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Strain engineering of photoinduced topological phases in two-dimensional ferromagnets
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We argue that strain engineering is a powerful tool that may facilitate the experimental realization and control
of topological phases in laser-driven two-dimensional (2D) ferromagnetic systems. To this extent, we show that
by applying a circularly polarized laser field to a 2D honeycomb ferromagnet that is uniaxially strained in either
the zigzag or armchair direction, it is possible to generate a synthetic Dzyaloshinskii-Moriya interaction tunable
by the intensity of the applied electric field, as well as by the magnitude of applied strain. Such deformations
enable transitions to phases with the opposite sign of the Chern number, or to trivial phases. These are basic
results that could pave the way for the development of a new field of strain-engineered topological spintronics.

DOI: 10.1103/PhysRevB.107.235410

I. INTRODUCTION

With the experimental observation of magnetic order in
two-dimensional (2D) materials in 2017 [1,2] and the si-
multaneous growth in interest in topological aspects of
condensed-matter systems over the past decade, the abil-
ity to generate, study, and manipulate topological phases of
magnetic materials has become a rapidly growing research
direction. Systems such as magnon Chern insulators or other
varieties of topological magnetic systems have been theo-
retically studied [3] and experimentally verified in the past
few years [4,5]. The reason for this interest is that topol-
ogy describes effects that stem from global properties of the
band structure robust to small local perturbations, such as
impurities, and they can have a profound effect on the ma-
terial physical properties. Topological insulating phases are
characterized, for instance, by the existence of chiral edge
states with high mobility. Their robustness is desirable for a
variety of applications such as spintronics, and for the ensuing
technological implementations [6].

It is evident that for such applications, the ability to ma-
nipulate topological phases, whether by switching topological
properties on or off, or by alternating between distinct topo-
logical phases, is a desirable goal.

Additionally, magnon-based approaches to spintronic tech-
nologies have also gained traction for a variety of reasons [7]:
From their ability to propagate without generating electrical
current and therefore reducing losses, to the possibility of
making use of their internal degrees of freedom to implement
logic gates [8,9], and to their large diffusion lengths in com-
parison to electrons [10–12], magnons have garnered attention
as a convenient excitation for processing and transporting
information. For this reason, magnon spintronics relies on the
use of magnons as intermediate agents, being that informa-
tion initially coded in the charge or spin of electrons can be
converted to magnon currents, subsequently dispatched to and

handled at potentially different devices, and finally converted
back. In combination with the attractiveness of topology, the
use of magnons renders the study of topological spin systems
a worthwhile endeavor for the development of spintronic de-
vices [13,14].

One possibility for engineering topology in spin systems
relies on the fact that a 2D ferromagnet with a honeycomb
lattice structure that hosts a strong intrinsic Dzyaloshinskii-
Moriya interaction (DMI) [15,16] can have the magnitude of
this interaction renormalized when irradiated by a circularly
polarized laser field [17,18]. Indeed, it was predicted that CrI3

hosts topological magnons at the K point of the hexagonal
Brillouin zone, starting from a full electronic model [19].

A Heisenberg spin model (HSM) with a DMI provides a
concrete realization of the Haldane model [20] for magnonic
excitations. This model is known to host edge states, which are
the hallmark of Chern insulator phases. Electronic Chern in-
sulators, for instance, are able to conduct electrons along their
edges and yet remain insulators in their bulk, and in a similar
manner, magnonic insulator samples host gapless bands for
spin excitations along their edges while remaining gapped in
the bulk. This behavior results in a measurable thermal Hall
response [21–25]. A field-dependent renormalization of the
DMI can result in the possibility of the topological properties
of spin systems being manipulated, such as the direction of
edge-state conduction being reversed or entirely switched off,
by changing the magnitude of the applied electric field. In
addition, a DMI resulting entirely from the interaction of laser
fields with spins [17] can also be generated. In this manner, if
a material does not naturally host such an interaction, it can
be synthesized by a laser beam, yielding a so-called Floquet
magnon Chern insulator (FMCI). In case the material’s in-
trinsic DMI is weak compared to such a synthetic term, the
control of topological properties is limited: Increasing the in-
tensity of the laser field can turn the interaction on or off, but it
does not provide a way to reverse edge spin states or additional
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desirable features. Besides, this limited tuning occurs only for
very precise (and large) values of the intensity of the applied
fields. Thus, if it were possible to induce this interaction in a
fully tunable manner to a larger class of materials, one expects
that new technological developments based on topological
spintronics could arise. This paper addresses the manipulation
of these topological states by proposing a method based on
elastically deforming, i.e., straining, a 2D magnetic material.
Strain can be applied in a variety of ways, including the depo-
sition of a 2D material onto, and subsequent deformation of,
an elastic substrate [26]. It has proven to be an extremely pow-
erful tool in semiconductors, as well as in 2D materials such as
graphene, where band-structure properties can be manipulated
[27,28], and other electronic properties can be locally changed
using patterned substrates. These patterns, such as bends or
folds, wells, bubbles, and troughs, can induce mechanical
strain on an overlaid monolayer of material, and they may
be used to design all-graphene integrated circuits [29]. In
Cr2Te3, strain-engineered magnetism has been observed [30],
and when it comes to topology, strain in the Haldane model
has also been theoretically considered in the past [31], where
it has been shown to be able to induce topological phase
transitions to a trivial state. The DMI can also be subject to
changes due to strain [32], and this conjugation of factors is
a good indicator that strain is a useful tool when considering
topological properties of magnetic materials. We show here
that this is indeed the case, as straining a 2D ferromagnet
irradiated by a laser field can invert the sign of its topological
invariant, as well as induce a transition from a topologically
insulating phase to the trivial phase.

