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Out-of-time-ordered correlators (OTOCs) help characterize the scrambling of quantum information and are
usually studied in the context of nonintegrable systems. In this work, we compare the relaxation dynamics of
OTOCs in interacting integrable and nonintegrable spin- 1

2 XYZ chains in regimes without a classical counterpart.
In both kinds of chains, using the presence of symmetries such as U (1) and supersymmetry, we consider
regimes in which the OTOC operators overlap or not with the Hamiltonian. We show that the relaxation of
the OTOCs is slow (fast) when there is (there is not) an overlap, independently of whether the chain is integrable
or nonintegrable. When slow, we show that the OTOC dynamics follows closely that of the two-point correlators.
We study the dynamics of OTOCs using numerical calculations, and gain analytical insights from the properties
of the diagonal and of the off-diagonal matrix elements of the corresponding local operators in the energy
eigenbasis.

DOI: 10.1103/PhysRevB.107.235421

I. INTRODUCTION

Out-of-time-ordered correlators (OTOCs) are a diagnostic
of quantum information scrambling [1–14], can be used to
detect quantum phases [15–17], and can be measured experi-
mentally [18–26]. In quantum systems with a classical limit,
OTOCs grow exponentially fast as a result of chaos [27–39]
or of instabilities in integrable systems [40–45]. Due to the
relationship with chaos in classical systems, connections be-
tween the behavior of OTOCs and the onset of thermalization
have been discussed [3–13]. In nonintegrable models with
local conserved quantities, OTOCs have been shown to ex-
hibit a slower (algebraic) growth when the operators involved
have an overlap with a conserved quantity [46–52]. This
behavior has been explained in terms of the Lieb-Robinson
bounds [53,54] and of the eigenstate thermalization hypothe-
sis (ETH) [51,52]. In this work, we study the unitary dynamics
of OTOCs in interacting integrable and nonintegrable spin- 1

2
chains with time-independent Hamiltonians in regimes that do
not have a classical counterpart. Our goal is to understand the
effect that the overlap of OTOC operators with the Hamilto-
nian has on the relaxation dynamics of OTOCs.

Interacting integrable systems have been extensively stud-
ied theoretically in recent years because of their relevance
to experiments [55,56], and this has resulted in remarkable
progress in understanding their dynamics [57]. In those sys-
tems, after reaching equilibrium following unitary dynamics,
observables are not described by traditional Gibbs ensembles
[58–60], but by generalized Gibbs ensembles that incorporate
all the conserved quantities that make the models integrable

[61–63]. Furthermore, as a result of the presence of an exten-
sive number of conservation laws, the large-distance dynamics
of integrable models is different from regular hydrodynamics
[64–66], and it is described by a generalized hydrodynamics
[67,68].

We compare the time-evolution of OTOCs in interacting
integrable and nonintegrable spin- 1

2 XYZ chains. Our analyti-
cal insights and numerical results elucidate the role that the
overlap between the OTOC operators and the Hamiltonian
has on the dynamics of OTOCs. We make those overlaps
nonvanishing using symmetries, specifically, U (1) symmetry
and supersymmetry. We first highlight that, when the OTOC
operators overlap with the Hamiltonian, the OTOC dynamics
can mirror the behavior of two-time correlators for long times.
We then show that, within the system sizes and timescales that
we consider, the dynamics of OTOCs for both interacting in-
tegrable and nonintegrable many-body quantum systems can
be qualitatively and quantitatively analogous. The OTOCs for
interacting integrable and nonintegrable models can exhibit a
slow (algebraic-like) relaxation if the OTOC operators overlap
with the Hamiltonian, and a faster (exponential-like) relax-
ation if they do not. Analytical insights are obtained using the
relation between the dynamics of the OTOCs and the behavior
of the matrix elements of the operators involved in the OTOCs
in the energy eigenbasis; specifically, the behavior of the
diagonal matrix elements in finite systems with short-range
interaction, and the behavior of the off-diagonal elements in
the thermodynamic limit.

The presentation is organized as follows. In Sec. II, we use
the properties of the matrix elements of the operators in the
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OTOCs, written in the eigenenergy basis, to provide a general
understanding of the relaxation dynamics of the OTOCs. The
spin- 1

2 XYZ chains in which the OTOCs are studied and the
symmetries of their Hamiltonians are discussed in Sec. III.
The numerical results are presented in Sec. IV. A summary of
our results is then provided in Sec. V.

