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Magnetoresistance in noncentrosymmetric two-dimensional systems
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The valley-contrasting geometric features of electronic wave functions manifested in Berry curvature and
orbital magnetic moment have profound consequences on magnetotransport properties in both three- and two-
dimensional systems. Although the importance of employing beyond-relaxation-time-approximation methods
and intervalley scatterings in collision integral has been confirmed in three dimensions, they have been widely
overlooked in previous studies on two-dimensional multivalley systems. Here, we study the issue of weak-
field magnetoresistance in two-dimensional multivalley systems with broken inversion symmetry. We provide
an exact solution to the Boltzmann equation and demonstrate that the inclusion of in-scattering terms in the
collision integral can change the sign of the magnetoresistance in the high-density regime. With an initial valley
polarization, we also predict an orbital magnetic moment-induced intrinsic contribution to Hall conductivity in
the time-reversal-broken situation, which is consistently negative and, in contrast to the anomalous Hall term,
it does not depend on the polarization sign. Depending on which valley has the excess charge, our calculations
show that a completely distinct behavior is exhibited in the magnetoresistance which can be considered as a
valley-polarization probe in the experiment.
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I. INTRODUCTION

The history of magnetotransport studies goes back to the
19th century and the experiments of William Thomson (Lord
Kelvin) on iron and nickel in the presence of a magnetic field
[1]. Since then, the study of magnetotransport properties of
materials has always been one of the leading and practical sub-
jects of research in condensed matter physics, revealing many
significant features in materials ranging from the electronic
structure via Shubnikov-de Haas oscillations to topologically
nontrivial signatures in Dirac and Weyl semimetals [2–4].

Numerous intriguing and remarkable magnetotransport
findings are closely related to the geometry of Bloch wave
functions, which is primarily illustrated by Berry curvature
and orbital magnetic moment (OMM) [5]. This can have
more profound consequences in systems with broken inver-
sion symmetry where the coupling between the valley degree
of freedom with equal and oppositely oriented Berry curvature
and OMM in two valleys can result in unique outcomes [6–8].
The negative magnetoconductance in Weyl semimetals [9,10],
the chiral magnetic effect [11], and the gyrotropic magnetic
effect [12] are a few examples. An out-of-plane magnetic field
can raise the valley degeneracy due to the valley-contrasting
OMM [13]. While the valley-contrasting Berry curvature has
long been considered in theoretical calculations of the magne-
totransport in multivalley systems [5], the equally important
role of the OMM has currently seen a revived interest in both
three- and two-dimensional (3D and 2D) systems [9,10,14–
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18]. The valley-contrasting OMM, which considerably arises
from the self-rotation of Bloch wave packets [19], shifts the
energy dispersion through a Zeeman-like coupling to the mag-
netic field and hence modifies the band velocity.

In this paper, we study the impact of considering the OMM
on the magnetoresistance (MR) in 2D multivalley systems
following an exact solution to the semiclassical Boltzmann
equation. In previous studies [15,16], the magnetotransport
properties in these systems were found solving the Boltzmann
transport equation in simple relaxation-time approximation.
Recently, Xiao et al. [20] showed that the intra-scattering
effects of the semiclassical dynamics (excluded in the
relaxation-time approximation) which are embodied in ge-
ometric features of the wave function can be as important
as the inter-scattering effects in weak-field magnetotransport
studies. These terms can augment the impact of both the
Berry curvature and the OMM in collision integral. It was
also proposed that a strong enough intervalley scattering can
substantially affect the results owing to the valley-contrasting
nature of the OMM in inversion-broken 2D systems and 3D
Weyl semimetals. These proposals were also approved in
other studies on the magnetotransport in 3D Weyl semimetals
where an exact solution of the Boltzmann equation (involv-
ing in-scattering terms) and a sufficiently strong intervalley
scattering could describe the shift of the longitudinal magne-
toconductance from positive to negative [9,10].

While previous studies on the magnetotransport in 2D
multivalley systems with time-reversal symmetry considered
the OMM effect in a simple relaxation-time approximation
[15,16], it, however, remains to be understood how the in-
scattering terms can modify the results in 2D. On the other
hand, the impact of the intervalley scattering in the presence of
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the OMM on the MR of 2D multivalley systems has yet been
unexplored. These remain two vital questions to be addressed
in this paper.

The significant consequences of the OMM are not only
limited to time-reversal-symmetric systems; they can strongly
affect the magnetotransport in time-reversal-broken systems.
Along with the anomalous Hall effect, which occurs in the ab-
sence of a magnetic field due to the unequal Berry curvatures
in two valleys [21–23], we expect a linear MR (with respect
to the magnetic field) in these systems as a consequence of
Onsager’s reciprocity relations. The MR in 2D time-reversal-
broken multivalley systems has been studied in Ref. [24], but
the important contribution of the OMM was unconsidered in
their calculations and a comprehensive study of the MR in
the presence of the OMM in these systems is lacking. This is
another important issue to be addressed here.

