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Wavefront dislocations in graphene systems revealed by transport measurement
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The wavefront dislocation is an important and ubiquitous phenomenon in wave fields. It is closely related
to the phase singularity in a wave function. Some recent studies have verified that the wavefront dislocations
in the local density of states map can well manifest the intrinsic topological characteristics in graphene and
some topological systems. Different from these previous schemes, we raise a transport method to measure such
wavefront dislocations in monolayer and Bernal-stacked bilayer graphene. Combining analytical analysis and
numerical calculation, we find phase singularities naturally appear in the transmission coefficients between
different sublattices, due to the intervalley interference on the electron propagating paths. These phase singu-
larities could contribute wavefront dislocations in the conductance map. Additionally, in bilayer graphene, the
wavefront dislocations are found to remain robust even though the tip is coupled to multiple sublattices. Biased
bilayer graphene is also explored. Our scheme provides a transport routine to explore valley-related topological
properties of materials.
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I. INTRODUCTION

In a wave field, some additional wavefronts (i.e., surfaces
of constant phase) may appear in a certain area associated
with a topological defect, which are known as wavefront dis-
locations. Following the pioneering work of Nye and Berry in
1974 [1], this fundamental and ubiquitous phenomenon can in
principle emerge in any wave field irrespective of its physical
nature or its dispersion relation. In mathematics, it originates
from a phase indetermination in which the amplitude of the
wave vanishes. One example is about the Aharonov-Bohm
effect [2,3], where the electron wave could possess wavefront
dislocations on the flux line of the impenetrable cylinder with
a magnetic flux. Since the phase singularities are recognized
as important features of all waves, the researches on wavefront
dislocations have spread over various domains of physics,
from astronomy [4], oceanic tides [5], and sounds [1,6,7],
to optics [8,9] and fluids [2,5,10]. Especially in optics, it
gives birth to a new research branch known as singular optics
[11,12].

Due to wave-particle duality, electrons can also be regarded
as waves. In the field of condensed matter physics, it was
recently found that wavefront dislocations could closely link
the topological defect of waves with the topological prop-
erties of materials. This topology is associated with some
topological indices, which are featured by the phase sin-
gularities of bulk electron wave functions [13–17]. Thus,
through measuring wavefront dislocations originated from the
phase singularity, the topological properties of this system
can be manifested. For example, in monolayer and bilayer

*sunqf@pku.edu.cn

graphene [18–20], by introducing a single atom vacancy or
a hydrogen atom chemisorbed on a carbon site, dislocations
in charge density modulations (i.e., Friedel oscillations [21])
induced by intervalley scatterings can be observed in scan-
ning tunneling microscopy (STM). The number of wavefront
dislocations characterizes the (local) Berry phase signatures.
In a one-dimensional Su-Schrieffer-Heeger chain [22,23], the
wavefront dislocations in the local density of states (LDOS)
map of a standing wave pattern could present a direct evidence
of bulk topological transition.

The LDOS fluctuations are attributed to the quantum in-
terference between the incident and scattering wave induced
by a defect or boundary in the material [24–26]. If the
incident wave function and scattering wave function each
carries a different geometric phase, an additional geomet-
rical phase shift could enter the LDOS fluctuations as a
topological phase singularity [22]. Surrounding this phase
singularity along a closed loop, a phase accumulation cor-
responding to a quantized topological charge will contribute
to additional wavefronts [18]. Except for LDOS, quantum
interferences could also influence the transport process where
electrons propagate from the source to the drain. So, is there
a way to exhibit such wavefront dislocations by the transport
measurement?

In this paper, we try to propose one scheme based on
the transport measurement to detect wavefront dislocations in
graphene systems. In previous experiments, transport methods
usually manifest the topological properties of systems through
a quantized two-terminal or Hall conductance [27–32]. How-
ever, in our scheme, a conductance space map is necessary
to be obtained. One promising solution is a dual-probe STM
experiment with one fixed STM probe and one scanning
STM probe [33–36]. Since the graphene has a long mean
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FIG. 1. (a) The schematic of the transport measurement via the
dual-probe STM setup on the monolayer graphene. (b) The inter-
valley interference on the electron propagating path between two
sublattices. (c) Pseudospin-momentum locking texture along the
Fermi surface of monolayer graphene.

free path [37–39], the interference effects are not washed
out by dephasing when two STM tips are placed within a
length scale [24,38]. Both monolayer graphene and (biased)
Bernal-stacked bilayer graphene are explored in our scheme.
For the monolayer graphene, the fixed STM tip is connected
to one sublattice and the scanning probe selectively scans the
other sublattices around the fixed STM tip [Fig. 1(a)]. For the
(biased) Bernal-stacked bilayer graphene, the fixed STM tip
is connected to one sublattice of the bottom sheet and the
scanning probe selectively scans the other sublattices on the
top sheet around the fixed STM tip [Fig. 2(a)]. In both cases,
due to the intervalley interference on the electron propagat-
ing path, wavefront dislocations emerge in the conductance
map, reflecting the information of (local) topological indices.

FIG. 2. (a) The schematic of the transport measurement via the
dual-probe STM setup on the Bernal-stacked bilayer graphene. The
fixed probe is placed under the bilayer graphene and connected to
the sublattice of the bottom layer. The scanning probe is placed
upon the bilayer graphene and connected to the sublattice of the top
layer. (b) The intervalley interference on electron propagating paths
between two sublattices. (c) Pseudospin-momentum locking texture
along the Fermi surface of Bernal-stacked bilayer graphene.

In fact, not limited to the dual-probe STM experiment, we
emphasize that our scheme could be adapted to more similar
systems.

Our paper is organized as follows. In Sec. II, we use
the low-energy Hamiltonian of monolayer graphene com-
bined with nonequilibrium Green’s functions to analyze the
transmission coefficients and the conductance between two
sublattices. Using the tight-binding model, we numerically
obtain the transmission coefficient/conductance maps and
find they are well consistent with our analysis. In Sec. III,
the same analysis and calculation procedure is reproduced
on the Bernal-stacked bilayer graphene. We demonstrate that
the wavefront dislocations are still robust even if the STM
tip is coupled to multiple sublattices. This extends the prac-
ticality of our theoretical scheme. The case for biased bilayer
graphene is also studied. In Sec. IV, we conclude a brief sum-
mary and give a discussion about the experiment realization.