II. DYNAMICS OF OTOCS AND MATRIX
ELEMENTS OF OPERATORS

Because of its nontrivial dynamics and universality, we
study the infinite-temperature OTOC. For operators Â and B̂,
it is defined as

OAB(t ) = 〈[Â(t ), B̂][Â(t ), B̂]†〉/2, (1)

where Â(t ) = Û †(t )ÂÛ (t ) is the time-evolved operator Â un-
der the unitary evolution operator Û (t ) = T e−i

∫ t
0 Ĥ (τ )dτ , with

T indicating the time-ordered integration, and Ĥ (t ) being a
general time-dependent Hamiltonian. By infinite-temperature
we mean that 〈. . .〉 = tr(. . .)/V , where V is the relevant
Hilbert space dimension. In the context of such an average,
one says that two operators Â and B̂ have a nonzero overlap
whenever 〈ÂB̂〉 �= 0. Equation (1) can be rewritten as

OAB(t ) = GAB(t ) − F AB(t ), (2)

where

GAB(t ) = 〈B̂Â(t )Â(t )†B̂†〉 (3)

equals 1 for unitary operators, which are the focus of this
work, and

F AB(t ) = 〈Â(t )B̂Â(t )B̂〉. (4)

In what follows, we study the time evolution of F AB(t ).
For a time-independent Hamiltonian (our focus here), with

eigenenergies Eα and eigenkets |α〉, Eq. (4) can be written as

F AB(t ) = 1

V
∑

α,β,γ ,δ

ei(Eα−Eβ+Eγ −Eδ )t AαβBβγ Aγ δBδα, (5)

where Aαβ = 〈α|Â|β〉, Bβγ = 〈β|B̂|γ 〉. We work in units in
which h̄ = 1.

Next, we discuss two ways in which one can gain an
analytic understanding of the OTOCs decay. The first one in-
volves infinite-time averages in finite systems, and the second
one involves the structure of the off-diagonal matrix elements
of the operators of interest in the energy eigenbasis in the ther-
modynamic limit. Our focus is on traceless operators Â and B̂
that, in addition to being unitary, are local and Hermitian (i.e.,
that are physical observables).

A. OTOC dynamics in the thermodynamic limit and
infinite-time averages in finite systems

Under the assumption of unequal energy spacings,

Eα − Eβ = Eγ − Eδ �⇒
⎧⎨
⎩

Eα = Eβ and Eγ = Eδ

or
Eα = Eδ and Eβ = Eγ ,

(6)

one finds that the infinite-time average of Eq. (5), describing
the typical long-time results in finite systems of size L [69], is

F AB
L (∞) = 1

V

[∑
α

A2
ααB2

αα

+
∑

β,α �=β

(AββAαα|Bβα|2 + |Aβα|2BββBαα )

]
. (7)

Assumption (6) for the eigenenergies is traditionally ex-
pected to hold for nonintegrable quantum systems [70], and
Eq. (7) has been recently verified to be a good approximation
for numerical results of OTOCs in such systems [51,71]. As-
sumption (6) is also expected to hold for interacting integrable
quantum systems, which have a Poisson-like level spacing
distribution, i.e., the eigenenergies behave as uncorrelated
random numbers and, consequently, do not exhibit extensive
degeneracies like the ones found in noninteracting models
[72]. Here, we show that Eq. (7) can also be used in the context
of interacting integrable quantum systems.

Equation (7) can be further simplified under the assump-
tion that the eigenstate to eigenstate fluctuations of Aαα and
Bαα , for all eigenstates with the same energy density, vanish
at least polynomially with the system size [71]. Under this
assumption, if operator Â or B̂ (or both) has (have) a nonzero
overlap with the local Hamiltonian (a conserved quantity of
the dynamics), then the diagonal matrix elements of the op-
erator decay algebraically with the system size (we will use
symmetries to generate such nonvanishing overlaps). Since we
consider unitary operators, this implies that the first sum in the
right-hand side of Eq. (7) decays to zero, as a function of the
system size, faster than the second sum. Hence, the results in
Ref. [71] allow us to simplify Eq. (7) to

F AB
L (∞) ≈ 1

V
∑

n

(A2
αα + B2

αα ). (8)

One can then see that, for F AB
L (∞) to be nonzero, the diagonal

matrix elements of Â or B̂ (or both) need to be nonzero. We
emphasize that, as mentioned before, a necessary condition
for Eq. (8) to hold is that the operator Â or B̂ (or both) has
(have) a nonzero overlap with the Hamiltonian. Secondly, for
our analyses below, Eq. (8) is meaningful only when used for
sufficiently large but finite systems. In those analyses, Eq. (8)
vanishes identically in the thermodynamic limit.

