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Edge channels in a graphene Fabry-Pérot interferometer
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Quantum-mechanical calculations of electron magnetotransport in graphene Fabry-Pérot interferometers are
presented with a focus on the role of spatial structure of edge channels. For an interferometer that is made
by removing carbon atoms, which is typically realized in nanolithography experiments, the constrictions are
shown to cause strong interchannel scattering that establishes local equilibrium and makes the electron transport
nonadiabatic. Nevertheless, two-terminal conductance reveals a common Aharonov-Bohm oscillation pattern,
independent of crystallographic orientation, which is accompanied by single-particle states that sweep through
the Fermi energy for the edge channels circulating along the physical boundary of the device. The interferometer
constrictions host the localized states that might shorten the device or disrupt the oscillation pattern. For an
interferometer that is created by electrostatic confinement, which is typically done in the split-gate experiments,
electron transport is shown to be adiabatic with Aharonov-Bohm interference observable only at some ranges of
magnetic field, with interfering path going through depletion regions. Interference visibility decays exponentially
with temperature with a weaker dependence at low temperature.

DOI: 10.1103/PhysRevB.107.235422

I. INTRODUCTION

Quantum Hall interferometers that operate on the
Aharonov-Bohm effect have recently been demonstrated in
graphene, with high visibility and no Coulomb charging
effects [1,2]. This suggests graphene-based interferometers
as a better platform for studying the exchange statistics of
anionic quasiparticles [3] in comparison to the traditional
GaAs-based counterpart [4,5]. The conductance oscillations
that were measured in Refs. [1,2] were well described by a
theoretical model that is based on an assumption of idealized
one-dimensional channels circulating along the edges of the
device in the quantum Hall effect (QHE) regime [5–8]. While
good agreement between experiments and the theory seem-
ingly validates the chosen model, or at least does not disprove
it, the lack of the spatial structure of the edge states and disre-
gard for electron scattering at the constriction regions in the
phenomenological modeling leaves an open question about
the physical mechanisms behind the electron interference in
the studied devices. The problem is evidenced by strong elec-
tron scattering that occurs at the graphene interfaces (i.e., the
regions where either device size or crystollographic orienta-
tion changes) that has been observed in graphene nanoribbons
[9], constrictions [10–12], and other structures [13,14]. As
was already pointed out in Ref. [1], “quantum Hall inter-
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ferometer experiments require a precise knowledge of the
edge-channel configuration.” Therefore, getting this knowl-
edge, particularly due to massless Dirac fermions in the QHE
regime, is necessary for both the interpretation of the interfer-
ometry experiments and for the foundation of theories such as
those in Refs. [1,2] and Refs. [5–7].

Previous studies of mesoscopic graphene devices operating
in the QHE regime have addressed energy structure, electronic
states and transport in nanoribbons [10,15–18], p-n hetero-
junctions [19,20], rings [21], and others [13,22,23]. These
studies have evidenced the existence of edge states [8], which
flow in only one direction along the physical edge of the
sample. Edge states flowing in an opposite direction exist at
the opposite edge, and it is the absence of scattering between
these two edges that constitutes the fundamental reason for
the robustness of the quantization of QHE [24]. In graphene,
the relativistic nature of charge carriers manifests in the so-
called anomalous QHE with Landau level (LL) present at
zero energy, which separates states with hole character from
states with electron character [25,26]. The edge states with
the same index of propagating mode, following the standard
terminology [27], are referred to in this study as an edge
channel.

This paper will provide a microscopic theory of edge
channel transport in a graphene interferometer operating on
the Aharonov-Bohm effect and will also elucidate the role
of the spatial structure of the edge states in electron quan-
tum interference. To this end, the tight-binding model of
graphene placed in a perpendicular magnetic field is em-
ployed for numerical quantum transport calculations. The
interferometer’s geometry is created from an infinite graphene
nanoribbon, either by removing carbon atoms or by electro-
static confinement in such a way that a square central region
is formed between two narrow constrictions, similarly to the
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FIG. 1. Conductance G, single-particle state spectroscopy and
edge channel displacement ξ in graphene interferometers with zigzag
(left-hand panels) and armchair (right-hand panels) orientation.
[(a) and (b)] G oscillates as a function of magnetic field B with
peaks matching the crossings of the resonant energy levels and the
Fermi energy εF in (c) and (d). The energy levels can be traced by
enhanced DOS in (c) and (d), which is obtained by integrating local
DOS over the central region of interferometer (a dot in between of
two constrictions). Another set of the energy levels, with the positive
slope, is due to the states localized at the constrictions. The geomet-
rical area of the dot, reduced by ξ , whose evolution is plotted in (e)
and (f), defines an interfering area that is enclosed by the clockwise
propagating edge channel as illustrated in the inset between (a) and
(b). The dot geometry is a square with sides W = 50 nm. The arrows
in (a) mark B for which the edge states are shown in Figs. 2 and 3.
The dashed line in (e) and (f) is the magnetic length lB; blue area
denotes the standard deviation.

