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The optical properties of two-dimensional materials are exceptional in several respects. They are highly
anisotropic and frequently dominated by excitonic effects. Dipole-allowed second-order nonlinear optical
properties require broken inversion symmetry. Hence, several two-dimensional materials show strong in-plane
(IP) nonlinearity but negligible out-of-plane (OOP) response due to vertical symmetry. By considering buckled
hexagonal monolayers, we analyze the critical role of broken vertical symmetry on their excitonic optical
response. Both linear as well as second-order shift current and second-harmonic response are studied. We
demonstrate that substantial OOP nonlinear response can be obtained, in particular, through off-diagonal tensor
elements coupling IP excitation to OOP response. Our findings are explained by excitonic selection rules for
OOP response and the impact of dielectric screening on excitons is elucidated.
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I. INTRODUCTION

The recent interest in layered materials with broken vertical
symmetry, such as Janus materials [1–3], buckled monolay-
ers [4–7], as well as heterobilayers and biased homobilayers
[8–11] makes the discussion on the effects of broken vertical
symmetry on the optical response especially relevant [12–18].
The amplitude of both linear and nonlinear out-of-plane
(OOP) conductivities is expected to be greatly dependent on
the asymmetry of the layer with the even-order nonlinear OOP
response being identically zero (within the dipole approxi-
mation) when the OOP symmetry is not broken. Hence, the
broken OOP symmetry is crucial when one wishes to consider
potential applications beyond those allowed by symmetric
structures. The OOP nonlinear response in Janus monolayers
has also been experimentally studied [19,20], namely, for both
second–and third harmonics. This study was performed via
polarization-resolved spectroscopy with the aim of mapping
the full second-order susceptibility tensor [21–23] of MoSSe.
These OOP nonlinearities then lead to additional degrees of
freedom in vertical photonics structures [24,25], allowing for
novel approaches in the design of ultrafast optical devices
[26], such as miniaturized logic gates [27,28], nonlinear holo-
grams [29], broadband ultrafast frequency converters [30,31],
among others.

The simplest family of materials with broken OOP sym-
metry is that of buckled monolayer structures with theoretical
predictions of both monoelemental and binary graphenelike
materials [4,6,7], and several buckled hexagonal sheets (see
Fig. 1) have already been fabricated. Among these materials,
we mention specifically the monoelemental silicene [4,32],
blue phosphorene [33], arsenene [34,35], antimonene [34,36],
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and bismuthene [37], as well as the binary CS, SiO, GeSe,
SnTe, InSb, and GaAs [4,38]. The monoelemental structures
preserve inversion symmetry even in the presence of buckling
and, hence, possess negligible second-order nonlinearities.
The band gaps of these materials can be both mechanically
[39,40] or electrically [40,41] tuned, and they allow for po-
tential applications is various fields, such as optoelectronics,
spin electronics, sensors, and thermoelectrics [42–45].

The aim of the present paper is to understand the effects
of both in-plane (IP) and OOP asymmetry on the exci-
tonic optical response of honeycomb lattice structures. To
this end, we consider a simple two-band model of gapped
graphene near the so-called Dirac valleys [46–48] and then
apply a small buckling to break OOP symmetry. To study
IP even–order nonlinear optical properties [49–52], such as
second-harmonic generation (SHG) [51,53] or shift–current
(SC) [54–57], we include a quadratic (in k) contribution to
the nearest-neighbor hopping function [58], namely, trigonal
warping [59], plus distinct on-site potentials for the two sub-
lattices. Including trigonal warping allows us to compute the
IP even-order response, which then serves as a comparison
against the OOP response.

This paper is organized as follows. In Sec. II, we will
consider the single-particle Hamiltonian for gapped graphene
whereas introducing trigonal warping before computing
explicit matrix elements of the momentum and Berry connec-
tion. In Sec. III, we discuss the Bethe-Salpeter equation for
the computation of the excitonic states. We also outline some
of the approximations necessary for an efficient numerical
solution of this equation. In Sec. IV, we briefly outline the
general form of both the excitonic linear and the nonlinear
optical response to linearly polarized light, discussing the
momentum matrix elements between excitonic states. Finally,
in Sec. V, we analyze the IP and OOP optical selection rules
of a buckled graphene lattice structure (Fig. 1) which, in turn,
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FIG. 1. Schematic of a buckled honeycomb lattice, highlighting
the lattice constant a and the buckling h.

leads to a non–zero OOP excitonic response in the monolayer.
The nonlinear response will be very sensitive to the scale of
this buckling, quickly vanishing as the buckling decreases. We
also compare both diagonal (σzzz ) and nondiagonal (σzxx/xzx )
components of the second-order excitonic conductivity tensor
against their IP counterparts, discussing both their relative
magnitudes and the location of the excitonic resonances.