II. THE MONOLAYER GRAPHENE

In this section, we try to explore the wavefront disloca-
tions in the dual-probe STM experiment of the monolayer
graphene, as shown in Fig. 1(a). We first assume that each
STM probe is only coupled to a single A/B sublattice, which
is in principle possible in the experiments in view of STM
atomic resolution. The case that the STM probes couple to
multiple sublattices will be studied in the next section. In fact,
our theoretical proposal is not only limited to the dual-probe
STM experiment, but also applies to other similar systems,
like photonic graphene (see details about experiment imple-
mentations in Sec. IV).

A. Analytical analysis

The massless Dirac fermion in monolayer graphene can
be demonstrated by the low-energy continuum Hamiltonian
[18,40]

HM
ξ (�q) = h̄v f

(
0 ξqx − iqy

ξqx + iqy 0

)
= h̄v f

(
0 ξqe−iξθq

ξqeiξθq 0

)
(1)

which is written in the basis of sublattices {A, B}. Here,
the superscript M in the Hamiltonian as well as the fol-
lowing Green’s functions denote the monolayer graphene.
ξ = ±1 denote the valley indices K and K ′. v f is the
Fermi velocity. �q is the momentum vector relative to the
K or K ′. θq = arctan(qy/qx ) is the polar angle of elec-
trons with the momentum �q = (qx, qy). The eigenvalues of
this low-energy Hamiltonian are E±

ξ (q) = ±h̄v f q with the

corresponding eigenvectors ψ±
ξ (q) = 1√

2

( 1
±ξeiξθq

)
. The eigen-

vectors define pseudospin vectors in the sublattice Bloch
space 〈ψ±

ξ (q)|�σ |ψ±
ξ (q)〉 = ±ξ (cos ξθq, sin ξθq, 0), which has

pseudospin-momentum locking. Here �σ is the vector of Pauli
matrices acting on the sublattice space expanded by the ba-
sis {A, B}. The pseudospin-momentum locking textures are
shown in the Brillouin zone for different valleys in Fig. 1(c).
Along a closed Fermi surface, the pseudospin will rotate by
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2π yielding a W = ξ = ±1 winding number and γ = W π =
ξπ Berry phase [40–43].

To analyze the transport properties in the monolayer
graphene, we calculate the bare retarded Green’s function ma-
trix with G0,M

ξ (ω, �q) = [ω + i0+ − HM
ξ (�q)]−1 [18]. It reads

(ω is the tip biased energy)

G0,M
ξ (ω, �q) = 1

ω2 − (h̄v f q)2

(
ω h̄v f ξqe−iξθq

h̄v f ξqeiξθq ω

)
.

(2)

To do Fourier transformation, we use the integral [20,44]∫∫
d2q

(2π )2

q2mei �q·�r

ω2 − q2l
(qeiξθq )n � − in+1ωn/l eiξnθr

4lω2[1−(m+1)/l]
Hn(ω1/l r)

(3)

with the integer number m, n, and l . Note that this equa-
tion strictly holds for the case of the monolayer graphene
(l = 1), but is an approximate formula for the case of the
multilayer graphene (l � 2) [44]. The Green’s functions of
different valleys G0,M

K/K ′ [i.e., G0,M
ξ=±1 in Eq. (2)] in the real space

are [18]

G0,M
K (ω, �r) ≈ − ωei �K ·�r

(2h̄v f )2

(
iH0( ωr

h̄v f
) −H1( ωr

h̄v f
)e−iθr

−H1( ωr
h̄v f

)eiθr iH0( ωr
h̄v f

)

)
,

G0,M
K ′ (ω, �r) ≈ − ωei �K ′ ·�r

(2h̄v f )2

(
iH0( ωr

h̄v f
) H1( ωr

h̄v f
)eiθr

H1( ωr
h̄v f

)e−iθr iH0( ωr
h̄v f

)

)
(4)

where Hn denotes the nth order Hankel function of the first
kind. The polar angle θq related to the sublattice pseudospin
mathematically transforms to the polar angle θr = arctan( y

x )
in the polar coordinate for the vector �r = (x, y). It is worth
noting that the real space singularity in off-diagonal matrix
components is not physical, since the origin r = 0 for the bare
monolayer graphene is arbitrary. In Friedel oscillations, the
origin is determined by a vacancy or an adatom. In transport
measurement, e.g., dual-probe STM measurement, one of the
probes (fixed STM probe) determines the location of the ori-
gin, while the other probe (scanning STM probe) scans around
in real space.

Our main purpose is to extract the real space singularity
resulting wavefront dislocations in the conductance map. In
Fig. 1(a), if the fixed probe 1 is connected to the sublattice A
and the scanning probe 2 scans the sublattice B, the transmis-
sion coefficient from probe 1 to probe 2 is [35,45–47]

T2B←1A(ω, �r1, �r0)

= Tr[�2(ω, �r1)GM (ω, �r1, �r0)�1(ω, �r0)GM,†(ω, �r0, �r1)]

= 	B(ω, �r1)GM
BA(ω, �r1, �r0)	A(ω, �r0)GM,†

AB (ω, �r0, �r1). (5)

On the second line, the �1(ω, �r1) and �2(ω, �r2) are
linewidth function matrices of the probes 1 and 2 cou-
pled to graphene lattices. Here �1(ω, �r1) = (	A(ω, �r1 ) 0

0 0) and

�2(ω, �r2) = (0 0
0 	B (ω, �r2 )) respectively. 	A,B is the linewidth

function denoting the probe coupled to A/B sublattices. GM

is the retarded Green’s function of the sample including the

probe effects. �r1 and �r0 are the positions of scanning and fixed
probes respectively. To simplify, assuming the effect of probes
is weak, we neglect the influence of probes on sample Green’s
functions, then

T2B←1A(ω, �r1, �r0) ≈ 	A(ω)	B(ω)
∣∣G0,M

BA (ω, �r1 − �r0)
∣∣2

= 	A	B

∣∣G0,M
BA (ω, �r)

∣∣2
. (6)

Here �r = �r1 − �r0 is the relative distance vector between two
probes. Using the Fourier transform, we can obtain the Fourier
components T2B←1A(ω, �k). At �k = �K − �K ′ + �q = 
 �K + �q (�q
is a small number)

T2B←1A(ω, �k = 
 �K + �q)

=
∫∫

d2re−i(
 �K+�q)·�r	A	B

∣∣G0,M
BA (ω, �r)

∣∣2

=
∫∫∫∫

d2kd2k′

(2π )4

∫∫
d2rei(−
 �K−�q−�k′+�k)·�r	A	B

× G0,M
BA (ω, �k)G0,M∗

BA (ω, �k′)

≈
∫∫∫∫

d2q1d2q2

(2π )4

∫∫
d2rei(−�q+�q1−�q2 )·�r	A	B

× G0,M
BA (ω, �K + �q1)G0,M∗

BA (ω, �K ′ + �q2). (7)

