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We present theoretical methods for the analysis of acoustic phonon modes in superlattice structures,
and terahertz-frequency quantum-cascade lasers (THz QCLs). Our generalized numerical solution of the
acoustic-wave equation provides good agreement with experimental pump-probe measurements of the acoustic
resonances in a THz QCL. We predict that the detailed layer structure in THz QCLs imprints up to ∼2 GHz
detuning of the acoustic mode spacing, which cannot be seen in analytical models. This effect is strongest
in devices with large and abrupt acoustic mismatch between layers. We use an acoustic deformation potential
within a density-matrix approach to analyze electron transport induced in a range of the most common THz QCL
active-region design schemes. We conclude that acoustic modes up to ∼200 GHz are capable of significantly
perturbing QCL transport, highlighting their potential for ultrafast modulation of laser emission.
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I. INTRODUCTION

Superlattices consist of periodic layer sequences of two
or more materials. Acoustic waves (or phonons) within
such structures are perturbed by the variation in acoustic
impedance between the materials, causing their dispersion
to differ from that of a bulk material. Furthermore, the pe-
riodicity of the structure folds the acoustic-wave dispersion
into a Brillouin zone [1,2], characterized by a set of acoustic
stopbands (or eigenmodes).

Vibrational dynamics in superlattices has been studied ex-
perimentally using Raman scattering techniques [2–6] and
femtosecond pump-probe techniques, where typically longitu-
dinal acoustic (LA) modes [7,8] or (more recently) transverse
acoustic (TA) modes [9,10] have been explored. Recent in-
vestigations have also demonstrated the potential for acoustic
waves in the ∼100 GHz range to modulate electron transport
and tunneling [11–13].

Terahertz-frequency quantum-cascade lasers (THz QCLs)
[14] are a specific case of interest, in which coherent THz pho-
tons are generated using electronic intersubband transitions
within a complex multilayered superlattice. The picosecond
electronic lifetimes in THz QCLs potentially enable ultrafast
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light modulation [15] required for frequency comb generation
[16], active mode locking [17], amplitude, frequency [18], and
phase stabilization [19]. THz QCLs thus show potential for
applications in metrology [20], high-resolution spectroscopy
[21,22], and ultrafast wireless communications [23].

The most common THz QCL modulation techniques, how-
ever, are limited to relatively low bandwidths. For example,
direct gain modulation through the applied voltage is, in prac-
tice, limited to �35 GHz due to parasitic inductance [24,25].
Other approaches exploit the possibility of controlling effec-
tive cavity losses [26,27], but they are also limited due to
parasitic effects within the modulating elements.

In previous work [28], we explored the potential to over-
come these limits through ultrafast modulation of THz QCLs
using bulk acoustic waves. Although acoustic phonons have
a weaker effect than optical phonons on electron transport in
THz QCLs, externally generated acoustic pulses can exploit
the picosecond-scale dynamics of strain propagation through
the device. However, the complex layer structure within a THz
QCL active region perturbs the acoustic velocity across the
superlattice structure. As such, it is inaccurate to consider
the phonons as having bulklike dispersion, or even that of a
simple Kronig-Penney superlattice. There is also a range of
different design schemes for THz QCLs, with varying elec-
tronic transport behavior [29], and it is unclear which scheme
is most susceptible to acoustic modulation. It is therefore
important to develop a detailed and accurate understanding of
acoustic phonon dispersion within a QCL and their effect on
electron transport in order to explore and ultimately optimize
this effect.
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We have therefore developed an “envelope function”-like
model to study acoustic phonon modes in arbitrary semicon-
ductor heterostructures. Although transfer-matrix methods are
widely used to find the eigenmodes of wavelike functions in
simple structures with well-defined layers, they scale poorly
to larger or more complex structures, and they are unsuit-
able for systems with diffuse interfaces. We therefore use a
finite-difference discretization scheme to analyze the acoustic
modes in superlattices with arbitrary interface geometries. We
couple the acoustic perturbation to the strain in a density-
matrix model for electron transport in a THz QCL, and we use
this to analyze the strength of the acoustic modulation effect
in a range of QCL design schemes.

In Sec. II we present our theoretical model for acoustic
phonon modes in arbitrary heterostructures, and in Sec. III we
validate this against experimental pump-probe measurements
of a THz QCL structure [28]. In Sec. IV, we use the model
to simulate and analyze the acoustic phonon mode structure
in three exemplar THz QCL active region designs, along
with several superlattice structures with diffuse layer profiles.
We demonstrate the advantages of using a finite-difference
eigenvalue calculation compared with a more commonly used
transfer-matrix approach [8]. We also demonstrate that the
acoustic mode frequencies in THz QCLs are aperiodic, as a
result of the complex multilayer heterostructures used in their
active regions. In Sec. V, we consider the effect of acoustic
phonon modes on electron transport in THz QCLs by em-
ploying a density matrix transport model [30,31]. We discuss
the prospects for acoustic modulation of THz emission from
QCLs, and we predict the QCL design schemes that would be
most susceptible to the effect.

II. ENVELOPE-FUNCTION MODEL OF ACOUSTIC
PHONON MODES IN ARBITRARY HETEROSTRUCTURES

The starting point for our model is the acoustic wave equa-
tion [32]:

∂

∂z
v2

s (z)
∂

∂z
p(z, t ) − ∂2

∂t2
p(z, t ) = 0, (1)

where the acoustic-wave pressure p(z, t ) depends on position
z (in the growth direction) and time t . Here, vs(z) is the
acoustic velocity, which, due to variation of heterostructure
materials, has a z-dependent profile.

This equation can be solved using a variable sepa-
ration method (Fourier method), closely resembling the
envelope-function approach, which is commonly employed
for solving the Schrödinger equation. If we assume p(z, t ) =
p0ψ (z)exp(−iωt ), where p0 is the wave amplitude, ω is the
angular frequency, and ψ (z) is the envelope of the acoustic
wave, Eq. (1) folds into

− ∂

∂z
v2

s (z)
∂

∂z
ψ (z) = ω2ψ (z). (2)

Analytical solutions of Eq. (2) are possible for an ideal
acoustic cavity of length d , consisting of a homogeneous
bulk medium with vs(z) = vbulk, surrounded by impenetrable
reflective surfaces, such that ψ (0) = ψ (d ) = 0. By assuming
a plane-wave form of the normalized acoustic wave func-
tion, ψ (z) = exp(iqz), standing-wave solutions to Eq. (2) are

found, with equidistant wave vectors, qn = nπ/d , and corre-
sponding frequencies:

ωbulk,n = nπvbulk

d
, (3)

where n is an integer representing the phonon mode index.
For periodic superlattice structures, the phonon mode is no

longer confined to specific wave vectors. For a period length
dsl, the normalized acoustic wave functions take a Bloch
form, such that ψq(z) = uq(z) exp(iqz). This consists of an
envelope function, with the same periodicity as the superlat-
tice, uq(z + dsl ) = uq(z), multiplied by a plane-wave exp(iqz),
with arbitrary wave vector q. The latter can be understood as
a steady rotation in the complex plane, as the wave function
extends across the length of the structure.