II. SINGLE-PARTICLE GAPPED
GRAPHENE HAMILTONIAN

Throughout this paper, we will work with a two-band
model of gapped graphene near the Dirac points K/K ′ with
the x axis aligned with the unit cell of the honeycomb lattice
and the z axis perpendicular to the monolayer plane. The basis
states are pz orbitals on the two sublattices, and the model
Hamiltonian before Dirac point expansion then reads

H(k) =
[

� −γ f ∗(k)
−γ f (k) −�

]
, (1)

where ±� is the staggered on-site energy, and γ the effective
hopping. In this paper, we ignore spin effects and, as such,
all spectra will be multiplied by spin and valley degeneracies.
If spin-orbit interaction is considered, gap � becomes spin
and valley dependent, meaning that the resulting spectra will
have A and B components split by spin–orbit coupling [60].
Although for planar gapped graphene, the π and σ orbitals
are decoupled, the vertical shift of the two sublattices in a
buckled system means that the pz orbitals are no longer on
the same plane. Hence, the effective hopping will change
as [61,62]

−γ = Vppπ + 1

1 + a2

12h2

(Vppσ − Vppπ ), (2)

where a is the lattice parameter, h is the buckling parame-
ter, and Vppπ and Vppσ are the hopping integrals for π and
σ orbitals, respectively. As we are interested in a general
model for small h/a, we will ignore π − σ hybridization
when computing the OOP response as we consider the
OOP buckling to be much smaller than the lattice constant,

taking the approximation −γ ≈ Vppπ . The wave-vector-
dependent function f is obtained from the honeycomb lattice
geometry as

f (k) = eikxa/
√

3 + 2e−ikxa/(2
√

3) cos

(
kya

2

)
.

Expanding f (k) near the Dirac points K/K ′ up to linear
order, we obtain the massive Dirac Hamiltonian that is usually
employed to study gapped graphene and hexagonal boron
nitride (hBN) systems. Considering now an expansion up to
quadratic order in k, we obtain [59]

f (k) ≈
√

3a

2
[(kx + iτky) + iζTWa(kx − iτky)2], (3)

where τ = ±1 is the valley index and ζTW =
√

3
12 is the trigonal

warping strength. Although this trigonal warping strength is a
fixed numerical factor, it is useful to keep it as a variable to
enable systematic expansions in orders of ζTW.

A. Diagonalization

Diagonalizing Hamiltonian Eq. (1), we obtain the band
structure as ±E with

E =
√

�2 + γ 2| f (k)|2. (4)

As we are interested in linear contributions from trigonal
warping, we approximate E up to first order in ζTW as

E ≈ ε + τ
ξ

ε
ζTW, (5)

where

ε =
√

�2 + h̄2v2
F k2,

ξ = ah̄2v2
F k3 sin(3θ ), (6)

with θ as the polar angle of the k vector and the Fermi veloc-

ity is defined as vF = 1
h̄

√
3aγ

2 . We then write the normalized
eigenvectors as

|vk〉 =
√

E + �

2E

[
e−iτθ (E−�)

h̄vF k(1+iakζTWe−3iθτ )

1

]
, (7)

|ck〉 =
√

E − �

2E

[ −E−�
h̄vF k(1+iakζTWe−3iθτ )

eiτθ

]
, (8)

where v/c corresponds to the valence and conduction bands,
respectively. From Eqs. (7) and (8), it is clear which com-
ponents go to zero as k → 0 as E ≈ � + O(k2) for small k,
whereas, the denominators of the fraction in square brackets
are O(k).

The presence of the phase terms in spinor components that
go to zero as k → 0 in |vk〉 and |ck〉 will lead to a pseudospin
angular quantum number ms = 0 [8,63–67]. This pseudospin
angular quantum number is governed by the phase choice
and allows a direct association with the usual hydrogenlike
states.
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B. Momentum matrix element and Berry connection

The IP interband momentum matrix element in the i direc-
tion is defined as

pi
vck = 〈vk|m

h̄

∂H(k)

∂ki
|ck〉, (9)

with m as the bare electron mass. When considering IP prop-
erties, we will focus our attention solely on the x direction
as the inversion symmetry of the lattice along the y direction
means that the yyy component of the nonlinear conductivity
tensor will be trivially zero after summing over valley index.
Alongside with the momentum matrix elements, we will also
require Berry connections, defined as

�α
nmk = i〈nk| ∂

∂kα

|mk〉, (10)

as their explicit expression will play an important part in
computing generalized derivatives [68].

To obtain the nonlinear conductivity tensor, we will con-
sider incident fields with frequencys ωp and ωq. The indices
for the current vector J(2)(ωpq) will contract as [51]

J (2)
i (ωpq) =

∑
j,k

σ
(2)
i jk (ωpq; ωp, ωq )Ej (ωp)Ek (ωq), (11)

where exchanging p and q implies an exchange of j and k
indices. In contracted matrix notation [19] and with this in
mind, we write

⎡
⎢⎣

J (2)
x (ωpq)

J (2)
y (ωpq)

J (2)
z (ωpq)

⎤
⎥⎦ = σ (2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex(ωp)Ex(ωq)

Ey(ωp)Ey(ωq)

Ez(ωp)Ez(ωq)

Ey(ωp)Ez(ωq) + (p ↔ q)

Ex(ωp)Ez(ωq) + (p ↔ q)

Ex(ωp)Ey(ωq) + (p ↔ q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

with E(ω) as the external optical field, σ (2) the nonlinear con-
ductivity matrix with matrix elements σ

(2)
i jk (ωpq; ωp, ωq), and

the frequency ωpq = ωp + ωq. A simple symmetry analysis
[19] tells us that the relevant components of the nonlinear
conductivity tensor will be

σ (2) =

⎡
⎢⎣

σ (2)
xxx −σ (2)

xxx 0 0 σ (2)
xxz 0

0 0 0 σ (2)
xxz 0 −σ (2)

xxx

σ (2)
zxx σ (2)

zxx σ (2)
zzz 0 0 0

⎤
⎥⎦.

