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Self-induced transparency in a semiconductor quantum dot medium at ultracold temperatures
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We investigate the feasibility of minimum absorption and minimum broadening of pulse propagation in
an inhomogeneously broadened semiconductor quantum dot medium. The phonon interaction is inevitable in
studying any semiconductor quantum dot system. We have used the polaron transformation technique to deal
with quantum dot phonon interaction in solving system dynamics. We demonstrate that a short pulse can
propagate inside the medium with minimal absorption and broadening in pulse shape. The stable pulse area
becomes slightly higher than the prediction of the pulse area theorem and is also dependent on the environment
temperature. The change in the final pulse shape is explained very well by numerically solving the propagation
equation supported by the susceptibility of the medium. Our system also exhibits the pulse breakup phenomena
for higher input pulse areas. Therefore, the considered scheme can have important applications in quantum
communication, quantum information, and mode-locking with the advantage of scalability and controllability.

DOI: 10.1103/PhysRevB.107.235409

I. INTRODUCTION

In self-induced transparency (SIT), an optical pulse prop-
agates resonantly through the two-level absorbing medium
without any loss and distortion. This pioneering work was
carried out by McCall and Hahn [1,2]. SIT originates from
the generated coherence of a strongly coupled light-medium
interaction. Therefore for observing SIT, the incident pulse
should be short compared to the various relaxation times
present in the system, such that the coherence will not vanish
during the pulse propagation. Further, the pulse should also
be strong enough to excite the atom from the ground state.
One of the best theoretical estimations of the input pulse was
reported in the “area theorem” [2]. This theorem dictates that
a 2π secant pulse can propagate through the medium without
any loss and distortion in the pulse shape. In general, for an
initial pulse area θ0 obeying the condition (n + 1)π > θ0 >

nπ , evolves the area towards (n + 1)π or nπ depending on
whether n is odd or even. Therefore input pulse with a larger
area of 2nπ breaks up into n number of 2π pulses with
different propagation velocities. These effects have been ob-
served experimentally in atomic rubidium medium by Slusher
and Gibbs [3]. In particular, they have found excellent agree-
ment between numerical simulations and experimental results.
These fundamental properties of the SIT were investigated
several times, both theoretically and experimentally [4–6].

However, in atomic medium, the preparation and trapping
of atomic gas required a vast and sophisticated setup. More-
over, due to the gaseous nature of the medium, the different
velocity of the atom shows Doppler broadening in output

*samit176121009@iitg.ac.in
†ppathak@iitmandi.ac.in
‡tarak.dey@iitg.ac.in

result. For the last two decades, solid-state semiconductor
mediums have emerged as a potential candidate for optical
applications, particularly for scalable on-chip quantum tech-
nology. Earlier, the resonant coherent pulse propagation in
bulk and quantum-well semiconductors behaves differently
compared to a two-level atomic medium. The discrepancy
mentioned above occurs due to the many-body Coulomb in-
teraction of the different momentum states present in a bulk
medium [7–9]. This problem has been overcome in three-
dimensionally confined excitons in quantum dots (QDs). The
quantum dots can easily be engineered to get the desired
transition frequency to avoid the problem of laser availability.
The scalability and fabrication technology make the semicon-
ductor QDs suitable for modern quantum optics experiments.
There have been some interesting theoretical proposals about
the possibility of observing SIT in self-organized InGaAs
QDs [10]. Excitonic transition in InGaAs QDs have large
transition dipole moments and long dephasing time in the
range of nanoseconds at cryogenic temperatures [11] and are,
therefore a promising candidate for SIT.