The assumption that the eigenstate to eigenstate fluctua-
tions of Aαα and Bαα , for all eigenstates with the same energy
density, vanish in the thermodynamic limit has been found to
hold for physical observables (represented by few-body oper-
ators) in nonintegrable systems [69], with a decrease of the
fluctuations that is exponential with the system size [73–75],
as opposed to the weaker polynomial decrease required in
Ref. [71]. This assumption is violated in integrable systems,
but only by a vanishing fraction of the eigenstates with the
same energy density. In integrable systems, the variance of the
diagonal matrix elements has been found to decay as a power
law with the system size [76–80]. This helps understanding
why, as we will show, Eq. (8) can also be used to gain insights
into the behavior of OTOCs in interacting integrable systems.

If one invokes the Lieb-Robinson bound, which bounds the
speed of the propagation of correlations in local and bounded
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Hamiltonians [81,82], then one can use Eqs. (7) and (8) in
finite systems to predict what happens in the thermodynamic
limit at finite times. Because of the bound, an accurate de-
scription of the evolution of the OTOCs in the thermodynamic
limit can be obtained by considering a finite system of size
LLR,

F AB
L=∞(t ) ≈ F AB

LLR
(t ), (9)

where LLR ≡ s vLR t , vLR is the Lieb-Robinson velocity, and
s is a real number larger than 1.

Assuming that the system is maximally scrambled within
the region of size LLR, one can write

F AB
L=∞(t ) ≈ F AB

LLR
(∞), (10)

which, since LLR increases with time, is a time-dependent
quantity. If F AB

L (∞) decays algebraically with the system size,
i.e., if

F AB
L (∞) ∝ 1

Lη
, (11)

which, as mentioned before, occurs if the operator Â or B̂
has a nonzero overlap with the local Hamiltonian [71], then
the OTOC in the thermodynamic limit decays algebraically in
time

F AB
L=∞(t ) ∝ 1

tη
. (12)

If the system is not maximally scrambled as assumed be-
fore, then the decay of F AB

L=∞(t ) is slower, i.e., F AB
LLR

(∞) is a
lower bound for the relaxation dynamics of F AB

L=∞(t ). Slower
dynamics than the one predicted by this bound occurs, for
example, in systems that undergo prethermalization [83,84].
Also, if the diagonal matrix elements of the traceless opera-
tors Â and B̂ are already vanishingly small in finite systems,
then the infinite-time average F AB

L (∞) ≈ 0, and the decay of
F AB

L=∞(t ) can be faster than algebraic, e.g., exponential [46,51].
A comprehensive analysis of these features for nonintegrable
systems can be found in Ref. [51].

We stress that, as we will show using numerical calcula-
tions in the following sections, the results in this section can
be invoked in the context of both interacting integrable and
nonintegrable many-body systems. Both classes of systems
exhibit “generic spectra” in the sense of Eq. (6) and a van-
ishing fraction of eigenstates that do not exhibit eigenstate
thermalization for (few-body) operators representing physical
observables.

B. Slow dynamics of OTOCs and two-time correlators

One can also gain an understanding of the decay of the
OTOCs in interacting integrable and nonintegrable many-
body systems using the properties of the off-diagonal matrix
elements of local operators in the energy eigenstates. To do
this, we note that Eq. (8) corresponds to the infinite-time
average of the two-time correlator

CAB(t ) = 〈Â(t )Â(0)〉 + 〈B̂(t )B̂(0)〉. (13)

Within the Lieb-Robinson argument discussed earlier in the
context of Eqs. (9)–(12), this implies that the slow dynamics
of the OTOCs is a result of the slow dynamics of the two-time

correlator 〈Â(t )Â(0)〉 or 〈B̂(t )B̂(0)〉. The OTOCs can decay
fast in time only if both two-time correlators decay fast in
time.