Our calculations show that when the Fermi level in a 2D
inversion-asymmetric system lies far from the band edge, the
inclusion of in-scattering terms considerably affects the MR
results and can even switch the sign of the MR. While in this
case, the presence of an intervalley scattering can effectively
increase the absolute value of the MR, for a low-density
regime it can cause a sharp drop in MR when one of the
valleys is depleted in a certain magnetic field. In the case of
a time-reversal-broken system, which is assumably produced
by inducing valley polarization in the system, we find that
the inclusion of the OMM leads to a negative intrinsic Hall
conductivity in contrast to the anomalous Hall conductivity,
which changes sign depending on the valley polarization sign
(negative for δεF < 0 and positive for δεF > 0). The MR
dependence on the magnetic field also varies substantially in
the presence of the OMM such that, in this case, for B > 0,
the MR remains negative for δεF < 0, but it changes sign
from positive to negative for δεF > 0. We show that this
latter case is much more sensitive to the size of the valley
polarization while the MR changes only slightly in the former
case.

The rest of the paper is organized as follows. In Sec. II, we
describe the minimal effective Hamiltonian used to describe
the 2D inversion-broken multivalley system in this paper.
In Sec. III, the semiclassical Boltzmann framework and the
procedure to find the exact solution to that is explored. Sec-
tion IV is devoted to discussing the magnetotransport results
for both time-reversal-symmetric (δεF = 0) and asymmetric
cases (δεF �= 0). Finally, our results are summarized in Sec. V.

II. MASSIVE DIRAC MODEL

A minimal low-energy Hamiltonian for a 2D multivalley
system is the massive Dirac model where the gap has broken
the inversion symmetry and therefore we have two valleys
connected by time-reversal symmetry. This can describe the
graphene on a substrate [25–27], or a monolayer transition
metal dichalcogenide (TMDC), or a hybrid structure com-
posed of a graphene layer and another 2D layer [28] and is
given by [6,15,24,29,30]

Ĥ = h̄vF (τkxσ̂x + kyσ̂y) + �σ̂z, (1)

where τ = ±1 is the valley index, σ̂ denotes the Pauli
matrices acting in pseudospin space, vF is the bare Fermi

velocity, and 2� is the band gap. The energy dispersion of
the conduction (+) and the valence (−) bands are then given
by εk = ±

√
(h̄vF )2|k|2 + �2. We consider an electron-doped

system and hence the Bloch vectors of the conduction band in
two valleys are given by

∣∣uτ
k

〉 =
(

τ cos θ
2 e−iτφ

sin θ
2

)
, (2)

where θ and φ are defined such that cos θ = �
εk

, sin θ sin φ =
h̄vF ky

εk
, and sin θ cos φ = h̄vF kx

εk
.

In 2D systems, the Berry curvature is along the ẑ and for
each band it is given by 	τ

kz
= ∂kx A

τ
ky

− ∂ky A
τ
kx

, with Aτ
j =

〈uτ
k |i∂ juτ

k 〉 being the jth component of the Berry connection
Aτ

k of the band and |uτ
k 〉 is the Bloch vector of the same band

[5]. For a system described by the Hamiltonian Eq. (1), the
Berry curvature in the conduction band is given by

�τ
kz

= − h̄2v2
F �

2ε3
k

τ ẑ. (3)

In this paper, we also consider the OMM, which can be
described as the self-rotation of the Bloch wave pack-
ets in each band whose ith component is given by
mτ

i = εi jk (−i e
2h̄ )〈∂ juτ |Ĥ − ε|∂kuτ 〉 and, same as the Berry

curvature for a 2D system, is a vector along the ẑ [6,19].
Using this definition, the OMM of the present system in the
conduction band is given by [19,31,32]

mτ
kz

= −eh̄v2
F �

2ε2
k

τ ẑ. (4)

In the presence of a perpendicular magnetic field, the OMM
couples to the magnetic field and shifts the energy as ε̃k =
εk − mτ

k · B. The Berry curvature and OMM provide valley-
contrasting effects on transport because of their dependency
on the valley τ . For B > 0, the valley-contrasting nature of the
OMM leads to an upward shift in one valley (K) and a down-
ward shift in the other valley (K ′). For a low-doping small-gap
system, the OMM is about 30 times the Bohr magneton
[6], and therefore we have ignored the spin splitting in the
presence of the magnetic field. Following the OMM-induced
energy shift, the band velocity also changes as ṽk = ∂h̄kε̃k .

III. BOLTZMANN FRAMEWORK

The semiclassical equations of motion for Bloch wave
packets are [5,33]

Dk ṙ = ṽk + e

h̄
E × �, (5)

Dk k̇ = − e

h̄
[E + ṽk × B], (6)

where Dk = 1 + e
h̄ B · � is the Berry-curvature-induced mod-

ified measure for the number of states in the reciprocal space
[34].