Although the QD medium is a potential candidate for
observing SIT, it has a few drawbacks also. All the QDs
inside the medium are not identical, so an inhomogeneous
level broadening is always present in the system. In semi-
conductors, longitudinal acoustic phonon interaction is vital
because of the environment temperature. Interactions between
phonon and exciton lead to dephasing in coupled dynamics of
exciton-photon interaction [12,13]. Several theoretical models
and experiments have recently explained SIT in the semi-
conductor QD medium [14–16]. Few of them consider the
effect of the phonon environment on the system dynamics in
the context of group velocity dispersion [17]. Another recent
experimental study showed the SIT mode-locking and area
theorem for semiconductor QD medium, and rubidium atom
[18,19].
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In this paper, we discuss the possibility of SIT in a semi-
conductor QD medium incorporating the effect of phonon
bath in our model. We utilize the recently developed polaron
transformed master equation keeping all orders of exciton-
phonon interaction [20–22]. Our model’s pulse propagation
dynamics depend on system and bath parameters. Hence, the
propagation dynamics become more transparent by knowing
both the system and the bath’s contribution.The motivation
behind this paper is to find long-distance optical communi-
cation without loss of generality in an array of QD. Due to
strong confinement of electron hole pairs, QDs have discrete
energy levels thus QD arrays mimic atomic medium with the
added advantage of scalability and controllability with ad-
vanced semiconductor technology. It is also possible to create
QD fibers, which can be used for quantum communication
channels [23,24]. Motivated by this study, we theoretically
investigate the self-induced transparency effect in a semicon-
ductor QD medium.

Our paper is organized as follows. Section I contains a brief
introduction of the SIT in a QD medium and its application.
In Sec. II, we present our considered model system along with
the theoretical formalism of the polaron master equation. In
Sec. III we discuss the result after numerically solving the
relevant system equations. Finally, we draw conclusions in
Sec. IV.

II. MODEL SYSTEM

The phonon contribution to QD dynamics at low temper-
ature is mandatory. We assume the propagation of an optical
pulse along the z direction. Accordingly, we define the electric
field of the incident optical pulse as

�E (z, t ) = êE (z, t )ei(kz−ωLt ) + c.c, (1)

where E (z, t ) is the slowly varying envelope of the field.
The bulk QD medium comprises multiple alternating
InGaAs/GaAs QD deposition layers. Every QD inside the
medium strongly interacts with the electric field due to the sig-
nificant dipole moment. Since all the QD inside the medium is
not identical, the exciton energy of the different QD will vary
depending on the dot size. The lth type QD can be modeled
as a two-level system with exciton state |1〉l , and ground state
|2〉l with energy gap h̄ωl by taking the proper choice of biex-
citon binding energy and polarization as shown in the Fig. 1.
The raising and lowering operator for the lth type QD can be
written as σ+

l = |1(ωl )〉l〈2(ωl )|l and σ−
l = |2(ωl )〉l〈1(ωl )|l .

In case of semiconductor QDs, the optical properties get
modified due to the lattice mode of vibration, i.e., the acoustic
phonon. Hence, QD exciton transition coupled to an acous-
tic phonon bath model mimics the desired interaction. The
phonon bath consists of a large number of closely spaced
harmonic oscillator modes. Therefore, we introduce the an-
nihilation and creation operators associated with kth phonon
mode having frequency ωk as bk and b†

k . The mode frequency
can be expressed as ωk = csk where k and cs are the wave
vector and velocity of sound. The Hamiltonian for the de-
scribed model system after making dipole and rotating wave

FIG. 1. A schematic diagram of the QD level system with ground
state |2〉 and exciton state |1〉 driven by the optical pulse with ef-
fective coupling 〈B〉� (blue line). The spontaneous decay from the
exciton state to the ground state is shown using a curly red line.
The parallel violet lines represent the phonon modes interacting
with the exciton state. The red and blue dashed lines represent the
phonon-induced decay and pumping rate respectively.

approximation is given by

H =
∑

l

[
− h̄δlσ

+
l σ−

l + 1

2
h̄(�(z, t )σ+

l + �∗(z, t )σ−
l )

+ h̄σ+
l σ−

l

∑
k

λk (bk + b†
k )

]
+ h̄

∑
k

ωkb†
kbk, (2)

where λk is the exciton phonon mode coupling constant and
�(z, t ) = −2 �d12 · êE (z, t )/h̄ is the Rabi frequency with tran-
sition dipole moment vector �d12. The detuning of the optical
field with QD transition is defined as δl = ωL − ωl .