Compared to Ref. [59], we apply a simple relabeling of the
two valleys (τ → −τ ) and the gauge change |ck〉 → eiτθ |ck〉.
Although this gauge change leads to a global phase in the
momentum matrix elements, it is important to note that the kx

derivative in the definition of the Berry connection will lead
to a more complex transformation. Nonetheless, this is just
a gauge choice and, therefore, both the free-carrier and the
excitonic conductivities will be independent of this choice.

C. Free-carrier conductivity

When discussing both linear and nonlinear excitonic
conductivities, we will include results for very large dielec-
tric constants. In this limit, the excitonic response agrees
with the free-carrier expression, obtained by computing the

electronic conductivity in the free-carrier (single-particle)
regime.

The generic expression for the free-carrier linear electronic
conductivity in a clean two-band semiconductor at T = 0 is
given by [68–72]

σαβ (ω) = e2h̄

iπ2m2

[ ∫
pα

vck pβ

cvk

Ecvk(Ecvk − h̄ω)
d2k − (ω → −ω)∗

]
,

(13)

where Ecvk = 2E and the integration runs over the Brillouin
zone. Analogously, the generic intraband nonlinear electronic
conductivity in a clean two-band semiconductor can be writ-
ten as [68–72]

σ
(intra)
αβλ (ωp, ωq ) = e3h̄2(ωp + ωpq)

2π2m2

×
∫ pα

vck

[
pβ

cvk

]
;kλ(

E2
cvk − h̄2ω2

p

)(
E2

cvk − h̄2ω2
pq

)d2k

+
(

p ↔ q
β ↔ λ

)
, (14)

where [pβ

cvk];kλ
is the generalized derivative [68] in the λ

irection of the momentum matrix element for the β direction,
defined as

[
pβ

cvk

]
;kλ

= ∂ pβ

cvk

∂kλ

− i
(
�λ

cck − �λ
vvk

)
pβ

cvk. (15)

When considering λ = z, the kz derivative term in Eq. (15) is
discarded as there is no dependence on kz in the momentum
matrix elements. The specific details for the calculation of
both pz

vck and �z
nmk will be discussed in Sec. V.

Although the integrals of Eqs. (13) and (14) are
over the entire Brillouin zone, performing the expansion
around the Dirac points means that the integration is now
over the infinite Dirac cone and that a sum over valleys
must be made. Due to the smallness of ζTW, we are inter-
ested contributions up to O(ζTW). The ζTW factor must come
from either Ecvk or pα

vck[pβ

cvk];kλ
. Time-reversal symmetry

means that Ecvk = Ecv−k. Any term containing pα
vck[pβ

cvk];kλ

to zeroth order in ζTW will vanish upon integration and
summation over the valley. This allows us to set Ecvk =
2ε whereaas retaining O(ζTW) contribution to pα

vck[pβ

cvk];kλ

throughout this paper when computing the various transi-
tion amplitudes. These integrals can be computed analytically
in our first-order approximation in ζTW with the exact ex-
pressions present in Appendix B for the various processes
considered.

III. BETHE-SALPETER EQUATION

Before discussing the excitonic conductivity, we must first
compute the excitonic states for each τ valley. To compute
the excitonic wave functions and their binding energies, we
will solve the Bethe-Salpeter equation [59,66,72,73], given in
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FIG. 2. (Left) Real part of the linear IP (top) and OOP (bottom) optical response for ε = 1. The orange curve corresponds to the excitonic
bound states, whereas the blue line also includes continuum states. The vertical dashed line represents the band gap. (Right) Diagram of
dominant excitonic selection rules in the τ = 1 valley for linear IP (top) and OOP (bottom) optical response.

momentum space by

Enψ
(n)
cvk = Ecvkψ

(n)
cvk +

∑
q

V (|k − q|)〈ck|cq〉〈vq|vk〉ψ (n)
cvq,

(16)

where En is the exciton energy of state n, V (k) is the attrac-
tive electrostatic potential coupling electrons and holes, and
ψ

(n)
cvk is the wave function of the exciton. In Eq. (16), the

exchange term in the electrostatic potential has been ignored
due to the weak effect on exciton binding energies [74,75].
Additionally, as we only consider exciton states with zero
center-of-mass (COM) momentum (i.e., the zero-temperature
limit), we will also ignore intervalley coupling phenomena
[76]. For notational simplicity, the τ dependence of energy
and wave function is omitted from the list of arguments. In
Eq. (16), the valley dependence is present in the form factor
〈ck|cq〉〈vq|vk〉. For our system, we consider V (k) to be the
Rytova-Keldysh potential [77,78], given in momentum space
by

V (k) = −2π h̄cα
1

k(ε + r0k)
, (17)

with α the fine-structure constant, ε as the mean dielectric
constant of the media surrounding the monolayer, and r0 as
an IP screening length [79] related to the polarizability of the
material and usually obtained from density functional theory
calculations [80]. From the analysis of Fig. 2(c) of Ref. [80]
for graphenelike materials with a band gap of Eg = 2 eV, we
set r0 = 40 Å.

