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Quantum kinetic theory of nonlinear thermal current
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We investigate the second-order nonlinear electronic thermal transport induced by the temperature gradient.
We develop the quantum kinetic theory framework to describe thermal transport in the presence of a temperature
gradient. Using this, we predict an intrinsic scattering time-independent nonlinear thermal current in addition
to the known extrinsic nonlinear Drude and Berry curvature dipole contributions. We show that the intrinsic
thermal current is determined by the band geometric quantities and is nonzero only in systems in which both the
space inversion and time-reversal symmetries are broken. We employ the developed theory to study the thermal
response in tilted massive Dirac systems. We show that besides the different scattering time dependencies,
the various current contributions have distinct temperature dependencies in the low-temperature limit. Our
systematic and comprehensive theory for nonlinear thermal transport paves the way for future theoretical and
experimental studies on intrinsic thermal responses.
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I. INTRODUCTION

The temperature gradient in a system governs several non-
trivial electronic transport phenomena [1–3]. In particular,
anomalous Hall-type effects, where a transverse response is
generated due to the longitudinal temperature gradient in the
absence of a magnetic field, are very fascinating [4,5]. Exam-
ples of such a Hall-type effect include the Nernst effect [4],
which causes a transverse charge flow, and the Righi-Leduc
(thermal Hall) effect [6,7], which causes a Hall-type heat flow.
These effects, which can be thought of as the thermoelectric
and thermal generalization of the charge Hall effect due to the
electric field, are primarily investigated in the linear regime
where the Hall current (or voltage) is linearly proportional to
the temperature gradient. The prerequisite for realizing these
effects within the linear-response regime is that the time-
reversal symmetry of the system must be broken. Otherwise,
the Hall responses disappear following Onsager’s relation [8].

Recently, it has been demonstrated that in the second-
order nonlinear (NL) response regime, we can observe
anomalous Hall effects even in systems with time-reversal
symmetry [9,10]. The Berry curvature dipole in noncen-
trosymmetric materials with low crystalline symmetries has
been shown to generate the NL Nernst [11,12] as well as
NL thermal Hall effect [12–14], both of which are extrin-
sic (scattering time-dependent) in nature. Interestingly, these
Berry curvature dipole-induced Hall effects can also probe
the valley-Chern-type topological phase transition [10,15].
These recent theoretical developments with the experimental
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realizations of this new class of Hall effects have generated
significant interest in NL transport. More recently, an intrinsic
scattering time-independent NL Hall effect induced by an
electric field has been demonstrated in systems with broken
inversion and time-reversal symmetry [16–19]. The Berry
connection polarizability, a band geometric quantity, causes
this intrinsic NL Hall effect. Intriguingly, a similar intrinsic
NL Hall effect has also been shown to exist in thermoelectric
transport, and it originates from the orbital quadrupole mag-
netic moment [20]. Dissipationless intrinsic Hall effects are
very significant as they are solely determined by the band ge-
ometric properties and independent of the details of scattering
mechanisms.

Motivated by these recent developments, here we investi-
gate the second-order intrinsic thermal Hall effect (see Fig. 1)
using the quantum kinetic theory of thermal transport. Extend-
ing the theory developed in Ref. [21], we construct a definition
of NL thermal current induced by a temperature gradient. Us-
ing this definition, we calculate all the possible contributions
to the NL thermal current. We find an intrinsic NL thermal
current that originates from the band geometric quantities of
the system. Using symmetry analysis, we show that both the
time-reversal symmetry and inversion symmetry of a system
must be broken to observe the intrinsic second-order NL ther-
mal current. We show that the parity-time reversal symmetric
systems (bipartite antiferromagnets) are good candidates to
explore the intrinsic NL thermal Hall effects. In addition, we
also obtain the thermal counterpart of the NL Drude (NLD)
current and the thermal counterpart of the Berry curvature
dipole current. Our work provides the realization of all three
of these currents on the same footing using the quantum ki-
netic theory. We use the developed framework to study the
NL thermal Hall transport in tilted massive Dirac systems.
The extrinsic contributions of the NL thermal current were
recently also explored in Ref. [12]. Here, we primarily focus
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FIG. 1. Schematic experimental setup for measuring the nonlin-
ear anomalous thermal Hall effect. Here, the dark pink shows the hot
end of the sample, while the light blue shows the cold end. This sets
a temperature gradient (−∇T ) along the x direction. We probe the
nonlinear thermal Hall response (JQ) along the y (Hall) and the x
(longitudinal) directions.

on the intrinsic contribution to the NL thermal current. Our
predictions for the non-linear responses become the dominant
contribution in systems that preserve time-reversal symmetry
or in which the linear response is negligible.

This paper is organized as follows. In Sec. II, we discuss
the quantum kinetic framework for the NL thermal current.
We calculate the nonequilibrium density matrix and use it to
obtain the intrinsic and extrinsic contributions of the thermal
current. In Sec. III, we study the longitudinal and transverse
NL thermal current in a tilted massive Dirac system. We
discuss some intricacies of the NL thermal Hall response in
Sec. IV. We summarize our findings in Sec. V.

II. QUANTUM KINETIC THEORY FOR THERMAL
CURRENT

We use the quantum kinetic equation to evaluate the den-
sity matrix in the crystal momentum representation ρ(k, t ).
Combining it with the relaxation-time approximation to ac-
count for scattering events, we have [21–23]

∂ρ(k, t )

∂t
+ i

h̄
[H0, ρ(k, t )] + ρ(k, t )

τ
= DT [ρ(k, t )]. (1)

Here, H0 represents the grand-canonical Hamiltonian, which
satisfies H0|un

k〉 = ε̃n|un
k〉 with ε̃n = (εn − μ). The chemical

potential is denoted by μ, and εn and |un
k〉 are the nth energy

band and eigenstate of the corresponding Bloch Hamiltonian.
In Eq. (1), τ is the relaxation time, which we consider to
be a constant in our work, and [·, ·] denotes the commutator
bracket.

For simplicity of notation, we express ρ(k, t ) as ρ through-
out our calculation. In Eq. (1), the thermal driving term [21]
is defined as DT (ρ) = − 1

2h̄ ET · [{H0,
∂ρ

∂k } − i[Rk, {H0, ρ}]],
where the bracket {·, ·} represents the anticommutator, and
ET ≡ −∇T/T is the thermal field [24] with T being the
temperature. The quantity Rk in Eq. (1) is the momentum
space Berry connection. The band-resolved momentum space
Berry curvature [25] is defined as Rnp = i〈un

k|∂k|up
k〉.

The main challenge for calculating the thermal conduc-
tivities within the quantum kinetic theory framework is
to construct the definition of the NL heat current. In the

semiclassical framework, the transport heat current is obtained
by subtracting the immeasurable magnetization heat current
from the local heat current [4]. In the quantum kinetic theory,
we follow the same philosophy. We construct the definition of
linear heat current as [21]

J = Tr
[

1
2 {H0, v}ρ (1)

D

]+ Tr
[

1
2 {H0, v}ρ (1)

O

]
+ Tr[(ET × mN )H0ρ0] + 2 Tr[ET × M�]. (2)

Here, ρD(ρO) represents the diagonal (off-diagonal) part of the
density matrix. The first two terms give the contribution from
the heat current operator 1

2 {H0, v}, with v and ρ (1) = ρ
(1)
D +

ρ
(1)
O as the velocity operator and first-order density matrix.

The third term is the contribution from the particle magnetic
moment mN ≡ m/ − e, with m being the orbital magnetic
moment (OMM) of the Bloch electrons, and −e being the
electric charge of the electrons. Similar to the semiclassical
framework, it has been added to cancel the immeasurable
OMM-related term originating from the heat current operator
term [second term in Eq. (2)]. The fourth term in Eq. (2) stands
for the thermal current due to the Berry curvature-induced
heat magnetization [26–30], which is given by [5,31]

M� = 1

h̄

∑
k

ζ�. (3)

Here, ζ = − ∫∞
ε

dη(η − μ) f (η), with f (η) being the equi-
librium Fermi distribution function, and � denotes the Berry
curvature [25].

We highlight that the contribution from the first term of
Eq. (2) can be thought of as the equivalent of the semiclas-
sical definition of the heat current Js = ∫

[dk](ε − μ)gr [1],
where gr is the temperature gradient induced nonequilibrium
distribution function. The second term can be thought as the
correction to the local current induced by the finite size of the
wave packet. Moreover, the resultant contribution of the last
two terms of Eq. (2) can be considered as the equivalent to
the heat magnetization current density (−∇ × MQ) [32]. As
a consistency check, using the definition in Eq. (2), we have
calculated the expression of the linear anomalous thermal Hall
current (see Appendix C) known in the semiclassical theory.

To calculate the second-order heat current, we generalize
Eq. (2) to include higher-order corrections in the density
matrix due to the temperature gradient. We define the second-
order thermal current J (2) in response to the temperature
gradient as

J (2) = Tr
[

1
2 {H0, v}ρ (2)

D

]+ Tr
[

1
2 {H0, v}ρ (2)

O

]
+ Tr

[
(ET × mN )H0ρ

(1)
D

]
. (4)

Here, the first two terms arise from the trace of the energy
current operator with the second-order density matrix. The
third term in Eq. (4) is the orbital magnetic moment energy
current, which has to be subtracted from the local thermal
current to obtain the physical transport thermal current. This
term has ρ (1) ∝ ∇T , as the local energy magnetization is
itself proportional to a temperature gradient, making the net
contribution ∝ (∇T )2. Finally, the Berry curvature energy
magnetization term [the fourth term in Eq. (2)] is always
linear in the temperature gradient. It does not contribute to
the second-order thermal current calculation.