The periodic nature of the structure allows the phonon
dispersion to be folded into the first Brillouin zone such that
|q| � qB, where qB = π/dsl. Two sets of symmetry points
can be defined within this zone: Brillouin zone center (BZC)
modes with q = 0, and Brillouin zone edge (BZE) modes
with q = π/dsl, and they represent cases in which ψ (z) =
±ψ (z + dsl ). It is important to note that the BZC and BZE
wave vectors are identical to those for standing waves in an
ideal cavity of length d = dsl. Indeed, it is a fundamental
result of the Bloch model that the eigenmodes of an isolated
unit cell of a periodic system provide a close approximation
to the BZE and BZC solutions for a periodic structure [32].
It is, therefore, desirable to find a computationally efficient
means of computing the single-period eigenmodes. There
are some limitations to this single-period approach: only the
BZC/BZE standing-wave solutions can be computed, and the
width of the frequency stopband around these points cannot
be determined. Although a more generalized periodic solver
would be required to overcome these limitations, our approach
allows rapid and direct computation of the solutions, and it can
be applied to arbitrary heterostructures including those with
poorly defined interfaces.

Equation (2) can be discretized using a finite-difference
approximation by defining samples of the wave function and
acoustic velocity at evenly spaced points i along the z direc-
tion:

aiψi−1 + biψi + ciψi+1 = ω2ψi, (4)

where

ai = −v2
i−1 + v2

i

2δz2
, (5)

bi = v2
i−1 + 2v2

i + v2
i+1

2δz2
, (6)

ci = −v2
i+1 + v2

i

2δz2
. (7)

The half-integer samples of squared velocity that typically
arise in central finite differences [32] are taken as the spa-
tial average of neighboring points. It may now be solved by
rewriting it as a tridiagonal matrix equation:

Hψ = ω2ψ, (8)
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where

H =

⎛
⎜⎜⎜⎜⎜⎝

b1 c1 0 · · · 0
a1 b2 c2 · · · 0

0 . . .
. . .

. . . 0
... · · · aN−2 bN−1 cN−1

0 · · · 0 aN−1 bN

⎞
⎟⎟⎟⎟⎟⎠

. (9)

The eigenvectors of the H matrix give the envelopes of
the acoustic wave ψ (z) for each mode, and the corresponding
eigenvalues give the square of the angular frequency ω.

This solution approach provides several advantages over
commonly applied layer-by-layer transfer-matrix methods [8].
All eigenvalues are computed simultaneously to machine pre-
cision, requiring instead a separate root-finding process for
each mode. The numerical precision of the obtained eigen-
values can therefore be increased in a straightforward way by
increasing the spatial mesh density. The most significant ad-
vantage, though, is that arbitrary heterostructure profiles may
be considered, including diffuse structures, in which layers
are not separated by abrupt interfaces, without any increase in
computational expense.

Our model can thus be applied directly to complex periodic
heterostructures such as GaAs/AlxGa1−xAs THz QCL gain
media (where typically x = 0.1–0.3). Although the acoustic
velocity varies only by �5% between the layers in typical
structures, this represents a potentially very large margin of
error for the design of high-precision radiofrequency modu-
lators and transducers. As such, it is instructive to compare
the numerical results of our model to analytical solutions for
a bulk medium of identical length.

An improvement to the homogeneous-material model can
be obtained by taking a reciprocal average of the ratios be-
tween the total length dl and acoustic velocity vl in each layer
l of the structure [8]:

ωavg,n = nπ∑
l

dl
vl

or
1

ωavg,n
=

∑
l

1

ωl
, ωl = nπvl

dl
,

ωavg,n = nπ

(
dwell

vwell
+ dbarrier

vbarrier

)−1

. (10)

Here, ωl can be interpreted as the resonant frequency of each
isolated layer. The latter simplified expression denotes the
most common case, in which the superlattice contains only
two materials (i.e., alternating well and barrier layers). In this
work, we have used vbulk = 4710 ms−1, vAlAs = 5650 ms−1,
while the acoustic velocity in an arbitrary AlxGa1−xAs barrier
alloy was evaluated through linear interpolation as vbarrier =
vbulk + x(vAlAs − vbulk ) ms−1.

Equations (3) and (10) provide simple approximations to
the exact solution of Eq. (2), in which the spatial variation of
acoustic velocity is ignored. We define the frequency devia-
tions of these approximate solutions from the exact numerical
values fn as

� fbulk,n = fn − nvbulk

2dsl
,

� favg,n = fn − n

2
∑

l
dl
vl

. (11)
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FIG. 1. Schematic illustrations of ASOPS experimental config-
urations, showing (a) reflection mode, and (b) transmission mode
geometries.

These deviations allow us to determine the extent to which
the detailed superlattice layer structure affects the phonon
modes, and to investigate the prospect of phononic band-
structure engineering. It is important to note that the model
in Eq. (2) implicitly assumes linear dispersion of the acoustic
phonon branch, which may not be valid for modes with high
index n, unless a frequency-dependent correction is intro-
duced in vs. Experimental work [10] typically reports modes
up to 1 THz, with higher modes lost to dispersion. For this
reason, we will limit analysis to the first 100 modes since this
accounts for frequencies up to 1 THz for most cases of interest
in the following sections.

III. PUMP-PROBE CHARACTERIZATION
OF 2.8-THz QCL GAIN MEDIA

To validate our arbitrary-heterostructure model, we com-
pare its predictions with experimental measurements of
phonon modes in a complex THz QCL heterostructure
we have previously used for time-domain acoustic modu-
lation studies [28]. This QCL comprises 88 periods of a
GaAs/Al0.14Ga0.86As nine-well “hybrid” band-structure de-
sign and lases around 2.8 THz [33]. The 13.9-μm-thick QCL
active region was grown using molecular-beam epitaxy on a
150-µm-thick semi-insulating GaAs substrate, as described in
[28].