The semiclassical Boltzmann equation for valley τ reads
[35]

∂ f τ
k

∂t
+ ṙτ · ∇r f τ

k + k̇
τ · ∇k f τ

k = Icol
[

f τ
k

]
. (7)
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Here f τ
k is the nonequilibrium distribution function writ-

ten as f τ
k = f eq(ε̃τ

k ) + gτ
k , where f eq(ε̃τ

k ) is the equilibrium
Fermi-Dirac distribution function and gτ

k is the deviation from
equilibrium. Note that in the presence of a perpendicular mag-
netic field B and for a system with a finite Berry curvature
�, the equilibrium distribution function should be calculated
at ε̃τ

k . The term on the right-hand side of the equation is the
collision integral. It incorporates the effect of the impurity
scatterings in the system, which tends to relax the nonequi-
librium distribution function toward the Fermi surface and for
an elastic scattering; it is written as

Icol
[

f τ
k

] =
∑
k′,τ ′

W ττ ′
kk′

(
η f τ ′

k′ − f τ
k

)
, (8)

where the first and second terms are expressing the in-
scattering and out-scattering contributions, respectively. Here,
we have attached a factor η = {0, 1} to the in-scattering terms
in the collision integral to trace the effect of this contribution
in our numerical results. Considering only the elastic scatter-
ings, the scattering rate W ττ ′

kk′ within the lowest order of the
Born approximation reads

W ττ ′
kk′ = 2π

h̄

ni

S

∣∣〈uτ ′
k′
∣∣V ττ ′

kk′
∣∣uτ

k

〉∣∣2
δ
(
ε̃τ ′

k′ − ε̃τ
k

)
, (9)

where ni is the impurity density and S is the area of the
2D system. We set the impurity density such that the dilute-
ness criteria will be satisfied for a wide range of chemical
potentials. V ττ ′

kk′ is also the scattering matrix element for
nonmagnetic pointlike scattering centers and since we are
considering the elastic scatterings, it is not a function of
momentum and it reduces to V ττ ′

I. Here we consider uncor-
related point scatterers, so we can consider both intravalley
Vintra and intervalley Vinter scattering amplitudes [9,10,24]. The
overlap of the Bloch vectors [Eq. (2)] in the scattering rate also
gives

∣∣〈uτ ′
k′
∣∣V ττ ′

kk′
∣∣uτ

k

〉∣∣2 = 1
2 |V ττ ′ |2[1 + cos θ cos θ ′

+ ττ ′ sin θ sin θ ′ cos(τ ′φ′ − τφ)]. (10)

Now for a uniform system in its stationary state, the Boltz-
mann Eq. (7) reduces to

− 1

Dτ
k

e

h̄

[
E + ṽτ

k × B
] · ∇k f τ

k = Icol
[

f τ
k

]
. (11)

To solve the above equation, we follow an exact integral
equation approach [36–38] and we generalize it to the case
of a finite perpendicular magnetic field, B. Expanding the
nonequilibrium distribution function f τ

k to linear order in E,
we have

f τ
k = f eq(ε̃τ

k

) + Ex∂Ex f τ + Ey∂Ey f τ . (12)

Considering k = k(cos φ, sin φ) and E = E (cos ξ, sin ξ ),
the nonequilibrium part of the distribution function
reads

gτ (φ, ξ ) = E [Aτ (φ) cos ξ + Bτ (φ) sin ξ ], (13)

where Aτ (φ) = ∂Ex g
τ and Bτ (φ) = ∂Ey g

τ .

Using the definition of f τ
k and keeping only the linear terms

in E, Eq. (11) reduces to

− 1

Dτ
k

e

h̄

[
h̄E · ṽτ

k

(
∂ f eq

∂ε̃τ
k

)
+ ṽτ

k × B · ∇kgτ
k

]
= Icol

[
gτ

k

]
.

(14)
For isotropic Fermi surfaces, the velocity vector ṽτ

k is in
the k̂ direction and therefore the second term on the left-hand
side of the above equation is given by − ṽτ

k B
k

∂gτ

∂φ
. Keeping this

in mind and plugging Eq, (13) into Eq. (14), we will end up
with the following equations:

cos φ − F τ (k)∂φaτ (φ)

= Gτ (k)aτ (φ) −
∑
τ ′

∫
[H ττ ′

(k) + ττ ′Iττ ′
(k)

× cos(τ ′φ′ − τφ)]aτ ′
(φ′)dφ′ (15)

and

sin φ − F τ (k)∂φbτ (φ)

= Gτ (k)bτ (φ) −
∑
τ ′

∫
[H ττ ′

(k) + ττ ′Iττ ′
(k)

× cos(τ ′φ′ − τφ)]bτ ′
(φ′)dφ′, (16)

with

F τ (k) = eṽτ
k B

h̄k
, (17)

Gτ (k) = S

4π2
Dτ

k

∑
τ ′

∫
d2k′Dτ ′

k′W ττ ′
kk′ , (18)

H ττ ′
(k) = ni

4π h̄
Dτ

k

∫
k′dk′Dτ ′

k′
ṽτ ′

k′

ṽτ
k

|V ττ ′ |2
(

1 + �2

ε(k)ε(k′)

)

× δ
(
ε̃τ ′

k′ − ε̃τ
k

)
, (19)

Iττ ′
(k) = ni

4π h̄
Dτ

k

∫
k′dk′Dτ ′

k′
ṽτ ′

k′

ṽτ
k

|V ττ ′ |2 h̄2v2
F kk′

ε(k)ε(k′)

