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Electronic properties of graphene with triangular defects in a superhoneycomb arrangement: A
first-principles study
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We study the electronic properties of graphene with triangular defects in the superhoneycomb arrangement by
performing first-principles calculations within the framework of density functional theory. First, we investigate
the band gaps using spin-unpolarized calculations. Interestingly, we find that the system-size dependence of the
band gap value is unique and different from the previously known scaling law, which explains the band gap
behaviors of various graphene materials with defects. In particular, the defect size dependence of the band gap
value shows a different tendency, and thus, we obtain the universal scaling law with respect to the size of the
defect and periodicity. We can estimate the band gap values of larger systems using this law without significant
computational cost. In addition, we find that the system usually possesses a direct band gap, indicating that it is
a promising material for optoelectronics applications. Further, we perform spin-polarized calculations to study
stable magnetic states. We find that the ferromagnetic or the antiferromagnetic states are stable when the defect
is large. From the analysis of Néel temperature, we also find that the spin-polarized system at 0 K exhibits
spin polarization at room temperature when the distance between the defects is rather short. In addition, the
band gap value of the spin-polarized system converges to a nonzero value. These findings indicate that further
research on graphene with defects is highly significant and necessary for controlling the electronic properties of
graphene-based materials.
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I. INTRODUCTION

Graphene, which has been studied theoretically for many
years to understand the electronic properties of graphite [1–3],
is an interesting metallic monolayer sheet. It has a unique
band structure, in which gapless linear dispersion appears in
the vicinity of the K and K’ points in the first Brillouin zone
[1]. Novoselov et al. reported the fabrication of graphene by
using micromechanical cleavage in 2004 [4]. Thereafter, the
experimental studies on the electronic properties of graphene
were conducted [5–8], and many interesting properties such
as high carrier mobility [5,6], high thermal conductivity [7],
quantum Hall effect at room temperature [8], and extraordi-
nary toughness [9,10] were discovered. Although graphene
has attracted much attention due to such properties, it cannot
be used for ordinary devices where high on/off current ratio
is required because graphene does not have a fundamental
gap. Therefore, to expand the scope of applications, tuning
the electronic properties of graphene is important for realizing
next-generation devices.

A promising method to expand the scope of graphene
application in devices is the modification of the geomet-
ric structures of pristine graphene. The electronic properties
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of periodically modified graphene have been studied theo-
retically for the last two decades [11–32], and quantitative
electronic structure studies have suggested that periodically
modified graphene can be a semiconductor [11,15,16,21,22,
24–32]. For example, by applying tight-binding (TB) calcu-
lations or first-principles studies in the framework of density
functional theory (DFT), graphene with periodically arranged
hexagonal, circular, triangular, and rhombus defects is found
to be a semiconductor. The band gap (Eg) values of these
systems were studied intensively, and a very simple scal-
ing law, Eg ≈ A

√
Nrem/Ntot, was proposed by Pedersen et al.

when circular defects are arranged in pristine graphene [15].
This formula has been widely used and explains the band
gap dependence effectively in several cases where the shape
and/or arrangement of defects differ from one another [16,25,
27–29]. However, only limited kinds of shapes and lattices
of the periodic defects have been investigated in these former
studies. Therefore, it is not clear if Pedersen’s formula is
applicable in the case of a honeycomb lattice where, for ex-
ample, there are two different defects in a unit cell. According
to theoretical studies, magnetic properties can also be changed
by periodically arranging defects with zigzag edges in pristine
[12–14,16,17,20,27,29,31]. If triangular and rhombus defects
with zigzag edges are arranged, the systems are expected to
be ferromagnetic (FM) and antiferromagnetic (AM), respec-
tively [16]. It was also found that the magnetic properties
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of stable states depend on geometrical parameters, such as
the shape and size of defects and the distance between them.
Theoretical studies have shown that multiple magnetic prop-
erties can be realized by simply creating defects in pristine
graphene, and periodically modified graphene is very useful
for spintronics applications. However, various periodically
modified graphene materials are largely unexplored to date;
therefore, we can expect to discover electronic properties that
are significant for applications. Hence, theoretical studies of
periodically modified graphene are essential.

While various interesting properties of graphene with de-
fects are predicted in DFT studies, it is very difficult to make
defects in pristine graphene with the defect size or interde-
fect distance of the same order (∼ nm) as those assumed
in previous DFT studies. Nevertheless, there are many kinds
of techniques for arranging defects such as electron-beam
lithography [33–35], block copolymer lithography [36–38],
self-assembled nanosphere lithography [39–43], and nanoim-
print lithography [44,45]. In 2018, Schmidt et al. reported that
helium ion beam milling should be a promising technique
that can realize smaller size defects with shorter interdefect
distances [46]. They succeeded in creating defects with a
pitch of 18 nm almost completely. In 2020, Liu et al. suc-
ceeded in creating defects with a pitch of 15 nm using a
helium ion beam milling [47]. These distances are only one
order of magnitude larger than that dealt with in theoretical
investigations. Hence, various periodically modified graphene
materials, which have been theoretically studied, may be real-
ized soon. One promising method to produce these materials
is the use of a hexegonal boron nitride (h-BN) layer, which
has a honeycomb lattice structure consisting of alternating
boron and nitrogen atoms, and platinum as a catalyst. In
2009, Jin et al. successfully resolved triangular defects in
monolayer h-BN by using an electron beam, keeping the
distance between defects equals to several nanometers [48].
Eleven years later, in 2020, Kim et al. reported the conversion
of h-BN to graphene on platinum substrate [49] when the
h-BN layer was exposed to methane gas. Combining these two
experimental results, graphene having triangular defects with
a pitch of several nanometers is expected to be produced soon.
Therefore, more theoretical research is required to investigate
the electronic properties of graphene with triangular defects.
Furthermore, even though the fact that the triangular defects
can have two different orientations in a honeycomb lattice,
such orientation effect has not been studied well [13,14]. With
this background, we focused our study on triangular defects
having two different directions.