Considering the excitonic wave function to have a well-
defined angular momentum �n, we write it as ψ

(n)
cvk = f (n)

cvkei�nθk

and, defining ϕ = θq − θk , rewrite the Bethe-Salpeter equa-
tion by converting the sum into an integral as

En f (n)
cvk = 2ε f (n)

cvk + 1

4π2

2∑
λ=0

∫ ∞

0

∫ 2π

0
V (|k − q|)Aλ(k, q)

× eiλτϕ f (n)
cvqei�nϕdϕ qdq, (18)

where Ecvk became 2ε as we are neglecting the effects of
trigonal warping on the band structure for simplicity. This
approximation removes all coupling of states with different
angular momentum, leading to selection rules identical to
those of hBN and similar materials [59,65,66]. In principle,
exchange corrections could also couple states with different
angular momentum. However, following from Ref. [76], the
lowest-order exchange correction at zero COM momentum
will simply introduce a renormalization of the band gap,
which will not couple different angular momentum state and,
therefore, the optical selection rules remain unchanged.

The radial component of the form factor is obtained
directly from the expansion of 〈ck|cq〉〈vq|vk〉 whereas
again neglecting trigonal warping in the definition of the
eigenvectors. Under this approximation, the eigenvectors
read

|vk〉 =
[

e−iτθ sin xk
2

cos xk
2

]
, |ck〉 =

[ − cos xk
2

eiτθ sin xk
2

]
,
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where xk = tan−1[ h̄vF k
�

]. The radial component of the form
factor can then be written as

Aλ(k, q) =

⎧⎪⎨
⎪⎩

1
4 (1 + cos xk )(1 + cos xq), λ = 0,
1
2 sin xk sin xq, λ = 1,
1
4 (1 − cos xk )(1 − cos xq), λ = 2,

where λ denotes the angular dependence present in the eiλτϕ

factor in Eq. (18).
As evident from Eq. (18), the degeneracy in angular mo-

mentum �n ↔ −�n is immediately lifted within the same
valley. However, a degeneracy between (�n + ms, τ ) and
(−�n − ms,−τ ) excitons is still present, stemming from time-
reversal symmetry in the system [81]. Finally, Eq. (18) is
solved numerically via a simple numerical quadrature using
a tangent grid k = tan(x π

2 ) with 1000 points x ∈ [0, 1], fol-
lowing the procedure already outlined several times in the
literature, namely, in Refs. [63,82–84].

When discussing excitonic states, we will use nomen-
clature similar to the two-dimensional hydrogen atom to
distinguish the different angular momentum states (i.e., s,

p±, and d± states). As the pseudospin contribution ms = 0,
s states will have � = 0, p± will have � = ±1, and analogous
to higher angular momentum states.

IV. EXCITONIC OPTICAL RESPONSE

Having outlined the method for obtaining excitonic states
in our system, we will now consider the excitonic optical
conductivity. To extract the resonances, we add a broaden-
ing of h̄� = 0.05 eV, introduced via the substitution h̄ω →
h̄ω + i h̄�

2 . Following Refs. [59,72,85,86], we define σ0 = e2

4h̄
and write the linear conductivity as

σαβ (ω)

σ0
= −ih̄2

2π3m2

∑
n

[
EnX α

0nX β

n0

En − h̄ω
− (ω → −ω)∗

]
. (19)

For the nonlinear conductivity, we are interested in both SC
(ωp = −ω∗

q ) and SHG (ωp = ωq) regimes. Defining σ2 =
e3a

4Egh̄ , we write the SHG nonlinear conductivity [59,72] as

σ SHG
αβγ (ω)

σ2
= −iEgh̄2

2aπ3m2

∑
n,m

[
EnX α

0nQβ
nmX γ

m0

(En − 2h̄ω)(Em − h̄ω)
− EnX α

n0Qβ
mnX γ

0m

(En + 2h̄ω)(Em + h̄ω)
− (En − Em)X α

0nQβ
nmX γ

m0

(En + h̄ω)(Em − h̄ω)

]
. (20)

In these expressions, En is the energy of the excitonic state
n, and the one- and two-state excitonic matrix elements are
defined as [59,72]

X α
0n = i

∫
ψ

(n)
cvk

pα
vck

Ecvk
d2k, (21)

and

Qα
nm = i

∫
ψ

(n)∗
cvk

[
ψ

(m)
cvk

]
;kα

d2k, (22)

where [ψ (m)
cvk];kα

is the generalized derivative [68] in the α

direction of the exciton wave function for the state m given
in terms of the Berry connection �α

i jk, defined as [72]

[
ψ

(m)
cvk

]
;kα

= ∂ψ
(m)
cvk

∂kα

− i
(
�α

cck − �α
vvk

)
ψ

(m)
cvk . (23)

Analogous to what was discussed regarding Eq. (15), the
excitonic wave function will be independent of kz and, as such,
the ∂

∂kz
ψ

(m)
cvk term is dropped, meaning that Qz

nm reads

Qz
nm =

∫
ψ

(n)∗
cvk

(
�z

cck − �z
vvk

)
ψ

(m)
cvkd2k. (24)

Additionally, one can easily convert Eqs. (19) and (20) into
formulas for the associated susceptibility as χαβ = i

ωε0
σαβ

and χSHG
αβγ = i

2ωε0
σ SHG

αβγ , respectively [72].

V. OPTICAL RESPONSE OF BUCKLED
GAPPED GRAPHENE

We will now quickly outline the IP optical selection rules
for gapped graphene with trigonal warping, already discussed
in the literature [59], before focusing our attention on the OOP

linear and the nonlinear optical response of buckled gapped
graphene.