Our calculations, lying at the interface between strain en-
gineering and Floquet engineering, may pave the way for a
new class of strain-engineered topological spintronic (SETS)
devices, based on local applications of strain to ferromagnetic
2D materials, as in this work we propose a mechanism for the
realization of tunable photoinduced topology in a large class
of 2D ferromagnetic materials based on strain. We draw phase
diagrams based on the computation of the Floquet Chern
number for a FMCI in the honeycomb lattice, as a function
of tensile strain and the magnitude of an applied laser field
which clearly exhibit strain-driven transitions. We consider
two main cases: First, a next-nearest-neighbor (NNN) inter-
action is given by a DMI alone; and second, an extension
of this model where one also considers an additional NNN
Heisenberg coupling. We show that strain-induced topological
phase transitions occur in both systems. However, due to the
mapping between the latter model and an anisotropic Haldane
model with the key property of tunable fluxes, phase transi-
tions can occur for smaller electric field intensities and small
amounts of strain. We argue that such a model could provide
the breeding ground for new developments based on SETSs.

II. UNSTRAINED MODEL HAMILTONIAN
AND LIMITATIONS

A. The Floquet magnon Chern insulator

We start by describing the basics of the magnetic model
that serves as the basis for our proposal by considering the
previously discussed FMCI in a honeycomb lattice of spin S
atoms. The structure of the honeycomb lattice is given in panel

FIG. 1. (a) Honeycomb lattice structure: A (B) sublattice atoms
are marked in blue (red). NN vectors δi are displayed in purple, and
NNN vectors ai are displayed in green. Orange arrows in the topmost
honeycomb shape showcase the flux factor of the Dzyaloshinskii-
Moriya interaction. (b) Schematic for the setup for straining a
ferromagnetic 2D material at an angle θ if stress is applied along
the large blue arrow. An external electric circularly polarized electric
field is applied with magnitude E0 leading to the tunable topological
properties described in the main text. Throughout the text, we will
consider θ = 0 corresponding to zigzag (ZZ) strain, and θ = π/2
corresponding to armchair (AC) strain.

(a) of Fig. 1. It is a Bravais lattice with two atoms per unit cell
and thus can be thought of as being composed of two distinct
sublattices, which we label by A and B. An A-sublattice atom
is connected to its nearest neighbors (NN) via the vectors

δ1 = (
√

3/2,−1/2)a0, (1)

δ2 = (0, 1)a0, (2)

δ3 = (−
√

3/2,−1/2)a0, (3)

where a0 is the interatomic distance, in a pristine, unstrained
lattice. A 2D honeycomb ferromagnet can be described by a
HSM Hamiltonian which depends on the spin vector operators
S(ri ) = (Sx(ri ), Sy(ri ), Sz(ri )), acting at position ri, which can
couple to spins at NN and NNN sites via in-plane exchange
integrals J⊥ and J2,⊥, respectively, as well as their Jz and Jz,2

counterparts. The Hamiltonian reads explicitly

H = 1

2

∑
〈i, j〉

J⊥S+(ri )S
−(r j ) + H.c.

+ 1

2

∑
〈〈i, j〉〉

J2,⊥S+(ri )S
−(r j ) + H.c.

+
∑
〈i, j〉

JzS
z(ri )S

z(r j ) +
∑
〈〈i, j〉〉

J2,zS
z(ri )S

z(r j ), (4)

where 〈·, ·〉 indicate a restriction of the summation to NN sites,
and 〈〈·, ·〉〉 indicates a restriction to NNN sites. In addition,
a representation in terms of the spin ladder operators S± =
Sx ± iSy is used. This model hosts gapless Dirac magnon
(quantized spin-wave) excitations whose bands showcase an
ultrarelativistic dispersion near the K and K ′ points of the
Brillouin zone.