The last approximation is because the main Fourier com-
ponents of Green’s functions focus on regions near the two
valleys when the energy is relatively low. In the fast Fourier
transform (FFT) map of the STM experiment, T2B←1A(ω, �k =

 �K + �q) should correspond to peaks around the intervalley
interference points �k = 
 �K . Similar to previous references
[18,20], we do Fourier filtering by only retaining the values
of T2B←1A(ω, �k) at the points around 
 �K and discarding the
other Fourier components. Then we do the inverse Fourier
transform from them to obtain the Fourier transformed filtered
transmission coefficient T2B←1A(ω,
 �K, �r):

T2B←1A(ω,
 �K, �r)

=
∫∫

d2q

(2π )2
ei(
 �K+�q)·�rT2B←1A(ω, �k = 
 �K + �q)

≈ 	A	BG0,M
K,BA(ω, �r)G0,M∗

K ′,BA(ω, �r), (8)

where we use the relation G0,M
K/K ′,BA(ω, �r) =∫∫ d2q

(2π )2 ei( �K/ �K ′+�q)·�rG0,M
BA (ω, �K/ �K ′ + �q). With the same

operation, the Fourier transformed filtered transmission
coefficient T2B←1A(ω,−
 �K, �r) corresponding to �k = −
 �K
can be obtained by just switching K and K ′,

T2B←1A(ω,−
 �K, �r) ≈ 	A	BG0,M
K ′,BA(ω, �r)G0,M∗

K,BA(ω, �r). (9)

Substituting the bare Green’s functions in Eq. (4) into Eqs. (8)
and (9), the final intervalley filtered transmission coefficient
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we aim to obtain is

T f
2B←1A(ω, �r) = T2B←1A(ω,
 �K, �r) + T2B←1A(ω,−
 �K, �r)

= 2	A	BRe
[
G0,M

K,BA(ω, �r)G0,M∗
K ′,BA(ω, �r)

]
≈ −2	A	B

∣∣∣∣∣ ω

4h̄2v2
f

H1

(
ωr

h̄v f

)∣∣∣∣∣
2

× cos[( �K − �K ′) · �r + 2θr].
(10)

Analogically, if the fixed probe is connected to the sublattice A
and the scanning probe scans the sublattice A, the intervalley
filtered transmission coefficient is approximated as

T f
2A←1A(ω, �r) ≈ 2	2

A

∣∣∣∣∣ ω

4h̄2v2
f

H0

(
ωr

h̄v f

)∣∣∣∣∣
2

cos[( �K − �K ′) · �r].

(11)

In the experiment, we apply a small voltage V on the scan-
ning probe 1 and ground the fixed probe 2. The differential
conductance could be calculated by Landauer-Büttiker for-
mula dI

dV = − 2e2

h T2←1 at the zero temperature limit [45].
Thus in the following we only pay attention to the trans-
mission coefficients map. Here the transmission coefficients
or conductances exhibit a spatial oscillating behavior via

 �K = �K − �K ′ dependence. In Friedel oscillations, such a
LDOS oscillation stems from the intervalley scatterings of
electrons by vacancies or impurities [18,21]. In the present
transport device, the spatial oscillating behavior comes from
the intervalley interference on electron propagating paths [see
Fig. 1(b)]. In addition, the propagation between sublattice
A and sublattice B involves a relative phase −ξθq in the
momentum space and −ξθr in the real space [see Eqs. (2)
and (4)]. Such a relative phase originates from the fact that
a gauge-invariant effective flux quantum always exists be-
tween A and B sublattices in the massless Dirac equation,
whose sign is related to valley index ξ [18]. It also re-
flects the distinct pseudospin-momentum locking texture for
K and K ′ valley as shown in Fig. 1(c). Thus, similar to
the Friedel oscillations [18,19], an additional phase enters
the transmission coefficient T f

2B←1A in Eq. (10) as twice the
real space polar angle θr . The phase φ(r) = 
K · r + 2θr

acts as a potential field whose gradient is the sum of a
uniform field and a vortex [1], which is singular at �r = 0.
Considering the transmission coefficient is a single-valued
function, it must return to the same value after circulating
this field along a closed path. Thus, the path enclosing the
field vortex should contribute to a phase quantized to a topo-
logical number 2πN with an integer N . For 2θr , the phase
accumulation in an anticlockwise direction is 2πN = 4π , cor-
responding to four times the Berry phase γ = π of the Dirac
cone and two additional wavefronts. Conversely, no addi-
tional phase accumulation and wavefronts appear for T f

2A←1A,
because no phase difference appears in the diagonal terms
in Eq. (4).

B. The results of numerical simulations

To verify the above analytical analysis, we numerically
calculate the transmission coefficient and its FFT-filtered im-
ages by using a tight-binding model in this subsection. We
construct a finite N × N graphene rectangular flake [as shown
in Figs. 1(a) and 1(b)]. Here N is the number of lattices along
one side of the rectangular graphene flake (the number of sites
along the transverse and longitudinal direction is the same).
In the calculations, we choose N = 100 corresponding to the
width W ≈ 11 nm and the length L ≈ 24 nm. The periodic
boundary condition is applied (connecting the sites on the left
and right boundaries, as well as the upper and lower bound-
aries respectively). Its nearest-neighbor hopping tight-binding
Hamiltonian is

HM = −
∑
<i, j>

ti jc
†
i c j + H.c. (12)

See Fig. 1(a), assuming that the fixed (scanning) probe 1
(2) connects with sublattice ı (j ), respectively, and their ef-
fects are quantized as the self-energy matrix �r

1/2, where

(�r
1)st = −i 	1

2 δsıδt ı or (�r
2)st = −i 	2

2 δsjδtj . The linewidth
matrix �1/2 = i(�r

1/2 − �r,†
1/2). We also introduce self-energy

terms 
r
D = −i	D/2 on the lattices at the flake edges, to

simulate an open environment on graphene brought about by
electrode contacts on the boundaries in the experiment. The
retarded lattice Green’s function including all effects is

Gr,M (ω) = IN×N

(ω + i0+) ∗ IN×N − HM − �r
1 − �r

2 − �r
D

(13)

Then, the transmission coefficient from probe 1 to
probe 2 is numerically calculated as T2←1(ω) =
Tr[�2(ω)Gr,M (ω)�1(ω)[Gr,M (ω)]†][46,47]. In the calcu-
lation detail, a = 0.142 nm is the length of the carbon-carbon
bond. ti j = 2.8 eV (Fermi velocity v f = 3ti j a

2h̄ ≈ 9 × 105 m/s),
	D = 0.8 eV, and 	1 = 	2 = 0.2 eV. The tip biased energy
ω = 1 eV. We here emphasize that our calculations are
still in the low energy regime in view of the fact that
ω < ti j and the Fermi momentum qF = ω/h̄v f ≈ 1.7 nm−1,
which is much smaller than the intervalley distance
| �K − �K ′| = 4π

3
√

3a
≈ 17 nm−1. After obtaining the trans-

mission coefficients at each site, we introduce a space
broadening λd by T2←1(ω, �r) = ∑

j T2j←1ı (ω)e−|�r−�rj |2/λ2
d ,

where �r denotes the space position of the scanning tip 2
center relative to the origin determined by the fixed tip 1.
Here λd = 0.05 nm.