Let us then analyze the dynamics at long times of a two-
time correlator, say of operator Â, to see how it is related to
the structure of its off-diagonal elements in the eigenenergy
basis. In nonintegrable systems, one can use that, according to
the ETH, the matrix elements of local operators in the energy
eigenbasis can be written as [69,85–87]

Aαβ = A(Ēαβ )δαβ + e−S(Ēαβ )/2 f A(Ēαβ, ωαβ )Rαβ, (14)

where Ēαβ = (Eα + Eβ )/2, ωαβ = Eα − Eβ , S(Ē ) is the ther-
modynamic entropy at energy Ē , the functions A(Ēαβ )
and f A(Ēαβ, ωαβ ) are smooth functions of their arguments,
and Rαβ are random numbers with zero mean and unit
variance. For bounded lattice Hamiltonians like the ones
of interest here, the overwhelming majority of the eigen-
states is at “infinite temperature”, namely, the extensive part
of their eigenenergies is E∞ ≡ tr(Ĥ )/V . When Ēαβ = E∞,
exp[−S(E∞)] � 1/V , and the ETH ansatz simplifies to

Aαβ � A(E∞)δαβ + 1√
V

f A(E∞, ωαβ )Rαβ. (15)

With that in mind, one can write the two-time correlator for
the operator Â as

〈A(t )A(0)〉 � 1

V2

∑
α,β

eiωαβ t |Rαβ |2| f A(E∞, ωαβ )|2. (16)

Since the f A functions decay rapidly with increasing fre-
quency [69], one can replace the sums by integrals using that
the density of states at infinite temperature is � V , and we find

〈A(t )A(0)〉 �
∫

dω cos(ωt )| f A(E∞, ω)|2. (17)

Hence, the low-frequency behavior of | f A(E∞, ω)|2 (or
| f B(E∞, ω)|2) determines the relaxation dynamics of the
OTOCs. Specifically, structure (nonzero ω derivative) at low
frequency results in a slow decay of the OTOCs while lack
of structure (e.g., a plateau) results in a fast (exponential-like)
decay of the OTOCs.

It has been recently shown that, like in nonintegrable many-
body quantum systems, the vanishing off-diagonal matrix
elements of local operators in the energy eigenstates of in-
teracting integrable many-body quantum systems are measure
zero of all the matrix elements, i.e., the off-diagonal matrix
elements are dense [75]. This is to be contrasted to what
happens in noninteracting systems, in which the vanishing
matrix elements are measure one, i.e., the off-diagonal ma-
trix elements are sparse [80]. Hence, in interacting integrable
many-body quantum systems one can define a meaningful
function that parallels | f A/B(Ē , ω)|2 in Eq. (14). At Ē = E∞,
such a function has been shown to be a smooth function of
ω for various local observables [75,88–90]. Consequently, we
expect that the analysis leading to Eq. (17) holds for inter-
acting integrable systems and, with it, the analytic insights
that the equation provides. We should add that an important
difference between the behavior of the off-diagonal matrix
elements of nonintegrable and interacting integrable systems,
which does not affect our analysis here, is that in the former
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the Rαβ random numbers are normally distributed while in the
latter they are not [75]. For integrable systems it was recently
shown that the distributions are well described by generalized
Gamma distributions [80].

III. HAMILTONIAN AND SYMMETRIES

We consider the spin- 1
2 XYZ model described by the fol-

lowing Hamiltonian:

Ĥ = ĤI + ĤNI ,

ĤI =
L−1∑
l=1

[
Jxσ̂ x

l σ̂ x
l+1 + Jyσ̂

y
l σ̂

y
l+1 + Jzσ̂ z

l σ̂ z
l+1

]
,

ĤNI = 


L−1∑
l=1

(−1)l σ̂ z
l σ̂ z

l+1, (18)

where Ja are the coupling strengths along the a = x, y, and
z directions, σ̂ a

l is represented by the a Pauli matrix for site
l , and L is the number of lattice sites. ĤI is an interacting
integrable Hamiltonian that can be solved analytically using
the eight vertex model [91,92]. The addition of the staggered
interactions, ĤNI , of magnitude 
 along the z direction, breaks
integrability.