In this paper, using first-principles electronic structure
calculations, we investigate the band gap dependence, struc-
ture, and energetics of spin-unpolarized and spin-polarized
graphene with triangular defects in a superhoneycomb ar-
rangement. We consider the arrangement, where the number
of carbon atoms in sublattice A (NA) is the same as that of
carbon atoms in sublattice B (NB) by introducing two kinds
of triangles with opposite directions. Martinazzo et al. studied
this NA = NB case [18]; however, in that study, the size of the
triangular defects was fixed. In contrast, in the present paper,
we consider various sizes of triangular defects and, as will be
discussed below, the size dependence of their electronic struc-
ture is found to be strikingly different from that of defective

graphene studied previously. First, we focus on the optimized
lattice constants obtained by spin-unpolarized calculations.
Thereafter, we discuss the scaling laws for Eg obtained by the
same calculations. Interestingly, the triangle size dependence
of Eg in this paper does not follow the scaling law, Eg ≈
A
√

Nrem/Ntot [15]. This first counterexample to the scaling
law is of high importance since it indicates that periodically
modified graphene is an important class of semiconducting
materials having rich physics as well as the possibility of
electronic structure engineering. Moreover, we studied the de-
tails of the electronic structures around the fundamental gap.
Finally, we report that the magnetic properties can be tuned by
changing the size of the defects and distance between them.
We also studied the Eg values of the spin-polarized states.

The remainder of this paper is organized as follows.
In Sec. II, the calculation methods used in this paper are
described. In Sec. III, the geometries of periodically modi-
fied graphene with triangular defects in the superhoneycomb
arrangement are explained. In Sec. IV A, the optimized ge-
ometries, Eg values, and electronic structures are reported. We
also discussed a scaling law for Eg. In Sec. IV B, we introduce
the energetics and Eg behavior of spin-polarized graphenes.
Finally, we summarized our work in Sec. V.

II. CALCULATION METHODS

In this paper, we performed first-principles total-energy
calculations using the generalized gradient approximation
(GGA) within the framework of DFT [50,51]. We used the
energy functional by Perdew, Burke, and Ernzerhof together
with the Vanderbilt ultrasoft pseudopotentials to describe the
interactions between the ions and valence electrons [52–54].
The cutoff energies of a plene-wave basis set and a charge
density are taken to be 60 Ry and 480 Ry, respectively. In
this paper, we used the L × L (7 � L � 18) supercell. The
interlayer distance between graphene was maintained to be
greater than 10 Å in all systems studied to simulate iso-
lated graphene sheets. The geometries of all the systems
studied were fully optimized until the Hellmann-Feynman
forces acting on all atoms were less than 0.0001 Ry/bohr. All
calculations were performed using the Quantum ESPRESSO
package [55]. VESTA [56] was used to visualize the structure
of the systems in this paper.

III. SYSTEMS STUDIED

In this paper, we have considered graphene with triangular
defects. The carbon atoms at the edges of defects with dan-
gling bonds are terminated by hydrogen atoms. The corners
of the triangles are truncated such that the terminating hy-
drogen atoms on the neighboring sides are not able to come
considerably close to each other, as shown in Fig. 1(a). To
characterize the defects, an integer l is defined as the defect
side length in units of the pristine graphene lattice constant.
In this paper, l ranges from 5 to 11. Figure 1(b) shows
an example of a superhoneycomb arrangement of triangular
defects. Herein, we consider only a hexagonal supercell be-
cause it has one degree of freedom (supercell size). However,
studying an orthorhombic supercell, which has two degrees
of freedom (vertical and horizontal supercell lengths), would
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FIG. 1. (a) Truncated triangular defect when l = 5. Without removing the carbon atom at each corner of the triangular defect, two hydrogen
atoms would be placed considerably closer to each other. (b) System for (l, L,W ) = (5, 10, 5). In both figures, pink and brown balls represent
hydrogen and carbon atoms, respectively. Definitions of l , L, and W are given in Sec. III.

be an interesting future work. The unit cell of the system is
a rhombus with �a1 and �a2 as primitive translation vectors.
Two types of triangles of the same size exist: One is up-
ward and the other is downward in the unit cell. The defects
are arranged such that the regular triangle centers form a
honeycomb lattice. To characterize the superhoneycomb ar-
rangement, we define two integers, W and L, as the subribbon
width in units of the C–C bond length and the length of �a1

( �a2) in units of the pristine graphene lattice constant. Because
W = L − l is always satisfied and we can identify graphene
with triangular defects in the superhoneycomb arrangement
by a pair of integers (l, L), we use the label “(l, L) graphene.”
Note that some (l, L) graphenes are not allowed, for example,
(5,8) graphene. When the remainder of l divided by 3 is 0,
1, and 2, that of L is always 2, 0, and 1, respectively, in
this honeycomb arrangement. In addition, L must be larger
than l + 2. For example, (l, L) = (5, 7), (5, 10), (5, 13)... are
allowed when l = 5. Because graphene with defects often
exhibits magnetism, we performed both spin-unpolarized and
spin-polarized calculations for the selected (l, L) graphene.