Now we briefly describe our FFT-filtering method which
follows the same procedure in Refs. [18,20]. We first use the
probe 2 to scan a range of 6 × 6 nm to obtain the transmission
coefficient T2←1(ω) (the conductance) in the real space [e.g.,
see Fig. 3(a)], and then use the FFT to obtain the image in
the reciprocal space [e.g., see Fig. 3(b)]. Some bright spots
denoting the main Fourier components could be found. We
pay attention to six intervalley interference points [i.e., bright
dots circled by green dashed lines in Fig. 3(b)]. Next, we
take the filtering in the reciprocal space, that is, keep only
the value in the white circles and set to zero the outer white
circles [e.g., see the insets in Figs. 3(c)–3(e)]. Note that
two Fourier components with opposite momentum must be
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FIG. 3. (a) The numerical calculated transmission coefficient map of T2B←1A(ω). (b) Modulus of the FFT of the image in panel (a). The
yellow and green dashed lines correspond to reciprocal lattices and the intervalley interference points respectively. (c–e) The intervalley
FFT-filtered images T f

2B←1A(ω) of panel (b) schematically marked by white circles in the insets for three different directions. (f) The plot of
the analytical transmission coefficient in Eq. (10) which is multiplied by r. For all the analytical results, the data are not estimated within the
range very close to the center �r = (x, y) = (0, 0) due to divergency.

simultaneously included in the filtering process to ensure the
FFT-filtered results are real, and there will be three intervalley
FFT-filtering directions [e.g., Figs. 3(c)–3(e)]. Actually, these
three directions reflect three intervalley interference processes
since each K point has three nearest-neighbor K ′ points in
the Brillouin zone. In view of the fact that the phase singu-
larity in Eq. (10) is irrelevant to 
 �K , they are expected to
exhibit similar characteristics of wavefront dislocations. In
the calculations, the diameter of white circles is set to around
7 nm−1. Finally, we take inverse FFT to obtain the oscillating
transmission coefficient maps in the real space with the same
size 6 × 6 nm [e.g., see Figs. 3(c)–3(e)]. To avoid inaccuracy
on the boundaries, we focus on the range 5.6 × 5.6 nm. In ad-
dition, all the analytical or numerical calculated FFT-filtered
transmission coefficients plotted in the figures (including the
next sections) are modulated as T f / max[T f ] where max[T f ]
is the maximum value of |T f |.

In Fig. 3(a), the fixed probe is connected to one A sublattice
and the scanning probe scans the surrounding B sublattices. In
the numerical calculated T2B←1A(ω, �r) map, the T2B←1A(ω, �r)
is bright near the fixed probe at the origin and gradually
weakens as the distance becomes farther away. This correlates
with the decay relation implied by the Hankel function of
the first kind in Eq. (10). The modulus of the FFT of this
transmission coefficient map is shown in Fig. 3(b). The bright
spots in the FFT map indicate the main Fourier components
[18,48]. The yellow dashed lines connects the bright spots
at the reciprocal lattices which reflect the information of
graphene lattices. In addition, bright spots originated from
the intervalley interference are connected by the green dashed
lines. They are surrounded in a hexagon with a side length
1/

√
3 of that for reciprocal lattices. At the center, a bright ring

denotes the intravalley scatterings, whose radius is roughly

2qF . Some discrepancies may be due to the scatterings and
energy dissipations induced by the open environment at the
graphene flakes boundaries. We focus on the intervalley in-
terference and do the filtering around the white circles in
the insets in Figs. 3(c)–3(e) and then take the inverse FFT.
The results show oscillating strip patterns with a wavelength
of λ
K = 2π/
K ≈ 3.7 Å, which are just perpendicular to
three FFT-filtered directions. Clearly, two additional wave-
fronts appear near the origin, where their positions are almost
not affected by FFT-filtering directions as we expect. It indi-
cates a 4π phase accumulation related to a geometrical phase.
The number of the additional wavefronts is well consistent
with the analytical analysis in Eq. (10), plotted in Fig. 3(f)
with 
 �K = (− 4π

3
√

3a
, 0).

In Fig. 4(a), the fixed probe is selectively connected to
one A sublattice and the scanning probe scans the surround-
ing A sublattices. Due to the change of scanned lattices, the
transmission coefficient map shows peak positions slightly
different from Fig. 3(a), but they are still most bright near
the center with r = 0. Because A and B lattices have the
same periodic distributions, the FFT map of T2A←1A(ω, �r)
in Fig. 4(b) still contributes main Fourier components at
reciprocal lattices (connected by yellow dashed lines) and
intervalley interference points (connected by green dashed
lines). However, after we do inverse FFT at the intervalley
points circled by white circles in Figs. 4(c)–4(e), although
the periodic oscillating strips appear as well, no wavefront
dislocations exhibit for all three filtering directions. It means
that encircling the intervalley interference points no longer
threads an additional geometric phase for transmission co-
efficients between the same kind of sublattices. This is
consistent with the analytical analysis in Eq. (11) plotted
in Fig. 4(f).
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FIG. 4. (a) The numerical calculated transmission coefficient map of T2A←1A(ω). Note, when the fixed probe and scanning probe are
located at the same A sublattice, the T2A←1A(ω) is not estimated. (b) Modulus of the FFT of the image in panel (a). The yellow and green
dashed lines correspond to reciprocal lattices and the intervalley interference respectively. (c–e) The FFT-filtered images T f

2A←1A(ω) of panel
(b) schematically marked by white circles in the insets for three different directions. (f) The plot of the analytical transmission coefficient in
Eq. (11) which is multiplied by r.