An FMCI is built from a HSM quite subtly, as the fact
that an electric field alone can couple to magnons, is, in
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principle, not so obvious. The key effect that comes into play,
which allows for the direct coupling of an electric field to
neutral bosons which carry a magnetic moment, such as Dirac
magnons, is the Aharonov-Casher (A-C) effect [33,34]. This
is a dual effect to the more well known Aharonov-Bohm
(A-B) effect [35], in which a charged particle in a region
of space with zero magnetic field, but importantly nonzero
magnetic vector potential, acquires a nontrivial topological
phase. Both A-B and A-C effects can result in interference,
and the A-C effect implies that a charge neutral particle with
a magnetic moment moving in an electric field will also
acquire such a phase, called the A-C phase. For a ferro-
magnet irradiated by a circularly polarized laser field E(t ) =
E0(τ cos ωt, sin ωt, 0), with handedness given by τ = ±1,
and with frequency ω, the A-C phase manifests itself as a
time-dependent Peierls phase acquired by the Dirac magnons
when hopping between different lattice sites.

The time dependence of the resulting Hamiltonian may
appear initially cumbersome, as well as not particularly eluci-
dating as to the underlying physical effects the Dirac magnons
experience. For these reasons, a perturbative scheme has
historically been considered for the analysis of such Hamil-
tonians, based on the analysis of periodically driven systems.
This is the so-called Floquet theory. Using the Floquet the-
ory framework, it is possible to perform a high-frequency
expansion in inverse powers of ω [36] which provides an
effective Hamiltonian up to O(ω−1) with clear qualitative and
physical interpretation. The correction of lowest order O(ω0)
in high frequency provides an averaging of the Hamiltonian
over a period of the driving laser, yielding a renormalization
of the NN and NNN in-plane exchange integrals as J⊥ →
J⊥J0(ταa0), J⊥,2 → J⊥,2J0(τα

√
3a0) [Eq. (5)], where α ≡

μBE0/h̄c2, with μB the Bohr magneton. Jn(x) are the nth-
order Bessel functions, and the constants h̄ and c are the
reduced Planck’s constant and the speed of light in vacuum,
respectively. The functional form of the renormalization of
the NN in-plane hoppings is already interesting despite not
providing topological properties by itself, as it depends on a
Bessel function of order 0 for the case of the NN hoppings.
This allows for tuning between Heisenberg-type couplings
and Ising-type couplings, for instance, since all J⊥ can be
turned off. In the literature, one often defines the dimension-
less parameter λ = αa0, however we make explicit here that
the additional knob for this model, which is the key ingredi-
ent to the results showcased in this work, is the interatomic
distance a0.

In addition to this first-order correction, corresponding to
the renormalization of J⊥ and J⊥,2, the second-order high-
frequency correction can be seen to yield an additional term
in the effective Hamiltonian, in the form of a spin-chirality
[Eq. (6)]. The Hamiltonian will read HF = Ĥ (1)

F + Ĥ (2)
F +

O(1/ω2), and the two first terms in the high-frequency ex-
pansion explicitly read

Ĥ (1)
F = −

∑
〈i, j〉

J⊥J0(ταa0)

2
S+(ri )S

−(r j ) + H.c.

−
∑
〈i, j〉

JzS
z(ri )S

z(r j ) −
∑
〈〈i, j〉〉

J2,zS
z(ri )S

z(r j )

−
∑
〈〈i, j〉〉

J2,⊥J0(τα
√

3a0)

2
S+(ri )S

−(r j ) + H.c.,

(5)

Ĥ (2)
F =

∑
〈i,〈 j〉,k〉

χi jkS(ri ) · [S(r j ) × S(rk )]. (6)

Here, the interlinked braces 〈·, 〈·〉, ·〉 indicate that the summa-
tion is performed over NNN atoms at positions i and k, which
are connected by position j. In Eq. (6), the spin-chirality is
given in magnitude by

χi jk = τ
√

3J2J1(ταδ ji )J1(ταδik )νA/B
ik /ω, (7)

where νA
ik = −νB

ik = −νA
ki is a fluxlike term, dependent on the

orientation of the NNN bonds which connect sites i and k
according to the orange arrows in Fig. 1, panel (a). Note
that we have made clear the fact that the intensity of the
spin-chirality depends on the successive hoppings between
an intermediate site via the first-order Bessel functions. At
this stage, all the distances δ ji ≡ |δi|a0 = a0 are the same,
and they equal the interatomic distance. As such, we can
write J1(ταδ ji )J1(ταδik ) = J 2

1 (ταa0). This makes it so that
sgn(χ ) = τ for any possible value of α ∝ E0. Such a spin
chirality term is known to originate frustration in the ground
state of the ferromagnetic system, leading to the possibility of
originating spin-liquid states [37], but considering Jz > J⊥ the
ferromagnetic ground state is stabilized.