We notice that the Hamiltonian contains an infinite sum
over phonon modes. Keeping all order of exciton phonon
interaction, we made a transformation in the polaron frame.
The transformation rule for modified Hamiltonian is given by
H ′ = ePHe−P where the operator P = ∑

l σ+
l σ−

l

∑
k λk (b†

k −
bk )/ωk . This transformation also helps us to separate the
system Hamiltonian from the total Hamiltonian, which is our
primary interest. The transformed Hamiltonian is divided into
system, bath, and interaction part, which can be decomposed
as H ′ = Hs + Hb + HI , where

Hs =
∑

l

−h̄	lσ
+
l σ−

l + 〈B〉X g
l , (3)

Hb = h̄
∑

k

ωkb†
kbk, (4)

HI =
∑

l

ξgX g
l + ξuX u

l , (5)

and 	l is the redefined detuning by considering the polaron
shift

∑
k λ2

k/ωk . The definition of phonon-modified system
operators is given by

X g
l = h̄

2
(�(z, t )σ+

l + �∗(z, t )σ−
l ), (6)

X u
l = ih̄

2
(�(z, t )σ+

l − �∗(z, t )σ−
l ). (7)

The phonon bath fluctuation operators are

ξg = 1
2 (B+ + B− − 2〈B〉), (8)

ξu = 1

2i
(B+ − B−), (9)
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where B+ and B− are the coherent-state phonon displacement
operators. Explicitly, the phonon displacement operators in
terms of the phonon mode operators can be written as

B± = exp

[
±

∑
k

λk

ωk

(
b†

k − bk
)]

.

From this expression, it is clear that the exponential of the
phonon operator takes care of all the higher-order phonon
processes. Therefore, the phonon displacement operator av-
eraged over all closely spaced phonon modes at a temperature
T obeys the relation 〈B+〉 = 〈B−〉 = 〈B〉 where

〈B〉 = exp

[
−1

2

∫ ∞

0
dω

J (ω)

ω2
coth

(
h̄ω

2KBT

)]
, (10)

and KB is the Boltzmann constant. The phonon spectral
density function J (ω) = αpω

3 exp[−ω2/2ω2
b] describes lon-

gitudinal acoustic (LA) phonon coupling via a deformation
potential [25] for QD system, where the parameters αp and
ωb are the electron-phonon coupling and cutoff frequency,
respectively.

Next, we use the master equation (ME) approach to solve
the polaron-transformed system Hamiltonian dynamics by
considering the phonon bath as a perturbation. The Born-
Markov approximation can be performed with respect to the
polaron-transformed perturbation in the case of nonlinear ex-
citation. Hence, the density matrix equation for the reduced
system under Born-Markov approximation can be written as

ρ̇ = 1

ih̄
[Hs, ρ] +

∑
l

(
Lphρ + γ

2
L[σ−

l ]ρ + γd

2
L[σ+

l σ−
l ]ρ

)
,

(11)
where γ is the spontaneous decay rate of the exciton state. The
spontaneous decay originates from the quantum fluctuations
of the vacuum state. Similarly, for thermal fluctuation, we
have adopted the final Lindbladian form of the dephasing
interaction model described by a simple stochastic Hamil-
tonian [26]. Therefore, we incorporate the pure-dephasing
process phenomenologically in ME with a decay rate γd .
This additional dephasing term explains the broadening of
the zero-phonon line (ZPL) in QD with increasing temper-
atures [27,28]. The Lindblad superoperator L is expressed
as L[O]ρ = 2OρO† − O†Oρ − ρO†O, under the operation
of O operator. The term Lph represents the effect of phonon
bath on the system dynamics. Therefore, the explicit form of
Lphρ in terms of previously defined system operators can be

expressed as

Lphρ = − 1

h̄2

∫ ∞

0
dτ

∑
j=g,u

Gj (τ )
[
X j

l (z, t ), X j
l (z, t, τ )ρ(t )