235419-2



QUANTUM KINETIC THEORY OF NONLINEAR THERMAL … PHYSICAL REVIEW B 107, 235419 (2023)

A. Solution of the density matrix in the presence
of temperature gradient

We can solve the density matrix equation given in Eq. (1)
perturbatively by expanding ρ in powers of the temperature
gradient, ρ = ρ (0) + ρ (1) + ρ (2) + · · · , where the N th-order
correction to the density matrix (or the N th-order density ma-
trix) ρ (N ) ∝ |(∇T )N |. Note that this includes the cross terms
of the temperature gradient such as ρ (2) ∝ ∂xT ∂yT . Here, the
equilibrium density matrix is given by ρ (0) = ∑

n |un
k〉〈un

k| fn,
where fn ≡ f (εn) = (1 + e(εn−μ)/kBT )−1 is the Fermi-Dirac
distribution function, and kB is the Boltzmann constant. In
the band basis, the N th-order density matrix can be calculated
using the following equation (for more details of this equation,
we refer the reader to Appendix A):

∂ρ (N )
np

∂t
+ i

h̄
[H0, ρ

(N )]np + ρ (N )
np

τ/N
= [DT (ρ (N−1))]np. (5)

Here, the subscript “np” denotes the matrix element of a
matrix sandwiched between the nth and pth energy eigen-
states. For example, if O is an arbitrary matrix, then Onp ≡
〈un

k|O|up
k〉. The first term in the above equation can be dis-

carded in a steady state. Hereafter, we consider the steady state
to calculate the density matrix. To calculate the first-order
density matrix, we have computed the commutator relation
[H0, ρ

(1)]np = (εn − εp)ρ (1)
np and the thermal driving term to

be

[DT (ρ (0) )]np = − 1

2h̄
ET · [(ε̃n + ε̃p)∇k fnδnp + 2iRnpξnp].

(6)
Here, we have defined ξnp = ε̃n fn − ε̃p fp to make the above
expression simple. Using these in Eq. (5), we obtain the first-
order density matrix,

ρ (1)
np = −

[τ
h̄
δnpε̃n∂c fn + Rc

npgnp
1

(
ε̃n fn − ε̃p fp

)]
Ec

T . (7)

For brevity, we have defined ∂kc ≡ ∂c, and the Einstein sum-
mation convention for repeated spatial indices is used. The
first term of the density matrix corresponds to the diagonal
element of the density matrix due to the Dirac delta function
(δnp), and it vanishes for insulators. The second term corre-
sponds to the off-diagonal element, representing the interband
coherence introduced by the temperature gradient. In Eq. (7),
we have defined gnp

1 ≡ (εnp − ih̄/τ )−1, with εnp ≡ (εn − εp)
being the interband energy gap at a given k. To keep track of
the diagonal and the off-diagonal parts of the density matrix,
we will use the notation ρd and ρo to denote the diagonal
and the off-diagonal elements of the first-order density matrix,
respectively.

Now, we calculate the second-order density matrix. Fol-
lowing the notation of the diagonal and the off-diagonal
elements of the density matrix, we can express the second-
order density matrix in four parts: two terms for the diagonal
sector—ρdd, ρdo, and two terms for the off-diagonal sector—
ρod, ρoo. Here, the first superscript denotes the diagonal
or off-diagonal element of the second-order density matrix,
while the second superscript represents the diagonal or off-
diagonal element of the first-order density matrix involved.
For instances, ρdd denotes the diagonal part of ρ (2) arising
from the diagonal part of ρ (1). Similarly, ρoo describes the

off-diagonal part of the ρ (2) arising from the off-diagonal part
of the ρ (1) and so on. Keeping the detailed calculation of the
second-order density matrix in Appendix B, we write the “dd”
component of ρ (2) as

ρdd
nn = τ 2

2h̄2

[
h̄ε̃nv

n
b∂c fn + ε̃2

n∂b∂c fn
]
Eb

T Ec
T , (8)

where vn
b = h̄−1 ∂εn

∂kb
is the group velocity of the Bloch elec-

trons in the nth band along the spatial direction b = x, y, z. A
similar expression of the diagonal part of the density matrix
has been derived earlier using the semiclassical approach in
Ref. [11], where the authors calculated the second-order cor-
rection to the nonequilibrium distribution function due to the
temperature gradient. This density matrix component depends
upon the Fermi function’s derivative. Therefore, this term
governs the Fermi surface effect. The “do” component of ρ (2)

is calculated to be

ρdo
nn = iτ

4h̄2

p�=n∑
p

(ε̃n+ ε̃p)
(
gnp

1 Rc
npRb

pn+ gpn
1 Rb

npRc
pn

)
ξnpEb

T Ec
T .

(9)

This part of the density matrix depends on the Fermi function
and contributes as a Fermi sea effect. Continuing in chrono-
logical order, we calculate the “od” part of the second-order
density matrix to be

ρod
np = τ

h̄
gnp

2 Rb
np

(
ε̃2

n∂c fn − ε̃2
p∂c fp

)
Eb

T Ec
T , (10)

with gnp
2 ≡ (εnp − 2ih̄/τ )−1. The dependency of this part of

the density matrix on the derivative of the Fermi function
implies the Fermi surface effects. Likewise, the “oo” part of
ρ (2) is evaluated to be

ρoo
np = −i

2
gnp

2 (ε̃n + ε̃p)Db
np

(
gnp

1 Rc
npξnp

)
Eb

T Ec
T

+ 1

2
gnp

2

∑
q �=n �=p

[
gnq

1 Rc
nqRb

qp(ε̃n + ε̃q)ξnq

− gqp
1 Rb

nqRc
qp(ε̃q + ε̃p)ξqp

]
Eb

T Ec
T . (11)

Here, we have used Db
np = ∂b − i(Rb

nn − Rb
pp). In Eq. (11),

the second term contributes only to systems having three or
more bands. This completes our derivation of the second-
order density matrix for a thermal perturbation to a multiband
system.

B. Calculation of the nonlinear thermal current

In this section, we calculate the general expression of the
NL thermal current as a second-order response in the tem-
perature gradient. In Eq. (4), we showed that the thermal
current depends on the diagonal and off-diagonal parts of
the second-order density matrix along with the orbital mag-
netic moment contribution. To track the origin of different
thermal current contributions, we split the total second-order
thermal current as J = Jdd + Jdo + Jod + Joo + JOMM. Here,
the different superscripts in the first four terms indicate the
corresponding sectors of the second-order density matrix used
for calculating the thermal current contribution. The super-
script “OMM” conveys the orbital magnetic moment-induced
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thermal current. For example, Jdd means the thermal current
originated from the second-order density matrix component
ρdd and so on. Now in band basis form, we write the first term
of Eq. (4) along an arbitrary direction a as

Tr

[
1

2
{H0, v}ρ (2)

D

]
a

=
∑
n,k

ε̃nv
n
aρ

(2)
D,nn. (12)

For shorthand notation, we have defined
∑

k ≡ ∫
[dk], with

[dk] = dd k/(2π )d being the integration measure for the d-
dimensional system. In Sec. II A, we wrote the diagonal part
of the second-order density matrix (ρ (2)

D ) as a sum of two
sectors ρdd and ρdo. So, ρ

(2)
D gives us two thermal current

contributions through Eq. (12). The thermal current corre-
sponding to ρdd is calculated to be

Jdd
a = τ 2

2h̄2

∑
n,k

(
h̄ε̃nv

n
b∂c fn + ε̃2

n∂b∂c fn
)
ε̃nv

n
aEb

T Ec
T . (13)

A similar expression of thermal current can be calculated
through the semiclassical Boltzmann framework, as shown
in Ref. [11]. Note that this current is quadratic in scattering
time (∝ τ 2), it arises only due to the group velocity of the
Bloch electrons, and it does not depend on any band geomet-
ric quantities. Therefore, this current is extrinsic, and it can
be identified as the conventional NL thermal Drude current.
Further, we calculate the thermal current stemming from the
ρdo to be

Jdo
a = iτ

4h̄

p�=n∑
n,p,k

gnp
1 Rb

pnRc
np(ε̃n + ε̃p)(ε̃n fn − ε̃p fp)

× (
ε̃nv

n
a − ε̃pv

p
a

)
Eb

T Ec
T . (14)

The band geometric quantities are explicit in the above ex-
pression, and unlike the conventional Fermi surface effect,
this current is a Fermi sea effect. We note that the structural
form of this current is similar to the injection current known
in photogalvanics [33–37], and it arises from energy injection
(ε̃nv

n
a − ε̃pv

p
a ) across bands. Therefore, we will call it the

thermal injection current.
Similarly, the second term of Eq. (4) is written in the band-

reduced form as

Tr

[
1

2
{H0, v}ρ (2)

O

]
a

= 1

2

∑
n,p,k

(ε̃n + ε̃p)vpn
a ρ

(2)
O,np. (15)

Here, v
pn
a denotes the components of the velocity operator

defined as ih̄v = [r,H0]. This can be obtained using the co-
variant derivative of the Hamiltonian (vpn = h̄−1[Dk(H0)]pn)
with the explicit form

vpn
a = vn

aδpn + iωpnRa
pn. (16)

Here, the first term is the diagonal element of the velocity
operator, which is equal to the gauge-invariant band velocity,
while the second term is the off-diagonal component, which
consists of the band-resolved Berry connection, and ωpn =
εpn/h̄ being the interband transition frequency. In principle,
Eq. (15) gives us two more contributions of the thermal cur-
rent when we put the different off-diagonal sectors (ρod and
ρoo) of the second-order density matrix. Using the form of

ρod, we calculate its corresponding thermal current to be

Jod
a = iτ

2h̄2

p�=n∑
n,p,k

εpngnp
2 (ε̃n + ε̃p)Ra

pnRb
np

× (
ε̃2

n∂c fn − ε̃2
p∂c fp

)
Eb

T Ec
T . (17)