The symmetries of the total Hamiltonian Ĥ are:
(i) The parity operators along each axis, P̂a = ∏

l σ̂ a
l , com-

mute with the total Hamiltonian. (ia) When L is even, the
parity operators also commute with each other. As a result,
the diagonal matrix elements of the local operators σ̂ a

l in the
energy eigenstates are exactly zero (numerically, we find them
to be of the order of 10−14), unless there are other symmetries
such as those discussed next in (ii) and (iii). We can under-
stand this as follows: For L even, the energy eigenkets |α〉
(where Ĥ |α〉 = Eα|α〉) are simultaneous eigenkets of the three
operators P̂a. Hence, we can write

〈α|σ̂ z
l |α〉 = 〈α|P̂x

(
P̂xσ̂ z

l P̂x
)
P̂x|α〉 = −〈α|σ̂ z

l |α〉 = 0, (19)

where we used that P̂xσ̂ z
l P̂x = −σ̂ z

l and that P̂x|α〉 = ±|α〉.
(ib) When the system size L is odd, the parity operators
anticommute with each other. As a result, one finds that the
diagonal matrix elements of the local operators σ̂ a

l in the
energy eigenstates need not vanish, which is what we observe
numerically. We can understand this as follows: For L odd,
the energy eigenkets |α〉 are not simultaneous eigenkets of
the three operators P̂a. Let us choose the energy eigenkets
to be simultaneous eigenkets of P̂z. If |α+〉 is an energy
eigenket with eigenenergy Eα satisfying P̂z|α+〉 = |α+〉, then
P̂x|α+〉 = |α−〉 is an energy eigenket with eigenenergy Eα

(because P̂x and Ĥ commute) satisfying P̂z|α−〉 = −|α−〉 (be-
cause P̂x and P̂z anticommute), i.e., the energy spectrum is
doubly degenerate [93]. For the diagonal matrix elements of
the local operators, instead of Eq. (19) we have

〈α+|σ̂ z
l |α+〉 = 〈α+|P̂x

(
P̂xσ̂ z

l P̂x
)
P̂x|α+〉

= −〈α−|σ̂ z
l |α−〉, (20)

i.e., they need not vanish. With increasing system size, one
expects that the difference between the results obtained for
chains with L and L + 1 sites decreases, and vanish in the

thermodynamic limit. Our numerical results are consistent
with that expectation.

(ii) In general, the integrable Hamiltonian ĤI does not
conserve total magnetization in any direction, except when
two of the coupling parameters are equal, in which case the
model exhibits a U (1) symmetry and reduces to the spin- 1

2
XXZ chain (upon relabeling, if needed, x, y, and z so that
Jz �= Jx = Jy). For 
 �= 0, the U (1) symmetry is only present
for Ĥ if Jx = Jy.

One can show that if Ĥ has U (1) symmetry, i.e., if Ŝz =∑
l σ̂ z

l is conserved, then the diagonal matrix elements of the
local operators σ̂ z

l in the energy eigenstates need not vanish.
Considering L even, we have already mentioned that P̂x, P̂y,
and P̂z commute with each other and with the Hamiltonian.
However, only P̂z commutes with Ŝz = ∑

l σ̂ z
l . If we choose

the energy eigenstates to be simultaneous eigenstates of Ŝz,
then we have

〈α|σ̂ z
l |α〉 = (〈α|P̂x )

(
P̂xσ̂ z

l P̂x
)
(P̂x|α〉)

= −(〈α|P̂x )σ̂ z
l (P̂x|α〉). (21)

Since P̂x and Ŝz do not commute, P̂x|α〉 does not need to be
eiφ |α〉, so 〈α|σ̂ z

l |α〉 does not need to vanish. However, one can
show that the matrix elements 〈α|σ̂ x

l |α〉 must vanish

〈α|σ̂ x
l |α〉 = 〈α|P̂z

(
P̂zσ̂ x

l P̂z
)
P̂z|α〉 = −〈α|σ̂ x

l |α〉 = 0. (22)

(iii) The integrable Hamiltonian ĤI exhibits supersymme-
try when [94,95]

JxJy + JxJz + JyJz = 0. (23)

Defining the operator P̂a
e = ∏L/2

l=1 σ̂ a
2l , which acts only on even

sites, we get P̂z
e ĤI (Jx, Jy, Jz )P̂z

e = ĤI (−Jx,−Jy, Jz ), and sim-
ilarly for a = x, y. Hence, the supersymmetry also holds for

JxJy ± JxJz ± JyJz = 0. (24)

The previous symmetry analysis shows that the σ̂ a
l (where

a = x, y, or z) operators have vanishing diagonal matrix el-
ements, i.e., a vanishing overlap with the Hamiltonian (18),
unless the Hamiltonian has special symmetries such as U (1)
or supersymmetry. This means that, by tuning the Hamiltonian
parameters to be at those special symmetry points (or away
from them), we can test the effect that the overlap (or lack
thereof) of operators with the Hamiltonian has on the relax-
ation dynamics of the OTOCs at and away from integrability.