For pursuing our discussion, a second quantization
formalism for magnons can be employed using the
Holstein-Primakoff (HP) bosonization. The (linearized) HP
transformations map spin operators into bosonic creation
and annihilation operators a†

i /ai (b†
i /bi) within the A (B)

sublattices. Within linear spin-wave theory, the spin-chirality
is indistinguishable from a DMI, and, indeed, when writing
this term using HP operators, and retaining only terms up
to second order in such operators, this equivalence becomes
clear. A particularly useful way to write this Hamiltonian
in momentum space can be achieved in terms of the Pauli
matrices. If we consider the vector of creation operators �

†
k =

(a†
k, b†

k), the effective Hamiltonian in momentum space can be
written as

HF =
∑

k

�
†
k [h0(k)1 + h(k) · σ]�k, (8)

where 1 is the 2 × 2 identity matrix, and we have defined a
scalar h0(k) and a vector h(k) = (hx(k), hy(k), hz(k)) which is
contracted with the vector of Pauli matrices σ = (σx, σy, σz ).
We will give an explicit form of the h(k) vector and the h0(k)
scalar in a bit; however, let us first draw a useful comparison
to the well-known Haldane model. For now, we note that this
is a general way to write a 2 × 2 Hermitian operator, which
is useful for our purposes, since the vector h(k) contains all
the information necessary for the topological characterization
of the system. For now, we note that it includes summations
over the NN and NNN vectors, and thus it is expected that
changing these vectors can have an effect on the spectrum
as well as on the topological properties of this model. In the
absence of a DMI, we have hz(k) = 0, the system is gapless,
and hence it is in a trivial topological phase. Turning on the
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DMI, the spectrum of Dirac magnons becomes gapped, and
thus this interaction can be interpreted as providing Dirac
magnons with a mass. This system then falls into the category
of Chern insulators, for which the signature of topology is the
Chern number or TKNN invariant [38], which takes nonzero
integer values if the material is in a topological phase, and it
is zero for a trivial phase. If the topology is photoinduced, one
calls it the Floquet Chern number CF

η , and in any case, it can
be computed as an integral over the Berry curvature �F

η (k) =
η

2 ĥ(k) · (∂kx ĥ(k) × ∂ky ĥ(k)) in the full Brillouin zone, i.e.,

CF
η = 1

2π

∫
BZ

d2k�F
η (k). (9)

In the expression for the Berry curvature and Floquet Chern
number, ĥ(k) = h(k)/|h(k)|, and η = ±1 is the band in-
dex. The Berry curvature itself can also be computed from
the eigenstates of the effective Hamiltonian using numerical
approaches [39], but the analytical expression given above
justifies the previous statement that the vector h(k) contains
all relevant information necessary for the characterization
of the material’s topological properties. For the unstrained
FMCI, we have the analytical result CF

η = ητ sgn(χ ), using
the explicit form of h(k) given in Sec. II B. Our numerical
calculations will employ Fukui’s method [39] due to its effi-
ciency, but they remain analytically verifiable.

Finally, we can make our introductory comments about
the manipulation of topology being restricted in this model
more precise. From the analytical results for CF

η given a
certain polarization of light τ , we have, so long as we set
J2,⊥ = 0, the result CF

η = ητ , regardless of the intensity of
the laser field, with the exception of very special points, at
which J 2

1 (ταa0) = 0, at which CF
η = 0. The guiding motiva-

tion for the following discussion is that this term stems from
a more generic J1(ταδ ji )J1(ταδik ), and hence if interatomic
distances could be changed, one could potentially switch the
sign of the Chern number.

B. Mapping the FMCI to a bosonic Haldane model

In this section, we make explicit that the structure yielded
by the FMCI corresponds to the bosonic Haldane model.
This model is entirely analogous to its fermionic counterpart
with the exception of being expressed at the cost of bosonic
creation/annihilation operators in the A and B sublattices of a
honeycomb structure. Bosons are created (annihilated) by a†

i

(ai) in the A sublattice and by b†
i (bi) in the B sublattice. It

reads

H =
∑

i

M(a†
i ai − b†

i bi ) +
∑
〈i, j〉

ti ja
†
i bi + H.c.

+
∑
〈〈i, j〉〉

t2,i j (a
†
i a j + b†

i b j ) + H.c.

+ i
∑
〈〈i, j〉〉

t ′
2,i j (a

†
i a j − b†

i b j ) + H.c. (10)

Here, M is called the Haldane mass, and both real (t2,i j )
and imaginary (it ′

2,i j ) NNN hoppings are present. One can
bring the two NNN hopping terms together by writing t2,i j +
it ′

2,i j = t ′′
2,i je

iνi jφi j , where φi j = arctan(t ′
2,i j/t2,i j ), and where

TABLE I. Identifications between the Haldane model and the
Floquet magnon Chern insulator for the case in which no strain is
present.

Haldane FMCI

t 3J⊥SJ0(αδi j )
t2 3J2,⊥SJ0(αai j )
t ′
2 6J2

⊥S2τJ1(αa0)J1(αa0)/h̄ω

M (Jz,A − Jz,B )S/2

t ′′
2,i j =

√
t2
2,i j + t ′2

2,i j . The factor νi j = ±1 is then chosen ac-
cording to the direction of the NNN hopping (see the orange
arrows in Fig. 1). Thus, the Haldane model Hamiltonian can
be written, up to an arbitrary energy shift, as

H =
∑

i

M(a†
i ai − b†

i bi ) +
∑
〈i, j〉

ti ja
†
i bi + H.c.