× δ
(
ε̃τ ′

k′ − ε̃τ
k

)
, (20)

where we have defined aτ (φ) ≡ Aτ (φ)/eṽτ
k ( ∂ f eq

∂ε̃τ
k

) and bτ (φ) ≡
Bτ (φ)/eṽτ

k ( ∂ f eq

∂ε̃τ
k

). Note that we have replaced
∑

k′ with
S

4π2

∫
d2k′Dτ ′

k′ to capture the Berry-phase-induced modifica-
tion of the density of states. The integrals in Eqs. (18)–(20)
can be analytically found due to the elastic scattering condi-
tion δ(ε̃τ ′

k′ − ε̃τ
k ) (see Appendix A). Solving Eqs. (15) and (16)

for aτ (φ) and bτ (φ) and putting them back into Eq. (13), we
will have the exact solution of the Boltzmann equation up to
the leading order in E.

To find aτ (φ) and bτ (φ), we write them in the form of
Fourier series

aτ (φ) = aτ
0 +

∑
n=1

{
aτ

cn cos(nφ) + aτ
sn sin(nφ)

}
, (21)

bτ (φ) = bτ
0 +

∑
n=1

{
bτ

cn cos(nφ) + bτ
sn sin(nφ)

}
. (22)

Plugging aτ (φ) and bτ (φ) in Eqs. (15) and (16) and after
straightforward algebra, we will end up with a system of
coupled equations (the details can be found in Appendix B)
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and, finally, the field-induced correction to the distribution
function reads

gτ = eṽτ
k

(
∂ f eq

∂ε̃τ
k

)
E

{[
aτ

c1 cos φ + aτ
s1 sin φ

]
cos ξ

+ [
bτ

c1 cos φ + bτ
s1 sin φ

]
sin ξ

}
, (23)

which is the main quantity for evaluating the linear response
conductivities.

IV. MAGNETOTRANSPORT RESULTS

Having found the distribution function of the system,
f eq(ε̃τ

k ) + gτ
k , we can now calculate the longitudinal and Hall

conductivities. For the current density, we have

j = − e

S

∑
k,τ

ṙτ f τ
k = − e

4π2

∑
τ

∫
d2kDk ṙτ

[
f eq

(
ε̃τ

k

) + gτ
k

]
.

(24)
Using the definition of ṙτ from Eq. (5), we have

j =
∑

τ

[
− e

4π2

∫
d2k ṽτ

k gτ
k

− e2

h̄

1

4π2

∫
d2k f eq

(
ε̃τ

k

)[
E × �τ

kz

]] + O(E2). (25)

Now plugging Eq. (23) into Eq. (25), the longitudinal conduc-
tivity (ξ = 0) is given by

σxx = − e2

4π2

∑
τ

∫
d2k

(
ṽτ

k

)2
(

∂ f eq

∂ε̃τ
k

)
cos φ

[
aτ

c1 cos φ+aτ
s1 sin φ

]

= −e2

h̄

1

4π

∑
τ

k̃τ ṽτ

k̃τ aτ
c1, (26)

and for the Hall conductivity (ξ = π/2) we have

σxy =− e2

4π2

∑
τ

∫
d2k

(
ṽτ

k

)2
(

∂ f eq

∂ε̃τ
k

)
cos φ

[
bτ

c1cos φ +bτ
s1sin φ

]

− e2

h̄

1

4π2

∑
τ

∫
d2k f eq

(
ε̃τ

k

)
	τ

kz

= −e2

h̄

1

4π

∑
τ

{
k̃τ ṽτ

k̃τ bτ
c1 − τ

[
�

εk̃τ

− 1

]}
= σ (i)

xy + σ (ii)
xy ,

(27)

where k̃τ is the modified Fermi wave vector found from
the condition εk − mτ

kz
B = εF. In the absence of the OMM,

Eq. (26), and the first term in Eq. (27), σ (i)
xy , are the ordinary

longitudinal and Hall responses induced by Lorentz force and
the second term in Eq. (27), σ (ii)

xy , is the quantum mechanical
intrinsic Hall conductivity. Owing to the fact that the Berry
curvature in K and K ′ valleys is equal and opposite in sign, this
term is zero for time-reversal symmetric systems. In the case
of time-reversal broken systems, this term gives the intrinsic
anomalous Hall conductivity due to unequal Berry curvatures
in two valleys. Now, when the OMM effect is considered,
not only the ordinary and Hall conductivities are modified,
but also the opposite shifting of the bands in valleys and
subsequent unequal Berry curvatures [see Fig. 1(a)] lead to

(a)

FIG. 1. (a) The opposite Berry curvatures in two valleys. The
black circles indicate the Fermi surfaces which are different in two
valleys due to the shift of the energy bands caused by the OMM.
Here, the Fermi surfaces are plotted for εF = 35 meV and B = 2 T.
The top inset is a schematic illustration of the shifted energy bands
around K and K ′ valleys and the corresponding alignment of the
OMMs, mz. (b) The MR as a function of the Fermi energy, εF at
B = 0.5 T in the absence of in-scattering and intervalley scattering,
η = 0, (the red dashed-dotted curve), when in-scattering terms are
considered in the collision integral but the intervalley scattering is
absent (the blue solid curve), and, finally, in the presence of both
in-scattering terms and an intervalley scattering half as large as
the intravalley scattering. (c) The MR versus the magnetic field B
for εF = 35 meV and (d) for εF = 27 meV. For all the plots other
than red, η = 1. The parameters are set as h̄vF = 3 eVÅ [15,24],
� = 26 meV [26,27]. Here, ni|V11|2 is chosen such that for B = 0,
we have τ0 = 10−13 s [15,24].

a B-dependent finite value for the intrinsic term in both time-
reversal symmetric and asymmetric cases.