Fabry-Pérot device [1,2]; see the inset in Figs. 1(a) and 1(b).
These two types of lateral confinement correspond to a fab-
rication technique based on nanolithography [12,16,28] and
split-gates [1,2]. For both cases, quantum transport calcula-
tions reveal a common Aharonov-Bohm (AB) interference
pattern [1,2,4–6,20,24,27,29] in conductance, which is due to
edge channels circulating along device physical boundaries
and scattered at the constrictions. Every conductance peak
corresponds to the single-particle state sweeping through the
Fermi energy. Conductance oscillations are independent of the
crystallographic orientation of the graphene lattice. In contrast
to traditional GaAs-based devices, where electron transport in
the QHE regime is adiabatic [4–8,24,27,29], AB interference
in graphene interferometers that is made by removing carbon
atoms occurs because the edge states propagate nonadiabat-
ically and equilibrate locally at the constrictions (interface
regions). Relatively strong confinement for Fermi electron gas
in graphene is found to cause electron localization along the
constriction and might cause a short circuit or deviation in the
AB interference signal. In the case of electrostatic confine-
ment, for a device of the same geometry, transport is adiabatic,
somewhat similarly to that found in traditional GaAs-based

interferometers [4,5,7,29], though the Klein tunneling [26]
affects edge channel propagation and AB interference is ob-
servable only for some ranges in magnetic field. Interference
visibility decays overall exponentially with T , with weaker
dependence at low T , in agreement with recent experiments
[1,20].

This paper is organized as follows. The theoretical model is
formulated in Sec. II. The results are presented together with
their interpretation and implications for experiment in Sec. III.
The main conclusions are summarized in Sec. IV.

II. MODEL

The model is based on the standard nearest-neighbor tight-
binding Hamiltonian on a honeycomb lattice,

H =
∑

i

εia
†
i ai −

∑
〈i, j〉

ti j (a
†
i a j + H.c.), (1)

where εi is the on-site energy, a†
i (ai) is the creation (de-

struction) operator of the electron on the site i, and the angle
brackets denote the nearest-neighbor indices. The magnetic
field, B, is included via Peierls substitution,

ti j = t exp

(
i
2π

�0

∫ r j

ri

A · dr
)

, (2)

where A = B(−y, 0, 0) is the vector potential in the Landau
gauge, ri is the coordinate of the site i, �0 = h/|e| is the flux
quantum, t = 2.7 eV. Hamiltonian (1) with εi = 0 is known to
describe the π -band dispersion of graphene well at low ener-
gies [30] and has been used in numerous studies of electron
transport in graphene nanostructures [13,14,17,21,26,31].

Effects due to next-nearest-neighbor hopping, spin, and
electron-electron interactions are outside of the scope of this
study.

The Green’s function of the system connected at its two
ends to the semi-infinite leads is written as [24]

G(ε) = [Iε − H − �L(ε) − �R(ε)]−1. (3)

Here H describes the scattering region that includes the inter-
ferometer itself and a part of the leads, I is the unitary opera-
tor, �L(ε) is the self-energy due to the semi-infinite left lead
at electron energy ε, and �R(ε) is similarly for the right lead.
The lead self-energies are obtained from the surface Green’s
functions by the method given in Ref. [32]. The system is
supposed to be whole graphene made, including the leads.

Having G(ε) calculated allows one to obtain observable
quantities, like density of states (DOS) and conductance [24].
The local density of states (local DOS) for the ith site is given
by the diagonal elements of the Green’s function as

ρi(ε) = − 1

π
Im[Gii(ε)]. (4)

The two-terminal (Hall) conductance G of the system is
obtained from Landauer-Büttiker formula, which relates con-
ductance to the scattering properties of the system [33]

G = 2e2

h

∑
βα

tβα = 2e2

h

∑
βα

vβ

vα

|sβα|2, (5)
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where tβα is the transmission coefficient from incoming state
α in the left lead to outgoing state β in the right lead, sβα is the
corresponding scattering amplitude, vα and vβ are the group
velocities for those states, all at the Fermi energy εF . sβα is
obtained from the Green’s function that connects the first and
last slices of the scattering region, see Appendix B. Another
quantity of interest is the probability of electron density |
α|2
(the wave functions modulus), which is obtained from the
wave functions in the leads, sβα , and the Green’s function
(3) by applying Dyson equation recursively as described in
Appendix B.