IV. RESULTS AND DISCUSSION

A. Spin-unpolarized graphene

1. Structural properties

Table I shows the optimized lattice constants of (l, L)
graphenes (a) by spin-unpolarized calculations and the effect
of arranging the defects on the lattice constant (a − L × a0),
where the lattice constant of pristine graphene (a0) is ob-
tained using the same methodology and is in good agreement
with the experimental value [57] as well as the calculated
values [58–61]. It is to be noted that the lattice constants
obtained using GGA calculations are usually overestimated,
and the values of a − L × a0 are always positive. This is
because of the existence of armchair edges at the corners
of the triangular defects (Fig. S1 in Supplemental Material
[62]). The C–C bond at the armchair edge is slightly longer
than that of pristine graphene [63]. In the present system, the
C–C bond at the armchair edge (dA) is also longer than that
of pristine graphene (1.423 Å) as shown in Table S1 [62].
This can be attributed to (a − L × a0) > 0 observed in the
present systems. We found that (a − L × a0) monotonically
decreases with L, and a is independent of l when L is fixed.

Therefore, two-dimensional van der Waals heterostructures
consisting only of (l, L) graphene with different values of
l can have a commensurate lattice owing to their negligible
lattice mismatch. As discussed later, the spin-polarization cal-
culation is performed for W = 2 and 5. It was found that the
lattice constants of spin-polarized graphene were nearly the
same as those of spin-unpolarized graphene.

2. Scaling law of the band gap values

We calculated the band gap (Eg) values of the selected
(l, L) graphene and they varied from 0.01 eV [(11,13)

TABLE I. Lattice constants (in Å) of the spin-unpolarized
graphenes. Differences between a and L × a0 are also shown. Note
that L is 1 in the case of pristine graphene.

Graphene

l L W Lattice constant a a − L × a0

5 7 2 17.335 0.089
10 5 24.696 0.060
13 8 32.073 0.046
16 11 39.455 0.038

6 8 2 19.793 0.084
11 5 27.157 0.057
14 8 34.537 0.047
17 11 41.921 0.040

7 9 2 22.249 0.077
12 5 29.615 0.052
15 8 36.998 0.044
18 11 44.384 0.039

8 10 2 24.706 0.070
13 5 32.073 0.047
16 8 39.458 0.041

9 11 2 27.162 0.062
14 5 34.532 0.042

10 12 2 29.618 0.054
15 5 36.991 0.037

11 13 2 32.078 0.051
16 5 39.449 0.031

Pristine graphene 2.464(=a0) 0
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FIG. 2. Band gap (Eg) values of the systems as a function of (a)
√

Nrem/Ntot and (b) 1/L2, respectively. (c) Eg values of the (5,L), (6,L) and
(7,L) graphenes as a function of 1/L2, together with the purple dotted line representing a linear curve connecting origin and the (5,7) graphene
value. (d) Eg values of the systems as a function of 1/(l × L2).

graphene] to 1.29 eV [(5,7) graphene]. It should be noted that
the GGA value of Eg is usually underestimated; therefore, the
actual value of Eg may vary over a wider range than 2 eV.
Further studies are required for the quantitative estimation of
Eg, but it is possible to discuss the qualitative behavior of Eg

as a function of l and L. In the following, we describe this
behavior in detail.

In previous studies, it was found that the calculated values
of Eg of graphene with circular defects are often found around
a straight line when plotted as a function of

√
Nrem/Ntot, where

Nrem is the number of carbon atoms removed when the defects
are made and Ntot is the number of carbon atoms in a unit
area before the periodic defects are made [15]. This interesting
result was also obtained in the case of different defect shapes.
However, as shown in Fig. 2(a), Eg of the (l, L) graphenes is
not on a single line but on several lines with different slopes
depending on l . The Eg values obtained in this paper did not
fully follow the previous scaling law. In fact, there was a
report that the band gap value deviates systematically from
Pedersen’s formula in a system with a triangular lattice of
large hexagonal defects [27]. The present results now more
clearly shows that there are a wide variety of the band gap
behaviors in periodically modified graphene.

To analyze the difference of the Eg behavior in more detail,
we plotted the Eg values as a function of 1/L2 for each l ,
as shown in Fig. 2(b). Interestingly, the value of Eg with a
fixed L decreases monotonically with the defect side length l ,
for example, for the (5,10) and (8,10) graphenes. According
to the previous scaling law, the value of Eg with a fixed L
should monotonically increase with l because increasing l and

fixing L means increasing Nrem with a fixed Ntot. Hence, the
Eg dependence of (l, L) graphene strikingly contradicts the
previously proposed scaling law. In contrast, the value of
Eg with constant l obtained in this paper linearly increases
as 1/L2, which is nearly the same as the linear scaling law
proposed by Sakurai et al. [24] and Pedersen et al., Eg ∝
1/Ntot ∝ 1/L2 with a fixed l (Nrem) [15].