Next, we use these conductivities to find the MR in the
system defined as

MR = ρxx(B) − ρxx(0)

ρxx(0)
, (28)

where the longitudinal resistivity is given by

ρxx = σxx

σ 2
xx + σ 2

xy

. (29)

Below, we calculate the magnetoconductance and MR for the
massive Dirac model described in Sec. II and discuss the
results.

A. Initially valley-degenerate case: δεF = 0

The effect of the OMM on the magnetotransport prop-
erties in 2D multivalley systems with similar population
of valleys has been discussed before applying the simple
relaxation-time approximation and ignoring the in-scattering
terms and the possible intervalley scatterings [15,16].
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Therefore, in this subsection, we focus on the significant
impact of these terms in the final MR of the system. The
intervalley scattering in 2D systems is mainly controlled by
sharp impurities or short-ranged scattering centers whose
concentration depends on fabrication techniques. Therefore,
depending on the experimental conditions and the fabrication
techniques, the intervalley scattering can change substantially
and get different values [39,40]. In what follows, we have
assumed the intravalley scattering is the same for both valleys,
Vintra = V11 = V22 and, to respect the valley symmetry for the
intervalley scattering, we have Vinter = V12 = V21. On the other
hand, as we mentioned earlier, to determine the effect of the
in-scattering contribution in final results, we have attached
a factor η = {0, 1} to the in-scattering terms in the collision
integral Eq. (8) which allows us to trace the impact of each
term in the collision integral by easily switching on and off
the in-scattering effect.

To commence, we show the εF dependence of the MR in
Fig. 1(b). We can see that the in-scattering term decreases
the MR and has a negative contribution in the MR and, at
certain Fermi energies, it can even change the sign of the
MR from positive to negative. On the other hand, if the inter-
valley scattering exists in a system, its negative contribution
can considerably change the MR especially for larger Fermi
energies.

This can be better perceived in Fig. 1(c), where we il-
lustrate the MR versus magnetic field, B, for εF = 35 meV.
While the in-scattering term has changed the MR from pos-
itive to negative, an intervalley scattering as large as half
the intravalley scattering can change the MR from −0.4%
to about −3.1% at B = 2 T. Note that the results of the
MR without in-scattering are different in our paper than
those of Ref. [15]. This is because in previous works where
the relaxation-time approximation was employed, a constant
relaxation time of τ0 = 10−13s was assumed. Even in the
absence of in-scattering terms, this is not accurate when we
possess the magnetic field. In this case, the density of states
correction due to the Berry curvature should be considered
in the definition of τ0 such that τ−1

0 = S
4π2

∑
τ ′

∫
d2k′Dτ ′

k′W ττ ′
kk′

[9]. We can see that τ0 depends on the magnetic field through
Dτ

k = 1 + e
h̄ B · �τ

kz
and is not the same for two valleys. If we

set Dτ ′
k′ = 1 in the definition of τ0, then the results of Ref. [15]

are reproduced.
In the case of low carrier density where the Fermi energy

is near the band edge, it has been shown that when εF is kept
constant, in a certain magnetic field one of the valleys will
be depleted and a significant decrease in the MR is obtained
[15]. Here we have found the same result and also a sharp
drop at the point of depletion for a finite intervalley scattering
[Fig. 1(d)]. The size of this drop increases for more significant
intervalley scatterings and it can be thought of as a measure
for the strength of the intervalley scattering in the system.
In fact, when one of the valleys is depleted, the intervalley
scattering channel is also canceled, which results in a sudden
decrease of the resistivity at the depletion point and hereafter
the system behaves as if it doesn’t experience intervalley
scattering at all. But, since the zero-field resistivity ρ0 is larger
when V12 �= 0, the MR is considerably larger in this case.

It is also instructive to have a quick look at the magne-
toconductance in the presence of the intervalley scattering.

FIG. 2. (a) The longitudinal conductivity, σxx , as a function of the
magnetic field, B, for εF = 27 meV for different values of intervalley
scatterings, V12. The colors and the format of lines are the same as
Fig. 1(d). (b) The Lorentz and intrinsic parts of the Hall conductivity,
σxy, as a function of magnetic field, B for εF = 27 meV. The black
dashed-dotted line is the intrinsic part of the Hall conductivity, σ (ii)

xy ,
while all other lines refer to the Lorentz part of the Hall conductivity,
σ (i)

xy , with the colors and line formats similar to (a).