Here, we present experimental measurements of the
phonon modes in the QCL gain media using asynchronous
optical sampling (ASOPS) femtosecond optical pump-probe
techniques. An unprocessed sample of the same epitaxially
grown wafer as in [28] was used in this study (i.e., without a
ridge-waveguide or electrical contact deposition). A 50-nm-
thick aluminum film was deposited on the bottom surface of
a section of semiconductor wafer (the substrate), to act as an
acoustic transducer.

Two ASOPS measurement schemes, shown in Fig. 1, were
used. In each of these, a femtosecond pump laser is used to
generate acoustic waves within the semiconductor sample.
A delayed probe-laser pulse is then used to measure small
changes over time in the reflectivity of the sample surface,
�R/R, resulting from the strain wave propagating through the
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FIG. 2. Experimental probe reflectivity spectrum (top), obtained
using a reflection-mode ASOPS geometry, and folded dispersion of
the first Brillouin zone (bottom), obtained by solving Eq. (2) for a
single period of the QCL. Blue and red circles indicate BZC and
BZE modes, respectively.

sample. The Fourier transform of the resulting temporal trace
then gives the spectrum of phonon modes.

In the scheme in Fig. 1(a), the top of the epitaxial QCL
active region stack was pumped directly with λ = 810 nm
pulses with a fluence of 0.6 mJ cm−2, and with the sample
at room temperature. It was probed on the same surface
with λ = 810 nm pulses with a fluence of 20μJ cm−2. In this
configuration, absorption of the pump light excites coherent
phonons with wave vectors corresponding to the periodicity
of the QCL structure (i.e., the q = 0 modes in the folded
dispersion). These modes do not strictly satisfy the selection
rules for detection by the probe laser (i.e., q = 2kL, where kL

is the photon wave vector of the optical probe). However, due
to the finite absorption length of the probe light in the structure
and the bandwidth of the laser pulses, the excited q = 0 modes
become observable in this scheme [34].

The top panel in Fig. 2 shows the experimental reflectivity
spectrum obtained using an offset of 800 Hz between the
pump and probe laser repetition rates. This provided measure-
ments of the wafer reflectivity at intervals of 640 fs, over a
total 1282 ns sampling window, giving a spectral resolution
of 780 MHz. Phonon modes are observed in the resulting
spectrum at 35, 42, and 69 GHz.

For comparison, the bottom panel shows the approximate
folded dispersion relation, which was calculated using the
BZC and BZE modes obtained by solving Eq. (2) for a single
period of the QCL structure. The calculated modes (to 1 s.f.
precision) were 17.4, 34.7, 52.1, 69.5, 86.8, 104, 121, 139,
156, 174, and 191 GHz, where only the BZC modes (high-
lighted in bold) are detectable in this scheme. The pink arrows
in Fig. 2 are therefore identifiable (to within 1 GHz) as the first
two BZC modes of the heterostructure. The orange arrow in
Fig. 2 indicates a mode at 42 GHz, which does not correspond
to any calculated BZE/BZC modes of the heterostructure.
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FIG. 3. Experimental probe reflectivity spectrum (top), using the
configuration in Fig. 1(b), and acoustic dispersion resulting from the
model in Eq. (2). Solid blue lines represent the phonon dispersion,
folded into the first Brillouin zone, while dashed lines represent the
extended dispersion at higher phonon wave vectors. The red dashed
line corresponds to q = 2kL, and the red solid line shows this folded
into the first phonon Brillouin zone.

Instead, this is identifiable as a result of Brillouin scattering,
i.e., interference between reflections of the probe pulse from
the surface and from a strain pulse within the sample, with a
frequency given by 2nvs/λ = 42 GHz, where n = 3.68 is the
refractive index of the medium.

In the second scheme, shown in Fig. 1(b), the QCL struc-
ture was pumped indirectly, using broadband picosecond-
duration acoustic strain pulses. These were generated by
absorbing a λ = 800 nm pulse in a ∼50-nm-thick Al film on
the opposite side of the GaAs substrate to which the QCL
structure was grown. The sample was cooled in a helium
cryostat to 10 K, so that the substrate was transparent to the
high-frequency phonons in the pulse. The strain pulses are
bipolar in form with approximately 20 ps duration, and the
corresponding broad-bandwidth phonon spectrum is peaked
at about 50 GHz [35]. When the strain pulse enters the QCL
structure, it is able to excite any phonon mode within the
bandwidth of the pulse (i.e., not only the q = 0 modes).

As in the first scheme, the phonons in the QCL structure
were detected through changes in the reflected probe intensity.
In this case, however, phonon modes that satisfy the selection
rule, q = 2kL = 4πn/λ, are detected by the probe, and they
are the most prominent in the measured spectrum. For this rea-
son, the probe wavelength λ = 810 nm influences the detected
mode frequencies. Since the probe wave vector lies outside
the first acoustic Brillouin zone (2kL > qB), the selection rule
may be folded into the zone such that q = 2kL − 2qB, which
is graphically illustrated by horizontal red lines in Fig. 3. The
modes that are detected by this scheme thus correspond to
intersections between the acoustic dispersion q( f ) and the
red line at 2kL − 2qB. As our model detects the BZC/BZE
modes of the superlattice, the simplest approximation for
the dispersion relation is q( f ) = 2π | f − f2n|/vbulk, where f2n
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correspond to the BZC modes, depicted by blue circles in
Fig. 3,

f = f2n ±
(

vbulknref

λ
− vbulk

dsl

)
. (12)

For the measurement in Fig. 3, the intersection points cor-
responding to Eq. (12) are f = f2n ± 8.79 (GHz). This yields
predicted spectral peaks at 8.79, 25.9, 43.5, 60.7, 78.2, 95.3,
113, etc. The experimental data peaks in Fig. 3 are found at
9, 26, 44, 62, 79, 97, 114, etc., in good agreement with the
theoretical predictions. The accurate prediction of acoustic
eigenmodes in this structure gives confidence in the use of
the model to analyze and predict such effect in wider range of
heterostructures in the following sections.