III. RESULTS

The system studied is a graphene interferometer that is
made from a nanoribbon in an armchair or zigzag configura-
tion by trimming (etching) carbon atoms away or by applying
electrostatic potential, see the inset in Fig. 1. Two (identical)
constrictions define the central region similarly to an open
quantum dot. For simplicity, the results are presented for
rectangular-shaped constrictions; a smooth constriction will
be commented on. Adopting zigzag and armchair terminology
from underlying nanoribbon structure, the interferometer is
below referred to as either a zigzag or armchair. The operation
regime is chosen to support three channels for electron propa-
gation within which electron can interfere. For a 50-nm-wide
ribbon, which serves as an electron reservoir for the channels,
this is achieved at εF = 0.2 t and B = 155–180 T [34]. Ap-
pendix A elaborates on the propagating states in the chosen
regime. The temperature is T = 0 K unless otherwise stated.

A. Edge channel interference

Numerical calculation of quantum electron transport, de-
scribed by Eqs. (1)–(5), reveals conventional AB conductance
oscillations [4,5,24,27,29] in a graphene interferometer, ir-
respective of crystallographic orientation; see Figs. 1(a) and
1(b). The peaks in G correspond to the resonant states pass-
ing through εF , similarly to what was found in Refs. [5,29].
These resonant states can be traced in Figs. 1(c) and 1(d) as
bright trenches with a negative slope (lines of constant phase).
Sloping downward with increasing B implies that degeneracy
of the occupied LLs increases via their edge states, provided
by the geometry confinement that makes LLs to rise in en-
ergy on approaching the sample boundary [24,27]. Downward
sloping corroborates AB regime of interference, as opposed to
Coulomb dominated regime [4,7]. For each LL, the degree of
degeneracy is quantified by the number of states per unit area,
which increases as B/�0. Every resonant state is a result of
the constructive interference of the electron wave in the edge
channels that are backscattered at the two constrictions. The
difference between phases in two arms of the interferometer
is proportional to the total flux � enclosed by the area S
of the interfering path [24]; � = BS. Changing � by �0,
via applied B, causes the phase difference to accumulate a
value of 2π and G to develop one oscillation period [5,24].
One period, �B = 2.22 and 2.16 T for zigzag and armchair
configuration, yields area, S = 1872 and 1924 nm2, that is
less than the geometrical area of the central region 2500 nm2.
This discrepancy might be attributed to a finite spatial extent
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FIG. 2. The wave function modulus |
α|2 of αth incoming state
for B marked by the red arrows in Fig. 1(a). The left-hand (right-
hand) panels represent the minima (maxima) of G oscillation. In (a),
the arrow and cross illustrate schematically the incoming state and
forward scattering to another states that occurs at the constriction
bend. The insets in (c) and (f) show the transmission coefficients
from incoming α to outgoing β state. G0 = 2e2/h.

of the edge channel, so the interfering area is smaller then the
geometrical one. Figures 1(e) and 1(f) substantiate this argu-
ment by showing an averaged edge channel distance from the
physical boundary ξ = [〈r|ψα〉]α,x, where averaging is done
over channels and the straight segments along the boundaries.
ξ is about the magnetic length lB and, interestingly, does not
reveal any clear beat of �B as it was argued to occur in the
Coulomb dominated regime [7]. Slightly larger ξ for zigzag
orientation, in comparison to armchair one, explains slightly
smaller S and larger �B. Thus, G oscillations in graphene AB
interferometer are due to interference of the edge channels
propagating at about lB distance from the device boundaries.

Because zigzag and armchair interferometers reveal quali-
tatively similar dependencies for G and the structure of energy
levels, Fig. 1, below only zigzag configuration is considered.