In Fig. 2(a), we depict the longitudinal conductivity, σxx, as
a function of magnetic field B for a low-density case εF =
27 meV and for reduced magnetic fields. As expected, when
a new scattering channel is introduced to the system, the
longitudinal conductivity decreases and a stronger intervalley
scattering results in much lower longitudinal conductivity.
The situation is more interesting for the Hall conductivity, σxy.
In Fig. 2(b), we illustrate the Lorentz part of the Hall conduc-
tivity, σ (i)

xy , for the same values of the intervalley scattering
as in Fig. 2(a) as well as the intrinsic part σ (ii)

xy , which is unaf-
fected by scatterings. We can see that for V12 = 0, although the
Lorentz part is larger than the intrinsic part, their magnitudes
are completely comparable. For more considerable values of
the intervalley scattering, the absolute value of the Lorentz
part decreases, highlighting the role of the intrinsic part such
that for V12 = V11, the largest part of the Hall conductivity
belongs to the intrinsic part. We should note that since this
OMM-induced intrinsic part is largest near the band edge [16],
the dominant part of the Hall conductivity remains always the
Lorentz term for Fermi energies far from the band bottom.

B. Initially valley-polarized case: δεF �= 0

The time-reversal symmetry can be broken by imposing
a valley polarization on the system generating an excess of
carriers in one of the valleys; for example, in TMDCs, this can
be carried out by using circularly polarized light [29,41–43].
The valley-dependent MR in this time-reversal-broken system
has also been studied in Ref. [24], but the important role of the
OMM has been completely overlooked. Therefore, we discuss
our results in this subsection with an emphasis on the OMM
impact on the MR of a time-reversal-broken 2D system. In
Fig. 3(a), we have schematically illustrated the band energies
in K and K ′ valleys, the Fermi energy difference which results
in valley polarization, and also the OMM-induced shift in
energy bands. Here we have shown the negative valley po-
larization case δεF < 0 [δεF = εF1 − εF2 = εF(K ) − εF(K ′)].
In Fig. 3(b), we can see how the inclusion of the OMM can
change the MR in this case. Note that the linear-in-B depen-
dence of the MR in the weak-field regime, which is allowed in
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(a)

FIG. 3. (a) Schematic illustration of band energies in K and K ′

valleys, the Fermi energy difference which results in valley polar-
ization (negative in this case), and also the OMM-induced shift in
energy bands. Here the solid lines represent the band energies in
absence of magnetic field, the dashed lines correspond to the OMM-
induced shifted bands, the arrows indicate the direction of the band
shift, and the horizontal gray lines represent the Fermi energy in
each valley. (b) The MR versus magnetic field in the presence (solid
curves) and absence (dashed curves) of the OMM. The blue curves
illustrate the positive polarization case δεF > 0 and the red curves
show the δεF < 0 case. (c) The intrinsic part of the Hall conductivity,
σ (ii)

xy , as a function of magnetic field, B. The colors and format of
lines are the same as (a) and the green dashed-dotted line shows
the δεF = 0 case. In these panels, we have assumed V12 = 0 and
δεF = 1 meV such that for a positive (negative) polarization, we set
εF1(2) = 28 meV and εF2(1) = 27 meV.

spontaneous time-reversal-broken systems, can be seen in all
the plots [44]. The inclusion of the OMM can abruptly change
the MR, resulting in much larger values. Another interesting
point is that, depending on which valley is populated with the
excess charge, the magnetic-field dependence of the system
is very different. As we can see, for B > 0, when OMM is
considered in calculations, the MR stays negative for δεF < 0,
while it changes sign from positive to negative values when
the excess population is produced in the K valley or δεF > 0.
As the time-reversal symmetry is broken here, the situation
is reversed when we consider the B < 0 case; which means
that the sign change in MR occurs for δεF < 0 in this case. In
fact, the nonmonotonic behavior of MR is expected whenever
the sign of δεF is the same as B. Hereafter, we consider
the B > 0 case and therefore the sign change is seen when
δεF > 0.

The inclusion of the OMM not only changes the energy
bands (an upward shift in the K valley and a downward shift
in the K ′ valley for B > 0), and through that changes the
dissipative currents, but it also introduces an intrinsic dissi-
pationless Hall conductivity to the system: the second term
in Eq. (27). In Fig. 3(c), we show the intrinsic contribution

of the Hall conductivity, σ (ii)
xy , as a function of the magnetic

field, B. Note that although the OMM-induced energy shift
is small compared to the Fermi energy, but since this shift
is opposite in two valleys it can affect the MR considerably.
This is mainly due to this intrinsic Hall conductivity which
is maximized near the band edges [16] and, therefore, for a
low-doping system (same as in Fig. 3) it has a large value
completely comparable to the ordinary Hall term and through
changing the total Hall conductivity, it can strongly affect the
MR even in low magnetic field.