As discussed in Sec. II, we will be ignoring π − σ hy-
bridization by assuming the buckling is much smaller than
the lattice constant. Therefore, this model will be identical to
the unbuckled monolayer discussed previously, apart from the
alternating z positions of the individual sublattices. More im-
portantly, the eigenstates will remain those given by Eqs. (7)
and (8), meaning that no changes to either the momentum
matrix elements or to the Bethe-Salpeter equation are needed.

Throughout, we will consider a buckling parameter h =
a/4, where a is the lattice parameter. This matches approx-
imately what is present in the literature [6,87–89] where,
depending on the material in question, the buckling parameter
h takes values between a/2.5 and a/8.6. Additionally, as will
be evident, the presence of trigonal warping is not necessary
to obtain finite linear and nonlinear OOP conductivities.

A. In-plane optical selection rules

To obtain the optical selection rules, we must compute the
angular integrals present in the excitonic matrix elements X x

0n
and Qx

nm. These optical selection rules are relevant not only for
the IP linear and nonlinear responses, but also for the nondi-
agonal OOP response. For clarity, we separate this subsection
into discussion on linear and nonlinear response. For the linear
optical response, we focus on the angular integral present in
the definition of X x

0n following Eq. (21). To zeroth order in
ζTW, the angular integral in Eq. (21) then reads∫ 2π

0
ei�nθ px

vckdθ ∝
[
�

ε
+ �n + τ

|�n + τ |τ
]
δ|�n+τ |,1. (25)
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The presence of the Kronecker δ in Eq. (25) immediately
gives rise to the well-known valley-dependent selection rules
in gapped graphene, hexagonal boron nitride, and other mono-
layer materials with a hexagonal lattice [59,65,66,90,91] when
one takes into account the valley-dependent pseudospin con-
tribution. Including trigonal warping effects would lead to a
quadratic correction allowing for transitions with |�n + τ | = 2
or |�n + τ | = 4.

For the nonlinear optical response, we first focus our atten-
tion on the angular integral in the definition of Qx

nm following
Eq. (22). Performing the necessary angular integral, we write
the matrix elements in a somewhat abusive but concise form
as

Qx
nm = Qx

|�m,n|=1 + ζTW
[
Qx

|�m,n|=2 + Qx
|�m,n|=4

]
, (26)

where the new indices restrict each term to the Kronecker
δ’s resulting from the different angular integrals and we de-
fined �m,n = �m − �n for conciseness. Besides the Qx

nm matrix
element, a linear contribution in ζTW is also present in the
expansion of X x

0n. In the same notation, we write this contri-
bution as

X x
0n = X x

|�n+τ |=1 + ζTW
[
X x

|�n+τ |=2 + X x
|�n+τ |=4

]
. (27)

As we are considering contributions only up to first order in
ζTW, we must carefully analyze the matrix product X x

0nQx
nmX x

m0
to understand which states are to be included. Knowing the
simplified forms for the matrix elements, we can expand the
oscillator strength X x

0nQx
nmX x

m0 up to linear order in ζTW. The
nozero contributions to the nonlinear second-order conductiv-
ity then read

ζTW
[
X x

|�n+τ |=2Qx
|�m,n|=1X x,∗

|�m+τ |=1 + X x
|�n+τ |=1Qx

|�m,n|=2X x,∗
|�m+τ |=1

+ X x
|�n+τ |=1Qx

|�m,n|=1X x,∗
|�m+τ |=2

]
, (28)

where the importance of including trigonal warping in or-
der to obtain a nonzero second-order response is evident.
Defining the oscillator strength σ�n;�m ≡ X x

�n
Qx

�n,�m
X x

�m
from the

allowed transitions of Eq. (28), the dominant matrix elements
correspond to the σp+;s and σs;p+ , in perfect agreement with
Fig. 2(c) of Ref. [59].

B. Out-of-plane momentum and Berry connection

The matrix elements of z are given by hσz with σz as the
diagonal Pauli matrix and can be easily computed between
bands n and m as

znmk = 〈nk|
[

h 0
0 −h

]
|mk〉 (29)

Under the same linear approximation in ζTW for the band
structure as discussed in Eq. (5) and considering only terms
up to O(ζ 1

TW), Eq. (29) reads

zvck = − heiτθ

√
1 − �2

ε2

[
1 + ζTWτ

�2

ε2
ak sin 3θ

]
, (30)

zcck = h
�

ε

[
1 − ζTWτ

(
1 − �2

ε2

)
ak sin 3θ

]

= −zvvk (31)

for the different band pairs.

Knowing the zi jk matrix elements, we can finally write the
OOP component of the momentum and Berry connections as

pz
vck = m

ih̄
2εzvck

= 2ih
m

h̄
eiτθ

√
ε2 − �2

[
1 + ζTWτ

�2

ε2
ak sin 3θ

]
, (32)

and, following from [68]

�z
cck − �z

vvk = zcck − zvvk

= 2h
�

ε

[
1 − ζTWakτ

(
1 − �2

ε2

)
sin 3θ

]
. (33)

The jump from ∂
∂kz

to iz can be understood by considering
the buckled monolayer as a repeated structure in the z direc-
tion. This means that the wave functions carry a eikzz factor,
whereas the periodic parts [the eigenvectors in Eqs. (7) and
(8)] are independent of kz. Finally, the period of this repeated
structure is taken to infinity.

Although the IP momentum in Eq. (25) goes to zero as
�/ε ≈ k−1 for large k, the dominant term of pz

vck is linear
in k. As a consequence, contributions from continuum states
(i.e., states where En > 2�) will quickly increase with ω.