Throughout this paper, we fix Jy = 1.0 to be our energy
scale, Jz = 1.5, and scan across Jx. For the integrable chain

 = 0, and for the nonintegrable one we choose 
 = 0.2.

IV. NUMERICAL RESULTS

The fact that the diagonal matrix elements of σ̂ a
l are van-

ishing away from the points at which the Hamiltonian of the
spin- 1

2 XYZ chain exhibits U (1) symmetry or supersymmetry,
and can be nonvanishing as one approaches those points, is
illustrated in Figs. 1(a) and 1(b). There we plot the average
(over the entire energy spectrum) of the absolute values of
the diagonal matrix elements of σ̂ z

L/2 and σ̂ x
L/2, respectively, as
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FIG. 1. Average of the absolute values of the diagonal matrix elements of σ̂ a
L/2 in the energy eigenbasis. (a) Sz = ∑

α |(σ̂ z
L/2)αα|/V and

(b) Sx = ∑
α |(σ̂ x

L/2)αα|/V , plotted as functions of the coupling parameter Jx for a chain with an even number of spins (L = 14) for the
integrable, 
 = 0, and nonintegrable, 
 = 0.2, cases. Inset in panel (a), scaling of Sz as a function of L for Jx = 1.0, 
 = 0 [U (1) integrable
point, �] and Jx = 1.0, 
 = 0.2 [U (1) nonintegrable point, ♦]; and (only showing results for odd values of L) for Jx = 1.6, 
 = 0 (

�
) and

Jx = 1.6, 
 = 0.2 (
�

). Inset in panel (b), scaling of Sx as a function of L for Jx = 0.6, 
 = 0 (SUSY point, ©); and (only showing results
for odd values of L) for Jx = 0.6, 
 = 0.2 (×), Jx = 1.3, 
 = 0 (

�
), and Jx = 1.3, 
 = 0.2 (

�
). (c) Infinite-time average F AB(∞) (solid

lines with filled symbols) and CAB(∞) (dashed lines with empty symbols) as functions of L for Â = σ̂ z
L/2−1 and B̂ = σ̂ z

L/2+2 (� for 
 = 0 and
♦ for 
 = 0.2) and for Â = σ̂ x

L/2−1 and B̂ = σ̂ x
L/2+2 (©). In all panels, we show results for the XYZ chain with Jy = 1.0 and Jz = 1.5.

functions of Jx for L = 14. The averages are labeled as

Sz = 1

V
∑

α

∣∣(σ̂ z
L/2

)
αα

∣∣ (25)

and

Sx = 1

V
∑

α

∣∣(σ̂ x
L/2

)
αα

∣∣. (26)

When Jx = 1, since Jx = Jy, the Hamiltonian has U (1) sym-
metry and conserves total magnetization in the z direction. For
values of Jx close to 1 the total magnetization is a nearly-
conserved quantity, which is known to result in prethermal
behavior both in the integrable and nonintegrable cases [96].
This explains the “broad” peak of Sz at Jx = 1 in Fig. 1(a)
for both the integrable and the nonintegrable chains. In the
discussions that follow, we refer to the Jx = 1.0, 
 = 0 point
as the “U (1) integrable point” and to the Jx = 1.0, 
 = 0.2
point as the “U (1) nonintegrable point.” The sharper peaks at
Jx = 0.6 for both Sz in Fig. 1(a) and Sx in Fig. 1(b) occur only
in the integrable chain and are caused by the supersymmetric
point satisfying Eq. (24). In the discussions that follow, we
refer to Jx = 0.6, 
 = 0 point as the “SUSY point.”

The results in the main panels in Figs. 1(a) and 1(b) are
for a chain in which L is even. For an odd number of sites,
as mentioned before, the diagonal matrix elements of σ̂ a

l need

not vanish even if they vanish for an even number of sites. The
inset in Fig. 1(a) [Fig. 1(b)] shows Sz [Sx] as a function of L for
Jx = 1, 1.6 and 
 = 0, 0.2 [Jx = 0.6, 1.3 and 
 = 0, 0.2].
At the U (1) integrable and nonintegrable points in the inset
of Fig. 1(a), and at the SUSY point in the inset of Fig. 1(b),
both the L even and L odd systems have nonzero diagonal
values. For the other parameters we only show results for
L odd. In the latter cases we see that Sz and Sx decrease
rapidly as L (odd) increases, i.e., the results for chains with
L odd approach the vanishing results for L even. Hence, we
expect that Fig. 1(a) and Fig. 1(b) are representative of what
happens in large chains no matter whether L is even or odd.
(See Appendix A for a comparison between the dynamics of
OTOCs in systems with even and odd numbers of lattice sites.)