When the OMM is absent, the only intrinsic Hall term be-
longs to the anomalous Hall conductivity, which is a positive
value for δεF > 0 and a negative value for δεF < 0, and it
is illustrated by the B-independent dotted lines. This term is
induced in time-reversal-asymmetric systems by the opposite
and unequal values of the Berry curvature in the K and K ′

valleys. When the effect of the OMM is considered, another
intrinsic Hall contribution shows up. In contrast to the anoma-
lous Hall conductivity, this OMM-induced Hall conductivity
is B dependent and is always negative in accordance with the
sign of the ordinary Hall conductivity induced by the Lorentz
force. This is also the case for δεF = 0 [16]. In fact, the sign
change seen in the MR when δεF > 0 is principally the result
of the positive anomalous Hall conductivity at B = 0. When
the magnetic field is turned on, the negative Hall conductivity
in finite B tends to decrease this positive value toward zero and
after that the absolute value of the Hall conductivity increases
continuously [Fig. 3(c)]. As the Lorentz part of the Hall con-
ductivity is also negative, this sign change in MR is expected
even in the absence of OMM, but due to the slow increase
of the Hall conductivity in this case, the sign change occurs
in larger values of the magnetic field. In fact, the negative
intrinsic Hall conductivity induced by the OMM makes the
sign change happen in much smaller magnetic fields.

It is also interesting to note that increasing the difference in
Fermi energies of the two valleys has a different impact on the
system when δεF > 0 or δεF < 0. As illustrated in Fig. 4(a),
while increasing δεF substantially affects the δεF > 0 case,
the MR in the δεF < 0 case does not change considerably,
especially for smaller magnetic fields. Meanwhile, in both
cases, the increase in the polarization of the valleys has a
positive impact on the MR of the system. We can also see the
effect of the band gap on the MR in Fig. 4(b). Clearly, as the
OMM is inversely proportional to the band gap, we can see
that the MR in a small band-gap system is more substantially
affected in the presence of the OMM.

On the other hand, similar to the unpolarized system, the
intervalley scattering has the same negative contribution in
MR for the δεF < 0 case; while, on the contrary, for the
δεF > 0 case the contribution of the intervalley scattering is
positive [Fig. 4(c)]. We should note that, practically, in the
valley-polarized case, the intervalley scattering cannot be very
large because it can destroy the valley polarization.

V. SUMMARY AND DISCUSSIONS

To summarize, we have revealed that going beyond the
simple relaxation-time approximation in 2D multivalley sys-
tems can effectively modify the quantum transport properties
such that the sign of the MR can be reversed for the
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FIG. 4. (a) The MR versus magnetic field, B, for different val-
ues of valley polarization: δεF = 1 meV (solid red), δεF = 2 meV
(dashed blue), δεF = 3 meV (dashed-dotted green), and δεF =
4 meV (dashed-dotted-dotted pink). (b) The MR versus magnetic
field, B, for different values of band gap: � = 10 meV, (solid red),
� = 20 meV (dashed blue), � = 30 meV (dashed-dotted green). For
δεF > 0, we set εF1 = 1.1� and εF2 = 1.05� and vice versa for
δεF < 0. (c) The MR versus magnetic field, B, in the presence and
absence of in-scattering and intervalley scattering terms. The color
description of the curves is the same as Fig. 1(a).

high-density regime. In the case of the Fermi level close to
the band bottom, the inclusion of the intervalley scatterings
results in a significant drop of the MR when one of the valleys
is depleted, whose size increases as the intervalley scattering
grows.

Furthermore, we have studied the MR in a multivalley
time-reversal-broken system in the presence of the OMM.
If we assume the δεF > 0 (δεF < 0) as a positive (negative)
polarization, we have demonstrated that the OMM induces
an intrinsic Hall conductivity which is negative in any po-
larization and its absolute value grows with the magnetic
field. This is in contrast to the anomalous Hall conductivity
which is positive (negative) for a positive (negative) polar-
ization. Figure 5 summarizes the MR results in both initially
time-reversal-symmetric (δεF = 0) and time-reversal-broken
(δεF > 0 and δεF < 0) systems. As expected, the MR in a
low-field limit behaves as B2 for the time-reversal-symmetric
case, while it shows a linear dependence on B for the two
time-reversal-broken curves.

The completely different behaviors of the MR for positive
and negative polarizations is also depicted here. While for the
negative (positive) polarization and B > 0 (B < 0), the MR
stays negative for all values of the magnetic field, it changes
sign in the opposite case. This sign change in the MR in
low magnetic fields is the direct consequence of the OMM
consideration in the calculations. Our calculations also show
that, interestingly, the sensitivity of δεF > 0 and δεF < 0 cases

B (T)

M
R
(%
)

-0.2 -0.1 0 0.1 0.2
-2

-1

0

1

δεF = 0

δεF < 0

δεF > 0

FIG. 5. The magnetic-field dependence of the MR in low mag-
netic fields for both time-reversal symmetric (δεF = 0, green curve)
and asymmetric (δεF �= 0 red and blue curves) cases.

to the size of the polarization is completely different such that
for B > 0, increasing the polarization between two valleys
significantly influences the MR in the former case, while it
possesses a moderate effect on the latter. This polarization-
dependent MR can be verified experimentally, for example, by
illuminating the circularly polarized light with opposite senses
in multivalley systems like TMDCs. We should note that since
both Berry curvature and OMM are inversely proportional to
the gap, the OMM-induced modifications are expected to be
seen in systems with smaller band gaps.