We note that further improvement between predicted and
measured peaks could be made in Eq. (12). The acoustic
velocity for each even eigenmode can be evaluated better by
using the eigenvector solutions of Eq. (2) as the orthonormal
basis, in order to calculate the probable acoustic velocity
of each mode as the expectation value vn = 〈ψn|v(z)|ψn〉.
Similarly, the refractive index of nref = 3.68 corresponds to
the bulk value of GaAs, if a weighted average is taken, de-
pending on the content of AlAs in the period, nref = 3.64,
which changes Eq. (12) to predict sidebands around even
modes as f = f2n ± 8.33 (GHz). We could also calculate
the refractive index expectation value for each stopband as
nref = 〈ψn|nref (z)|ψn〉. In [10] the authors accounted for the
mismatch between measurement and theory by assuming a
nominal layer thickness growth variation of ∼3%, however we
note that numerical solutions of Eq. (2) provide significantly
better precision than the bulk approximation for BZE and
BZC modes. Detected data in Fig. 3 have a finite bandwidth
around each detected mode, where the signal even has contri-
butions around q = qB (the odd stopbands) which occur due to
complex phonon-photon interactions and material fluctuations
that are not considered in our model.

IV. ACOUSTIC BAND-STRUCTURE ENGINEERING

As the acoustic velocity mismatch is relatively small
in practical GaAs/AlGaAs heterostructures, the BZE/BZC
modes are approximately evenly spaced, as expected from
Eq. (3). However, the heterostructure layer composition in-
troduces some deviation from these approximate solutions,
which could potentially allow more precise design of acoustic
band structure. We predict that this deviation would be en-
hanced in heterostructures with greater variation of acoustic
velocity between layers, for example in superlattices with a
greater Al content in the barrier alloy. In this section, we
explore this deviation for a range of superlattice structures,
and we discuss the prospects for band-structure engineering.

A. THz QCL gain media

The resonant acoustic modes are approximately equidistant
both numerically and experimentally for the “hybrid” THz
QCL structure we considered in the previous section. QCL
design schemes can, however, differ considerably in terms
of period length and barrier alloy composition, which are
key parameters in Eq. (10). We will therefore consider four
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FIG. 4. Frequency offset from the bulk (top) and average (bot-
tom) approximation calculated by Eq. (11) for QCL devices A–D.
Inset: the frequency difference between consecutive resonant acous-
tic modes for the corresponding structures.

exemplar THz QCL structures with considerable variation in
their layer composition, which are detailed in the Appendix:

(1) Device A: the hybrid QCL design discussed
in the previous section, which employs a nine-well
GaAs/Al0.14Ga0.86As heterostructure, of total 1362 Å period
length [28].

(2) Device B: an LO-phonon depopulated design [10],
which employs a three-well GaAs/Al0.15Ga0.85As design, of
total 643 Å period length.

(3) Device C: a bound-to-continuum (BTC) design [30],
which employs an eight-well GaAs/Al0.1Ga0.9As heterostruc-
ture, of total 1150 Å period length.

(4) Device D: an LO-phonon depopulated design with very
high Al content in the barrier alloy [36], which employs a
two-well, GaAs/Al0.3Ga0.7As design, of total 269.3 Å period
length.

The inset in Fig. 4 shows the deviation between consec-
utive modes in each of these structures, as obtained from
solving Eq. (2) numerically. The results for devices A and B
are in good agreement with the mode spacing seen experimen-
tally in Sec. III and in Ref. [10], respectively.

The top and bottom panels of the figure show the devi-
ation between the exact numerical solution of Eq. (2) and
the approximations for homogeneous media, as given in
Eq. (11). The deviation from the homogeneous model is great-
est for device D, and smallest for device C, due to the large
acoustic-velocity mismatch between layers in the heterostruc-
ture. Device D also exhibits a periodic (�n ≈ 10) variation
in the deviation from the analytical solutions, which we will
separately examine later. In each case, the deviation from
Eq. (3) increases approximately linearly with respect to the
mode index, and it is largest for device D. However, the devi-
ation from Eq. (10) remains approximately centered around
zero for all mode indices. We can conclude that the bulk
approximation in Eq. (3) underestimates the effective velocity
of acoustic modes in a realistic heterostructure, and creates
significantly larger offsets than the average-velocity approx-
imation in Eq. (10), whose estimation provides <2 GHz
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FIG. 5. Frequency offset from the bulk (top) and average (bot-
tom) approximation calculated by Eq. (11) for variable barrier height
LO phonon THz QCL structure [37] (device E), a parabolic quantum-
well superlattice (device F) that quadratically varies Al content x =
0–0.14 across 3000 Å period length and a parabolic quantum well
(device G) with varying Al content x = 0 – 0.42 across 620 Å well
length. We used a monolayer step of 2.825 Å for generating the
parabolic profiles. Inset: the frequency difference between consec-
utive resonant acoustic modes for the corresponding structures.

mismatch from numerical values even for structures with high
barriers.

B. Superlattices with nonuniform layer profiles

One of the main advantages of the model in Eq. (2) is
its ability to model arbitrary heterostructure profiles, such
as those with poorly defined interfaces arising from inter-
diffusion or surface-segregation of alloy components during
epitaxial growth. We therefore consider three exemplar su-
perlattice structures with nonuniform layer compositions, and
analyze their mode structure:

(1) Device E: A step-barrier LO-phonon depopulated THz
QCL [37] that employs a three-well design with two different
barrier heights in its period (x = 0.15 and 0.075) and has
444 Å period length.

(2) Device F: A wide parabolic quantum well
GaAs/AlcGa1−xAs superlattice [38] that varies x = 0 – 0.14
across 3000 Å period length.

(3) Device G: A narrow parabolic quantum well
GaAs/AlxGa1−xAs superlattice [39] that varies x = 0 – 0.42
across 620 Å period length.

Layer composition and functions that generate parabolic
profiles can be found in the Appendix.

In Fig. 5 we present the results of our calculations on
these structures. Device E is structurally similar to the THz
QCL structures analyzed in Fig. 4, however it displays a more
pronounced noiselike variation between consecutive modes
in Fig. 5, even though its highest barrier is x = 0.15 and
we expected similar behavior to device B. It is likely that
the additional perturbation in the heterostructure profile gen-
erates different resonance effects. By contrast, the parabolic
quantum-well potentials in Fig. 5 are very well described by
the average frequency formula in Eq. (10). This indicates
that the fine structure of the acoustic dispersion is a result
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FIG. 6. The frequency difference between consecutive resonant
acoustic modes for the corresponding structures analyzed in this
section.

of interface mismatch within the heterostructure, and this is
effectively damped by the use of diffuse interface geometry.
The deviation is also larger in structures where there is a larger
mismatch in barrier height. This may be of significant impor-
tance in material systems where there is a large mismatch
between acoustic velocities in well and barrier material, or
where the acoustic velocities are larger than in GaAs, which
can also apply in midinfrared QCL designs.