C. Out-of-plane excitonic linear conductivity

We will now analyze the OOP excitonic conductivity. Con-
sidering only the zeroth-order contribution from ζTW, it is
immediately evident from the OOP momentum of Eq. (32)
that only transitions to excitonic states with �n = −τ are al-
lowed, meaning that X z

0n reads

X z
0n = −2πhm

h̄
δ�n,−τ

∫ ∞

0
f (n)
cvk

√
1 − �2

ε2
k dk. (34)

Including trigonal warping effects would allow for transitions
where |�n + τ | = 3 and the correction would be quadratic in
ζTW.

The real part of the linear excitonic optical conductivity
of the buckled monolayer for ε = 1 is plotted in Fig. 2 with
the top panel as the IP response, and the bottom panel as the
OOP response. Right side diagrams represent the transitions
allowed for each component in the τ = 1 valley. Considering
the τ = −1 valley would imply a sign flip of the diagrams
(e.g., exchanging p− by p+, etc.), as evident from the selection
rules of Eqs. (27) and (34). As expected from the form of the
momentum operator pz

vc, we observe an ever-increasing linear
optical conductivity when accounting for continuum states
(see Appendix B) as well as direct proportionality to (h/a)2.
The optical response present in the bottom panel of Fig. 2
also qualitatively matches the measured optical conductivity
of anisotropic materials, such as ZrSiS, ZrGeS, and ZrGeSe,
found in the current literature [15,18].

D. Out-of-plane excitonic nonlinear conductivity

Focusing now on the nonlinear regime and consider-
ing only zeroth order in ζTW contributions, the Qz

nm matrix

235416-6



ANISOTROPIC LINEAR AND NONLINEAR EXCITONIC … PHYSICAL REVIEW B 107, 235416 (2023)

FIG. 3. (Left) Real part of the SHG optical response with diagonal IP (top), diagonal OOP (middle) and nondiagonal OOP (bottom)
conductivity for ε = 1, h = a/4. The orange curve corresponds to only excitonic bound states, whereas blue line also includes continuum
states. The vertical (dotted) dashed black lines represent (half) the band gap of the system. (Right) Diagram of dominant excitonic selection
rules in the τ = 1 valley for each component. The dashed line means the transition is allowed by trigonal warping, and thesolid lines are
transitions allowed without trigonal warping. Arrow direction and color represent the specific resonance when multiple contributions are
present.

element reads

Qz
nm = 4πhδ�m,�n

∫ ∞

0
f (n)∗
cvk

�

ε
f (m)
cvk k dk, (35)

allowing transitions between states with the same angular
momentum. However, as X z

0n only allows �n = −τ to zeroth
order in ζTW, we arrive at the fact that only �n = �m = −1
states contribute in the τ = 1 valley.

Including trigonal warping effects in Qz
nm would allow for

transitions where |�m − �n| = 3. Considering this extra term
together with the selection rules present in X z

0n leads to a
vanishing first-order contribution from ζTW to the nonlinear
conductivity. As each momentum matrix element will carry a
factor of h as clear from Eqs. (34) and (35), and working in the
present approximation where the hopping γ is independent
of h, the nonlinear conductivity will be strictly cubic in h/a.
The SHG conductivity is plotted in the middle panel of Fig. 3
for ε = 1. Apart from the much smaller amplitude due to

the cubic dependence on h/a, it is also noteworthy that the
response above h̄ω = 2 eV remains remarkably close to its
maximum value. This is very different from what occurs for
the IP response where the response above h̄ω = 2 eV is much
smaller than its maximum value.

E. Nondiagonal out-of-plane response

Finally, we will consider the nondiagonal OOP response in
buckled gapped graphene. Considering again only the x direc-
tion for the IP response, we have three different components,
which can prove interesting: σzxx, σxzx, and σzzx.

Looking more carefully at the selection rules of the sys-
tem, we can immediately tell that σzzx = 0 when recalling
Eqs. (27), (34), and (35): whereas, X z

0n and Qz
nm only al-

low �n = �m = −1 states, X x
0n explicitly forbids these states.

As such, we focus our attention only on σzxx. Although we
will not be discussing σxzx, a quick analysis of the various

235416-7
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FIG. 4. Magnitude of three different components (xxx, zzz, and
zxx) of SHG nonlinear optical susceptibilities for ε = 1, h = a/4.
The vertical (dotted) dashed black lines represent (half) the band gap
of the system.

selection rules discussed previously shows that the dominant
response will be a zeroth-order contribution in ζTW of the form
X x

�n=0Qz
nmX x

�m=0. Under Kleinman symmetry [92], σxzx will be
approximately equal to σzxx.