We want to emphasize that in this paper, following an exact
solution to the semiclassic Boltzmann equation, we focus
on intrinsic mechanisms contributing to the magnetotrans-
port involving the OMM and the Berry-curvature-induced
anomalous velocity and the correction to the density of states.
In Ref. [20], it was indicated that the inclusion of the side
jump contribution can also strengthen the intra-scattering
contribution in the collision integral. Therefore, it is inter-
esting to inspect the interplay between the extrinsic effects
like side-jump and skew scattering and the intrinsic mech-
anisms described here in both 2D and 3D inversion-broken
systems.

Finally, we note that in this paper we have focused on
semiclassical treatment of electron dynamics up to first order
in electromagnetic fields. It has been shown that extending the
semiclassical dynamics up to second order and the consequent
magnetic field correction to the Berry curvature can give rise
to a magnetononlinear anomalous Hall effect [45,46]. In this
case, in addition to Berry curvature and OMM, a new band ge-
ometric quantity, the anomalous orbital polarizability, plays a
major role [47]. There is also a spin counterpart of anomalous
orbital polarizability—the anomalous spin polarizability—
which vanishes for the systems without spin-orbit coupling
as in here.
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APPENDIX A

Applying δ(ε̃τ ′
k′ − ε̃τ

k ) = δ(k′−k′
0 )

|∂ (ε̃τ ′
k′ −ε̃τ

k )/∂k′|k′
0

to Eqs. (18)–(20),

the integrals are easily found as

Gτ (k) = ni

4π h̄2 Dτ
k

∑
τ ′

[
|V ττ ′ |2

(k′
0Dτ ′

k′
0

ṽτ ′
k′

0

)(
1 + �2

ε(k)ε(k′
0)

)]
,

(A1)

H ττ ′
(k) = ni

4π h̄2 |V ττ ′ |2k′
0

(Dτ
k Dτ ′

k′
0

ṽτ
k

)(
1 + �2

ε(k)ε(k′
0)

)
,

(A2)

Iττ ′
(k) = ni

4π h̄2 |V ττ ′ |2k′
0

(Dτ
k Dτ ′

k′
0

ṽτ
k

)(
h̄2v2

F kk′
0

ε(k)ε(k′
0)

)
, (A3)

where k′
0 is the root of ε̃τ ′

k′ − ε̃τ
k = 0.

APPENDIX B

To find aτ (φ) [the same procedure is applied for bτ (φ)], we
use the Fourier series as

aτ (φ) = aτ
0 + aτ

c1 cos φ + aτ
c2 cos 2φ + · · ·

+ aτ
s1 sin φ + aτ

s2 sin 2φ + · · · ,
(B1)

and the derivative of the form

∂φaτ (φ) = −aτ
c1 sin φ − 2aτ

c2 sin 2φ − · · ·
+ aτ

s1 cos φ + 2aτ
s2 cos 2φ + · · · .

(B2)

Plugging Eqs. (B1) and (B2) in Eq. (15) and equating the
coefficients of sin φ and cos φ, we will see that the only
nonzero coefficients in Fourier series Eq. (B1) are aτ

0 , aτ
c1, and

aτ
s1 as expected (since the Fermi surface is isotropic and the

scattering is uniform), which are found solving the following
equations:

Gτ (k)aτ
0 = 2π

[
H ττ (k)aτ

0 + H τ (−τ )(k)a−τ
0

]
, (B3)

F τ (k)aτ
c1 = Gτ (k)aτ

s1 − π
[
Iττ (k)aτ

s1 + Iτ (−τ )(k)a−τ
s1

]
, (B4)

1 − F τ (k)aτ
s1 = Gτ (k)aτ

c1 − π
[
Iττ (k)aτ

c1 − Iτ (−τ )(k)a−τ
c1

]
.

(B5)

Putting τ = ±1 in the above equations, we will have four cou-
pled equations for a+

c1, a+
s1, a−

c1, and a−
s1 [Eqs. (B4) and (B5)]

and a+
0 and a−

0 can be found from Eq. (B3) plus the condition
for conservation of the electron number

∑
k,τ gτ

k = 0. Having
found these unknown quantities, we will have

aτ (φ) = aτ
0 + aτ

c1 cos φ + aτ
s1 sin φ. (B6)

Following the same procedure, bτ (φ) is given by

bτ (φ) = bτ
0 + bτ

c1 cos φ + bτ
s1 sin φ, (B7)

where bτ
0, bτ

c1, and bτ
s1 are found solving the following equa-

tions:

Gτ (k)bτ
0 = 2π

[
H ττ (k)bτ

0 + H τ (−τ )(k)b−τ
0

]
, (B8)

1 + F τ (k)bτ
c1 = Gτ (k)bτ

s1 − π
[
Iττ (k)bτ

s1 + Iτ (−τ )(k)b−τ
s1

]
,

(B9)

− F τ (k)bτ
s1 = Gτ (k)bτ

c1 − π
[
Iττ (k)bτ

c1 − Iτ (−τ )(k)b−τ
c1

]
.

(B10)

Note that we do not need to find aτ
0 and bτ

0 because they are
the constant parts of the distribution function and have no
contribution in transport integrals.
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