Our discussion thus far allows us to conclude that the peaks
in Figs. 1(a) and 1(b) establish the Hamiltonian parameters for
which the corresponding operators exhibit an overlap with the
Hamiltonian. Next, we study how such an overlap (or lack
thereof) affects the time evolution of the OTOCs involving
those operators.

A. Relaxation dynamics and diagonal matrix
elements of local operators

For the three special sets of parameters for which large
peaks are seen in Fig. 1(a), namely, the U (1) integrable
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FIG. 2. Relaxation dynamics of F AB(t ) and CAB(t ) for the XYZ
chain with Jy = 1.0, Jz = 1.5, and L = 14. The solid lines cor-
respond to the integrable model (
 = 0) and the dashed lines to
the nonintegrable one (
 = 0.2). For the integrable (nonintegrable)
model, the red (blue) line is for F AB(t ) and the pink (cyan) line for
CAB(t ).

and nonintegrable points and the SUSY point, as well as in
Fig. 1(b) at the SUSY point, the average of the absolute val-
ues of the diagonal matrix elements decreases polynomially
with L, as can be inferred from the slow decay of Sz in the
inset of Fig. 1(a) and of Sx in the inset of Fig. 1(b). This
leads to the algebraic decay of the infinite-time averages of
the OTOCs [two-time correlators] as functions of the system
size, as predicted by Eq. (11) [Eq. (7)] and confirmed nu-
merically in Fig. 1(c). In Fig. 1(c), we plot F σ̂ z

L/2−1σ̂
z
L/2+2 (∞)

[Cσ̂ z
L/2−1σ̂

z
L/2+2 (∞)] for both the integrable and the nonin-

tegrable chains with U (1) symmetry, and F σ̂ x
L/2−1σ̂

x
L/2+2 (∞)

[Cσ̂ x
L/2−1σ̂

x
L/2+2 (∞)] for the integrable chain with supersymme-

try. According to Eq. (12), we therefore expect that in the
thermodynamic limit the relaxation dynamics of the OTOCs
for these sets of parameters exhibit an algebraic decay in time.

In Fig. 2, we compare the dynamics of the OTOCs [F AB(t )]
and of the two-time correlators [CAB(t )] for the integrable
(solid lines) and nonintegrable (dashed lines) models. As ex-
pected from the analysis in Sec. II, we observe a remarkable
qualitative (and quantitative in the cases of slow dynamics)
resemblance in the relaxation dynamics of the OTOCs and the
two-time correlators.

In Figs. 2(a) and 2(c), Â = σ̂ z
L/2−1 and B̂ = σ̂ z

L/2+2 for Jx =
1.0 and Jx = 1.6, respectively. At the U (1) points considered
in Fig. 2(a), the decay of the OTOC and of the two-time cor-
relator are slow for the integrable and nonintegrable models,
as expected. This contrasts with the fast relaxation seen in
Fig. 2(c) for both models and quantities for Jx = 1.6 [which
is away from the peaks in Fig. 1(a)], so that σ̂ z

L/2−1 and σ̂ z
L/2+2

have no diagonal matrix elements. The saturation and oscilla-
tions at long times in all panels of Fig. 2 are due to finite-size
effects.

In Figs. 2(b) and 2(d), we show results for A = σ̂ x
L/2−1 and

B = σ̂ x
L/2+2 for Jx = 0.6 and Jx = 1.3, respectively. For the

integrable case at the SUSY point (Jx = 0.6, 
 = 0), Fig. 2(b)
exhibits the expected slow decay of F AB(t ) and CAB(t ).

FIG. 3. Plots of | f σ̂ z
L/2 (E∞, ω)|2/L (a, c) and | f σ̂ x

L/2 (E∞, ω)|2/L
(b, d) as functions of ωL for the XYZ chain with Jy = 1.0 and Jz =
1.5. Solid (dashed) lines are for the integrable (nonintegrable) chain.

Because of the proximity to the SUSY point, the behaviors
of those quantities for 
 = 0.2 in Fig. 2(b) resemble that at
the SUSY point for short times (t � 2), but the relaxation
is fast for t � 2. In Fig. 2(d), where Jx = 1.3, none of the
models presents any special symmetry, so both the OTOC and
the two-time correlator exhibit a fast (exponential-like) decay,
similar to the one observed in Fig. 2(c).