Now, explicitly computing the selection rules for σzxx,
X z

0n again immediately forces �n = −1. Recalling Eqs. (26)
and (27), the dominant transition will be associated with the
matrix elements Qx

|�m,n|=1X x
|�m+τ |=1 (i.e., zeroth-order contribu-

tion in ζTW), meaning that �m is restricted to |�m + τ | = 1.
Excluding all other contributions, we can immediately expect
that this off-diagonal term will be significantly larger than σ (2)

zzz
as the dependence on h/a < 1 will be linear instead of cubic.
Additionally, X x

m0 is much larger than X z
m0, which will also

contribute to this trend.
This excitonic nonlinear conductivity is then plotted in the

bottom panel of Fig. 3 for ε = 1. As expected from the qual-
itative analysis of the matrix elements, the relative magnitude
of the off-diagonal OOP contribution is much larger than the
diagonal OOP response present in the top panel of Fig. 3. As
discussed previously, this mainly stems from the lower-order
dependence in h/a (linear instead of cubic). Additionally, and
as expected from the general form σzxx, we can also observe
that the bound state peaks corresponding to 2h̄ω = En (i.e.,
states below h̄ω = �) match exactly with the corresponding
regime in σzzz, whereas, those corresponding to h̄ω = Em

match exactly with the same regime in σxxx.
We also observe that the magnitude of σ SHG

zxx is re-
markably close to that of σ SHG

xxx for the buckling parameter
chosen. This will, of course, be dictated by the ratio h/a,
meaning that for a larger buckling parameter the nondiag-
onal OOP SHG response will be larger than the diagonal
IP SHG response. Additionally, in Appendix A, we plot
the SC for the three different tensor elements discussed
previously.

Finally, we present the xxx, zzz, and zxx components of the
absolute value of the SHG nonlinear optical susceptibilities.
These can be directly computed from the conductivity as

χSHG
αβγ = i

2ωε0
σ SHG

αβγ , (36)

and their absolute value is presented in Fig. 4. Due to the
inclusion of a finite broadening h̄� = 0.05 eV, the three con-
sidered tensor elements of the conductivity take a small but
nonzero value at h̄ω = 0 with its magnitude less than 1% of
the maximum of each tensor component. Still, the presence
of this finite value at h̄ω = 0 means that the broadening must
also be considered in the 1/ω factor present in Eq. (36).

The relative amplitudes of the different components can be
easily compared with χzxx presenting a very similar amplitude
to χxxx. Additionally, χzzz is roughly a factor of 1/20 smaller
than either χxxx or χzxx within the band gap of the system as
expected from the cubic dependence on the ratio h/a. The
different dependence on h/a in each component means that
as discussed previously choosing a larger buckling parameter
will lead to a comparatively greater OOP susceptibility. No-
tably, the left-most peak of χxxx is not present in χzxx. This
is due to the different selection rules for the two components
of the SHG nonlinear susceptibility where certain transitions
present in χxxx are no longer allowed for χzxx.

VI. SUMMARY

In this paper, we studied the excitonic linear and nonlinear
optical properties of anisotropic-buckled monolayer semicon-
ductors. To this end, we began by considering the gapped
Dirac model with trigonal warping. The excitonic states were
computed by numerical diagonalization of the Bethe-Salpeter
equation, allowing us to explicitly discuss the excitonic selec-
tion rules of the system.

Introducing a small buckling in the lattice structure of
the monolayer, we then obtained the OOP momentum matrix
elements and Berry connections, discussing the resulting OOP
excitonic optical selection rules. We then analyzed the xxx,
zzz, and zxx tensor elements of both SHG and SC optical
response, discussing the differences and similarities between
the three components.

Finally, we computed the absolute value of the nonlinear
optical susceptibility, directly comparing the amplitudes of the
χxxx, χzzz, and χzxx matrix elements. The OOP magnitudes
are, of course, dictated by the ratio between the buckling
parameter (h) and the lattice constant (a), meaning that a
structure with a different buckling parameter will present
greatly different relative magnitudes. Although the OOP di-
agonal component had a much smaller maximum amplitude,
stemming from the cubic dependence on the ratio h/a, the
nondiagonal OOP component had a very similar amplitude to
that of the diagonal IP component.

ACKNOWLEDGMENT

M.F.C.M.Q. acknowledges the International Iberian Nan-
otechnology Laboratory (INL) and the Portuguese Foundation
for Science and Technology (FCT) for the Quantum Portugal
Initiative (QPI) Grant No. SFRH/BD/151114/2021.

APPENDIX A: SHIFT-CURRENT NONLINEAR
EXCITONIC CONDUCTIVITY

In this Appendix, we present plots of the SC for the
xxx, zzz, and zxx tensor elements of the excitonic nonlinear
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FIG. 5. Nonlinear SC IP (top), diagonal OOP (middle), and nondiagonal OOP (bottom) optical for ε = 1, h = a/4. The orange curve
corresponds to only excitonic bound states, whereas, the blue line also includes continuum states. The vertical dashed black lines represent the
band gap of the system.

conductivity. As the selection rules are the same as presented
in Fig. 3, they are not included in the SC plots of Fig. 5.

APPENDIX B: ELECTRONIC LINEAR AND NONLINEAR
CONDUCTIVITY EXPRESSIONS

In this Appendix, we will present the expressions for the
free-carrier conductivity in our monolayer system. These were
computed directly from the definitions in Eqs. (13) and (14)
whereas, considering only contributions up to first order in
ζTW. For this effect, we recall the definitions of the in- and
OOP momentum matrix elements and Berry connections from
Ref. [59] (with the appropriate gauge transformation) and
Eqs. (32) and (33).