To investigate the effects of doping levels and sample sizes
on our calculations, we present a numerical calculated trans-
mission coefficient map of T2B←1A(ω) for a different tip biased
energy ω and sample size in Fig. 5 compared to Fig. 3. In
Figs. 5(a)–5(c), the tip biased energy ω = 0.5 eV and the sam-
ple size is the same as Fig. 3. In Figs. 5(d)–5(f), we shorten
the length of the graphene flake with N = 100 sites along the

longitudinal side and M = 70 sites along the transverse side
of the rectangle, and then the size of the sample is W × L ≈
11 × 17 nm. We can find the variation of the tip biased energy
and sample size could affect the scatterings and energy dissi-
pations on the boundary, thereby influencing the intensity of
intervalley scatterings and intravalley scatterings [Figs. 5(b)
and 5(e)]. However, the number of wavefront dislocations in

FIG. 5. The numerical calculated transmission coefficient map of T2B←1A(ω) for a different tip biased energy and sample size for
comparison. Here panels (a) and (d) are the transmission coefficient maps of T2B←1A, panels (b) and (e) are the moduli of the FFT of the
images in panels (a) and (d), and panel (c) and (f) are the FFT-filtered images. In panels (a)–(c), the tip biased energy ω = 0.5 eV, and in panels
(d)–(f) the sample size is W × L ≈ 11 nm × 17 nm. The other unmentioned parameters are the same as in Fig. 3.
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FFT-filtered results is still 2 [see Figs. 5(c) and 5(f)], which is
completely consistent with Fig. 3(c). This not only confirms
the phase singularity is not affected by energy [Eq. (10)], but
also confirms that our calculations have converged in size.

To conclude, the above results show that the phase singu-
larities in the Green’s functions will not only enter LDOS
in Friedel oscillations [18,19], but also the transmission
coefficients between different sublattices. The wavefront dis-
locations in the conductance map reflect the information of
topological vortices. Enlightened by this, next we investigate
the case for bilayer graphene.

III. THE BERNAL-STACKED BILAYER GRAPHENE

In this section, we generalize our theoretical setup to
the Bernal-stacked bilayer graphene as shown in Fig. 2(a).

Compared to monolayer graphene, two probes in the dual-
probe STM experiment are connected to top and bottom layers
of the bilayer graphene respectively. This separation makes
the scanning of STM tips more convenient (see detailed dis-
cussions in Sec. IV). Moreover, we emphasize that the probe
connected to the bottom graphene layer does not have to be
a real STM tip. It could be replaced by a small electrode at-
tached on the bottom sheet, serving as a drain in the transport
measurement.

A. Analytical analysis of bilayer graphene

For the Bernal-stacked bilayer graphene, we consider that
the A sublattices of the top graphene sheet are located on
top of the B′ sublattices of the bottom graphene sheet.
Then, the low-energy continuum Hamiltonian in the basis of
{A, B, A′, B′} is [49,50]

HD
ξ (�q) = h̄v f

⎛⎜⎜⎜⎜⎝
0 ξqx − iqy 0 t⊥/h̄v f

ξqx + iqy 0 0 0

0 0 0 ξqx − iqy

t⊥/h̄v f 0 ξqx + iqy 0

⎞⎟⎟⎟⎟⎠ (14)

where t⊥ denotes the nearest-neighbor interlayer hopping.
Here, the superscript D in the Hamiltonian as well as the
following Green’s functions denotes the bilayer (double layer)
graphene. At the condition t⊥ � 2h̄v f q, the Hamiltonian can
be further projected on the basis {B, A′} [49]:

HD
ξ (�q) ≈ − h̄2v2

f q2

t⊥

(
0 e2iξθq

e−2iξθq 0

)
(15)

with the eigenvalues E±
ξ (�q) = ± h̄2v2

f q2

t⊥
and ψ±

ξ (�q) =
1√
2

( 1
∓e−2iξθq

)
. Similar to monolayer graphene, the eigenvectors

also define pseudospin vectors 〈ψ±
ξ (q)|�σ |ψ±

ξ (q)〉 =
±(− cos 2ξθq, sin 2ξθq, 0) lying on the x-y plane with
an azimuth angle π − 2ξθq in the Bloch space. Here σ

acts on the space expanded by the basis {B, A′}. This
pseudospin-momentum locking texture is shown in Fig. 2(c).
Particularly, after circulating a closed Fermi surface, the
pseudospin rotates by 4π , yielding a W = −2ξ = ∓2
winding number and γ = W π = ∓2π Berry phase [41]. The
corresponding retarded Green’s functions of the bare bilayer
graphene with the Hamiltonian in Eq. (14) can be calculated
as

G0,D
ξ (ω, �q)

= 1

�(�q, ω)

⎛⎜⎜⎜⎜⎜⎝
ω3 − ω(h̄v f q)2 ξ h̄v f qe−ξθq [ω2 − (h̄v f q)2] ωt⊥ξ h̄v f qeiξθq ω2t⊥

ξ h̄v f qeξθq [ω2 − (h̄v f q)2] ω3 − ω[(h̄v f q)2 + t2
⊥] t⊥(h̄v f q)2ei2ξθq ωt⊥ξ h̄v f qeiξθq

ωt⊥ξ h̄v f qe−iξθq t⊥(h̄v f q)2e−i2ξθq ω3 − ω[(h̄v f q)2 + t2
⊥] ξ h̄v f qe−iξθq [ω2 − (h̄v f q)2]

ω2t⊥ ωt⊥ξ h̄v f qe−iξθq ξ h̄v f qeiξθq [ω2 − (h̄v f q)2] ω3 − ω(h̄v f q)2

⎞⎟⎟⎟⎟⎟⎠
(16)

where �(ω, �q) = (h̄v f q)4 + ω2[ω2 − t2
⊥ − 2(h̄v f q)2]. In

the dual-probe STM measurements of bilayer graphene,
we focus on four kinds of transmission coefficients
T2B←1A′ , T2A←1A′ , T2B←1B′ , and T2A←1B′ , which means the
fixed probe 1 is connected to one sublattice A′ or B′ of
the bottom layer and the scanning probe 2 selectively
scans sublattices A or B of the top layer. In analogy to
Eqs. (8)–(10), their intervalley Fourier filtered terms are

approximated as

T f
2B←1A′ (ω) ≈ 2	2B	1A′Re

[
G0,D

K,BA′ (ω, �r)G0,D∗
K ′,BA′ (ω, �r)

]
,

T f
2A←1A′ (ω) ≈ 2	2A	1A′Re

[
G0,D

K,AA′ (ω, �r)G0,D∗
K ′,AA′ (ω, �r)

]
,

T f
2B←1B′ (ω) ≈ 2	2B	1B′Re

[
G0,D

K,BB′ (ω, �r)G0,D∗
K ′,BB′ (ω, �r)

]
,

T f
2A←1B′ (ω) ≈ 2	2A	1B′Re

[
G0,D

K,AB′ (ω, �r)G0,D∗
K ′,AB′ (ω, �r)