B. Relaxation dynamics and off-diagonal
elements of local operators

The resemblance between the dynamics of the OTOC and
the two-time correlator in the presence of symmetries seen in
Sec. IV A implies that the functions f A(E∞, ω) that character-
ize the off-diagonal matrix elements of σ̂ a

l can be used to gain
a qualitatively understanding of the OTOC decay in interact-
ing integrable and nonintegrable many-body quantum models.
f A(E∞, ω) is expected to exhibit different low-frequency be-
haviors depending on whether the OTOC decays slowly or
fast.

Following the discussion in Sec. II B, we can match the
relaxation dynamics of the OTOCs in Fig. 2 with the behavior
of | f A(E∞, ω)|2 in Fig. 3. The smooth function | f A(E∞, ω)|2
is calculated from the variance Var of the off-diagonal matrix
elements of A as | f A(E∞, ω)|2 ≈ VVar(Aαβ ) [75,88]. Specifi-
cally, we average over all off-diagonal matrix elements Aαβ in
a frequency interval �ω = 0.01 centered at points separated
by δω = 0.002. In Fig. 3, we show results for three different
system sizes, as indicated in the legend.

We find a one-to-one correspondence between Figs. 2
and 3. The OTOC decays slowly [Figs. 2(a) and 2(b) at
the SUSY point] when | f A(E∞, ω)|2 exhibits a peak at low
frequencies [Figs. 3(a) and 3(b) at the SUSY point], but it
decays fast [Figs. 2(c) and 2(d), and Fig. 2(b) for the non-
integrable model] when | f A(E∞, ω)|2 exhibits a plateau at
low frequencies [Figs. 3(c) and 3(d), and Fig. 3(b) for the
nonintegrable model]. For the system sizes considered, one
can see in Figs. 3(c) and 3(d) that | f A(E∞, ω)|2 is smoother at
low frequencies for the nonintegrable model than for the in-
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tegrable one. Since the results for the integrable model suffer
from stronger finite-size effects, we expect those differences
to disappear with increasing the system size.

V. SUMMARY

The scrambling of quantum information as characterized
by the relaxation dynamics of the OTOCs has been mainly
investigated in nonintegrable models. Here, we report a study
of OTOCs in interacting integrable and nonintegrable spin- 1

2
XYZ chains, in regimes without a classical counterpart.

We show that the main factor determining the behavior of
the OTOCs in those chains (for the timescales and chain sizes
explored) is the overlap between its constituent operators and
conserved quantities of the model, rather than integrability or
lack thereof. If the overlap is nonzero, then the OTOCs decay
slowly (algebraically-like) for both the integrable and nonin-
tegrable chains, while if there is no overlap, then the OTOCs
decay rapidly (exponentially-like) for both the integrable and
the nonintegrable chains. For the model Hamiltonians and op-
erators considered, nonzero overlaps are obtained only in the
presence of U (1) symmetry and supersymmetry. Our numeri-
cal results for the dynamics of the OTOCs can be understood,
in a complementary manner, in terms of the behavior of the
off-diagonal matrix elements of the OTOCs operators at low
frequencies and of the scaling with the system size of the
diagonal matrix elements.

Furthermore, our analytical results (confirmed numeri-
cally) also indicate that when the operators of interest overlap
with the Hamiltonian (a conserved quantity under the dy-
namics studied), the infinite-time average of the two-time
correlators in finite (but sufficiently large) chains determines
the infinite-time average of the OTOCs. Hence, in the ther-
modynamic limit (via the Lieb-Robinson bound argument
presented in Sec. II), the slow relaxation of the OTOC can
be understood to be a consequence of the slow relaxation
of two-time correlators, all resulting from the presence of a
conservation law and independent of the integrable or nonin-
tegrable nature of the system.
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APPENDIX: EVEN VERSUS ODD CHAINS

A comparison between the decay of the OTOCs for even
and odd chains, away from the points with U (1) symmetry
or supersymmetry, is provided in Fig. 4 for the integrable
[Figs. 4(a) and 4(b)] and the nonintegrable [Figs. 4(c) and
4(d)] model. As the system size increases, one can see an
increase of the time up to which the dynamics for the even
and odd sizes coincide. This lends support to our conclusion
that for sufficiently large system sizes our analysis based only
on the study of even system sizes will also apply to odd system
sizes.
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