Note that it is a Fermi surface current, and in the low-
temperature limit, only states near the Fermi surface con-
tribute to this current. Finally, for the nonlinear thermal
current stemming from ρoo, explicit calculations yield

Joo
a = − 1

4h̄

p�=n∑
n,p,k

εnpgnp
2 (ε̃n + ε̃p)Ra

pn

×
[

(ε̃n + ε̃p)Db
np

(
gnp

1 Rc
npξnp

)
+ i

∑
q �=n �=p

(
gnq

1 Rc
nqRb

qp(ε̃n + ε̃q)ξnq

− gqp
1 Rb

nqRc
qp(ε̃q + ε̃p)ξqp

)]
Eb

T Ec
T . (18)

This completes the calculation of all the contributions to the
NL thermal current arising from the first two terms in Eq. (4).
So we are left with the contribution arising due to the orbital
magnetic moment. After performing an explicit calculation of
this term, we have (see Appendix D for details)

JOMM
a = τ

2h̄2

p�=n∑
n,p,k

ε̃2
n (ε̃n − ε̃p)ab

np∂c fnEb
T Ec

T . (19)

Here, the quantity ab
np is a band geometric quantity commonly

known as the band-resolved Berry curvature. It is the imagi-
nary part of the product of the band-resolved Berry connection
and is defined as ab

np = i[Ra
npRb

pn − Rb
npRa

pn]. We emphasize
that this is antisymmetric under exchange of both spatial or
band indices, i.e., ab

np = −ba
np and ab

np = −ab
pn [25,38].

Now, we show that our results are consistent with the
general symmetry requirements. Since we are calculating the
second-order NL thermal response, we should first consider
the space inversion symmetry (or parity symmetry). A gen-
eral symmetry analysis of Ja = −κabc∇bT ∇cT shows that the
second-order responses (κabc) should vanish in the presence of
parity symmetry. To our satisfaction, we find that the derived
expressions are consistent with this symmetry restriction. In
the presence of parity symmetry, the energy dispersion, Berry
connection, Berry curvature, and the group velocity satisfy
the relations ε(k) = ε(−k), Ra

np(k) = −Ra
np(−k), ab

np(k) =
ab

np(−k), and vn
a (k) = −vn

a (−k), respectively. Using these
relations in the calculated thermal current, we find that all the
components of the NL thermal current vanish over Brillouin
zone (BZ) integration under P-symmetry.

C. Intrinsic and extrinsic thermal current

In this section, we will separate the different scattering
time dependence of the thermal current in the form J =
J(∝ τ 0) + J(∝ τ 1) + J(∝ τ 2). Here, J(∝ τ 0) is the intrinsic
part, which represents the dissipationless thermal current, and
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TABLE I. Second-order nonlinear thermal current for a two-band system. Each of the contributions can be expressed as Ja =
h̄−2 ∑

n,p

∫
[dk]Eb

T Ec
T × A × B, where A and B are listed below. Specifically, the impurity-dependent term, B = Bint + Bext , has been expressed

as a sum of an intrinsic (impurity-independent) and extrinsic (impurity-dependent) term. The last two columns indicate which of these
contributions survives in the presence of either time-reversal symmetry or parity-time reversal symmetry. Here (n, p) denote the band indices,
(a, b, c) denote the Cartesian indices, ε̃ = ε − μ, and R denotes the Berry connection. Furthermore, the interband transition frequency is
defined as h̄ωnp = (ε̃n − ε̃p) ≡ εnp.

Current A B = Bint + Bext T -symmetry PT -symmetry

Jdd
a

1
2

(
h̄ε̃nv

n
b∂c fn + ε̃2

n∂b∂c fn

)
ε̃nv

n
aδnp× [0 +τ 2] 0 �= 0

Jdo
a − ε̃n (ε̃n+ε̃p )

2ω2
np

(
ε̃nv

n
a − ε̃pv

p
a

)
fn×

[
Gbc

np + 0
]

0 �= 0

Jod
a + JOMM

a ε̃2
n∂c fn×

[ 2(ε̃n+ε̃p )
ωnp

Gab
np + τ ε̃n

ab
np

] �= 0 �= 0

Joo
a

1
4 (ε̃n + ε̃p)2Ra

pn×
[
−Db

np

(Rc
npξnp

ωnp

)+ 0
]

0 �= 0

the other two terms represent extrinsic contributions. This
type of classification has certain advantages. First of all, in
the experiments, the different scattering time dependencies
can be separated using appropriate scaling laws [39]. This,
in turn, helps us to understand and separate the physical
mechanism behind the dominant contribution to the thermal
current. Moreover, this kind of classification helps us to iden-
tify dissipationless NL thermal currents, which originate from
quantum coherence effects and are very fascinating. Finally,
it is much easier to compare results from quantum kinetics
with the semiclassical thermal transport, where currents are
calculated in various orders of the scattering time.

We note that the scattering time dependencies of the con-
tributions Jdd and JOMM are τ 2 and τ , respectively. However,
the scattering time dependence of the remaining current is not
trivial and is determined by the factor τgnp

1 for Jdo, τgnp
2 for

Jod, and gnp
1 gnp

2 for Joo. To extract the scattering time depen-
dence of the terms from these factors, we use the following
identities:

τ

ih̄
gnp

N = 1

ε2
np

(
N + η

np
τ,N

)
and gnp

N = 1

εnp

(
1 + η̃

np
τ,N

)
. (20)

Here, we have used the generalized expression of gnp
1 and gnp

2

in the form of gnp
N ≡ (εnp − N ih̄

τ
)−1. In the above equation,

η
np
τ,N and η̃

np
τ,N are dimensionless functions of τωnp, and their

explicit dependence is given as

η
np
τ,N = −iτωnp

⎛
⎝1 − iN3 1

τ 3ω3
np

1 + N2 1
τ 2ω2

⎞
⎠,

η̃
np
τ,N = N

i

τωnp

⎛
⎝ 1 + N i

τωnp

1 + N2 1
τ 2ω2

np

⎞
⎠.

(21)

Using these identities, we have separated the intrinsic and
extrinsic parts of the NL current in Table I. Further, to obtain
the thermal current of various orders of τ dependencies, we
consider the dilute impurity limit (DIL), where we consider
the scattering time (τ ) to be much greater than the inverse
of the interband transition frequency ωnp, i.e., 1

τωnp
	 1. In

this limit, ignoring the higher-order terms in (τωnp)−1, we can
write τgnp

N ≈ ih̄N
ε2

np
+ τ

εnp
and gnp

N ≈ 1
εnp

. For the detailed calcu-

lation of these identities, we refer the reader to Appendix E.

Using these identities and within the DIL approximation, we
can separate the NL thermal currents depending on different
powers of τ as

Ja(∝ τ 0) = Jdo
a,int + Jod

a,int + Joo
a,int,

Ja(∝ τ 1) = Jdo
a,ext + Jod

a,ext + JOMM
a ,

Ja(∝ τ 2) = Jdd
a . (22)

Here, the subscript int (ext) conveys the intrinsic (extrinsic)
part of the thermal current. Note that Ja(∝ τ 0) is the only
nonlinear current that survives in the ballistic limit. As ex-
pected, the Jdd

a current gives rise to the quadratic scattering
time dependence, and JOMM

a contributes to the linear scatter-
ing time-dependent current. From the dilute limit expansion
of the scattering time-dependent factor τgnp

1 , one expects an
intrinsic and a linear scattering time-dependent term from
the Jdo component of the thermal current. Surprisingly, we
find that the extrinsic part of the Jdo component vanishes
identically, i.e., Jdo

ext = 0. Hence, we are left with the intrinsic
part given by

Jdo
a,int = −1

2

p�=n∑
n,p,k

Gbc
np

ε2
np

ε̃n(ε̃n + ε̃p)
(
ε̃nv

n
a − ε̃pv

p
a

)
fnEb

T Ec
T . (23)

Here, Gbc
np is a band-resolved quantum metric tensor and is

defined as Gbc
np = 1

2 [Rb
npRc

pn + Rc
npRb

pn]. Note that it is sym-
metric under the exchange of both spatial (b, c) and band
(n, p) indices, i.e., Gbc

np = Gcb
np and Gbc

np = Gbc
pn [38,40,41]. Con-

tinuing with the same approach, we obtain nonzero intrinsic
and linear scattering time-dependent extrinsic contributions
from the Jod

a thermal current component. The intrinsic part
is determined by the band-resolved quantum metric and is
calculated to be

Jod
a,int = 2

h̄

p�=n∑
n,p,k

Gab
np

εnp
ε̃2

n (ε̃n + ε̃p)∂c fnEb
T Ec

T . (24)

The extrinsic contribution is determined by the band-resolved
Berry curvature, and it is given by

Jod
a,ext = τ

2h̄2

∑
n,p,k

ε̃2
n (ε̃n + ε̃p)ab

np∂c fnEb
T Ec

T . (25)
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TABLE II. Transformation of different physical quantities under
various symmetries.

Quantities P T PT

εn(−k) εn(k) εn(k)

vn(−k) −vn(k) −vn(k)

Ra
np(−k) −Ra

np(k) Ra
pn(k) −Ra

pn(−k)

ab
np(−k) ab

np(k) −ab
np(k) −ab

np(−k)

Gab
np(−k) Gab

np(k) Gab
np(k) Gab

np(−k)

Finally, we calculate the intrinsic contribution of the Joo
a . After

performing a straightforward algebra, we obtain the simplified
expression of the intrinsic thermal current originating from
Joo

a as

Joo
a,int = 1

4h̄

∑
n,p,k

(ε̃n + ε̃p)
ε̃n fn

εnp

[
(ε̃n + ε̃p)∂aGbc

np

+ 4Gac
np∂b(ε̃n + ε̃p)

]
Eb

T Ec
T . (26)

We refer the reader to Appendix F, where we have presented a
detailed calculation of this intrinsic current. This summarizes
all the components of Eq. (22). The details of calculation for
the intrinsic and extrinsic parts of the different NL thermal
current components are presented in Appendix G.