Figure 2 shows the edge states characterizing conductance
oscillation at its peak and dip values. The details on the elec-
tronic states entering and leaving the interferometer, which are
at the openings in these plots, are given in the Appendix A.
Edge channel visualization leads to immediate conclusion:
A distinct feature of electron transport in a graphene in-
terferometer in comparison to a conventional GaAs-based
interferometer [4,5,7,29] is nonadiabaticity due to strong scat-
tering between the edge states that occurs at the constrictions.
Even though G varies by nearly one conductance quanta over
B interval in Figs. 1(a) and 1(b), the oscillations are not caused
by the highest occupied LL edge state (as it does for a conven-
tional GaAs-based interferometer) but rather by a mix of all of
the states. Strong interchannel scattering is further evidenced
by the transmission coefficients in the insets in Figs. 2(c) and
2(f). This indicates local equilibrium [27] of the edge states
due to graphene interfaces. The effect develops clearly at the
constriction bending as illustrated by the arrow and cross in
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FIG. 3. Short circuit of the interferometer by the localized states
at the constrictions. (a) The first propagating state α = 1 with |
1|2
magnified and truncated (for the sake of better visualization). Simi-
larly strong (exponential) localization at the constriction occurs for
all other propagating states; the transmission coefficients are shown
in (b). B = 156 T is marked by the green arrow in Fig. 1(a).

Fig. 2(a). It is essentially the same for all bends along the edge
channel path. If rectangular shaped constriction is smoothed
out toward a cosinelike profile, then the results do not change
qualitatively thus implying that nonadiabaticity is a result of
abrupt lattice termination.

Another observation in Fig. 2 is valley selective scattering
(t2←1 > t3←1) in the graphene interferometer, which is in line
with conclusion about valley degeneracy lifting of AB inter-
ference in graphene rings [21].

The interferometer constrictions, acting as scattering
centers for incident electrons, host another set of the single-
particle states that rather depopulate in increasing B—visible
as bright trenches with a positive slope in Figs. 1(c) and
1(d). These states are localized along the constrictions and
cause shorting in case of the zigzag interferometer due to
their coupling to and backscattering the incident states in the
edge channels at the entrance constriction: G drops to 2e2/h
at B = 156 T in Fig. 1(a), see Fig. 3. For the armchair in-
terferometer, AB oscillation periodicity is seemingly violated
at B, for which the localized states cross εF . The difference
between armchair and zigzag interferometers might be at-
tributed to the different atomic arrangements of the edges and
consequently to different low-energy electronic states causing
localization [35]. Note that the armchair interferometer in the
present study is crystallographically an inverse of a zigzag
one in the sense that all of the zigzag edges are replaced by
armchair edges and vice versa. It is known that depending
on the coupling details between the electronic states trans-
mission through a mesoscopic system can reveal resonances
or antiresonances [36]. The existence of the localized states at
the constrictions and the shorting in case of the zigzag interfer-
ometer, Fig. 3, imply that the strong electron backscattering on
the graphene interfaces, which has been previously observed
for different structures at zero B [9,13,14], also persists in the
QHE regime.

B. Electrostatic confinement

The Fabry-Pérot interferometers that were studied experi-
mentally in Refs. [1,2] were made from a uniform graphene
layer rather by imposing electrostatic confinement. In those
studies, the fabricated devices contained additional split gate
electrodes that expelled the charge carriers from the area
beneath by shifting εF into the energy gap between LLs. The
gap formation was controlled in separate measurements to
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FIG. 4. (a) Conductance map G(B,V ) for a zigzag interferome-
ter with electrostatically defined constrictions. G is additionally color
coded. The arrows mark potentials V selected for the plot (b). V
varies over the depletion areas whose geometry is exactly the same
as the areas with removed carbon atoms in the interferometer studied
in Fig. 1. Conductance from the latter is shown by the dotted line
in (b) for reference. V = 0 corresponds to no confinement; V =
−εF = −0.2 t is for the graphene charge neutrality in the depletion
regions. �B marks the AB period. [(c)–(h)] Same as Fig. 2 but for
V = −0.2 t . Corresponding B are marked by the arrows in (b).

occur at the graphene charge neutrality point in the magnetic
field, arguably due to electron interactions. The structures that
are studied theoretically in the previous subsection are made
by removing (etching) carbon atoms away, as it is routinely
done in other experiments that based on nanolithography
[12,16,28]. The latter seemingly produces the strongest ver-
sion of confinement, which raises the question about the inter-
ference pattern when confinement weakens. To keep the anal-
ysis simple, the same geometries as above are taken but with
an electrostatic potential applied to form the constrictions,
V = εi, where the site i belongs to the depletion (split gated
[1,2]) regions, and Hamiltonian (1) is modified appropriately.