To analyze the Eg behavior of (l , L) graphene, we further
discuss a more accurate scaling function of the present sys-
tems with a constant l . Here, we study cases for l = 5, 6,
and 7 because there are four data points per l , and, hence,
more accurate scaling functions can be obtained. As shown
in Fig. 2(c), the lines connecting the (5,L), (6,L), and (7,L)
graphene values (purple, green, and light blue solid lines,
respectively) are convex upward, downward, and downward,
respectively. We assumed that the Eg value with a constant
l is 0 when L = ∞ (1/L2 = 0) because the system can be
regarded as pristine graphene (Eg = 0). For this assumption,
we set a simple scaling function of the band gap values with a
fixed l as follows:

El,L,g = λl

Lαl
eV, (1)

where λl and αl are positive constants (αl < 2 for l = 5,
and αl > 2 for l = 6, 7) and El,L,g is the Eg value of (l, L)
graphene. To determine λl and αl , we take the logarithm of
both sides of Eq. (1):

log10 El,,L,g = −αl log10 L + log10 λl . (2)
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TABLE II. Constants αl and log10 λl obtained by the least-
squares method applied to four data corresponding to W = L − l =
2, 5, 8, and 11, with l fixed.

l αl log10 λl

5 1.52 1.39
6 2.41 2.19
7 2.83 2.49

Next, we applied the least-squares method to Eq. (2). We
obtain αl and log10 λl as the slope of the line and intercept,
respectively. Table II lists the combinations of αl and log10 λl

for each l . It is found that αl strongly depends on l (the size of
defects) and monotonically increases with l . Finally, to derive
the scaling function, Eq. (1) for each l , we transform log10 λl

into λl , for example, log10 λ5 = 1.39 gives λ5 ∼ 24.5. Then,
the scaling functions can be expressed as

E5,L,g = 24.5

L1.52
eV, (3a)

E6,L,g = 155

L2.41
eV, (3b)

E7,L,g = 309

L2.83
eV. (3c)

Although the gap value is underestimated in LDA and GGA,
the deviation from the actual values is rather systematic;
therefore, the gap value variation given in LDA (GGA) for
one class of materials can even be quantitatively reliable in
some cases. For example, it is known that LDA reproduces
the ribbon width dependence of Eg obtained by the GW ap-
proximation in the cases of armchair and zigzag graphene
nanoribbons (ZGNRs) [64]. Therefore, these three equa-
tions can provide quantitatively reliable gap value variation
as a function of L as well as l . For each l , we obtained αl and
log10 λl from two Eg values (W = L − l = 2, 5) and three Eg

values (W = L − l = 2, 5, 8) to check the convergence with
respect to the number of Eg values used. In the case of l = 5,
α5 is 1.60 and 1.55 for two and three values, respectively.
Therefore, α5 of 1.52 (Table II) seems to nearly converge.
Interestingly, the convergence of α6 is even faster [α6 = 2.38
(two values) and α6 = 2.42 (three values)]. Besides, in the
case of l = 7, α7 should take a smaller value than 2.82 (Ta-
ble II) [α7 = 3.04 (two values) and α7 = 2.90 (three values)].

Because E11,L,g ∼ 0, it would be sufficient to consider a
scaling law in the case of 5 � l � 10. To obtain higher Eg val-
ues for each l , we should use the TB method, which can treat
a system with thousands of atoms in the unit cell. Therefore, it
is important to investigate the Eg scaling laws by performing
TB calculations for a wider range of L values.

Finally, we constructed a scaling function for the Eg values
for (l , L) graphene. From the interesting l dependence of the
Eg values with a fixed L, we set 1/(l × L2) to the horizontal
axis and plotted the Eg values obtained in this paper, as shown
in Fig. 2(d). Notably, these Eg values were found around a
straight line. This behavior is in sharp contrast to the scaling
law Eg ≈ A

√
Nrem/Ntot, which is nearly proportional to l/L2

(Nrem = 2l2 − 4l − 4, Ntot = 2L2 in this paper). Therefore,
the Eg value of the present (l, L) graphene system exhibits
a unique defect size dependence. Because the Eg value should

be 0 when 1/(l × L2) is 0 (the pristine graphene limit), we set
the scaling function as

El,L,g = λ

l × L2
, (4)

where λ is the positive constant. By applying the least-squares
method to Eq. (4), we obtain the scaling function, which is
expressed as

El,L,g = 337

l × L2
eV. (5)

On adding the intercept to Eq. (4) and applying the least-
squares method, we obtain the scaling function:

El,L,g =
[

370

l × L2
− 0.0586

]
eV. (6)

The coefficients of determination without and with consider-
ing the intercept were 0.937 [Eq. (5)] and 0.949 [Eq. (6)],
respectively. Therefore, Eq. (6) should provide a better estima-
tion of the Eg value for the finite L studied here. Conversely,
Eq. (5) should better estimate the Eg value for sufficiently
large L. Although these Eqs. (5) and (6) apply only to
graphene with triangular defects in a superhoneycomb ar-
rangement at present, they must be very useful for controlling
Eg when (l, L) graphene is realized. Some Eg values, such as
E5,16,g, are slightly different from the fitting line; therefore,
the scaling function obtained with a fixed l may yield more
accurate Eg values. Nonetheless, 1/(l × L2) is a good scaling
function to explain El,L,g behaviors. Although the experimen-
tal production of the superhoneycomb arrangement of the
triangular defects has not been reported yet, the comparison
of the prediction using the above scaling expressions with
future experimental results will further clarify the effect of the
inhomogeneity of defects and the effect of the deviations of
the defect positions from the ideal lattice sites.