+
∑
〈〈i, j〉〉

t ′′
2,i je

iνi jφi j (a†
i a j − b†

i b j ). (11)

By writing the FMCI Hamiltonian, and specifically the
second-order correction in terms of spin ladder operators, and
subsequently using the HP transformations, the spin-chirality
term becomes a purely imaginary NNN hopping. The identi-
fications given in Table I can then be performed. Essentially,
NN and NNN hoppings are mapped to their exchange integral
counterparts, and the spin-chirality is mapped to an imaginary
hopping, and a Haldane mass can exist, for instance, in ferri-
magnetic systems (where it is not actually Jz, which is differ-
ent for the sublattices, but rather the value of the spin S) [34].

Furthermore, the flux φi j becomes dependent on the in-
termediary site k between i and j, and it reads φi jk =
arctan( J2

⊥τ

J2,⊥ h̄ω

J1(αa0 )J1(αa0 )
J0(α

√
3a0 )

), and with this mapping underway,
a momentum space representation can be readily constructed
by considering h(k) and h0(k) given by

h0(k) = −
∑

j

t ′′
2, j cos φ j cos(k · a j ), (12)

hx(k) = −
∑

j

t j cos(k · δ j ), (13)

hy(k) =
∑

j

t j sin(k · δ j ), (14)

hz(k) = M − 2
∑

j

t ′′
2, j sin φ j sin(k · a j ). (15)

The inclusion of strain must now account for several phys-
ical phenomena, i.e., it must describe changes in bond lengths
and subsequent anisotropic variations in hopping and ex-
change interactions. In the following section, a simple model
that describes such variations is introduced.
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III. EFFECTS OF STRAIN ON TOPOLOGICAL
PROPERTIES

A. FMCI with NN hoppings

As we have previously described, for a magnetic material
with a strong intrinsic DMI, the sgn(χ ) can be manipulated
by changing the intensity of the laser field, due to the first-
order correction of the high-frequency approximation, which
reads χ → J0(αa0)χ . For systems in which the DMI is fully
synthetic and results only from second-order Floquet the-
ory, this does not appear possible due to the dependence in
J 2

1 (ταa0) > 0. Guided by the fact that a sign change can be
achieved by making the system anisotropic and transforming
J 2

1 (ταa0) → J1(ταδ ji )J1(ταδik ), we now explore the uni-
axial straining of an FMCI, and we show that even small
amounts of strain can provide a pathway for topological ma-
nipulations of the model. Note that studies on the exchange
parameters in CrI3 as a function of strain have been consid-
ered and theoretically analyzed in the past, considering strain
values up to 10% [40].

In the honeycomb lattice, the strain tensor is described
by two parameters alone, namely the tensile strain ε and
the Poisson ratio ν [41]. When inducing stress onto the 2D
magnetic material, the tensile strain ε is proportional to this
stress, and therefore we can treat ε as the tunable parameter in
our system. It measures the amount of deformation in the di-
rection of the applied stress, while the Poisson ratio measures
the deformation of the lattice in the transverse direction. A
positive Poisson ratio ν > 0 indicates that when a material is
stretched in a particular direction, it compresses in the trans-
verse direction, and vice versa. As such, the lattice vectors
acquire a functional dependence on the parameters ε and ν as
strain applied in a particular direction. The deformed vectors
read δi(ε, ν, θ ) = (1 + ε)δ(0)

i , where the strain tensor is

ε =
[
ε cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ

(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

]
. (16)

In the simplest tight-binding approach, strain can be included
in a given Hamiltonian via modifying hopping amplitudes
anisotropically. In previous works in the honeycomb lattice,
it is considered that electronic hoppings are exponentially
suppressed when the bond length is increased [42]. This is the
simplest possible model, which can be intuited phenomeno-
logically from the overlap of atomic orbitals. One has

(NN) : ti j = t (0)e−β(δi j (ε,ν,θ )−1), (17)

(NNN) : t2,i j = t (0)
2 e−β(ai j (ε,ν,θ )−√

3), (18)

where β is a phenomenological parameter of the order of
unity. Since we expect that the strength of the exchange inter-
action is J ∝ t2/U for U representing the strength of on-site
Coulomb repulsion in some underlying electronic model, we
consider that a similar exponential decay occurs for J with the
rate of 2β. We find that the inclusion of such a phenomeno-
logical correction in a standard Haldane model is enough
to produce topological phase transitions, when a system is
strained in the zigzag direction with values of, for instance,
ε ∼ 15% for a Haldane flux of φ = 4π/5, due to a fusion of
the magnonic Dirac points. This is presented in Fig. 2. For
a standard DMI system, if J2,z/⊥ = 0, i.e., a Haldane flux is

FIG. 2. The leftmost panel showcases the phase diagram for a
bosonic Haldane model as a function of the Haldane mass M and the
phase φ. Black lines in this panel indicate M = ±3