]
. (17)
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By using Eq. (3) and taking the approximation �( �p, ω) ≈
(h̄v f q)4 − ω2t2

⊥ for t⊥ � 2h̄v f q and ω [20], the correspond-
ing Green’s functions of different valleys G0,D

K/K ′ (ω, �r) which
are Fourier transformed from the momentum space in Eq. (16)
to the real space are

G0,D
K,BA′ (ω) ≈ − it⊥

8(h̄v f )2
H2

(√
t⊥ωr

h̄v f

)
ei �K ·�r+i2θr ,

G0,D
K ′,BA′ (ω) ≈ − it⊥

8(h̄v f )2
H2

(√
t⊥ωr

h̄v f

)
ei �K ′ ·�r−i2θr ,

G0,D
K,AA′ (ω) = G0,D

K,BB′ (ω) ≈ −
√

t⊥ω

8(h̄v f )2
H1

(√
t⊥ωr

h̄v f

)
ei �K ·�r+iθr ,

G0,D
K ′,AA′ (ω) = G0,D

K ′,BB′ (ω) ≈
√

t⊥ω

8(h̄v f )2
H1

(√
t⊥ωr

h̄v f

)
ei �K ′ ·�r−iθr ,

G0,D
K,AB′ (ω) ≈ iω

8(h̄v f )2
H0

(√
t⊥ω

h̄v f
r

)
ei �K ·�r,

G0,D
K ′,AB′ (ω) ≈ iω

8(h̄v f )2
H0

(√
t⊥ω

h̄v f
r

)
ei �K ′ ·�r .

(18)

Substituting Eq. (18) into Eq. (17), the analytic forms of
intervalley Fourier filtered transmission coefficients are

T f
2B←1A′ (ω) ≈ 	2B	1A′t2

⊥
32(h̄v f )4

∣∣∣∣H2

(√
t⊥ωr

h̄v f

)∣∣∣∣2

cos[
 �K · �r + 4θr],

T f
2A←1A′ (ω) ≈ −	2A	1A′t⊥ω

32(h̄v f )4

∣∣∣∣H1

(√
t⊥ωr

h̄v f

)∣∣∣∣2

cos[
 �K · �r + 2θr],

T f
2B←1B′ (ω) ≈ −	2B	1B′t⊥ω

32(h̄v f )4

∣∣∣∣H1

(√
t⊥ωr

h̄v f

)∣∣∣∣2

cos[
 �K · �r + 2θr],

T f
2A←1B′ (ω) ≈ 	2A	1B′ω2

32(h̄v f )4

∣∣∣∣H0

(√
t⊥ωr

h̄v f

)∣∣∣∣2

cos[
 �K · �r].

(19)

As shown in Eq. (19), these transmission coefficients also
exhibit 
 �K = �K − �K ′ periodically oscillating behavior due
to the valley interference on electron propagating paths [see
Fig. 2(b)]. But different from the case of monolayer graphene,
the phase singularities in Eq. (19) suggest that four, two, two,
and zero additional wavefronts should appear near the origin
in these four kinds of transmission coefficients maps. The
four additional wavefronts are because the pseudospin vector
of the bilayer graphene in Eq. (15) could accumulate four
times Berry phase γ = 2π along a path enclosing the origin.
The two and zero additional wavefronts can be understood as
follows: the phase differences between A (A′) and B (B′) sub-
lattices stay consistent with those in the monolayer graphene,
since they are both distributed in the same top (bottom) sheet.
The interlayer hopping t⊥ links the phase between A sublat-
tices and B′ sublattices. Based on this, the sublattices B and
A′, A and A′ (B and B′), and A and B′ could naturally possess
a phase difference about 2ξθq, ξθq, and zero, as shown in
Eq. (16). Due to the intervalley interference on the electron
propagating paths, it leads to the phase difference 4θr , 2θr ,
and zero. Four, two, two, and zero additional wavefronts ap-
pear in the transmission coefficients T f

2B←1A′ , T f
2B←1B′ , T f

2A←1A′ ,

and T f
2A←1B′ , respectively. More generally, the above analysis

can be extended to rhombohedral l-layer graphene, which is
expected to show N = 2l , 2l − 2, . . ., 0 additional wavefronts
due to γ = lξπ Berry phase [20].

B. The results of numerical simulations

The numerical simulations follow a similar procedure as
the case for monolayer graphene in Sec. II B. Here we con-
sider a finite N × M bilayer graphene rectangular flake with
N = 200 lattices (50 unit cells) along the longitudinal side
and M = 50 columns along the transverse direction of the
flake. They correspond to the width W ≈ 11 nm and length
L ≈ 12 nm, respectively [Fig. 2(b)]. We also use the peri-
odic boundary condition. By using the tight-binding model,
we numerically calculate the transmission coefficient and its
FFT-filtered images. In the numerical calculation, we set t⊥ =
0.4 eV [20,49], and 	A = 	B = 	A′ = 	B′ = 0.2 eV. The tip
biased energy ω = 0.1 eV corresponding to the Fermi mo-
mentum qF =

√
ωt⊥

h̄v f
≈ 0.34 nm−1, which is much smaller than

the intervalley distance. This ensures our calculations in the
low energy regime. All the other parameters are the same as
Fig. 3(b).

In Fig. 6(a), the transmission coefficient map of T2B←1A′ (ω)
is shown, in which its strength still decays with the dis-
tance from the fixed probe. In the FFT map [Fig. 6(b)],
we also find bright spots arranged as hexagons to denote
main Fourier components for reciprocal lattices (connected
by yellow dashed lines) and intervalley interference points
(connected by green dashed lines) [20,48]. Similar to the case
of the monolayer graphene, a bright ring denoting intravalley
scatterings also appears at the center. In Figs. 6(c)–6(e), we
show the intervalley filtered inverse FFT map at the white
circles in each inset. Different from Fig. 3, four additional
wavefronts emerge near the center for all three filtering direc-
tions, which indicates a 8π phase accumulation surrounding
the origin. As proved in Sec. III A, this geometric phase comes
from intervalley interference between distinct pseudospin
phase difference 2ξθr in bilayer graphene. Note that the po-
sitions of wavefronts do almost not change with the filtering
direction. In theory, four additional wavefronts should all
emerge exactly at the origin, as shown in Fig. 6(f) for the an-
alytic form of T f

2B←1A′ (ω) in Eq. (19) with 
 �K = (− 4π

3
√

3a
, 0).

The deviation for the locations of additional wavefronts in
Figs. 6(c)–6(e) may be attributed to the boundary effect.