C. High-precision frequency control

Our experimental and theoretical analysis in the previous
sections has shown that the spacings between consecutive
BZE and BZC modes in arbitrary superlattices are deter-
mined by two factors. First, the average spacing between
modes is given to a reasonable level of accuracy by Eq. (10).
This is determined solely by the length of the heterostructure
period, and its average alloy composition. In other words,
this “coarse” tuning of the acoustic dispersion results from
the periodicity of the superlattice. The second, fine-tuning
component results from the detailed layer structure of the su-
perlattice, and is most prominent in systems with a large, and
abrupt mismatch between the acoustic velocity in each layer.
To confirm that this effect is not caused by numerical error, we
used 20 000 spatial points for solving the eigenvalue problem
in Eq. (2), and performed an error convergence check. In some
cases, this fine-tuning component exhibits a periodicity, which
we investigate further in this section, through simulation of the
previous QCL devices (A–E). We have included an additional
two-well GaAs/AlAs superlattice structure [8], denoted “de-
vice H” here, for which TA phonon spectra have previously
been analyzed experimentally. For this TA-branch dispersion,
vGaAs = 3329 ms−1 and vAlAs = 3957 ms−1 were assumed.

Figure 6 shows the calculated BZE/BZC modes for each of
these devices. We observe that devices B, C, and H do not ex-
hibit a well-defined periodicity, device D has a clear periodic
envelope every 18 modes, device E has an attenuating enve-
lope every ∼11 modes, and device A has a weakly defined
envelope every ∼44 modes. We hypothesize that the observed
periodicity is a consequence of an intraperiod resonance of the
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acoustic wave with a layer within the superlattice. This is most
likely to occur within an AlGaAs barrier layer, as the acoustic
velocity is higher than in the well layers, meaning the modes
are more likely to be confined in the barriers. For an observed
period �n in Fig. 6, we can estimate the suspected barrier
layer width by assuming modes are equidistant through aver-
age approximation in Eq. (10) and apply the bulk-confinement
approximation for that layer:

Ln ≈ �nπvbarrier

ωavg
. (13)

Interestingly, Eq. (13) is in good agreement with observa-
tions made in Fig. 6 as it provides a layer width equal to one
of the dominant barriers in the corresponding designs.

(1) Device D has a very clear �n ≈ 18 envelope and L18 =
16.44 Å, which is close to the 17.5 Å barrier width within this
structure.

(2) Device E has an attenuating envelope with �n ≈ 11
envelope, and L18 = 41.21 Å, which is related to one of the
three barriers of this structure (41, 43, and 46 Å).

(3) Device H exhibits a Fourier transform peak at �n ≈ 6,
and L6 = 18.65 Å, which corresponds to the only two 17 Å
barriers within the structure.

(4) Device A has a weak �n ≈ 44 period, and L44 =
31.66 Å, which corresponds to multiple 31 Å barriers within
the structure.

The amplitude of variations in Fig. 6 can directly be af-
fected by increasing barrier height and therefore the acoustic
velocity in the barriers. To confirm our estimate in Eq. (13),
we alter the layer structure of studied devices as follows (layer
composition is presented in the Appendix):

(1) Device D1: we double the thickness of the 17.5 Å
barrier in device D to confirm that the period of oscillations
halves.

(2) Device C1: we make the 24-Å barrier the largest in
device C by replacing its material with pure AlAs (x = 1).

(3) Device C2: we set two very tall x = 1 barriers in device
C, a 24 Å layer as in C1, and a 30 Å layer to study the effect
of having two dominant barriers in the design.

(4) Device I: we consider a GaAs/AlAs heterostructure
with three 150 Å wells separated by barriers of 20, 40, and
80 Å. If the periodicity of the confinement is caused by the
barrier layers, this will create an ideal periodicity matching
condition.

(5) Device J: we consider a heterostructure with two sets
of identical wells and fixed barrier width as shown in the
Appendix. This should create a perfectly periodic structure
that is independent of the barrier height. To confirm this, we
use x = 0.1 in the barrier material.

The results, shown in Fig. 7, agree with our approximation
in Eq. (13). Doubling the barrier width of device D reduced
the periodicity to �n ≈ 9 in device D1, which corresponds to
LD1

9 = 34.82 Å. Setting the 24 Å barrier in device C to x = 1
has fully confined consecutive mode dependence for device
C1, yielding LC1

60 = 24.65 Å. However, setting two very high
barriers in C2 results in a more complex mode structure, and
the Fourier transform of the data reveals peaks that correspond
to LC1

60 = 24.65 Å and LC1
46 = 32.15 Å, in excellent agreement

with the barriers whose heights were increased. This result
provides us with a fundamental understanding that the com-
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FIG. 7. The frequency difference between consecutive resonant
acoustic modes for altered structures that test the validity of the
approximation created by Eq. (13)

plex mode structure in Fig. 6 is a consequence of the mixed
contribution to the period due to different barrier widths. We
have observed clear periodicity in Fig. 6 for device D because
it has two barriers in approximately 1:2 ratio, device E had
several layers of ∼42 Å width, and similarly, device A has
multiple 31 Å barrier layers. We also note that a high barrier
is not required to generate periodicity; any barrier that is
purposely dominant would impose its effect. In device A1,
we purposely set the injection 41 Å barrier to x = 0.3 and
this has generated the confinement in Fig. 7 that corresponds
to LA1

34 = 42.03 Å. The Fourier transformation of data corre-
sponding to device A1 also shows a peak that corresponds to
LA1

43 = 33.23 Å, which is understandable as this device has five
31 Å barriers in its layer sequence (more information can be
found in the Appendix).