√
3 sin φ, which

are the analytical results for the phase transition lines in this model.
The right panels showcase phase diagrams for the strained bosonic
Haldane model in the zigzag (ZZ) and armchair (AC) directions. We
pick β = 6.74, ν = 0.165, and a phase of φ = 4π/5, such that for
strain applied in the ZZ direction, for any value of M and a strain
above ∼15%, the model is in a trivial phase. Generically, for strain
in the AC direction, no phase transitions are observed for M = 0.

present corresponding to φ = π/2, the critical strain neces-
sary for a topological phase transition can be much higher,
making it unfeasible for realistic applications. On the other
hand, rich phase diagrams emerging from uniaxially straining
a FMCI can appear. This is due to the intricate dependence
of NN and NNN hoppings on Bessel functions, as presented
in Table II. We focus first on the simplest case, with J2,z =
J2,⊥ = 0, but we will show later that the inclusion of these
terms yields several advantages.

The functional dependence on Bessel functions can result
in the closing of the gap of the system well below strain
values of 15%, and can break the symmetry of the lattice
in such a way that the system becomes topologically trivial,
or even switch the relative sign of NN and DMI. Indeed,
this NN sign-switch plays a more relevant role at a lower
value of the intensity of the electric field for any reasonable
value of strain. Thus, from an experimental point of view, it
may be more easily accessed. Figure 3 shows that if stress
is applied in the zigzag as well as armchair directions of
the honeycomb lattice, there exist several points, near the
zero of J0(α|δ1(ε, ν, θ )|a0) = J0(α|δ3(ε, ν, θ )|a0), at which
a transition between a Floquet Chern number CF

− = −1 to
CF

− = 1 can occur, even for very small values of strain. For
strain applied in the armchair (AC) direction, a large region
of Chern number CF

− = +1 occurs for strain above 12.5% and
αa0 above the first zero of J0, whereas for strain applied in

TABLE II. Identifications between the Haldane model and
strained Floquet magnon Chern insulator.

Haldane Strained FMCI

t 3J⊥SJ0(αδi j )e−2β(δi j−1)

t2 3J2,⊥SJ0(αai j )e−2β(ai j−
√

3)

t ′
2 6J2

⊥S2τJ1(αδik )J1(αδk j )e−2β(δik+δk j−2)/h̄ω

M (Jz,A − Jz,B )S/2
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FIG. 3. Upper panels: Phase diagrams showcasing the Chern
number as a function of the electric field through αa0 as well as
the strain magnitude ε in the ZZ and AC directions for a FMCI
with J2 = 0 and h̄ω = 50J . Left panel: Strain in the ZZ direction:
A series of dips is observable for which at certain values of electric
field, small amounts of strain are necessary to induce a topological
phase transition. The first white dip corresponds to a situation where
J0(α|δ1|a0) and J0(α|δ3|a0 ) go to zero. The subsequent transitions
in each dip occur either because of this or due to changes in the DMI
sign due to J1. Right panel: Strain in the AC direction: A similar
situation occurs, with the first dip being related to the position of the
zero of the NN exchange integrals, and the second dips occur due
to the DMI sign change. Lower Panels: Band structure of the FMCI
for a small value of electric field αa0 = 0.01 and strain along the
ZZ direction. The left and right panels provide an example of the
band structure below and above the critical strain, respectively. The
transition from topological to trivial phases occurs due to the merging
of the Dirac cones at the edge of the Brillouin zone. The topological
gap in the left panel’s band structure is practically invisible due to
the small magnitude of electric field, which illustrates a difficulty
inherent to the implementation of realizing photoinduced topological
magnons with NN interactions alone.

the ZZ direction, transitions to a trivial phase can occur for a
much smaller field intensity.

The generic behavior of the transitions is that several dips
in critical strain occur within the phase diagram, close to
zeros of the Bessel functions J0 and J1. As described in
the section on realistic parameter values, αa0 = 2.3, which
corresponds to the location of the first dip for which transi-
tions occur for low values of strain, is still quite a large field
intensity. This leads to the question of whether there exists any
mechanism that can lower this critical value further.

B. FMCI with NNN hoppings

We now show that by turning on the NNN exchange in-
tegral J2 > 0, which is renormalized by the laser field, the
mapping to the Haldane model must also include a flux

FIG. 4. Upper panels: Phase diagrams showcasing the Chern
number as a function of the electric field through αa0 as well as
the strain magnitude ε in the zigzag (left panel) and armchair (right
panel) directions, with J2 = 0.1J and h̄ω = 50J . For strain in the
armchair direction, there exist critical strain values for a field arbitrar-
ily close to zero, as well as critical field values for arbitrarily small
strain near αa0 ≈ 1.38, for which topological transitions can occur
between phases with inverse Chern numbers. Lower panels: Band
structure for a small value of electric field αa0 = 0.01 and strain
in the ZZ direction. The left and right panels provide an example
of the band structure below and above the critical strain, respectively.
The presence of a NNN exchange integral J2 > 0 clearly increases
the gap (see Fig. 2) and further stabilizes the topological phase,
reducing the necessary values of electric fields for the realization of
photoinduced topology.