Figure 4 shows conductance in the zigzag interferometer
as a function of B and V . Several features of electrostatic
confinement can be observed. The first feature is that AB os-
cillations are seen in certain ranges of the magnetic field, such
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and is a guide for eye. The inset shows smearing G oscillations for
several T .

as B = 163–170 T for V = −0.2 t ; as detailed in Fig. 4(b). For
V = −0.2 t , the region under the top gates brings the graphene
electron system to the charge neutrality and a QHE condition
in which the highly degenerate zeroth LL [15,18,25,26] is at
εF . In contrast to the regime that was utilized in Refs. [1,2],
where a gap in the energy spectrum occurs, the noninteracting
model here operates with (valley and spin) degenerated LL
at the charge neutrality point. Therefore, from bare existence
of AB interference in G, one may conclude that electro-
static confinement is sufficient to define AB interferometer
even without the gap. The second feature in Fig. 4(b) is the
smaller oscillation period for the interferometer with electro-
static confinement �B′ < �B, which is due to penetration
of the electron wave function into potential barriers of the
constrictions, Figs. 4(c)–4(h). For period �B′, estimation of
the interfering area gives S′ = 2660 nm−2, which is slightly
larger than the geometric area of the central region. Note how
the first edge channels goes straight through electrostatic con-
strictions due to Klein tunneling. The third feature is multiple
aperiodic resonances in G, which reflects resonant tunneling
through potential barrier and quantum interference effects that
include areas inside the potential barriers. As it is typical
for mesoscopic devices, resonances are very sensible to the
details of potential barriers and the values of B [37]. Fourth,
the transport is adiabatic with no interchannel scattering, see
the transmission coefficients in the insets in Figs. 3(g) and
3(h).

C. Visibility

Figure 5 shows temperature dependence of the interference
visibility, normalized by ν(T = 0),

ν = Gmax − Gmin

Gmax + Gmin
, (6)

where the effect of T is introduced via the derivative over the
Fermi-Dirac function [24],

G = −2e2

h

∫
dε

∂ f

∂ε
G(ε). (7)

As T increases, more neighbor resonance states, Figs. 1(c)
and 1(d), contribute to conduction that averages out oscillating
amplitude, see inset to Fig. 5. ν decays exponentially over
two decades, while there is a visible saturation at low T , in
agreement with recent experimental findings [1,20].

IV. CONCLUSION

A quantum-mechanical model of electron magnetotrans-
port in a graphene Fabry-Pérot interferometer, that explicitly
accounts for the spatial structure of electron states and their
interference and does not rely on any phenomenological
parameters (like transmission amplitudes of the constric-
tions [1,2,5–7]), is presented. For interferometers of different
crystallographic orientations, numerical calculations reveal a
common Aharonov-Bohm interference effect, irrespective of
the orientation of the graphene lattice. Two-terminal con-
ductance oscillates as one magnetic flux quanta is added
to the interfering path, accompanied by one single-particle
state added to edge channels circulating along the physical
boundary of the device. In the case of geometry made by
etching, the interferometer constrictions cause strong inter-
edge-channel scattering that causes the system to establish a
local equilibrium and electron transport to be nonadiabatic.
The interferometer constrictions host the localized states that
might shorten the device or disrupt the oscillation pattern.
Transport, however, is adiabatic in the case of electrostatic
confinement, similarly to traditional GaAs-based interfer-
ometers [4,5,7,29], though the Klein tunneling affects edge
channel propagation and AB interference is observable only
for some ranges in magnetic field. Interference visibility de-
cays exponentially with T showing a weaker dependence at
low T .

The results suggest that any graphene interface that ex-
poses the physical edges of the graphene lattice acts as an
“ideal” contact in the QHE regime. By establishing a lo-
cal equilibrium, and thus making the edge channels equally
populated, a prerequisite is fulfilled for the use of a local
resistivity tensor [27]. However, common theories of QHE,
where transport is assumed to be adiabatic, are not applicable
to such systems or (in particular) to graphene interferometers
made by etching nanolithography.