In the following expressions Ecvk = Ecvk as including the
contribution from trigonal warping in the band structure
would introduce contributions one order higher in ζTW, which

would then vanish upon integration and summation over val-
ley. As such, the band structure now only depends on the
radial component k, meaning that Ecvk = 2ε, where ε is as
defined in Eq. (6). As an example, the nonlinear IP response
would, up to first order, include an extra term originating from
pα

vck[pβ

cvk];kλ
expanded to zeroth order, which vanishes upon

integration.
Starting with the diagonal linear response described in

Eq. (13), it follows that

σxx(ω)

σ0
= 2i

π

[
Eg

h̄ω
−

(
1 + E2

g

h̄2ω2

)
tanh−1

(
h̄ω

Eg

)]
, (B1)

where Eg = 2� and tanh−1 is the inverse hyperbolic tangent.
Under a similar analysis, we compute the angular integral

present in Eq. (14) and obtain the generic radial integral form

FIG. 6. Convergence of the real part of the (left) linear, (middle) SHG, and (right) SC IP optical response towards the free-carrier limit as
the dielectric constant ε increases. The vertical axis is in units of σ0 for the linear response and σ2 for the nonlinear response.
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FIG. 7. Same as Fig. 6 except for the diagonal OOP response.

of the diagonal second-order response as

σ (intra)
xxx (ωp, ωq)

σ2
= i

4ζTW

π
E2

g

∫ ∞

Eg

h̄ωp+ h̄ωpq(
E2

cvk − h̄2ω2
q

)(
E2

cvk − h̄2ω2
pq

)
× dEcvk + (p ↔ q). (B2)

Choosing specifically SHG and SC processes, we obtain

σ SHG
xxx (ω)

σ2
≡ σ (intra)

xxx (ω,ω)

σ2

= i
8ζTW

π

(
Eg

h̄ω

)2[
tanh−1

(
h̄ω

Eg

)

−1

2
tanh−1

(
2h̄ω

Eg

)]
, (B3)

FIG. 8. Convergence of the real part of the off-diagonal OOP
SHG (left) and SC (right) zxx optical response towards the free-
carrier limit as the dielectric constant ε increases. The vertical axis is
in units of σ2.

and

σ SC
xxx(ω)

σ2
≡ σ (intra)

xxx (ω,−ω∗)

σ2

= 16ζTW

π
Im

[(
Eg

h̄ω

)2

tanh−1

(
h̄ω

Eg

)
− Eg

h̄ω

]
, (B4)

where Im denotes the imaginary part.
A similar analysis can be performed for the diagonal OOP

linear and nonlinear response, although one must compute σzz

carefully as the integration leads to a divergent result if the
infinite k space is considered. This is, however, only true for
the imaginary part. Restricting our analysis to the real part, we
find a finite result reading

Re

[
σzz(ω)

σ0

]
≈ 8

3γ 2

(
h

a

)2(
h̄2ω2 − E2

g

)
H (h̄ω − Eg), (B5)

where H (x) represents the Heaviside step function. For the di-
agonal nonlinear response, no convergence issues are present,
and the integral can be considered over the infinite k space,

σ (intra)
zzz (ωp, ωq )

σ2
= 32h̄(ωp + ωpq)E2

g

3iπγ 2

(
h

a

)3

×
∫ ∞

Eg

E2
cvk − E2

g(
E2

cvk − h̄2ω2
p

)(
E2

cvk − h̄2ω2
pq

)
× dEcvk + (p ↔ q). (B6)

Again restricting our analysis to SHG and SC, we obtain

σ SHG
zzz (ω)

σ2
= 32E2

g

3iπγ 2

(
h

a

)3
[(

E2
g

h̄2ω2
− 1

)
tanh−1

(
h̄ω

Eg

)

− 1

2

(
E2

g

h̄2ω2
− 4

)
tanh−1

(
2h̄ω

Eg

)]
(B7)
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and

σ SC
zzz (ω)

σ2
= 32E2

g

πγ 2

(
h

a

)3

Im

[
Eg

h̄ω
+

(
1 − E2

g

h̄2ω2

)
tanh−1

(
h̄ω

Eg

)]
. (B8)

Finally, we consider the off-diagonal OOP response σzxx, where we can also consider the integral over infinite kspace, reading

σ (intra)
zxx (ωp, ωq)

σ2
= 16i

(h̄ωp + h̄ωpq)

π
�2 h

a
×

∫ ∞

Eg

E2
g − E2

cvk

E2
cvk

(
E2

cvk − h̄2ω2
q

)(
E2

cvk − h̄2ω2
pq

)dEcvk + (p ↔ q). (B9)

Looking again at SHG and SC, we obtain

σ SHG
zxx (ω)

σ2
= i

1

π

h

a

E2
g

h̄2ω2

[
3

Eg

h̄ω
− 2

(
E2

g

h̄2ω2
− 1

)
tanh−1

(
h̄ω

Eg

)
+ 1

2

(
E2

g

h̄2ω2
− 4

)
tanh−1

(
2h̄ω

Eg

)]
(B10)

and

σ SC
zxx (ω)

σ2
= 4

π

h

a
Im

[
E3

g

h̄3ω3
− 2Eg

3h̄ω
+ E2

g

h̄2ω2

(
1 − E2

g

h̄2ω2

)
tanh−1

(
h̄ω

Eg

)]
. (B11)

Knowing these expressions, we can study the convergence of the excitonic conductivities towards the free-carrier regime as the
dielectric constant increases. This is plotted in Figs. 6–8 for dielectric constant ε between 1 and 20 as well as the free-carrier
limit (in black). In these plots, we can see the excitonic conductivity converging towards the free-carrier regime as the dielectric
constant of the medium surrounding the monolayer increases as expected from the fast drop of binding energies and number of
bound states.
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