If wells have equal width, and all barriers widths are in a
1:2 ratio as in device I, we expect to obtain perfect period-
icity. This can be observed in Fig. 7, where the periodicity
corresponds to the layer width LI

24 = 20.68 Å, and the Fourier
transform shows peaks also with 12 and 6 mode periods due
to the symmetry of the device. If all barriers have equal
width, perfect periodicity is attainable even when there is
no significant difference in acoustic velocity in wells and
barriers, as is the case in device J. The two well widths affect
the phase of the observed oscillation, while the 20 Å barrier
causes confinement every 34 modes, which corresponds to
LJ

34 = 20.35 Å when applying the approximation in Eq. (13).
We note that the lack of periodicity in the parabolic su-

perlattices in devices F and G can be understood by Eq. (13)
as well. The parabolic profiles of these devices were gener-
ated on a spatial resolution of monolayer thickness in GaAs,
2.825 Å, and thus, regardless of the acoustic velocity that
would correspond to each spatial segment, the resulting pe-
riod in consecutive mode profile would be too large to be
observed. There is also no dominant barrier layer, as these
devices have a diffuse distribution of Al content in their layer
sequence. This also raises an interesting effect with imperfect
growth and tolerance. The rectangular heterostructure profiles
in superlattice material systems may in reality undergo an
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FIG. 8. We analyze structure D for several values of diffusion
length using the annealing model in [40]. Top and middle: Frequency
offset from the average approximation [Eq. (11)] and its cumulative
root-mean-square average, respectively. Bottom: The frequency dif-
ference between consecutive resonant modes.

interdiffusion process that results in diffuse profiles for the
superlattice interfaces. These effects are estimated to have up
to 15 Å diffusion lengths [40–44]. In Fig. 8 we model growth
tolerances in structure D using an annealing approach [40] by
assuming a constant diffusion profile across the superlattice.
We find that the observed periodicity in Fig. 7 vanishes for
modes with a higher index and larger diffusion lengths. This
also results in a smoother dependence of the frequency off-
set from the average approximation [Eq. (11)] resulting in a
smaller rms average.

The effect in Fig. 7 can be controlled and manipulated
through superlattice design, and this observation opens mul-
tiple engineering opportunities. Furthermore, the observed
periodicity cannot be seen in the approximate approaches
in Eqs. (3) and (10), and only the numerical consideration
of Eq. (2) can explain the effect. The fine-tuning control
of frequency is a fundamental trait in optical devices, thus
the ability to perform analogous control of different acoustic
resonant frequencies through superlattice design could find
an important use in phononic applications. Conversely, our
analysis shows that the thickness of layers within a super-
lattice could be inferred through precise measurements of
the acoustic mode spacing, in analogy with x-ray diffraction
measurements of crystalline solids.

V. TRANSPORT EFFECTS

In our previous work [28], we showed that optically gen-
erated picosecond acoustic (strain) pulses propagating along
the growth direction of a QCL alter the band-structure poten-
tial sequentially and perturb the resonant tunneling between
adjacent QCL periods. Here, we will examine the potential

THz QCL transport effects that could be induced by resonant
(nonpropagating) acoustic phonon modes.

The transport in THz QCLs requires the use of models
that include coherent effects, such as nonequilibrium Green
function (NEGF) [45–47] or density matrix (DM) approaches
[30,31,48–50], or the Wigner function formalism [51]. The
NEGF approaches provide highly detailed results at a high
numerical cost, whereas the DM approaches offer comparable
outputs [48] with high numerical efficiency. The DM models
deviate from NEGF simulations when high electric field bias
is applied, making them less suitable for modeling midin-
frared QCLs, however they are ideal for device optimization
of THz QCL structures [29].

As such, we employ a density-matrix model [30,31] for
calculation of electron transport in arbitrary THz QCLs. This
model uses a tight-binding approximation for electronic struc-
ture calculation, which is then extended to an infinite period
consideration of the QCL within the first-neighbor approxi-
mation. In the transport model, we treat various nonradiative
interactions of electrons with alloy disorder (AD), longitu-
dinal optical (LO) phonons, acoustic (AC) phonons, ionized
impurities (II), interface roughness (IFR), and other electrons
(EE).

To model the resonant acoustic effect, we add a static de-
formation potential VSn (z) to the Hamiltonian for an electron
in the QCL, which we assume to be directly proportional to
the envelope of the local acoustic strain, pn(z). The BZE and
BZC solutions of Eq. (2) provide standing-wave-like resonant
modes with envelopes pn(z), giving

VSn (z) = M pn(z), (14)

where M is a modulation strength constant. For the acoustic
signal generated in [28], we estimated that the strain am-
plitude perturbed the conduction-band potential by ∼2 meV.
With this assumption in Eq. (14), we can explore which acous-
tic modes affect electron transport, how the effects scale with
modulation strength M, and which type of QCL designs are
affected most significantly. We will dedicate special focus
either to modes with frequencies ∼100 GHz, as these have
been reported experimentally in the modulation of superlattice
band structures [11,13,15], or to 500–700 GHz modes, as a
coherent phononic source has been reported in this range [52].

It is important to note that the strain standing wave, and
hence deformation potential, oscillates in the time-domain
around the zero point. The acoustic frequencies considered
in this work are on the scale of a few hundred GHz, and
the deformation, therefore, oscillates on a similar timescale
to the electron dynamics within intersubband devices. As
such, the deformation cannot be “averaged out” as a fast
background effect, and a computationally demanding time-
dependent model would be required for an accurate analysis
of the acoustic effect on electron transport. In this work, how-
ever, we use a simplified time-independent approximation.
Here, we consider the strain wave at its zero-phase point in
the time domain, i.e., with the local deformation “frozen” at
its maximum value. This allows us to gain insight rapidly into
the effect of the spatial component of the acoustic deformation
upon carrier dynamics.

In Fig. 9, we present the conduction-band potential of
device A, as described in Sec. III and Ref. [28], where the
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FIG. 9. Conduction-band potential of a hybrid QCL design [28]
with the addition of the 30th acoustic mode with modulation
M = 5 meV. Two periods are shown at the resonance bias K =
3.63 kV cm−1 along with the corresponding wave-function moduli
squared.

30th acoustic mode is added as strain to the original potential
with modulation strength M = 5 meV to illustrate the effect
of Eq. (14) on the band-structure potential. The potential
itself is the main input for our Schrödinger-Poisson solver,
from which we obtain the quasi-bound-state energies and the
corresponding wave functions. This algorithm is coupled with
a density matrix transport model, and we can obtain the de-
pendence of the QCL emission frequency, f , current density
J , and material gain g as a function of the applied electric
field K . The K and J values directly correspond to the voltage
and current in experimental device characterization, while the
material gain offers insight into whether the structure lases or
not, as well as providing information on the dynamic range.
If a double-metal plasmonic waveguide is assumed, typical
losses are ∼20 cm−1. Our simulations are reliable up to the
peak of current density J (K ). Beyond this, the device enters a
negative-differential-resistance (NDR) regime, and it becomes
electrically bistable.

Our approach to understanding the effect of acoustic
resonances on QCL performance is to analyze key QCL per-
formance parameters derived from g(K ), J (K ), and f (K ),
when (a) the modulation strength of a given mode is varied,
and when (b) the mode index is varied, with a constant modu-
lation strength.