We find that the linear scattering time-dependent currents
given in Eqs. (19) and (25) can be combined to write in a
compact form. The resultant expression is given by

Ja(∝ τ 1) = τ

h̄2

∑
n,p,k

ε̃3
n

ab
np∂c fnEb

T Ec
T . (27)

Remarkably, this expression is known as the NL anomalous
(NLA) thermal current in the literature. This Hall contri-
bution to the NL thermal current has been obtained earlier
using the semiclassical Boltzmann transport framework in
Refs. [13,15,42] and viewed as the thermal analog of the
Berry curvature dipole. Here, we have obtained this using the
quantum kinetic theory framework.

The separation of the heat current into the intrinsic and
extrinsic parts allows us to do a time-reversal symme-
try (TRS) analysis. A general symmetry analysis of Ja =
−κabc(τ )∇bT ∇cT implies that in systems with TRS, only
the odd power of the τ -dependent thermal currents survive.
It can be understood as follows. Under time reversal, the
thermal current Ja and scattering time τ change their sign
while ∇bT ∇cT remains unaltered. Thus, in the presence of
TRS, we have κabc(−τ ) = −κabc(τ ). This condition implies
that κabc vanishes when it depends on the even powers of τ .
Therefore, we expect that the thermal current contributions
∝ τ 0 and ∝ τ 2 given in Eq. (22) will vanish in the pres-
ence of TRS. To our satisfaction, using the relations given in
Table II, we find that only the thermal current contribution
linear in the scattering time given in Eq. (27) is nonzero,
while the other contributions vanish in time-reversal symmet-
ric systems. Furthermore, we find that the parity-time reversal
symmetry, when both the parity and time-reversal symmetries
are individually broken, can have nontrivial consequences on
the thermal current. From Table II, it is evident that in the

presence of parity-time reversal symmetry, the Berry curva-
ture vanishes at each point in the momentum space. Hence, the
NL thermal currents depending on the Berry curvature vanish.
So, we are left with the trivial ∝ τ 2 NL Drude current, along
with an intrinsic scattering time-independent contribution to
the thermal current.

III. MODEL SPECIFIC CALCULATION

To study the NL thermal currents, we consider the mas-
sive tilted Dirac Hamiltonian [43,44]. This model was used
earlier to explore the NL charge transport [9,39,45,46]. Its
low-energy Hamiltonian is represented by [47,48]

Ĥ = svt kxσ0 + vF (skxσx + kyσy) + �σz. (28)

Here, σx,y,z are the Pauli matrices, σ0 stands for a 2 × 2 unit
matrix, vF is the Fermi velocity, and vt is the tilt velocity. The
valley index s = 1 (s = −1) represents the K (K ′) valley. The
mass term � opens a gap of 2� between the conduction and
valence bands and breaks the parity symmetry. We emphasize
that for this Hamiltonian, the y-direction mirror symmetry
that converts ky → −ky is preserved, while the x-direction
mirror symmetry that converts kx → −kx is broken. As we
will see later, mirror symmetry is crucial to determine the
nonzero Berry curvature dipole in the system. The tilted Dirac
fermions specified by the Hamiltonian in Eq. (28) can be
observed on the surface of topological crystalline insulators.
In particular, topological crystalline insulators such as SnTe,
Pb1−xSnxTe, and Pb1−xSnxSe can potentially host massive
Dirac fermions [49]. The transition-metal dichalcogenides
also host the Dirac cones [50], which can be tilted in presence
of strain.

The energy dispersion for the Hamiltonian in Eq. (28) is
given by ε±(k) = skxvt ± ε0, where ε0 =

√
�2 + v2

F k2 , with
k2 = k2

x + k2
y . The + (−) sign stands for the conduction (va-

lence) band. The energy dispersion is shown in Figs. 2(a)
and 2(b), where the left panel shows the K-valley and the
right panel shows the K ′-valley. Note that due to the valley
index-dependent tilt, the Dirac cones are oppositely tilted.
The anisotropic dispersion results in different band veloci-
ties: v±

0,x = svt ± v2
F kx/ε0 along the x-direction, and v±

0,y =
±v2

F ky/ε0 along the y-direction. The band geometric quan-
tities, such as Berry curvature and quantum metric, for this
Hamiltonian, are given by


xy
±,∓ = ∓ s �v2

F

2ε3
0

, Gxx
±,∓ = v2

F

(
�2 + k2

y v
2
F

)
4ε4

0

,

Gxy
±,∓ = −kxkyv

4
F

4ε4
0

, Gyy
±,∓ = v2

F

(
�2 + k2

x v
2
F

)
4ε4

0

. (29)

There are a few important points that we can infer from these
expressions. First of all, expressions of the band-resolved
Berry curvature and quantum metric are independent of the
tilt parameter vt and both of these quantities are highly con-
centrated near the band minima or maxima. We note that while
the Berry curvature is valley contrasting, the quantum metric
is the same in both valleys. Furthermore, the Berry curva-
ture vanishes for gapless systems (� = 0) while the quantum
metric is finite even in the absence of a gap. Note that the
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FIG. 2. Energy dispersion of the tilted massive Dirac system
specified by Eq. (28) is plotted against kx and ky in (a) for the K valley
and in (b) for the K ′ valley. Parts (c) and (d) display the momentum
space distribution of the band-resolved Berry curvature 

xy
+− for the

two valleys, respectively. The momentum space distribution of the
band-resolved quantum metric Gxy

+− for the two valleys is shown
in panels (e) and (f), respectively. The different energy contours in
(c)–(f) are indicated by yellow (μ = 0.2 eV), brown (μ = 0.3 eV),
and magenta (μ = 0.45 eV) lines. Here, kx and ky are in units of
Å−1 and ε(k) in eV. For these plots, we have used h̄vF = 1.55 eV Å,
vt = 0.4vF , and � = 0.1 eV.

expression of the Berry curvature is consistent with those in
Refs. [51–53], and the various components of the quantum
metric tensor are identical to those obtained in Refs. [17,45].
We have shown the momentum space distribution of the band-
resolved Berry curvature 

xy
+− for both the valleys in Figs. 2(c)

and 2(d). In Figs. 2(e) and 2(f), we have shown the momentum
space distribution of the quantum metric tensor component
Gxy

+− for both the valleys.
We now use the expressions derived in Eq. (29) to

calculate the different components of the current. For a two-
dimensional system, there can be six independent elements
of NL thermal conductivity. For simplicity, we assume an
external temperature gradient along the x-direction and probe
longitudinal and Hall-like thermal currents. The longitudinal
current along the x-direction is determined by the conductivity
κxxx, and the NL thermal current along the y-direction is de-
termined by κyxx. For all the currents, we will focus on these

FIG. 3. Variation of the (a) longitudinal and (b) transverse non-
linear Drude conductivity with chemical potential. The solid line
represents the numerical results, while the circles convey the ana-
lytical results calculated up to linear order in tilt velocity vt . For
numerical analysis, we have used h̄vF = 1.0 eV Å, vt = 0.1vF ,
� = 0.1 eV, and h̄/τ = 0.16 eV. In addition, we have considered
the temperature to be 50 K.

two elements of NL thermal conductivity. We will start with
the τ 2 NLD. The NLD conductivity for a single Dirac node is
calculated to be

κNLD
xxx = 3κNLD

yxx = −sgn(μ)s
μvtπτ 2

8
(1 − r2)2�(|μ| − |�|).

(30)
Here, we have defined r = �/μ and �(|μ| − |�|) as the
Heaviside step function. We emphasize that for obtaining
the analytical expressions, we have restricted ourselves to
the linear order in the tilt velocity vt . We note that, unlike
the linear Drude thermal conductivity, the NL Drude thermal
conductivity is independent of temperature. Furthermore, the
NL conductivity is valley-index-dependent, which originates
from linear tilt dependence. This implies that for Dirac nodes
with opposite tilt, the total NL Drude contribution vanishes.
This can be justified by the fact that in the presence of time-
reversal symmetry, which restricts the nodes to be oppositely
tilted, the NL Drude conductivity is expected to vanish. In
Fig. 3, we have shown the variation of the NLD conductivity
with the chemical potential (μ). Both the longitudinal and
transverse conductivity increase with the chemical potential.
The NLD conductivity keeps its sign preserved in both bands
and reduces to zero when the chemical potential reaches the
band gap. Since the NLD conductivity is a Fermi surface
effect, it is expected to vanish inside the gap.

Now, we turn our focus to the NL anomalous thermal
current given in Eq. (27). This linear τ -dependent thermal
current contribution has a nonzero value only in the direction
perpendicular to the applied temperature gradient. The ana-
lytical expression for the κyxx component of the anomalous
conductivity, up to linear order in vt , is given by

κNLA
yxx = −sgn(μ)

7π3vt k2
BT 2

20μ2

(
k2

B

h̄

)
r(1 − 2r2)�(|μ| − |�|).