Further, we discuss the physical origin of this unique
l dependence of Eg values. Figure 3 shows the electronic
states of the lowest-unoccupied (LU) and highest-occupied
(HO) bands at the � point in two different defected graphenes,
(5,16) graphene and (11,16) graphene, where they have dif-
ferent l but share the common L. The LU and HO bands are
localized at the zigzag edges of the triangular defects and the
band gap arises from the bonding/antibonding-type splitting.
However, the states in (11,16) graphene, where the defect
intervals (W ) are short, are strongly localized at the edge of
the carbon atoms, whereas those in (5,16) graphene are more
extended over the inner carbon atoms. Therefore, the edge
states are hybridized with the neighboring states and the split-
ting of Eg = 0.37 eV occurs in (5,16) graphene. In contrast,
in (11,16) graphene, the edge states are barely hybridized
with neighbors and exhibit an almost closed band gap of
Eg = 0.02 eV. It is known that the band gap value in ZGNRs
is inversely proportional to the ribbon width (W ) [65,66].
Because the l dependence of the Eg value is completely op-
posite in (l, L) graphenes, it is suggested that graphene with
triangular defects in a superhoneycomb arrangement cannot
be simply regarded as a collection of ZGNR. It is intriguing
to clarify the difference between the triangular networks of
interconnected ZGNR and isolated ZGNR. However, as this
exceeds the scope of this paper, we leave it as a future study.
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FIG. 3. Electronic structures and electronic states of (a) (5,16) and (b) (11,16) graphene. In the electronic structure, the middle of the CBM
(conduction band minimum) and the VBM (valence band maximum) is set to zero. In the spatial distribution of the lowest-unoccupied (LU)
state and the highest-occupied (HO) state, sign differences of the wave functions are shown by two colors.

The results in this section indicate that the scaling law
depends on the defect shape and arrangement. Especially, the
defect size (Nrem) dependence of the present scaling law is
strikingly different from that of Pedersen’s scaling law. Hence,
studying the electronic properties of periodically modified
graphene with various defects is essential for exploring the
physics and applications of graphene.

3. Electronic structure and transition types

The electronic structures of (l, L) graphene (l = 5, 6, 7,
and 8) are shown in Fig. 4 and Fig. S2 of the Supplemental

Material [62]. The energy bands of (5,L) and (7,L) graphenes
have similar dispersions near the fundamental gap. The LU
(HO) and second LU (HO) bands usually cross at the K point,
and the bands near these cross points have nearly linear disper-
sions, although the gradients of the two lines change abruptly
around the crossing points. This feature was also observed
in a previous study [18]. We also found that the energy bands
of (6,L) and (8,L) graphenes have similar dispersions near
the fundamental gap as well. In these cases, on the other
hand, the second and third lowest LU (HO) bands cross at the
K point and the bands near these cross points have nearly lin-
ear dispersions. This tendency is not observed in the electronic
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FIG. 4. Electronic structures of (a) (5,7) graphene, (b) (6,8) graphene, (c) (7,9) graphene, and (d) (8,10) graphene. The middle of the CBM
and the VBM is set to zero. The red and blue arrows denote the positions of the CBM and VBM, respectively. Contours of the squared wave
functions of CBM and VBM states at certain values are shown. In the case of the � point, sign differences of the wave functions are shown by
two colors.

structures of the (l, L) graphenes (l = 5, 7). Hence, the elec-
tronic structure near the fundamental gap can be characterized
by the parity of l . Electronic states near the fundamental gap
are also characterized by the parity of l . As shown in Figs. S3
and S4 of the Supplemental Material [62], the wave functions
at the � point of the LU (HO) and second LU (HO) bands

are bulklike states in the cases of (6,8) and (8,10) graphene,
whereas they are almost defect states in the cases of (5,7)
and (7,9) graphene. Clarifying the physical origin of these
differences is an interesting topic for future work. In Fig. 4,
the spatial distributions of the HO and LU bands at their max-
imum and minimum points (VBM and CBM), respectively,
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TABLE III. Variations of LU and HO eigenvalues along the � − K − M − � (meV). An eigenvalue is measured from � point. ↗ and
↘ represent monotonically increasing and decreasing, respectively. For example, ↘ 156 ↗ between K and M points in this table means the
eigenvalue decreases monotonically from the K point to local minimum point of 156 meV, and then increases monotonically up to the M point.
Bold letters represent local minimum points in LU bands and local maximum points in HO bands.