In the experiments in Refs. [1,2], electrostatic confinement
was realized by adjusting depletion regions into the energy
gap. To account for this, many-electron and (possibly) spin
[38] effects should be added to the theory. Also, for a quan-
titative comparison, the realistic shape (and size) of the split
gates and potential due to those split-gates might be needed.
The study presented here might serve as a basis the further
development of the graphene AB interferometer theories.
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APPENDIX A: EDGE CHANNELS IN THE LEADS

Figure 6 shows the dispersion relation and wave functions
in graphene nanoribbons—the structures which serve as elec-
tron reservoirs (leads) in the interferometers studied in the
main text. At B = 160 T [34], the dispersionless bands can
be traced and centered around graphene K and K ′ points, and
be attributed to Landau levels (LLs) [15,18,26]. The identified
LLs agree reasonably well with the solution of the Dirac
equation in 2D graphene [26]

εn = vF

√
2eh̄Bn, (A1)

where vF = 106 m/s and n is the index of electron LL,
counted from n = 0 at ε = 0. At εF = 0.2 t , zeroth and first
LLs are occupied in the ribbon bulk and provide, accounting
for the valley degeneracy [26], three channels for electron
propagation along the ribbon edges (in both directions), see
also the left-hand portions of the plots in Figs. 2 and 4(c)–4(h),
where the electron states enter the interferometer. In Fig. 6, the
wave functions propagating only in one (positive x) direction
are shown. (As it is intrinsic for QHE, similar states on the
opposite edge propagate in the negative x direction [8,24,27].)
The dispersion relations in Fig. 6 reveal electron bands that
raise in energy and cross εF at momentum whose conversion
to coordinate space y = −hkx/eB gives approximate location

of the edge channel [24]. The latter thus can be viewed as real
space realisation of the Fermi surface.

Recently, the electron edge states and LL spectroscopy
have been directly observed in scanning tunnel microscopy
measurements [23]. On approaching the sample boundary,
LLs were found to raise in energy and edge channels to be
sharply confined within few lB to the physical boundary of
graphene, all consistent with Fig. 6.

APPENDIX B: SCATTERING PROBLEM FOR GRAPHENE
INTERFEROMETER

In this Appendix, transmission coefficients, entering the
Landauer-Büttiker formula [33] for conductance (5), are de-
rived using the Green’s functions. The derivation follows
Ref. [32], and the reader is referred to this reference for further
details. Similar approaches can be found in Refs. [39–43]. The
method is essentially the same as one used for the materials
with parabolic band dispersion, where the tight-binding model
is formulated on the square lattice [44].

1. Bloch states in ideal GNR

First, let us consider an ideal GNR infinitely long in x
direction and consisting of N lattice sites in y direction,
Fig. 7. For graphene hexagonal lattice, two orientations are
considered as basic, with terminations along ribbon edges
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FIG. 7. The unit cells of zigzag (a) and armchair (b) GNRs.
The unit cell is periodic in the x direction and is chopped into M
transverse slices (denoted by the gray areas) in the y direction. M = 2
and M = 4 for zigzag and armchair unit cells. In (a) and (b), every
slice contains N = 5 sites. GNR becomes the semi-infinite leads in
the computation domain (c), which also includes the scattering region
in between. The scattering region, whose slices run 1 � i � M, can
generally be of arbitrary geometry [43]. In present study, it has two
constrictions, defined either by removing lattice sites as shown in
(c) or imposing potential on those sites.

being either zigzag or armchair [26]. The unit cells for these
terminations consist of M = 2 and 4 slices, Figs. 7(a) and
7(b). Every lattice site corresponds to a carbon atom and,
more specially, to its pz orbital [30]. In this approach, no
discrimination applies on A and B graphene sublattices [26],
and whether the orientation is zigzag or armchair depends
solely on connection between the lattice sites.

The solution of the Schrödinger equation with Hamiltonian
(1) for the ideal GNR can be written in terms of an anzats for
a Bloch wave,

|ψ〉 =
∑

α

eikαx|χα〉, (B1)

where kα is the Bloch wave vector in the direction of trans-
lation invariance and |χα〉 is the periodic eigenfunction. The
sum in (B1) runs over propagating and evanescent states to
form a complete set [45].

For the ideal GNR, the Hamiltonian (1) can be rewritten
as a sum of the operators describing the unit cell, the outside
region, and coupling between them

H = Hcell + Hout + U . (B2)

The unit cell term includes the slices 1 � i � M, as shown
in Figs. 7(a) and 7(b), while the term for the outside region
goes all over the other slices, −∞ < i � 0 and M + 1 � i <

∞. These two terms are coupled by the transfer integrals
(2) acting between slices 0 ↔ 1 and M ↔ M + 1. For the
Hamiltonian written in the form (B2), the corresponding wave

function is

|ψ〉 = |ψcell〉 + |ψout〉. (B3)

Defining the Green’s function in a way suitable for calcula-
tions in matrix form [24,39]