In Fig. 10, we show the contribution of the first acoustic
phonon mode with resonant frequency 17.4 GHz and mod-
ulation strengths M up to 5 meV in device A. The traces
corresponding to M = 0 represent the unperturbed simulation
outputs of our model. We observe a monotonically rising
current density profile, material gain that surpasses the losses,
and in the inset we note that this structure operates around 2.5
– 2.75 THz, which agrees very well with the experimental re-
sults [28]. There is a significant change in performance as the
modulation strength M increases, where the most important
effect is a shift of the current density peak, causing a reduction
to the dynamic range.
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FIG. 10. Material gain and current density dependence on elec-
tric field when the first acoustic mode n = 1 is added with a range of
modulation strengths to the conduction-band potential of device A.

To quantify the acoustic strain effect, we have extracted key
performance parameters for the QCL—the dynamic range,
peak gain, peak (NDR) current density, and the frequency
of emission at the start of the NDR region—as a function of
modulation strength, with results presented in Fig. 11 for the
n = 1, 2, and 30 modes.

The material gain and the current density values in
Figs. 11(a) and 11(b) are taken as the peak values of the
corresponding traces in Fig. 10, whereas the frequency in
Fig. 11(c) is taken at NDR point (peak of the current density
in Fig. 10). The dynamic range in Fig. 11(d) is calculated as
the current density difference between the NDR value and
the value that corresponds to a material gain threshold of

0
30
60
90

120

g 
[c

m
-1

] n = 1
n = 2
n = 30

250
500
750

1000
1250

J N
D

R
 [

A
 c

m
-2

]

2.7

3

3.3

f 
[T

H
z]

0 2 4 6 8 10
M [meV]

0
150
300
450
600

J dy
n [

A
 c

m
-2

]

(a)

(b)

(c)

(d)

FIG. 11. Dependence of performance parameters for device A,
as a function of modulation strength using acoustic modes pn(z) with
indices n = 1, 2, 30. Results are shown for (a) peak gain, (b) current
density at the NDR point, (c) emission frequency (at NDR point),
and (d) dynamic range.
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FIG. 12. Dependence of performance parameters for device A
(hybrid QCL design), as a function of acoustic mode pn(z) index,
using varying modulation strengths M = 1, 2, 3 meV. Results are
shown for (a) peak gain, (b) current density at the NDR point,
(c) emission frequency at NDR point, and (d) dynamic range. Values
corresponding to n = 0 represent nonperturbed values (i.e., M = 0).

∼20 cm−1. We note that when the threshold bias is larger
than the bias corresponding to the NDR value, the dynamic
range is set to zero value, physically indicating a nonlasing
structure. In Fig. 11(d), the second mode causes highly dis-
ruptive perturbation to the conduction-band potential leading
to a nonlasing structure. This occurs because the second mode
has a sinusoidal shape across one period, and when added to
the conduction-band potential, as in Fig. 9, it causes abrupt
changes in the shape of the conduction-band potential, drasti-
cally affecting QCL performance.

As expected, the perturbation to each of these values
increases with respect to M. However, the effect of the higher-
order n = 30 mode (∼522 GHz) is shown to be considerably
weaker than that of the lower modes.

This is confirmed further in Fig. 12, which shows that
the variation in the QCL performance parameters oscillates
and then decays as a function of acoustic mode index in
all cases. The first 20 modes all affect transport, are capa-
ble of perturbing the conduction-band potential strongly, and
even prevent the structure from lasing due to a strong shift
of the NDR point and reduction of dynamic range. This is
in agreement with previous reports of heterostructures being
modulated by ∼100 GHz acoustic pulses [11,13,15]. The low-
est mode perturbs potential at its end points the most. In our
simulations of transport, we always define the QCL period
as starting (and ending) from the midpoint of the injection
barrier. Adding a modulated standing wave M p0(z) causes
perturbation of the injection barrier so strongly affecting the
tunneling. We note that this effect is significant in Fig. 11 even
for low modulation strengths. However, higher-order modes
have a negligible effect. This is explained by the periodicity
of the high-order acoustic modes becoming much shorter
than that of the QCL potential profile. As such, these act
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FIG. 13. Dependence of performance parameters for device B
(LO phonon design), as a function of acoustic mode pn(z) index,
using varying modulation strengths M = 1, 2, 3 meV. Results are
shown for (a) peak gain, (b) current density at the NDR point,
(c) emission frequency (at NDR point), and (d) dynamic range.

as a very high-frequency oscillation superimposed upon the
QCL potential, which by analogy with the envelope-function
model, will have only a weak effect on the eigenstates of the
electrons.

In Figs. 13 and 14, we show comparable analyses of an
LO-phonon depopulated QCL (device B) [10] and a BTC
QCL (device C) [30], respectively. In both cases, we observe
a similar general behavior to that in Fig. 11, however device
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FIG. 14. Dependence of performance parameters for device C
(BTC design), as a function of acoustic mode pn(z) index, using
varying modulation strengths M = 1, 2, 3 meV. Results are shown
for (a) peak gain, (b) current density at the NDR point, (c) emission
frequency (at NDR point), and (d) dynamic range.
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B displays very high sensitivity to the second acoustic mode
This is understandable, as the LO-phonon-depopulated QCL
design is more sensitive to perturbations in the injection bar-
rier, because the coupling between adjacent periods is more
selective than in BTC and hybrid structures. Interestingly, the
second mode causes very sudden deterioration of the material
gain in Fig. 14, and this is likely due to the nature of the
band-structure potential for this particular structure.

We note that both hybrid and LO-phonon-depopulated
QCLs use similar resonant tunneling injection between ad-
jacent periods, while BTC structures employ closely spaced
minibands of states to depopulate the lower lasing level. For
this reason, device C is more sensitive to lower mode pertur-
bation.

As with device A, the acoustic perturbation effect oscillates
and then decays at higher mode indices. In each case, the pe-
riodicity of the acoustic deformation potential becomes short
compared with that of the QCL layer structure. LO phonon
QCLs employ fewer quantum wells per period than BTC or
hybrid designs, and they are therefore much shorter. As such,
in Figs. 14 and 12, the added strain perturbs transport up to
the 20th–24th mode, while in Fig. 13, the transport features
saturate around the 10th mode. Interestingly, however, the
frequency of the saturation point is comparable for all three
designs (∼400 GHz), as the LO phonon design has a wider
separation between modes.