φi jk = arctan(χi jk/J2,ik ), and since both of the quantities χi jk

and J2,ik depend on αai in distinct manners. This phase
becomes tunable with the electric field intensity, leading to an-
other mechanism for tuning the topological phase. In this case,
the phase diagram acquires two interesting features show-
cased in Fig. 4, especially evident for strain applied in the AC
direction. A critical value of electric field exists that provides a
transition for vanishing values of strain for a much lower value
of electric field αa0 ≈ 1.38. The value for the critical electric
field is also decreased until it vanishes, at a strain of about
15%. Tuning the strain with high precision near this value can
allow for an inversion of the sign of the Floquet Chern number
for an arbitrarily small electric field. In the ZZ direction, a
similar situation occurs for a topological to trivial transition,
near 11% strain, and this value can be reduced to about 9.5%
strain while remaining in the CF

− = −1 phase by increasing α.
Furthermore, as is clear from the inspection and comparison
of the band structure of the FMCI in a nontrivial phase of
Figs. 3 and 4, the presence of a J2 term leads to a stabilization
of the topological phase. Even for small electric fields, this
term ensures a much larger gap will appear, thus rendering
the FMCI far more amenable to experimental realizations. We
consider these to be the most important results of this work,
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FIG. 5. Phase diagrams for the Floquet magnon Chern insulator
with a finite mass M = 3.3 × 10−3JS. For these images we pick
β = 3.37 and ν = 0.165.

as small values of strain can be achieved by overlaying a 2D
magnetic material in a patterned substrate, and thus precise
control of topological phases can be obtained in integrated
devices. Another aspect that is also worth mentioning is that
in the limit where M → 0, the transitions between phases with
opposite Chern number occur directly, as can be seen in Fig. 4
of the main text. On the other hand, for M > 0, finite regions
of trivial phases crop up in between those characterized by
Floquet Chern number CF

− = −1 and +1, as seen in Fig. 5.
This results in an intermediate phase with CF

− = 0, which may
be useful in an experimental context, as it provides a clear
barrier between distinct topological phases.

IV. PARAMETER VALUES AND REALISTIC
REALIZATION

We can now review and justify the choice of parameters
used for our calculations, since some are still undetermined
experimentally at the present time. Parameters such as the
Poisson ratio ν for monolayer ferromagnetic materials, for
instance, have not yet been subject to thorough experimental
analysis, and hence for a rough estimate of the effects of the
strain we have used ν = 0.165 corresponding to the case of
graphene, the most well-known 2D material with a honey-
comb structure [28]. We also pick β = 3.37, corresponding
to the value obtained experimentally for graphene [43]. The
electric field at which the first transition occurs for small strain
lies around αa0 ≈ 2.3, but it is lowered for increased values
of strain in the AC direction in the case of J2 = 0. Using the
distance between magnetic atoms in CrI3 as a rough estimate,
a critical electric field of the order of E0 ≈ 1 × 1013 V/cm is
necessary to induce a transition. Lasers of up to 1023 W/cm2

have been reported [44], which allow for laser fields of up
to roughly E0 ≈ 9 × 1012 V/cm. Although this value is of
the order of magnitude of the field necessary to induce topo-
logical phase transitions in the system, the authors recognize
that it still is quite a high value of electric field, which may
result in damage to the material or otherwise undesirable
out-of-equilibrium phenomena to take place. This renders the
topological phase transitions in a J2 = 0 model likely out
of reach. However, as our calculations show, for J2 > 0, the
critical electric fields are much smaller, and the topological

FIG. 6. Phase diagrams for the Floquet magnon Chern insulator
with a small applied electric field αa0 = 0.01 and varying strain
in the ZZ direction as well as parameters β (left) and ν (right).
When one such parameter is varied, the other is kept constant at the
values considered in the remainder of the text. Increasing either β

or ν results in the lowering of the critical strain, which induces a
topological phase transition.

gap is stabilized, facilitating an experimental implementation
in essentially every regard. For increasing values of strain in
the AC direction up to a critical value of 15%, a transition
occurs for vanishing field intensity (see Fig. 4). In the ZZ
direction, a trivial phase can be reached for values of up to
11% strain. Furthermore, we use h̄ω = 50J , which leads to
a frequency of ω/2π ≈ 1.2 × 1013 Hz, lying in the 10s of
THz, achievable using ultrafast terahertz spectroscopy [17].
It should also be noted that, for 2D ferromagnetic materials,
our choice of parameters is a conservative estimate. Since
graphene is known to have very strong carbon-carbon bonds,
it is expected that realistic values of β may be much larger for
other relevant materials, compatible with a quicker decay of
electronic bond strengths. This actually reduces critical strain
values. For instance, if β is doubled, strain in the ZZ direction
can cause a topological phase transition at magnitudes as
low as 5%. On the other hand, it may be the case that ν is
actually smaller, and this would, in turn, result in an increased
critical strain magnitude. This points to a necessity of further
exploring elastic properties of 2D magnetic materials. The
variation of the critical strain magnitude in the ZZ direction
with both β and ν is given in Fig. 6. It is also worth noting that
increasing the strength of J2 does not alter the phase diagrams
presented in any way, although it does increase the magnitude
of the topological gap. Hence, if a material actually exhibits
a greater value of J2, this can ameliorate the conditions for a
physical implementation of SETS.