G = (E − H + iη)−1, (B4)

with η → 0+, the wave function of the cell can be written as

|ψcell〉 = GcellU |ψout〉, (B5)

where Gcell is the Green’s function of the operator Hcell. Taking
the matrix elements of the wave functions for the first i = 1
and the last i = M slices of the unit cell, this equation can be
written in the matrix form

ψ1 = G1,1U1,0ψ0 + G1,MUM,M+1ψM+1, (B6)

ψM = GM,1U1,0ψ0 + GM,MUM,M+1ψM+1, (B7)

where ψi is the vector column describing the wave function
for the slice i, Gi,i′ is the Green’s function matrix connecting
slices i and i′, and Ui,i′ is the matrix of hopping integrals (2).
Translation invariance of the unit cell implies UM,M+1 = U0,1,
Figs. 7(a) and 7(b). The Bloch’s theorem in terms of the
periodic eigenstates,

χi+M = eikMχi, (B8)

allows further to rewrite Eqs. (B6) and (B7) as the eigenvalue
problem,
(−G1,MU0,1 0

−GM,MU0,1 I

)−1(−I −G1,1U1,0

0 −GM,1U1,0

)(
χ1

χ0

)
= eikM

(
χ1

χ0

)

(B9)
where I is the unitary matrix. Equation (B9) has 2N eigenval-
ues and 2N eigenvectors, which are the Bloch states classified
into N right- and N left-going waves. The right-going solu-
tions consists of traveling waves with velocity in positive x
direction and evanescent waves decaying exponentially in the
positive x direction. Similarly, the left-going solutions consists
of propagating and decaying waves in negative x direction.

If the Bloch wave (B1) is a set of the eigenstates of Hamil-
tonian (B2), in which Hout splits into infinite replicas of Hcell

connected by U , then the group velocity for an eigenstate α is

vα = 1

h̄

∂

∂k
〈ψα|H |ψα〉 = iM

h̄
〈χα|UeikM − U †e−ikM |χα〉,

(B10)
where U † is the Hermitian conjugate of the coupling operator
and |ψα〉 is the Bloch wave normalized on unit flux.

2. Surface Green’s function

Let us consider a semi-infinite ideal graphene ribbon ex-
tending from slice −m to the right, −m � i < ∞. Suppose
that an excitation |s〉 is applied to its surface slice i = −m.
Whenever the response |ψ〉 is related the excitation |s〉 by
a differential operator Dop as Dop|ψ〉 = |s〉 we can define a
Green’s function (propagator) and express the response in the
form [24]

|ψ〉 = D−1
op |s〉 = G|s〉, (B11)
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where |ψ〉 is the wave function that has to satisfy the Bloch
condition (B1). Consider a unit cell of a graphene lattice, 1 �
i � M, M = 2 and 4 for the zigzag and armchair orientation,
see Figs. 7(a) and 7(b). Applying the Dyson’s equation be-
tween the slices 0 and 1, we obtain

G1,−m = �rU1,0G0,−m, (B12)

where �r ≡ G1,1 is the right surface Green’s function. Evalu-
ating the matrix elements 〈ψ1|ψ〉 of (B11) and making use of
(B12), we obtain for each Bloch state α, ψα

1 = �rU1,0ψ
α
0 . The

latter equations can be used for determination of �r

�rU1,0 = 
1

−1
0 , (B13)

where 
1 and 
0 are the square matrices composed of the
column vectors χα

1 and χα
0 , 1 � α � N , Eq. (B9), i.e., 
1 =

(ψ1
1 , . . . , ψN

1 ), 
0 = (ψ1
0 , . . . , ψN

0 ). The expression for the
left surface Green’s function �l (i.e., the surface function of
the semi-infinite ribbon open to the left) is derived similarly,

�lU
†
1,0 = 
M
−1

M+1, (B14)

where the matrices 
M and 
M+1 are defined in a similar way
as 
1 and 
0 above.

3. Transmission coefficients

To calculate the transmission coefficients and hence eval-
uate (5), the interferometer structure is divided into three
regions: two ideal semi-infinite leads of the width N extending
in the regions i � 0 and i � M + 1, respectively, and the
scattering region, Fig. 7(c). The latter composes of two con-
strictions and the cavity in between, see the inset in Fig. 1(a).
In general, the scattering region can contain arbitrary scatter-
ers and be of arbitrary shape [24].