Furthermore, the analytic forms of three transmission coef-
ficients T2A←1A′ , T2B←1B′ , and T2A←1B′ in Eq. (19) with 
 �K =
(− 4π

3
√

3a
, 0) are shown in Figs. 7(a)–7(c). In comparison, the

corresponding intervalley FFT-filtered numerical calculated
transmission coefficients are shown in Figs. 7(d)–7(f). Based
on the symmetry, the results of T2A←1A′ and T2B←1B′ are
basically the same [see Eq. (19)]. Additionally, two addi-
tional wavefronts arise, reflecting a 4π phase accumulation
surrounding the origin. This proves the phase differences be-
tween A (B) and A′ (B′) indeed contribute a geometric phase
2θr , while for T2A←1B′ no additional wavefronts exist, indi-
cating the absence of the geometric phase. In total, all these
characteristics confirm the validity of our analytical analysis.
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FIG. 6. (a) The numerical calculated transmission coefficient map of T2B←1A′ (ω). (b) Modulus of the FFT of the image in panel (a).
The yellow and green dashed lines correspond to the reciprocal lattice and the intervalley interference respectively. (c–e) The FFT-filtered
images T f

2B←1A′ (ω) of panel (b) schematically marked by white circles in the insets for three different directions. (f) The plot of the analytical
transmission coefficient T f

2B←1A′ (ω) in Eq. (19) which is multiplied by r3.

In a real scenario, because the STM tip has a finite size,
it is difficult to couple to only one sublattice during the
scanning process. But actually, even if the STM tip contact
is not very ideal, our theoretical proposals in the bilayer
graphene can still be applied. In Fig. 8, the fixed probe 1

is connected with the B′ sublattice in Fig. 8(a) and A′ sub-
lattice in Fig. 8(b), while the scanning probe 2 scans all
the sublattices surrounding the fixed probe. We denote these
two transmission coefficients as T f

2(A+B)←1B′ and T f
2(A+B)←1A′ .

In the maps, T f
2(A+B)←1B′ exhibits two additional wavefront

FIG. 7. (a–c) The plot of the analytical transmission coefficients T f
2A←1A′ (ω), T f

2B←1B′ (ω), and T f
2A←1B′ (ω) in Eq. (19) which are multiplied

by r. (d–f) The numerical calculated FFT-filtered transmission coefficients T f
2A←1A′ (ω), T f

2B←1B′ (ω), and T f
2A←1B′ (ω) around the filtering points


 �K = (± 4π

3
√

3a
, 0).
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FIG. 8. The numerical calculated FFT-filtered transmission coef-
ficients (a) T f

2(A+B)←1B′ (ω), (b) T f
2(A+B)←1A′ (ω), (c) T f

2(A+B)←1(A′+B′ )(ω),

and (d) T̃ f
2(A+B)←1(A′+B′ )(ω) around the filtering points 
 �K =

(± 4π

3
√

3a
, 0).

dislocations while T f
2(A+B)←1A′ exhibits four additional wave-

front dislocations. Moreover, besides the scanning tip, the
fixed tip (or the electrode) may also couple to multiple sublat-
tices. For example, in Fig. 8(c), the fixed probe or the electrode
is coupled to one B′ sublattice at the center and three surround-
ing A′ sublattices in the meanwhile (the coupling strength to A′
is set as half of the coupling strength to B′). This transmission
coefficient is denoted as T f

2(A+B)←1(A′+B′ ) and still exhibits
four additional wavefront dislocations. The above results are
attributed to the fact that pseudospin components B and A′
of the wave function play a leading role as a relatively low
energy [see Eqs. (14) and (15)]. This means T f

2B←1A′ (ω) �
T f

2A←1A′ (ω) ≈ T f
2B←1B′ (ω) � T f

2A←1B′ (ω) in our settings when

ω � t⊥. So, although the probes may be coupled to multiple
sublattices, A′ and B sublattices are more important than B′
and A sublattices. Furthermore, we also investigate the case
that the fixed probe or the electrode is coupled to the next-
nearest-neighbor A′ sites. In Fig. 8(d), the fixed probe 1 is
coupled to one central A′ site, its three nearest-neighbor B′
sites, and six next-nearest-neighbor A′ sites on the bottom
layer, while the scanning probe 2 scans all the lattices on the
top layer (denoted as T̃ f

2(A+B)←1(A′+B′ ) ). The coupling strength
of next-nearest-neighbor A′ sites is a half of that of nearest-
neighbor B′ sites and a quarter of that of the central A′ site. We
can find that such a coupling situation does not destroy four
additional wavefronts near the center [see Fig. 8(d)]. Thus,
even if coupled to multiple lattices, our scheme in bilayer
graphene could still be robust. Of course, if the fixed probe
or the electrode is very big to couple many carbon atoms,
the expected results with four additional wavefronts may be
buried. In terms of experimental realization, such a small elec-
trode may be achieved by using a protrusion on the electrode
to connect to a small area of the bottom sheet. It can be put
right under the bilayer graphene, and covered by the insulating
substrate. Under the substrate, the gating can adjust the doping
level of the bilayer graphene [51,52]. In total, we can expect
that the dual-probe STM experiment is somewhat easier to
achieve.

C. The biased bilayer graphene

In this subsection, to test the application range and ro-
bustness of our previous results, we further consider the
biased bilayer graphene by applying a gate voltage in the
out-of-plane direction. The electric field breaks the inver-
sion symmetry and induces a continuously voltage-tunable
band gap [53]. At the low energy range, the biased bilayer
graphene with 2m biased energy can be described by the
Hamiltonian [49]

HD
ξ (�q) = h̄v f

⎛⎜⎜⎜⎜⎝
m/h̄v f ξqx − iqy 0 t⊥/h̄v f

ξqx + iqy m/h̄v f 0 0

0 0 −m/h̄v f ξqx − iqy

t⊥/h̄v f 0 ξqx + iqy −m/h̄v f

⎞⎟⎟⎟⎟⎠. (20)

The bare retarded Green’s function matrix G0,D
ξ (ω, �q) = (ω − HD

ξ (�q) + i0+)−1 can be obtained as

G0,D
ξ (ω, �q) = 1

�̃(�q, ω)

⎛⎜⎜⎜⎜⎝
ω−[ω2

+ − q̃2] ξ q̃e−ξθq [ω2
+ − q̃2] ω−t⊥ξ q̃eiξθq ω−ω+t⊥

ξ q̃eξθq [ω2
+ − q̃2] ω+[ω+ω− − t2

⊥] − ω−q̃2 t⊥q̃2ei2ξθq ω+t⊥ξ q̃eiξθq

ω−t⊥ξ q̃e−iξθq t⊥q̃2e−i2ξθq ω−[ω−ω+ − t2
⊥] − ω+q̃2 ξ q̃e−iξθq [ω2

− − q̃2]

