).

One can then potentially regard the line in between as a
defect in the quasicrystalline singular structure, analogous to
the description provided in Ref. [88].

In the simple example case of TBG, the allowed transfor-
mations are an overall rescaling. The hypothetical goal of such
a rescaling would be to cause the patterns of different AA
regions, if untwisted and continued to a full lattice, to “mesh”
if one continued them. This essentially amounts to rendering
the “overall translation” degree of freedom T12 described in
Eq. (6) as being trivial on every equivalent moiré spot (relative
to each other).
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