The incoming, transmitted, and reflected states in the leads
have the form of Bloch waves (B1),∣∣ψ i

α

〉 =
∑
i�0

eik+
α xi |χα〉, (B15)

∣∣ψ s
α

〉 =
∑

i�M+1

∑
β

tβαeik+
β (xi−xM+1 )|χβ〉, (B16)

∣∣ψ r
α

〉 =
∑
i�0

∑
β

rβαe−ik−
β xi |χβ〉, (B17)

where tβα (rβα) are the transmission (reflection) amplitude
from the state α to the state β, plus (minus) superscripts for
the wave vectors denote right (left) going direction. The sum
over β includes outgoing propagating and evanescent states.

The solution of the Schrödinger equation

H |ψ〉 = E |ψ〉 (B18)

with |ψ〉 = |ψ s
α〉 + |ψ i

α〉 for the transmitted state in the right
lead can be written as∣∣ψ s

α

〉 = G(H − E )
∣∣ψ i

α

〉
. (B19)

To find the transmission matrix, let us consider the matrix
element 〈ψM+1|ψ s

α〉. Using (B19) and applying the Dyson’s
equation between slices M + 1 and 0 gives

〈
ψM+1

∣∣ψ s
α

〉 = GM+1,0U0,1
1eik+
α − GM+1,1U1,0
0. (B20)

On the other hand, from (B16)
〈
ψM+1

∣∣ψ s
α

〉 = 
1

∑
β

sβα. (B21)

The Dyson’s equation further gives GM+1,0 = −GM+1,1U1,0�l .
As a result, the matrix of transmission amplitudes S is [32]


1S = −GM+1,0
(
U0,1
1K1 − �−1

l 
0
)
, (B22)

where S has the dimension N × Nprop, Nprop is the number of
propagating states in the leads, 
0 and 
1 are wave functions
at 0 and 1 slices, �l is given by (B14), K1 is the diagonal
matrix with elements K1,αβ = eik+

α δαβ . The Green’s function
GM+1,0 connects M + 1 and 0 slices, which are the ending
slices of the leads attached to the scattering region, Fig. 7(c).
To calculate GM+1,0 the standard recursion algorithm is used
[32,40,42,43] which is the more efficient method than direct
matrix inversion as Eq. (B4) might otherwise suggest [24].

The matrix of the reflection amplitudes R is derived simi-
larly to (B22) and reads [32]


0R = −G0,0
(
U0,1
1K1 − �−1

l 
0
) − 
0. (B23)

Together with the transmission amplitudes, the scattering
matrix is completely determined and satisfies the unitarity
condition implied by current conservation [24].

The sum over transmission and reflection coefficients gives
the number of channels open for propagation in the lead,
Mlead, the so-called sum rule [24]∑

αβ

(|tβα|2 + |rβα|2) = Mlead. (B24)

4. Wave functions

The calculation of the wave function inside the scattering
region proceeds in two steps. First, the wave functions in
the leads, |ψ i

α〉 + |ψ r
α〉 and |ψ t

α〉, Eqs. (B17), are determined
from the transmission and reflection amplitudes [(B22) and
(B23)]. The second step is recursive and requires the Green’s
functions in the scattering region. It starts from Eq. (B7) to
obtain ψM , the wave function at the slice M next to the right
lead, Fig. 7(c). Eq. (B7) can be rewritten in a general form,

ψi = Gi,1U1,0ψ0 + Gi,iUi,i+1ψi+1, (B25)

and then applied again but for the slice i = M − 1. By this
way the recursion continues backward until the slice i = 1.
Alternatively, one can start from Eq. (B6) and recurse forward
to obtain the wave functions inside the scattering region.

5. Validity checks

The validity of the above method and its numerical im-
plementation has been checked on several tests. The sum
rule (B24), and thus unitarity of the scattering matrix and
current conservation [24], is fulfilled with an accuracy greater
than 10−2. At B = 0 T, the conductance through a single
constriction as presented in Ref. [46] was reproduced iden-
tically. Similarly, the wave functions and dispersion relation
for ideal GNRs, both in armchair and zigzag orientations,
were obtained in the quantitative agreement with the previous
results [35,47,48]. At finite B, magnetic depopulation [24,27]
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of electron quantization subbands was calculated in agreement
with Refs. [10,21,49]. The dispersion relations shown in Fig. 6
are qualitatively similar to the ones presented in Refs. [15,26].
Landau levels, which can be traced in GNR bulk in Fig. 6,

agree reasonably well with the analytical result of the Dirac
equation for 2D graphene [26], keeping also in mind that the
energy levels in GNR is a result of both magnetic field and
finite-size confinement.
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