(l, L) band � K M �

(5,7) LU 0 (CBM) ↗ 160 ↘ 156 ↗ 190 ↘ 0 (CBM)
(5,10) 0 (CBM) ↗ 81.4 ↘ 58 ↗ 58.3 ↘ 0 (CBM)
(5,13) 0 (CBM) ↗ 52.1 ↘ 18.1 ↘ 0 (CBM)
(5,16) 0 (CBM) ↗ 38.7 ↘ 3.8 ↗ 4.5 ↘ 0 (CBM)

(5,7) HO 0 (VBM) ↘ −49.3 ↗ −32.3 ↘ −35.6 ↗ −33.8 ↘ −76.3 ↗ 0 (VBM)
(5,10) 0 (VBM) ↘ −12.6 ↗ −6.1 ↘ −16.8 ↗ −8.0 ↘ −15.4 ↘ −16.0 ↗ 0 (VBM)
(5,13) 0 ↘ −1.7 ↗ 6.4 ↘ −7.1 ↗ 6.7 (VBM) ↘ 6.0 ↘ −1.9 ↗ 0
(5,16) 0 ↘ −0.1 ↗ 9.6 ↘ −4.2 ↗ 12.0 (VBM) ↘ −0.1 ↗ 0

(6,8) LU 0 ↗ 4.0 ↘ −77.1 (CBM) ↗ −7.7 ↗ 10.9 ↘ 0
(6,11) 0 (CBM) ↗ 44.5 ↘ 36.4 ↗ 76.8 ↘ 0 (CBM)
(6,14) 0 (CBM) ↗ 63.0 ↘ 61.8 ↗ 91.5 ↘ 0 (CBM)
(6,17) 0 (CBM) ↗ 65.8 ↘ 65.6 ↗ 88.9 ↘ 0 (CBM)

(6,8) HO 0 (VBM) ↘ −48.8 ↗ −29.3 ↘ −85.1 ↗ 0 (VBM)
(6,11) 0 (VBM) ↘ −80.1 ↗ −78.6 ↘ −111 ↗ 0 (VBM)
(6,14) 0 (VBM) ↘ −85.7 ↘ −109 ↗ 0 (VBM)
(6,17) 0 (VBM) ↘ −80.2 ↘ −97.8 ↗ 0 (VBM)

(7,9) LU 0 (CBM) ↗ 171 ↗ 177 ↘ 166 ↘ 0 (CBM)
(7,12) 0 (CBM) ↗ 103 ↘ 61.3 ↘ 0 (CBM)
(7,15) 0 (CBM) ↗ 67.2 ↘ 26.9 ↘ 0 (CBM)
(7,18) 0 (CBM) ↗ 50.5 ↘ 14.3 ↘ 0 (CBM)

(7,9) HO 0 (VBM) ↘ −153 ↗ −129 ↗ 0 (VBM)
(7,12) 0 (VBM) ↘ −68.1 ↗ −43.3 ↗ 0 (VBM)
(7,15) 0 (VBM) ↘ −34.2 ↗ −14.9 ↗ 0 (VBM)
(7,18) 0 (VBM) ↘ −19.4 ↗ −5.2 ↗ 0 (VBM)

(8,10) LU 0 ↘ −85.7 (CBM) ↗ −42.6 ↗ 0
(8,13) 0 ↗ 5.3 ↘ −7.9 (CBM) ↗ 14.8 ↘ 0

(8,16) 0 (CBM) ↗ 11.4 ↘ 8.6 ↗ 23.7 ↘ 0 (CBM)
(8,10) HO 0 ↗ 49.8 (VBM) ↘ 15.7 ↘ −0.4 ↗ 0
(8,13) 0 (VBM) ↘ −9.9 ↗ −3.0 ↘ −18.3 ↗ 0 (VBM)
(8,16) 0 (VBM) ↘ −14.3 ↗ −13.4 ↘ −21.7 ↗ 0 (VBM)

(9,11) LU 0 (CBM) ↗ 109 ↘ 108 ↗ 120 ↘ 116 ↘ 0 (CBM)
(9,14) 0 (CBM) ↗ 58.0 ↘ 35.1 ↘ 0 (CBM)

(9,11) HO 0 (VBM) ↘ −119 ↗ −99.6 ↗ 0 (VBM)
(9,14) 0 (VBM) ↘ −37.7 ↗ −26.3 ↗ 0 (VBM)

(10,12) LU 0 ↘ −63.3 (CBM) ↗ −34.6 ↗ 0
(10,15) 0 ↗ 0.5 ↘ −9.7 (CBM) ↗ 1.7 ↗ 1.9 ↘ 0

(10,12) HO 0 ↗ 46.8 (VBM) ↘ 24.4 ↘ 0
(10,15) 0 ↘ −0.9 ↗ 5.7 (VBM) ↘ −0.5 ↘ −1.6 ↗ 0

(11,13) LU 0 (CBM) ↗ 71.9 ↘ 71.0 ↗ 82.7 ↘ 81.8 ↘ 0 (CBM)
(11,16) 0 (CBM) ↗ 29.5 ↘ 18.5 ↘ 0 (CBM)
(11,13) HO 0 (VBM) ↘ −75.6 ↘ −76.8 ↗ −73.6 ↗ 0 (VBM)
(10,16) 0 (VBM) ↘ −16.8 ↗ −13.2 ↗ 0 (VBM)

are shown for (5,7), (6,8), (7,9), and (8,10) graphene. It was
found that these wave functions are mostly localized near
defects, while the wave function at the VBM in (6,8) graphene
is extended.