Finally, and in order to discuss an alternative system in
which our ideas could be tested, it is worth mentioning that
the coupling between electrons and electric fields is much
stronger. A number of papers have proposed the realization
and study of photoinduced spin-liquid ground states starting
from a Fermi-Hubbard model, realizable in cold atom lattices
or some van der Waals materials [45–48]. Such a system
would be described by a Hamiltonian of the form

H = −t
∑
〈i, j〉

eiθi j (t )c†
iσ c jσ + U

∑
i

n̂i↑n̂i↓, (19)
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where the time-dependent Peierls phases θi j (t ) now couple to
electronic creation and annihilation operators c†

iσ /ciσ . Here U
is the Hubbard on-site Coulomb interaction which is propor-
tional to the number of electrons n̂iσ = c†

iσ ciσ with opposite
spins σ =↑,↓ occupying any given lattice site. A similar
approach to the high-frequency approximation can be con-
sidered, in the spirit of the Schrieffer-Wolff transformation,
where U is treated at the same level as the frequency h̄ω. The
resulting effective Hamiltonian also exhibits a spin chirality
with similar dependencies on Bessel functions [45]. Thus, an
effective Heisenberg model with topological properties can be
obtained, and the manipulation of its topological properties
would proceed in exactly the same manner as we have de-
scribed throughout this work. The advantage in our model is
that the direct coupling to the spin system provides a much
simpler and essentially physically equivalent treatment of the
topological spin system, with the main difference being that
directly coupling to electrons yields a number of advantages
that may prove relevant for physical implementations: First,
the coupling factors for magnons αm and for electrons αe

are related by αm/αe = 10−5 for a frequency of h̄ω = 1 eV,
enabling the ability to obtain similar phenomenology for
electric fields 105 times smaller. Additionally, the driving
frequency can be chosen to be subgap, i.e., h̄ω < U , as well
as off-resonant with U/n, where n is an integer. This means
the electronic bands will remain at half-filling when driven
by the laser field, thus avoiding material damage. A HSM
plus a spin-chirality term can thus remain a valid description
of the model under driving. Finally, electric fields of E0 ≈
1 × 107 V/cm can be utilized, which are well within reach
of experiments, and allow for αa0 > 1, reaching most of the
relevant parameter space for our proposal. It is our expectation
that by manipulating the intensity of laser traps, deformed
lattices could be realized in this setting, providing a possible
mechanism to test our ideas in a more controlled environment.

V. CONCLUSIONS AND OUTLOOK

In this work, we have analyzed a Floquet magnon Chern
insulator (FMCI) consisting of a honeycomb 2D ferromagnet
upon which a circularly polarized laser beam is shone. The
FMCI, by itself, can host topological bands with a quantized
Floquet Chern number synthesized by the laser field. This
synthetic topology is not easily tuned, and hence we propose
a strain-engineering approach to increase the ability to ma-
nipulate the topological invariant using the laser field. We
argue that this ability can lead to the development of new

spintronics-based technologies. Having studied the case of a
nearest-neighbor as well as next-nearest-neighbor exchange
interaction within the original ferromagnet, we show that in
the latter case, the topological invariant can become very
sensitive to small amounts of strain for certain values of
electric field intensities, and vice versa. Using our parameters,
strain on the order of 10% can be used to make a FMCI
undergo topological phase transitions for very small electric
field intensities, or equivalently, using electric fields on the
order of E0 ≈ 1 × 1012 V/cm, one can use small amounts of
strain to generate topological phase transitions, which enables
the possibility of using, for instance, patterned substrates for
locally manipulating topological invariants, and generating
edge spin current circuits.

Furthermore, existing devices based on topological
magnons, such as magnon diodes, beam-splitters, or even
Mach-Zender-type interferometers [14], could be realized by
local variations in strain alone, not relying on changes in
magnetization, or the creation of holes in the material, but
rather on SETS.

We finally argue that systems based on cold-atom traps can
function as a testing ground for these ideas, since coupling of
electric fields to underlying electronic models of magnetism
is much stronger than to spin systems directly due to the
nature of the Aharonov-Casher effect. Within these models, it
is nonetheless possible to generate topological magnetic terms
such as a spin-chirality, and strain could be implemented in a
simple manner by deforming the cold atom lattice.
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