(31)
This expression is independent of the valley index, and unlike
the NLD conductivity, it depends on temperature quadrati-
cally. The chemical potential dependence of this conductivity
is shown in Fig. 4(a) with a good match between the analyt-
ical and numerical results, where we observe the following
features. First, the conductivity peaks near the conduction-
and the valence-band edge and vanishes when we move away
from the band edges. In addition to that, a change in the sign of
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FIG. 4. (a) Variation of the nonlinear anomalous Hall conductivity with the chemical potential μ, where solid line represents the
numerically obtained result. In (b), we have shown the variation of the longitudinal (left) and transverse (right) total nonlinear intrinsic
conductivity with chemical potential (μ). The total nonlinear intrinsic conductivity κ tot is the sum of the intrinsic contributions arising from
κdo, κod, and κoo. Therefore, in (b), the solid line represents the total intrinsic conductivity, while the dashed lines are the different thermal
current contributions giving rise to intrinsic conductivity. Additionally, in this figure, the circles denote the analytical result calculated up to
linear order in tilt velocity vt . The model parameters, scattering time, and temperature considered here are the same as in Fig. 3. For the
numerical and analytical calculation of the nonlinear intrinsic thermal current, we considered the cutoff energy of the valence band to be 2 eV.

the conductivity can be observed near |μ| = √
2�. It attains

a minimum value at |μ| = √
6�; thereafter, it becomes zero

with increasing μ.
Finally, we calculate the analytical expressions of the NL

intrinsic (NLI) thermal current given in Eqs. (24) and (26). For
this, we consider the Fermi level to reside in the conduction
band. Since the expressions of intrinsic conductivities consist
of the Fermi function, we have to consider the total contribu-
tion from the valence band in addition to the contribution from
the conduction band. For the tilted Dirac model, the energy of
the conduction band goes from � to ∞, while the valence
band spans −� to −∞. Having the chemical potential in the
conduction band provides an energy cutoff for the conduction-
band electrons through the Fermi function. In this case, the
valence band is completely filled, and the whole valence band
contributes to the conductivity. In numerical simulations, we
cannot cover the whole valence band as it goes to infinity.
To remedy this, we consider a cutoff in energy −� for the
valence band, with � being a positive real quantity. With this
approach, we calculated the analytical result for the longitu-
dinal and transverse intrinsic currents. The analytical form of
the longitudinal intrinsic current is

κNLI
xxx = sμvt

128πk2
BT 2

(
k2

B

h̄

)[
4 − 2r2 − 3λ2 − 4λ2

1

]
, (32)

where λ1 = �/� and λ2 = μ/�. Note that as � → ∞, we
have λ1 → 0 and λ2 → 0. Similarly, the analytical expression
of the transverse intrinsic current is

κNLI
xyy = −sμvt

128πk2
BT 2

(
k2

B

h̄

)[
20 − 2

3
r2 − 1

2
r4 − 25λ2

]
. (33)

These analytical expressions of the nonlinear intrinsic current
are valid only when the chemical potential lies in the con-
duction band. Note that these expressions explicitly contain
the valley index implying that for systems with time-reversal
symmetry, the total intrinsic contribution from both of the
nodes will vanish. We have shown the numerical results of
the intrinsic conductivities in Fig. 4(b), where we find a good
match between the analytical and numerical results. Note
that the constant relaxation-time approximation used by us

is likely to work in the low-temperature regime, where the
phonons and other thermal fluctuations are “frozen.”

We expect the nonlinear thermal Hall responses to dom-
inate in systems preserving T symmetry since the linear
Hall responses vanish in such systems. However, even in
T broken systems, the linear and nonlinear response sig-
nals, although challenging, can possibly be distinguished
in a few ways. They can be separated by their distinct
temperature dependence. For instance, the linear anomalous
Hall effect is proportional to the temperature, whereas the
nonlinear one is inversely proportional to the square of tem-
perature. Similarly, they can also be distinguished by their
different chemical potential dependencies. To get an order
of magnitude estimate of the different current contributions
for the model considered above, we set μ = 0.2 eV, τ =
10−12 s, and [54] ∂xT = 1 K/mm. With these parameters, we
find that in the linear-response regime, we have the Drude
heat current, JD

x = −κD
xx∂xT = −5.40 × 10−9 W/mm, and

the linear anomalous Hall heat current, JAHE
y = −κAHE

yx ∂xT =
−7.72 × 10−12 W/mm. Similarly, for the nonlinear re-
sponse regime, we have the nonlinear Drude heat current,
JNLD

x = −κNLD
xxx (∂xT )2 = 2.08 × 10−15 W/mm, and the non-

linear anomalous Hall heat current, JNLA = −κNLA
yxx (∂xT )2 =

3.32 × 10−20 W/mm. Similarly, we can calculate the non-
linear intrinsic Hall heat current to be jNLI = −κxyy(∂yT )2 =
4.05 × 10−15 W/mm.

IV. DISCUSSIONS

For the sake of simplicity of analytical calculations, we
have used the constant relaxation-time approximation. How-
ever, we can easily include the momentum and energy
dependence of the scattering time in our framework. For
example, in Eq. (12) of our manuscript, the momentum-
dependent τ can be taken inside the Brillouin zone sum. The
energy and momentum dependence of τ and the Brillouin
zone sum can be evaluated numerically for any given system
with a tight-binding or continuum Hamiltonian.

We note that recently there have been predictions
of the nonlinear intrinsic electrical Hall conductivity. In
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Refs. [16,17,55,56], an intrinsic nonlinear electrical Hall cur-
rent resulting from the Berry connection polarizability (BCP)
has been explored. More recently, it has been shown that
additional new terms contribute to the nonlinear intrinsic
current including a longitudinal non-Hall-type nonlinear cur-
rent [19,57], in addition to the BCP Hall current. Our paper
studies the thermal version of this problem, and it explores
both the intrinsic Hall and longitudinal thermal currents.

Another aspect about our work is that it is based on an
Abelian-Berry connection. This works as long as the bands
are nondegenerate. In the case of materials with compos-
ite PT symmetry, all the bands are doubly degenerate. To
be mathematically correct, for such cases our calculations
should be generalized to include non-Abelian-Berry connec-
tion. However, our Abelian-Berry connection framework can
still be used in a limiting sense for systems with the PT being
violated by a negligibly small parameter.

The nonlinear thermal current predicted in this paper char-
acterizes the contribution from fermionic quasiparticles, like
electrons. Similar intrinsic contributions are likely to arise in
charge-neutral bosonic quasiparticles such as magnons and
phonons. Our density-matrix-based formalism can be possibly
be adapted for these bosonic systems with some modifica-
tions. We leave this exploration for future study.

V. CONCLUSION

To summarize, in this paper we have developed the quan-
tum kinetic framework for heat current induced by the
temperature gradient in crystalline systems, and using this we
study the second-order NL responses. We construct a defi-
nition of the thermal current in the quantum kinetic theory,
which is consistent with the known semiclassical results in
the linear-response regime. We then extend this definition to
calculate the second-order NL heat current.

In the second order in the temperature gradient, we find an
intrinsic scattering time-independent heat current in addition
to the extrinsic scattering time-dependent current. In the di-
lute impurity limit, we show that the extrinsic current can be
separated into linear and quadratic scattering time-dependent
contributions. We found that the quadratic scattering time-
dependent current corresponds to the thermal counterpart of
the NLD current, and the linear scattering time-dependent
current corresponds to the thermal counterpart of the Berry
curvature dipole current. These extrinsic current components
were obtained earlier using the semiclassical theory. Our work
provides the realization of these currents using the quantum
kinetic theory.

We demonstrate that the intrinsic NL thermal current orig-
inates from the band geometric quantities of the system.
Our symmetry analysis shows that to observe the intrinsic
NL thermal current, both the inversion symmetry and the
time-reversal symmetry must be broken. Parity-time reversal
symmetric systems can be a better platform to observe the
intrinsic NL thermal Hall effect as the Berry curvature dipole-
induced NL contribution vanishes.

We employ our theory of NL thermal currents to demon-
strate NL thermal conductivities in a tilted massive Dirac
system in the low-temperature limit. We find that within the
constant relaxation-time approximation, the NLD thermal cur-

rent is independent of temperature, and it increases as the
carrier density increases. The NLA Hall current peaks near
the band edge, and it has a quadratic temperature dependence.
The intrinsic contributions, on the other hand, have a nontriv-
ial inverse quadratic temperature dependence. The different
temperature dependence, κNLD ∝ T 0, κNLA ∝ T 2, and κNLI ∝
T −2, will be pivotal to extract out and identify the dominant
contribution to the thermal current in low-temperature experi-
ments.
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APPENDIX A: CALCULATION OF THE DENSITY MATRIX
EQUATION: ADIABATIC SWITCHING-ON

APPROXIMATION

Here, we present a detailed calculation of the density ma-
trix up to second order in temperature gradient ET . We use the
following adiabatic switching-on approach, mostly used in the
context of optics. In the interaction picture, we can write

ih̄
∂ρ̃(t )

∂t
= [H̃ET , ρ̃], (A1)

where the tilde (∼) over the operators indicates that the oper-
ators are taken into the interaction picture, and HET conveys
the perturbing Hamiltonian arising from the thermal perturba-
tion. While writing the quantum-Liouville equation, we have
used − i

h̄ [HET , ρ] = DT (ρ). Thus, the form of the N th-order
correction to the density matrix can be obtained via

ih̄ρ̃ (N )(t ) = − i

2

∫ t

−∞
dt ′e

i
h̄ H0t ′

ET (t ′) ·
[{

H0,
∂ρ (N−1)(t ′)

∂k

}

− i[Rk, {H0, ρ
(N−1)(t ′)}]

]
e− i

h̄ H0t ′
. (A2)

Here, we consider the thermal field of the form ET (t ) =
ET e−iωt and put ω = 0 at the end for the dc counterpart. If
we proceed with this, we will encounter integration of the
form

∫ t
−∞ e−iωt ′

dt ′. To solve this, we will use the adiabatic
switching on of the thermal field. This can be achieved by the
modified frequency ω + iη. With this strategy, we solve the
first-order density matrix as