ω+ω−t⊥ ω+t⊥ξ q̃e−iξθq ξ q̃eiξθq [ω2
− − q̃2] ω+[ω2

− − q̃2]

⎞⎟⎟⎟⎟⎠ (21)

where ω± = ω ± m, q̃ = h̄v f q and �̃(�q, ω) = q̃4 + ω2[ω2 −
2q̃2 − 2m2 − t2

⊥] + m2[m2 + t2
⊥ − 2q̃2]. It is easy to verify

that once the biased energy m = 0, Eqs. (20) and (21) directly
restore to Eqs. (14) and (16). Comparing Eqs. (21) and (16),
the biased voltage m (i.e., the mass term) does not break
the phase correlations of the Green’s function components,
namely, G0,D

ξ,BA′ , G0,D
ξ,AA′ , G0,D

ξ,BB′ , and G0,D
ξ,AB′ still have the phase

2ξθq, ξθq, ξθq, and zero. This can be further illustrated by
projecting the HD

ξ (�q) in Eq. (20) into the subspace expanded
by the basis {B, A′} [49,50]:

HD
ξ (�q) ≈

⎛⎝ m − h̄2v2
f q2

t⊥
e2iξθq

− h̄2v2
f q2

t⊥
e−2iξθq −m

⎞⎠. (22)
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FIG. 9. The numerical calculated FFT-filtered transmission co-
efficient T f

2B←1A′ (ω) around the filtering points 
 �K = (± 4π

3
√

3a
, 0)

for the biased bilayer graphene. The biased energy (a) m = 0 eV,
(b) 0.05 eV, (c) 0.1 eV, and (d) 0.15 eV.

Its eigenvalues are E±(�q) = ±√
F 2 + m2 and eigenvec-

tors are ψ±
ξ (�q) ∝ (m ± √

F 2 + m2,−Fe−2iξθq ), where

F = h̄2v2
f q2

t⊥
. Although the pseudospin vectors defined

by the eigenvectors 〈ψ±
ξ (q)|�σ |ψ±

ξ (q)〉 ∝ (−2F (m ±√
F 2 + m2) cos 2ξθq, 2F (m ± √

F 2 + m2) sin 2ξθq, (m ±√
F 2 + m2)2 − F 2) are no longer pseudospin-momentum

locking on the x-y plane, they still have a π − 2ξθq azimuth
angle. Since the winding number is invariant here, the same
phase accumulation around the origin and the number of
additional wavefronts will appear as the case for the biased
energy m = 0.

In Fig. 9, we exhibit the numerical calculated FFT-filtered
transmission coefficients map of T2B←1A′ . The energy ω =
0.2 eV and t⊥ = 0.4 eV. At first, the biased voltage is absent
with m = 0 [Fig. 9(a)], and the result should be similar to
Fig. 6(c) where ω = 0.1 eV. We can find, although the loca-
tions of wavefront dislocations change slightly, their number
remains 4. This indicates our previous analysis does not de-
pend on energy ω, which is similar to the monolayer graphene.
Considering ω should exceed the energy gap m to ensure
the transport of the bulk states, we increase the m from 0
to 0.15 eV in Figs. 9(b)–9(d). Apparently, the number of
additional wavefronts remains 4 during the variation. There-
fore, the wavefront dislocations are robust in biased bilayer
graphene for a range of the biased voltage. In fact, similar
to the case of Friedel oscillations [54,55], our scheme could
be applied to other gapped two-dimensional materials, like
gapped graphene and transition metal dichalcogenides.

IV. SUMMARY AND DISCUSSION

In this paper, we have raised a dual-probe scheme to
demonstrate the wavefront dislocations in monolayer and
Bernal-stacked bilayer graphene by the transport measure-
ment. The analytical analysis shows that due to the distinct
pseudospin textures at K and K ′ valleys, the intervalley

interference on the electron propagating paths could ad-
ditionally introduce a phase singularity into transmission
coefficients between different sublattices. This phase singu-
larity acts as a topological defect and contributes additional
wavefronts related to topological indices on the conductance
map. Comprehensive numerical tight-binding calculation
combined with FFT analysis further supports our conclusions.
Especially for the bilayer graphene, the wavefront dislocation
is found to still exist even if the tips are connected to multiple
sublattices. Our scheme is also applied for biased bilayer
graphene and some other gapped two-dimensional materials.
Our paper opens up a transport routine in experiment to ex-
plore valley-related topological properties of materials.

Now we will discuss the details about experimental imple-
mentation. In the current technical conditions, STM already
allows imaging of the topography of surfaces, mapping the
distribution of LDOS, and manipulating individual atoms
and molecules all at atomic resolutions [56,57]. Therefore,
the coupling of one atom site for the STM tip is in prin-
ciple possible to be achieved in practice. The integration
of several atomically precisely controlled probes in a multi-
probe STM system has also continuously developed in recent
years [33,57]. To satisfy our scheme, the key point is the
distance between the probes during the two-probe transport
measurement. As reported by Kolmer et al., in two-probe
STM and scanning tunneling spectroscopy experiments on
about 70-nm-long dangling bond dimer wire supported on
a hydrogenated Ge(001) surface [58] and the anisotropic
Ge(001) surface [59], the probe to probe separation distance
could be reduced to tens of nanometers. The main limita-
tion on the distance between STM probes is tip diameters.
So, to achieve a smaller tip-tip distance, finer tips are re-
quired, which may cause some difficulties on implementation.
However, such a demanding condition is naturally relaxed in
experiments on the bilayer graphene, since the two probes are
spatially separated by the top and bottom graphene layers.
Particularly, because the probe contact need not be limited
on one site in bilayer graphene, the fixed probe connected
to the bottom sheet as a source can also be replaced by a
small electrode.

Photonic lattices [60–62] can also serve to implement our
theoretical scheme. The photonic graphene is composed of
a periodic array of evanescently coupled waveguides in a
honeycomb structure, which is often used to explore fun-
damental wave-transport phenomena [63,64]. Because the
distance between each waveguide commonly reaches several
micrometers, the light intensity at each lattice is easier to
obtain. In fact, there is a study to demonstrate the pseudo-
mediated vortex generation in artificial photonic graphene by
three or two beam excitation [65]. For our proposal, we can
inject the light on one single waveguide of the input facet of
the array, and measure the intensity profile at the output facet
for desired sublattices. This process is equal to the finite-time
evolution of an electron wave packet and somehow similar to
our proposed transport measurement.
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