In addition to the Eg value, the transition type of (l, L)
graphene is crucial for various applications such as optoelec-
tronic devices. Interestingly, in the present paper, as many as
17 (l, L) graphenes were direct gap semiconductors, while the

remaining four (5,13), (5,16), (6,8), and (8,13) were indirect
gap semiconductors. This result indicated that (l, L) graphene
is a promising material for optoelectronic applications. In
Table III, the locations of the CBM and the VBM are sum-
marized, together with the change in the eigenvalues of the
LU and the HO bands along the � − K − M − � line. CBM
and VBM must be local minimum points in the LU band and
local maximum point in the HO band, respectively. Hence,
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FIG. 5. (a) ε�
LU − εK

LU and (b) ε�
HO − εK

HO values for the (l, L) graphenes when l is even.

we focus on the eigenvalues of the minimum points in the
LU band and maximum points in HO band later in this section.
Here, we define εVBM, ε�

HO, εK
HO, and εM

HO as the eigenvalues at
the VBM and at the �, K, and M points in the HO band. Sim-
ilarly, we define εCBM, ε�

LU, εK
LU, and εM

LU as the eigenvalues
at the CBM and at the �, K, and M points in the LU band,
respectively.

Interestingly, (l, L) graphene always possesses a direct gap
at the � point when l is odd, except for l = 5. As shown in
Table III, the local minimum point in the LU band and the
local maximum point in the HO band are located only at the
� point in most cases when l is odd (l � 7). As a result,
the fundamental gap remains direct when we increase L with
the fixed l . However, when l is 6 or 8, the local minimum
points in the LU band are located at both the � and K points
except for the (8,10) graphene. The differences, ε�

LU − εK
LU,

are 77.1 meV, −36.4 meV, −61.8 meV, and −65.6 meV in
the cases of the (6,8), (6,11), (6,14), and (6,17) graphenes,
respectively. Additionally, ε�

LU − εK
LU are 85.7 meV, 7.9 meV,

and −8.6 meV for (8,10), (8,13), and (8,16) graphene, re-
spectively. As shown in Fig. 5(a), ε�

LU − εK
LU monotonically

decreases with L; therefore, the CBM changes from the
K point to the � point. Next, the local maximum point in the
HO band was located only at the � point when L increases for
l = 6. However, for l = 8, the local maximum points are lo-
cated at both � and K points when L increases. The ε�

HO − εK
HO

values are −49.8 meV, 3.0 meV and 13.4 meV with the (8,10),
(8,13), and (8,16) graphenes [Fig. 5(b)], respectively. Thus,
when the VBM changes from the K point to the � point for

l = 8, the VBM stays at the � point for l = 6. Therefore,
when l is 6 or 8, a change from the direct (indirect) to the in-
direct (direct) gap occurs, and the fundamental gap is direct at
the � point for a large L. When l is 10, the (10,12) and (10,15)
graphenes are direct gap semiconductors at the K point, but
ε�,LU − εK,LU and ε�,HO − εK,HO increases and decreases as a
function of L, respectively (Fig. 5). The CBM and VBM of
(10, L) graphene for L � 18 may change from the K point
to the � point. When l is 5, the minimum points in the LU
band and the maximum points in the HO band are sometimes
not located at high-symmetry points (�, K, M). In the case of
(5,13) and (5,16) graphene, VBM is not located at the � point,
and these two systems are indirect gap semiconductors.

B. Spin-polarized graphene

1. Stable magnetic states

By considering the spin degree of freedom, we sometimes
obtain not only nonmagnetic (NM) state but also stable FM
and AM states in (l, L) graphene. As shown in Fig. 6, only the
NM state is obtained for the small-l case, whereas AM and
sometimes additional FM states are obtained for the large-l
case. Theoretically, the AM state is found to be more stable
than the FM state. This result is consistent with Lieb’s theorem
[67]. According to this theorem, the total magnetic moment
(M) of the ground state can be written as M = (NA − NB)μB in
the case of a bipartite lattice, where NA and NB are the numbers
of atoms belonging to the A and B sublattices, respectively.
The (l, L) graphene can be regarded as a bipartite lattice, and

FIG. 6. Energy difference per atom between the stable magnetic state and nonmagnetic state. E(NM), E(FM), and E(AM) represent the
energy per atom of the nonmagnetic, ferromagnetic, and antiferromagnetic states, respectively. It is to be noted that W = L − l .