ρ (1)
np (t ) = i

2h̄

1

ωnp − ω − iη

[{
H0,

∂ρ (0)

∂kb

}

− i
[
Rb

k, {H0, ρ
(0)}]]

np

Eb
T (t )

⇒ ρ (1)
np = 1

2h̄

1

ωnp − iη

[{
H0,

∂ρ (0)

∂kb

}

− i
[
Rb

k, {H0, ρ
(0)}]]

np

Eb
T . (A3)
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In the second line of the above equation, we have used the
dc limit (i.e., ω → 0). Likewise, we can calculate the second-
order density matrix as

ρ (2)
mp(t ) = i

2h̄

1

ωnp − 2ω − 2iη

[{
H0,

∂ρ (1)

∂kb

}

− i
[
Rb

k, {H0, ρ
(1)}]]

np

Eb
T (t )

⇒ ρ (2)
np = i

2h̄

1

ωnp − 2iη

[{
H0,

∂ρ (1)

∂kb

}

− i
[
Rb

k, {H0, ρ
(1)}]]

np

Eb
T . (A4)

Physically, we can identify η as the inverse of the relaxation
time, i.e., η = 1/τ . Here, we notice that the prefactor of η in
the above equation depends upon the order of the calculated
density matrix. For example, if we calculate ρ (N ), then we
will have a term like (ωnp − iNη)−1. This indicates that the
higher-order component of the nonequilibrium density matrix
originating from the multiphoton process decays faster. An-
other independent physical way to think of this is to associate
η with the broadening of the energy levels or the uncertainty
in sampling the energy of the state. In this interpretation, it is
natural to expect that multiphoton processes will have larger
uncertainty in energy. If a single-photon process samples two
energy levels and has a frequency uncertainty of η (or 1/τ ),
then an N-photon process that will sample 2N energy levels is
likely to have a frequency uncertainty of Nη or (N/τ ).

Within the quantum kinetic theory framework, we can
capture this effect if we start with the quantum Liouville
equation along with the relaxation-time approximation in the
following form:

∂ρ (N )
np

∂t
+ i

h̄
[H0, ρ

(N )]np + ρ (N )
np

τ/N
= [DT (ρ (N−1))]np. (A5)

Physically, this implies that the different orders of the density
matrix (in powers of the external perturbation) relax with
varying timescales of scattering, with ρ (N ) relaxing with a
timescale of τ/N , as discussed above.

APPENDIX B: CALCULATION OF THE DENSITY MATRIX
UP TO SECOND ORDER

1. First-order density matrix

Invoking the steady state of the density matrix, Eq. (5) can
be written as

i

h̄
[H0, ρ

(N )]np + ρ (N )
np

τ/N
= [DT (ρ (N−1))]np. (B1)

Using the commutation relation [H0, ρ
(N )]np = (ε̃n − ε̃p)ρ (N )

np
in the above equation, we calculated the general form of the
N th-order density matrix to be

ρ (N )
np = −ih̄gnp

N [DT (ρ (N−1))]np, (B2)

where we have defined gnp = (εnp − ih̄
τ

N )−1, with εnp =
(εn − εp) being the interband energy gap. By substituting
n = p in the above equation for the N = 1 case, we calcu-
late the diagonal elements of the first-order density matrix
(ρ (1)

nn ≡ ρd
nn). Using the identity [DT (ρ (0) )]nn = 1

h̄
∇cT

T ε̃n∂c fn,
we obtain

ρd
nn = τ

h̄

∇cT

T
ε̃n∂c fn = −τ

h̄
ε̃n∂c fnEc

T . (B3)

Furthermore, by using [DT (ρ (0) )]np = i
h̄

∇cT
T Rc

np(ε̃n fn −
ε̃p fp) for the n �= p case, we calculate the off-diagonal
elements of the first-order density matrix (ρ (1)

np ≡ ρo
np) to be

ρo
np = −Rc

npgnp
1 ξnpEc

T , (B4)

where we have introduced the notation ξnp = ε̃n fn − ε̃p fp.
With the help of the first-order density matrix, we will
calculate the second-order density matrix in the next
section.

2. Second-order density matrix

Now calculate the second-order density matrix (ρ (2)) by
putting N = 2 in Eq. (B2). Using a similar strategy as was
done for the first-order density matrix, we segregate the ρ (2)

into the four parts as ρdd, ρdo, ρod, and ρoo. Here, ρdd de-
notes the diagonal elements of the ρ (2) originating from ρd,
ρoo defines the off-diagonal elements of ρ (2) stemming from
ρo, and so on. The diagonal elements of ρ (2) are calculated by
using the identity

[DT (ρ (1) )]nn = 1

2h̄

∇bT

T

⎡
⎣2ε̃n∂bρ

d
nn + i

∑
p�=n

(ε̃n + ε̃p)

× (
ρo

npRb
pn − Rb

npρ
o
pn

)]
. (B5)

From the first term of the above expression, we calculate the
“dd” component of the second-order density matrix to be

ρdd
nn = − τ

2h̄
ε̃n∂b

(
ρd

n

)
Eb

T = τ 2

2h̄
ε̃n

[
vn

b∂c fn + ε̃n

h̄
∂b∂c fn

]
Eb

T Ec
T .

(B6)

The remaining part of [DT (ρ (1) )]nn leads to the “do” compo-
nent of the density matrix of the following form:

ρdo
nn = iτ

4h̄

∑
p�=n

(ε̃n + ε̃p)
(
gnp

1 Rc
npRb

pn + gpn
1 Rb

npRc
pn

)
ξnpEb

T Ec
T .

(B7)
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For the off-diagonal components of the NL density matrix (n �= p case), we use the identity

[DT (ρ (1) )]np = 1

2h̄

∇bT

T

⎡
⎣(ε̃n + ε̃p)∂bρ

o
np + i

∑
q

(
(ε̃n + ε̃q)ρ (1)

nq Rb
qp − (ε̃q + ε̃p)Rb

nqρ
(1)
qp

)⎤⎦. (B8)

The summation over q in the second term inside the square brackets can be simplified by considering the three cases
q = n �= p, q = p �= n, and q �= n �= p. Using this mathematical trick, we simplify the above expression to the following form:

[DT (ρ (1) )]np = 1

2h̄

∇bT

T

[
2i
(
ε̃nρ

d
nn − ε̃pρ

d
pp

)
Rb

np + (ε̃n + ε̃p)Db
npρ

o
np + i

∑
q �=n �=p

(
(ε̃n + ε̃q)ρo

nqRb
qp − (ε̃q + ε̃p)Rb

nqρ
o
qp

)]
, (B9)

where we have defined Db
np = ∂b − i(Rb

nn − Rb
pp). Using these results in Eq. (B2), the ρd-dependent part of [DT (ρ (1) )]np gives

the “od” component of the off-diagonal density matrix of the following form:

ρod
np = −ih̄gmp

2

[
− i

h̄
Eb

TRb
np

(
ε̃nρ

d
nn − ε̃pρ

d
pp

)] = τ

h̄
gnp

2 Rb
np

(
ε̃2

n∂c fn − ε̃2
p∂c fp

)
Eb

T Ec
T . (B10)

The remaining ρo-dependent part of [DT (ρ (1) )]np gives the “oo” component of the off-diagonal density matrix having the
simplified expression

ρoo
np = − i

2
gnp

2 (ε̃n + ε̃p)Db
np

(
gnp

1 Rc
npξnp

)
Eb

T Ec
T + 1

2
gnp

2

∑
q �=n �=p

[
gnq

1 Rc
nqRb

qp(ε̃n + ε̃q)ξnq − gqp
1 Rb

nqRc
qp(ε̃q + ε̃p)ξqp

]
Eb

T Ec
T . (B11)

The second term of the above equation is the multiband term. It becomes important for systems having three or more bands.

APPENDIX C: CALCULATION OF THE LINEAR
THERMAL CURRENTS

In this Appendix, we will calculate the thermal current that
is linear in the applied temperature gradient. Writing the first
term of Eq. (2) in the band basis, we get

Tr

[
1

2
{H0, v}ρ (1)

D

]
= 1

2

∑
n

〈n|(H0v + vH0)ρ (1)
D |n〉

=
∑

n

ε̃nv
nρd

nn. (C1)

To keep track of its origin, we denote this current as Jd. After
substituting the form of the ρd, we get

Jd = −τ

h̄

∑
n,k

ε̃2
nv

n∂c fnEc
T . (C2)

This is the familiar expression of the linear thermal Drude
current known in the literature [1]. The Drude thermal current
is generally calculated within the semiclassical approach us-
ing the Boltzmann equation. Here, we calculate it from the
quantum kinetic theory. We denote the current originating
from the second term Eq. (2) by Jo as it stems from ρo. In
band-reduced form, it is calculated to be

Jo = 1

2

∑
p

〈p|(H0v + vH0)ρ (1)
O |p〉 = 1

2

∑
n �=p

(ε̃n + ε̃p)vpnρo
np.