Modulation of the QCL emission frequency (on the scale
of a few hundred GHz) is shown also to be possible for
each of the three devices. This reaffirms our conclusion that
acoustic modulation of QCL performance is caused by per-
turbing the conduction-band potential in the injection barrier.
Thus, tunneling current and injection will be affected most
strongly, though optical transitions, which typically happen in
the first two wells of QCL period, are also likely to suffer some
detuning due to applied strain. In all cases, we observe an
oscillation in emission frequency (and current and gain) as the
acoustic mode index increases. This occurs as lower modes
have a spatial distribution that locally perturbs the potential
profile in wells where the optical transition takes place.

VI. CONCLUSION

We have presented an analysis of acoustic resonances in
arbitrary superlattice heterostructures, focusing on THz QCL
devices. The model presented in Sec. II provides a flexible
method to determine the resonant frequencies with high preci-
sion in arbitrary superlattice profiles. In Sec. IV, we discussed
the precision of quasianalytical approaches, and we calculated
the deviation from bulk and average approximations given
in Eq. (11). We showed that a coarse approximation to the
acoustic mode frequencies may be determined analytically
from the period length and average acoustic velocity in the
superlattice. However, approximately 2 GHz detuning of the
acoustic mode spacing arises from the precise layer compo-
sition in the structure, and this may only be computed using
numerical methods.

We show that this detuning effect is greatest in superlattices
with high variation of acoustic velocity between layers. This
is in some cases periodic, and its period is determined by
resonances of the acoustic wave within barrier layers in the

structure. As such, this effect can be manipulated through su-
perlattice layer design, and it offers another degree of freedom
for fine-tuning frequency control of phononic devices.

In Sec. V we examined the effect of acoustic modes
on electron transport in THz QCLs, using a deformation-
potential approach. We found that the gain, threshold current,
and emission frequency are all perturbed significantly for
acoustic modes up to ∼200 GHz, in line with previous ex-
perimental investigations. These affect the band-structure
potential in its most sensitive location—the injection barrier,
thus directly affecting resonant tunneling that couples car-
riers between adjacent periods, while slightly higher modes
may also perturb band-structure potential in wells in which
key optical transitions take place. For high-frequency modes,
however, the acoustic deformation potential oscillates on a
lengthscale much smaller than the QCL layer structure, and
hence it has a negligible effect on transport. We also observed
that overall, designs with longer period length display slightly
higher sensitivity to acoustic perturbations.

This investigation demonstrates the potential for the
design of THz QCLs for high-speed modulation, or higher-
temperature operation, through the engineering of phonon
interactions.

The data associated with this paper are openly available
from the University of Leeds Data Repository [53].
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TABLE I. Layer composition of considered structures in Sec. IV. Layer widths in bold text represent the barriers; each structure ends with
the injection barrier layer, layers in red text have different value of Al molar content x as specified in the third column.

Structure Layer thicknesses (Å) Al composition in AlxGa1−xAs layers

Device A 106/5/170/10/135/21/124/31/100/31/90/31/75/31/178/31/152/41 x = 0.14
Device B 110/18/115/35/94/39/184/48 x = 0.15
Device C 144/10/118/10/144/24/144/24/132/30/124/32/120/44/126/50 x = 0.1
Device D 76.4/17.5/154.7/33.7 x = 0.3
Device E 82/46/72/41/160/43 x = 0.15, x = 0.075
Device F x(z) = 4x0

d2
sl

(z − dsl
2 )2 dsl = 3000 Å, dz = 2.825 Å, x0 = 0.14

Device G x(z) = 4x0
d2

sl
(z − dsl

2 )2[1 + 0.18 × 4x0
d2

sl
(z − dsl

2 )2] dsl = 620 Å, dz = 2.825 Å, x0 = 0.42

Device H 42/17/20/17 x = 1
Device D1 76.4/35/154.7/33.7 x = 0.3
Device C1 144/10/118/10/144/24/144/24/132/30/124/32/120/44/126/50 x = 0.1, x = 1
Device C2 144/10/118/10/144/24/144/24/132/30/124/32/120/44/126/50 x = 0.1, x = 1
Device A1 106/5/170/10/135/21/124/31/100/31/90/31/75/31/178/31/152/41 x = 0.14, x = 0.3
Device I 150/20/150/40/150/80 x = 1
Device J 100/20/100/20/200/20/200/20 x = 0.1

APPENDIX: LAYER COMPOSITION OF DEVICES

The layer composition of structures used in Sec. IV are shown in Table I, along with functions used to generate parabolic
profiles of devices F and G.
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[31] A. Demić, Z. Ikonić, R. W. Kelsall, and D. Indjin, Density
matrix superoperator for periodic quantum systems and its
application to quantum cascade laser structures, AIP Adv. 9,
095019 (2019).

[32] P. Harrison and A. Valavanis, Quantum Wells, Wires and
Dots: Theoretical and Computational Physics of Semiconductor
Nanostructures, 4th ed. (Wiley, Chichester, 2016).

[33] M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and
H. Grahn, Low-voltage terahertz quantum-cascade lasers based
on LO-phonon-assisted interminiband transitions, Electron.
Lett. 45, 1030 (2009).

[34] A. Huynh, B. Perrin, and A. Lemaître, Semiconductor superlat-
tices: A tool for terahertz acoustics, Ultrasonics 56, 66 (2015).

[35] G. Tas and H. J. Maris, Electron diffusion in metals studied by
picosecond ultrasonics, Phys. Rev. B 49, 15046 (1994).

[36] A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski,
and Q. Hu, High-power portable terahertz laser systems, Nat.
Photon. 15, 16 (2021).

[37] A. Jiang, A. Matyas, K. Vijayraghavan, C. Jirauschek, Z. R.
Wasilewski, and M. A. Belkin, Experimental investigation of
terahertz quantum cascade laser with variable barrier heights, J.
Appl. Phys. 115, 163103 (2014).

[38] J. Jo, M. Santos, M. Shayegan, Y. Suen, L. Engel, and A.-
M. Lanzillotto, Novel superlattice in a selectively doped wide
parabolic quantum well with a modulated potential, Appl. Phys.
Lett. 57, 2130 (1990).

[39] R. Reeder, A. Udal, E. Velmre, and P. Harrison, Numerical
investigation of digitised parabolic quantum wells for terahertz
AlGaAs/GaAs structures, in 2006 International Biennial Baltic
Electronics Conference ( IEEE, Piscataway, NJ, 2006), pp. 1–4.
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