235418-9



TAGUCHI, TOYODA, AND SAITO PHYSICAL REVIEW B 107, 235418 (2023)

FIG. 7. Spin distribution of AM state in (8,13) graphene. Positive
and negative values of the spin density are shown by yellow and light
blue colors, respectively.

the number of carbon atoms in two sublattices (NA and NB)
are the same. Hence, the AM state (M = 0) is more stable than
the FM state (M 
= 0). Further, we show the spin distribution
of the AM state for (8,13) graphene in Fig. 7. There are
two primary characteristics. First, the spin density is larger
near the defect, and smaller far from the defect. Second, the
sign of the magnetic moment in one sublattice is opposite
to that in the other sublattice. The AM (l, L) graphene stud-
ied always has these characteristics. This result is consistent
with a previous work by Yu et al. [13]. Finally, why (l, L)
graphenes exhibit magnetism when l is large can be discussed.
As shown in Fig. S1 [62], armchair edges exist at the corners
of triangular defects. It is well-known that armchair graphene
nanoribbons do not exhibit spin polarization [68]. In fact, the
spin density is sufficiently small at the corner of the triangular
defect, as shown in Fig. 7. When l is small, the effect of the
armchair edge should be dominant and the spin polarization
should vanish because the length of the zigzag edge part is
short. Therefore, (l, L) graphene exhibits spin polarization
when l is large.

We also found that the energy difference per atom between
the AM and NM states monotonically increases with l when
W is fixed. When l is very large with a fixed W , (l, L)
graphene can be regarded almost as a collection of graphene
zigzag nanoribbons having AM ground states [63], which is
consistent with the present results. Further, we show the total

TABLE IV. Total energy differences between FM and AM states
(�E = E tot

FM − E tot
AM ) of the (l, L) graphenes (W = L − l).

l W � E (eV)

11 2 0.236
9 5 0.214
10 5 0.161
11 5 0.184

energy difference �E = E tot
FM − E tot

AM, where E tot
FM and E tot

AM are
the total energies of the FM and AM states, respectively, listed
in Table IV. It was found that �E is smaller for larger W with
l = 11. It has been reported that when graphene islands are
embedded in the h-BN sheet, �E monotonically decreases
with the distance between islands and approaches zero when
the size of islands is fixed [69]. �E of (l, L) graphene should
behave in the same way because the spin density near (far
from) the zigzag edges is large (small). Therefore, �E should
be so small that (l, L) graphene is NM at room tempera-
ture when L(W ) is sufficiently large. Hence, the electronic
properties of not only the spin-polarized but also the spin-
unpolarized states are important, even in the magnetic-ground
state cases.

2. Band gap values

In Fig. 8, the Eg values of NM, FM, and AM (l, L)
graphenes are shown. The Eg values of the AM and FM states
nearly converge to nonzero values when W is 2 and 5. This
AM tendency can be observed in graphene with periodically
arranged hexagonal defects [27]. The Eg values of (11,13)
AM graphene (W = 2) and (11,16) AM graphene (W = 5) are
0.510 and 0.475 eV, respectively. Therefore, (l, L) (W =2,5)
AM graphene should be the semiconductor with the Eg value
of nearly 0.5 eV when l is large. If the (l, L) (W =2,5) AM
graphene with a large l is realized, the Eg value may be larger
than 1 eV because the GGA band gap is usually smaller than
the actual value.

The Eg values of FM graphene may depend more explicitly
on the W value. The Eg values of (11,13) FM graphene and
(11,16) FM graphene are 0.669 (MJ) [0.652 (MN)] eV and
0.349 (MJ) [0.277 (MN)] eV, respectively. Here, MJ and MN
represent the majority and minority spins, respectively. It is

FIG. 8. Band gap (Eg) values of the NM, AM, and FM states when (a) W =2 and (b) W =5. The green and yellow triangles represent the
fundamental gap of the majority spin and minority spin, respectively. It is to be noted that W = L − l .
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expected that the (l ,5) FM graphenes with large l have Eg

values of about 0.35 eV (MJ) and 0.30 eV (MN).

V. SUMMARY

We have studied the electronic properties of graphenes with
truncated triangular defects in superhoneycomb arrangements
using the first-principles total-energy calculations based on
DFT. It is found that dependence of the band gap (Eg) value
on the geometrical parameters in spin-unpolarized systems is
different from the scaling law proposed by Pedersen et al.,
Eg ∝ √

Nrem/Ntot, which has been widely used. We studied
the Eg values for various [l (defect side length), L (supercell
size)] and revealed that the Eg values nearly follow the linear
function of not

√
Nrem/Ntot but 1/(l × L2), which is roughly

proportional to 1/(
√

Nrem × Ntot ). This scaling law should
give us the opportunity to design unique device materials
and indicates that many interesting electronic properties of
graphene with defects still need to be explored. Eg is found
to be mostly direct; therefore, the system should be useful for
optoelectronic applications. The interplay between the effect
of the periodical defects studied in the present paper and the
finite size effect would be an interesting issue to be studied

in the future when this semiconductor graphene is going to
be used in a nanometer scale device. Finally, we investigate
the magnetic states by performing spin-polarized calculations.
The stable magnetic state could be tuned by changing l with
a fixed subribbon width (W ). FM and AM stable states are
obtained for larger values of l . We find that the Eg values
of the AM and FM states converge to nonzero values when
l increases. These achievements are significant because the
Eg values of large systems cannot be obtained directly from
high-cost DFT calculations. The present paper confirms that
graphene with honeycomb-arrangement triangular defects is
a unique class of semiconducting atomic layers with tun-
able Eg values. Therefore, van der Waals heterostructures are
worthy of further investigation owing to nearly perfect lattice
matching, a feature unachievable in typical van der Waals
heterostructures [70].
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