(C3)
Using the off-diagonal elements of the velocity operator along
an arbitrary spatial direction a, i.e., v

pn
a = iωpnRa

pn and ρo
np in

the above equation, we get

Jo
a = i

2h̄

∑
n �=p

(ε̃n + ε̃p)εnpgnp
1 Ra

pnRc
np(ε̃n fn − ε̃p fp)Ec

T . (C4)

In the dilute impurity limit, we have gnp
1 ≈ 1/εnp. Then the

above equation is simplified further into the following form:

Jo
a = − 1

2h̄

∑
n �=p

ε̃n(ε̃n + ε̃p)ac
np fnEc

T . (C5)

Now, we focus on the third term of Eq. (2), which gives
thermal current contribution arising from the orbital magnetic
moment (OMM) of the Bloch electrons. The particle magnetic
moment of the nth Bloch band is given by [4]

mN,n = i

2h̄

〈∇kun
k

∣∣× [H0 − ε̃n]
∣∣∇kun

k

〉
. (C6)

Inserting the completeness relation, the above equation can be
written in the following form:

mN,n = − i

2h̄

∑
p

(εn − εp)(Rnp × Rpn),

Thus, εabcma
N,n = − 1

2h̄

∑
p

(εn − εp)bc
np. (C7)

Here, εabc is the third-rank Levi-Civita tensor, with abc being
the even cyclic permutation. Henceforth, we can compute the
OMM contribution to the thermal current in the following
way:

JOMM
a = Tr[(ET × mN )aH0ρ0]

= −Tr[(mN × ET )aH0ρ0]

= −
∑
n,k

εabcmb
N,nε̃n fnEc

T ,

= − 1

2h̄

∑
n,p,k

ε̃n(εn − εp)ac
np fnEc

T . (C8)

Lastly, we focus on the fourth term of Eq. (2), which
denotes the thermal current contribution from the Berry
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curvature-induced heat magnetization and is given by

JM
a = 2 Tr(ET × M�)a = −2

∑
n

εabcMb
�,nEc

T . (C9)

Here, the Berry curvature-induced heat magnetization is given by Mb
E ,n = 1

h̄

∑
k ζ (εn)b

n, where ζ (εn) is explicitly given by

ζ (εn) = − 1

β2

[
π2

6
− 1

2
log2(1 + e−β(εn−μ) ) − Li2(1 − fn)

]
.

(C10)

Here Li2 is the polylogarithm function of order 2. From Eqs. (C5), (C8), and (C9), we note that all these contributions are nonzero
only in the perpendicular direction of the applied temperature gradient. Consequently, they give rise to the novel anomalous
thermal current response. All these anomalous thermal current components can have the following form:

JAnm
a = Jo

a + JOMM
a + JM

a ,

= 1

h̄

∑
n

ε̃2
n fnεabc

b
nEc

T + (kBT )2

h̄

∑
n

[
π2

3
− log2(1 + e−β(εn−μ) ) − 2Li2(1 − fn)

]
εabc

b
nEc

T .

(C11)

Here, the superscript “Anm” stands for “anomalous.” Further, we can write the above equation in vector form as

JAnm = − (kBT )2

h̄
ET ×

∫
[dk]

∑
n

�n

[
β2ε̃2

n fn + π2

3
− log2(1 + e−β(εn−μ) ) − 2Li2(1 − fn)

]
. (C12)

This expression is identical to the anomalous thermal Hall (Righi-Leduc) currently known in the literature. It was earlier
calculated in Refs. [26,58] using the semiclassical equation of motion for thermal transport.

APPENDIX D: CALCULATION OF THE NONLINEAR THERMAL CURRENTS

In this Appendix, we calculate the second-order (N = 2) thermal current. For the second-order thermal current, the definition
is written from Eq. (4) as

J (2)
a = Tr

[
1
2 {H0, va}ρ (2)

D

]+ Tr
[

1
2 {H0, va}ρ (2)

O

]+ Tr
[
(ET × mN )aH0ρ

(1)
D

]
. (D1)

We begin with the first term of the above equation, which gives the NL heat current contributions from the diagonal elements of
the second-order density matrix. The first term, which we denote as Ja

1 , can be written in the band-reduced form as

Ja
1 = Tr

[
1

2
{H0, va}ρ (2)

D

]
= 1

2

∑
p,n

〈p|H0va + vaH0|n〉〈n|ρ (2)
D |p〉 =

∑
n

ε̃nv
n
aρ

(2)
D,nn. (D2)

Here, we have used the fact that ρ
(2)
D is a diagonal matrix, hence it will be nonzero only for p = n. Since we have ρ

(2)
D =

ρdd + ρdo, these two sectors of the diagonal density matrix will give us two different thermal current contributions, which we
denote as Jdd

a and Jdo
a . Using the form of ρdd

a , we get

Jdd
a =

∑
n

ε̃nv
n
aρ

dd
nn = τ 2

2h̄2

∑
n,k

(
h̄ε̃nv

n
b∂c fn + ε̃2

n∂b∂c fn
)
ε̃nv

n
aEb

T Ec
T . (D3)

Similarly, substituting the density matrix ρdo, we get another thermal current component

Jdo
a =

∑
n

ε̃nv
nn
a ρdo

nn = iτ

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)
(
gnp

1 Rc
npRb

pn + gpn
1 Rb

npRc
pn

)
ε̃nv

n
a (ε̃n fn − ε̃p fp)Eb

T Ec
T

= iτ

4h̄

p�=n∑
n,p,k

gnp
1 Rb

pnRc
np(ε̃n + ε̃p)(ε̃n fn − ε̃p fp)

(
ε̃nv

n
a − ε̃pv

p
a

)
Eb

T Ec
T . (D4)
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Now, we focus on the second term of Eq. (D1), which gives the thermal current contributions due to the off-diagonal components
of the density matrix. We denote it by Ja

2 and simplify it as

Ja
2 = Tr

[
1

2
{H0, va}ρ (2)

O

]
= 1

2

∑
p,n,k

〈p|H0va + vaH0|n〉〈n|ρ (2)
O |p〉 = 1

2

p�=n∑
n,p,k

(ε̃n + ε̃p)vpn
a ρ

(2)
O,np. (D5)

Note that the matrix element of the velocity operator is given by v
pn
a = vn

aδnp + iωpnRa
pn. Since, in the main text we have

considered ρ
(2)
O = ρod + ρoo, we will get two contributions. The thermal current contribution originating from ρod is given by

Jod
a = 1

2

p�=n∑
n,p,k

(ε̃n + ε̃p)vpn
a ρod

np = iτ

2h̄2

p�=n∑
n,p,k

εpngnp
2 (ε̃n + ε̃p)Ra

pnRb
np

(
ε̃2

n∂c fn − ε̃2
p∂c fp

)
Eb

T Ec
T . (D6)

Similarly, we calculate the thermal current stemming from ρoo in the following way:

Joo
a = 1

2

∑
n �=p

(ε̃n + ε̃p)vpn
a ρoo

np = − 1

4h̄

p�=n∑
n,p,k

εnpgnp
2 (ε̃n + ε̃p)Ra

pn

[
(ε̃n + ε̃p)Db

np

(
gnp

1 Rc
npξnp

)
(D7)

+ i
∑

q �=n �=p

(
gnq

1 Rc
nqRb

qp(ε̃n + ε̃q)ξnq − gqp
1 Rb

nqRc
qp(ε̃q + ε̃p)ξqp

)]
Eb

T Ec
T . (D8)

Lastly, we focus on the third term of Eq. (D1), which gives the current contribution stemming from the orbital magnetic
moment of the Bloch wave function. We denote this term by JOMM. It can be written in the following form:

JOMM
a =

∑
n

〈n|(εablE
b
T ml

NH0ρ
(1)
D

)|n〉 =
∑

n

εablm
l
N,nε̃nρ

d
nnEb

T = −τ

h̄

∑
n,k

εablm
l
N,nε̃

2
n∂c fnEb

T Ec
T . (D9)

Now, inserting Eq. (C7) in the above equation, we can write the OMM thermal current in the following form:

JOMM
a = τ

2h̄2

∑
n,p,k

ε̃2
n (ε̃n − ε̃p)ab

np∂c fnEb
T Ec

T . (D10)

This completes our calculation for all the thermal currents in the second-order response of the temperature gradient. We analyze
these currents further in the main text.

APPENDIX E: INTRINSIC AND EXTRINSIC PART OF THE
SCATTERING TIME-DEPENDENT FACTORS

In this Appendix, we present the mathematical steps to seg-
regate the intrinsic and extrinsic parts of the thermal current.
In the main text, we have defined gnp

N = (εnp − ih̄N/τ )−1. So,
in the following section, we will show that the τgnp

N can be
segregated into the intrinsic and extrinsic parts:

τ

ih̄
gnp

N = 1
ih̄
τ

1(
εnp − N ih̄

τ

) = 1

εnp

[
1
ih̄
τ

+ N

εnp − N ih̄
τ

]
. (E1)

It is evident from the above equation that in the limit of
τ → ∞, the first term of the above equation diverges, but the
second term reduces to N/ε2

np. Therefore, we use the following
trick to write τgnp

N into τ -independent and -dependent terms:

τ

ih̄
gnp

N = N

ε2
np

+
(

τ

ih̄
gnp

N − N

ε2
np

)

= N

ε2
np

+ τ

ih̄

⎛
⎝(εnp + N ih̄

τ

)
ε2

np + (
Nh̄
τ

)2 − N ih̄
τ

ε2
np

⎞
⎠

= 1

ε2
np

(
N + η

np
τ,N

)
, (E2)

with η
np
τ,N = −iτωnp[1 − i(N/τωnp)3]/[1 + (N/τωnp)2], a di-

mensionless function of τωnp. So, the first term of the above
equation is τ -independent, while the second term is a function
of τ . In the case of the dilute impurity limit where τωnp � 1,
we can approximate the function η

np
τ,N (τωnp) up to linear order

in τωnp as

lim
τωnp→∞ η

np
τ,N (τωnp) ≈ −iτωnp. (E3)

Similarly, we can show that in τ → ∞, gnp
N reduces to 1/εnp.

So, following the previous strategy, we calculated

gnp
N = 1

εnp
+
(

gnp
N − 1

εnp

)
= 1

εnp

(
1 − η̃τ,N

np

)
, (E4)

with η̃
np
τ,N = i(N/τωnp)[1 + i(N/τωnp)]/[1 + (N/τωnp)2] be-

ing another dimensionless function of τωnp. It is straightfor-
ward to show that in the dilute impurity limit, the function
η̃

np
τ,N goes to zero as

lim
τωnp→∞ η̃

np
τ,N (τωnp) ≈ O

(
1

τωnp

)
→ 0. (E5)

Using these identities, we have separated the intrinsic and
extrinsic contribution of the thermal current in the main text.
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APPENDIX F: SIMPLIFICATION OF THE Joo
a,int CURRENT

In the dilute impurity limit, Eq. (18) can be written as

Joo
a,int = − 1

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)Ra
pn

[
(ε̃n + ε̃p)Db

np

(
1

εnp
Rc

npξnp

)

+ i
∑

q �=n �=p

(
1

εnq
Rc

nqRb
qp(ε̃n + ε̃q)ξnq − 1

εqp
Rb

nqRc
qp(ε̃q + ε̃p)ξqp

)]
Eb

T Ec
T . (F1)

Now, focus on the first term of the above equation, which we denote by JI as

JI = − 1

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)2Ra
pnDb

np

(
1

εnp
Rc

npξnp

)
Eb

T Ec
T .

= − 1

4h̄

p�=n∑
n,p,k

(εn + εp)2Ra
pn

[
∂b

(
1

εnp
Rc

npξnp

)
− i
(
Rb

nn − Rb
pp

)( 1

εnp
Rc

npξnp

)]
Eb

T Ec
T . (F2)

With the help of algebraic manipulations, we can write the first term in the brackets as

Ra
pn∂b

(
1

εnp
Rc

npξnp

)
= ∂b

(
1

εnp
Ra

pnRc
npξnp

)
− 1

εnp
Rc

npξnp∂bRa
pn. (F3)

Therefore, we can modify JI as

JI = − 1

4h̄

∑
n,p,k

(εn + εp)2

[
∂b

(
1

εnp
Ra

pnRc
npξnp

)
− 1

εnp
Rc

npξnpDb
pnRa

pn

]
Eb

T Ec
T . (F4)

Now, we modify the second part of Eq. (F1) by exchanging the dummy indices, i.e., q ↔ p and q ↔ n. In this way, we can write
the second part of Eq. (F1) as

JII = − i

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)2Rc
np

ξnp

εnp

∑
q �=(n,p)

(
Ra

qnRb
pq − Ra

pqRb
qn

)
Eb

T Ec
T . (F5)

Thus, the intrinsic current Joo
a,int will become

Joo
a,int = − 1

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)2

⎡
⎣∂b

(
1

εnp
Ra

pnRc
npξnp

)
− Rc

npξnp

εnp

⎛
⎝Db

pnRa
pn − i

∑
q �=(n,p)

(
Ra

qnRb
pq − Ra

pqRb
qn

)⎞⎠
⎤
⎦Eb

T Ec
T . (F6)

Now, using the sum rule [38], we can show that

Da
pnRb

pn − Db
pnRa

pn = −i
∑

q �=(n,p)

(
Ra

qnRb
pq − Ra

pqRb
qn

)
. (F7)

Thus, we can write

Joo
a,int = − 1

4h̄

p�=n∑
n,p,k

(ε̃n + ε̃p)2

[
∂b

(
1

εnp
Ra

pnRc
npξnp

)
− Rc

npξnp

εnp
Da

pnRb
pn

]
Eb

T Ec
T . (F8)

The permutation symmetry of indices b and c renders the nontrivial part of the U(1) covariant derivative Da
pnRb

pn. This can be
viewed by symmetrizing indices b and c followed by the exchange of dummy indices n ↔ p. With this manipulation, we can
write the second term of the above equation as

J2 = 1

4h̄

∑
n,p,k

(ε̃n + ε̃p)2

εnp
ξnpRc

np∂aRb
pnEb

T Ec
T

= 1

4h̄

∑
n,p,k

(ε̃n + ε̃p)2

εnp
ε̃n fn∂a

(
Rc

npRb
pn

)
Eb

T Ec
T

= 1

4h̄

∑
n,p,k

(ε̃n + ε̃p)2

εnp
ε̃n fn∂aGbc

npEb
T Ec

T . (F9)
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In obtaining this result, we have expanded the ξnp in the second line of the above equation and then used the exchange of dummy
indices. Likewise, we transformed the first term of Eq. (F8) as

J1 = − 1

2h̄

∑
n,p,k

(ε̃n + ε̃p)2∂b

(
ε̃n fn

εnp
Gac

np

)
Eb

T Ec
T = 1

2h̄

∑
n,p,k

ε̃n fn

εnp
Gac

np∂b(ε̃n + ε̃p)2Eb
T Ec

T . (F10)

Finally, the simplified form of Eq. (F1) has the following form:

Joo
a,int = 1

4h̄

∑
n,p,k

(ε̃n + ε̃p)
ε̃n fn

εnp

[
(ε̃n + ε̃p)∂aGbc

np + 4Gac
np∂b(ε̃n + ε̃p)

]
Eb

T Ec
T . (F11)

APPENDIX G: EXACT EXPRESSIONS OF EXTRINSIC CURRENTS

In this Appendix, we calculate the expressions of the extrinsic thermal currents. From Eqs. (13) and (19), the explicit τ

dependencies of thermal currents Jdd and JOMM are evident. However, for the remaining currents, it is not evident where the τ

dependence is implicitly governed by either τgnp
N or gnp

N . We will use identities in Eqs. (E2) and (E4) to extract the τ dependence
of different thermal currents. Using this approach, we calculate the extrinsic part of Jdo

a with the help of the identity of Eq. (E2)
in the following form:

Jdo
a,ext = −1

4

p�=n∑
n,p,k

η
np
τ,1

ε2
np

Rb
pnRc

np(ε̃n + ε̃p)(ε̃n fn − ε̃p fp)
(
ε̃nv

n
a − ε̃pv

p
a

)
Eb

T Ec
T . (G1)

Further, we can split ητ
np into symmetric and antisymmetric parts under exchange of n ↔ p. Using this idea in the above equation,

we observed that the antisymmetric part cancels out, and the symmetric part gives a finite contribution. So, the nonvanishing
contribution of Eq. (G1) is

Jdo
a,ext = 1

2

∑
n,p,k

Gbc
np

ε̃n(ε̃n + ε̃p)

ε2
np

(
1 + τ 2ω2

np

)(ε̃nv
n
a − ε̃pv

p
a

)
fnEb

T Ec
T . (G2)

We further notice that in the dilute impurity limit, Jdo
a,ext → 0.

Similarly, we derived the extrinsic part of Jod
a to be

Jod
a,ext = −1

h̄

∑
n,p

∫
[dk]

ε̃2
n (ε̃n + ε̃p)

εnp[1 + (τωnp/2)2]

(
2Gab

np −
(τωnp

2

)3
ab

np

)
∂c fnEb

T Ec
T . (G3)

In the dilute impurity limit, this expression reduces to Eq. (25).
Lastly, with the help of identity Eq. (E4), we calculated the extrinsic part of Joo

a to be

Joo
a,ext = − 1

4h̄

p�=n∑
n,p,k

η̃
np
τ,2(ε̃n + ε̃p)Ra

pn

[
(ε̃n + ε̃p)Db

np

(
η̃

np
τ,1Rc

np

ξnp

εngnp
1

)
(G4)

+ i
∑

q �=n �=p

(
η̃

nq
τ,1Rc

nqRb
qp(ε̃n + ε̃q)

ξnq

εnq
− η̃

qp
τ,1Rb

nqRc
qp(ε̃q + ε̃p)

ξqp

εqp

)]
Eb

T Ec
T . (G5)

APPENDIX H: COMPARISON BETWEEN NONLINEAR
ELECTRICAL AND THERMAL CURRENTS: VALIDITY

OF WIEDEMANN-FRANZ LAW

In the linear response of the external field, the electrical
conductivity (σab) and the thermal conductivity (κab) are re-
lated by the Wiedemann-Franz (WF) law: κ/σ = LT , where
L = 1

3 ( πkB
e )2 is the Lorentz number [59]. However, in the

NL response regime, this relation does not hold. In this
Appendix, we compare the NL electrical and thermal conduc-
tivity and comment on the relations between the NL charge
and thermal conductivity. We start with the linear scattering
time-dependent component of the currents. The charge current

due to the electric field and the thermal current due to the
temperature gradient is given by

ja(τ ) = −τe3

h̄2

∑
n,p,k

ab
np∂c fnEbEc, (H1)

Ja(τ ) = τ

h̄2

∑
n,p,k

ab
npε̃

3
n∂c fnEb

T Ec
T . (H2)

These extrinsic parts of the currents are related to each other
by the modified Wiedemann-Franz law for NL response [13].
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Mathematically, it can be represented by

κabc = 14

15
eL2

0T 2 ∂χabc(ε)

∂ε

∣∣∣∣
μ

, (H3)

where we have defined L0 = ( πkB
e )2, and χabc =

τe3

2h̄

∫
[dk]εlab

l
nv

n
c is the zero-temperature NL anomalous

Hall conductivity. Now we focus on the quadratic scattering
time-dependent NL current. The charge current due to the
electric field and the thermal current due to the temperature

gradient is given by

jdd
a = −τ 2e3

h̄2

∑
n,k

vn
a∂b∂c fnEbEc, (H4)

Jdd
a = τ 2

2h̄2

∑
n,k

ε̃nv
n
a

(
h̄ε̃nv

n
b∂c fn + ε̃2

n∂b∂c fn
)
Eb

T Ec
T . (H5)

From the above expressions, one can infer that the NL Drude
currents do not satisfy the modified Wiedemann-Franz law.
Similarly, the intrinsic currents also do not satisfy any general
relation.
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