]
+ H.c., (12)

where X j
l (z, t, τ ) = e−iHsτ/h̄X j

l (z, t )eiHsτ/h̄, and the polaron
Green’s functions are Gg(τ ) = 〈B〉2{cosh[φ(τ )] − 1} and
Gu(τ ) = 〈B〉2 sinh[φ(τ )]. The phonon Green’s functions de-
pend on phonon correlation function given below:

φ(τ ) =
∫ ∞

0
dω

J (ω)

ω2

[
coth

(
h̄ω

2KBT

)
cos(ωτ ) − i sin(ωτ )

]
.

(13)
The polaron ME formalism is not generally valid for arbitrary
excitation strength and exciton phonon coupling. The validity
of polaron ME is stated as [20](

�

ωb

)2(
1 − 〈B〉4

) � 1. (14)

It is clear from the above equation that at low temperatures
〈B〉 ≈ 1 and �/ωb < 1 fulfill the above criteria. Hence, we
restrict our calculation in the weak-field regime satisfying
�/ωb < 1 at a low phonon bath temperature.

The full polaron ME (11) contains multiple commuta-
tor brackets and complex operator exponents, which require
involved numerical treatment for studying time dynamics.
We make some simplifications of the full ME by using
various useful identities. These reduce ME into a simple
analytical form with decay rates corresponding to the vari-
ous phonon-induced processes. Although we have not made
any approximation, simplified ME scales down the numerical
computation efforts and gives better insight into the physical
process. By expanding all the commutators in Eq. (11) and
rearranging using fermion operator identities, we get the sim-
plified ME as

ρ̇ = 1

ih̄
[Hs, ρ] +

∑
l

(
γ

2
L[σ−

l ]ρ + γd

2
L[σ+

l σ−
l ]ρ

+ �σ+
l

2
L[σ+

l ]ρ + �σ−
l

2
L[σ−

l ]ρ

−�cd
l (σ+

l ρσ+
l + σ−

l ρσ−
l )

− i�sd
l (σ+

l ρσ+
l − σ−

l ρσ−
l ) + i	σ+σ−

l [σ+
l σ−

l , ρ]

− [
i�gu+

l (σ+
l σ−

l ρσ+
l + σ−

l ρ − σ+
l σ−

l ρσ−
l ) + H.c.

]
− [

�
gu−
l (σ+

l σ−
l ρσ+

l − σ−
l ρ + σ+

l σ−
l ρσ−

l ) + H.c.
])

.

(15)

The phonon-induced decay rates are given by

�
σ+/σ−
l = �R(z, t )2

2

∫ ∞

0

(
Re{(cosh (φ(τ )) − 1) f (z, t, τ ) + sinh (φ(τ )) cos (η(z, t )τ )}

∓ Im

{
(eφ(τ ) − 1)

	l sin (η(z, t )τ )
η(z, t )

})
dτ, (16)
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�cd
l = 1

2

∫ ∞

0
Re

{
�S (z, t ) sinh (φ(τ )) cos (η(z, t )τ ) − �S (z, t )(cosh (φ(τ )) − 1) f (z, t, τ )

+ �T (z, t )(e−φ(τ ) − 1)
	l sin (η(z, t )τ )

η(z, t )

}
dτ, (17)

�sd
l = 1

2

∫ ∞

0
Re

{
�T (z, t ) sinh (φ(τ )) cos (η(z, t )τ ) − �T (z, t )( cosh(φ(τ )) − 1) f (z, t, τ )

− �S (z, t )(e−φ(τ ) − 1)
	l sin (η(z, t )τ )

η(z, t )

}
dτ, (18)

	σ+σ−
l = �R(z, t )2

2

∫ ∞

0
Re

{
(eφ(τ ) − 1)

	l sin (η(z, t )τ )
η(z, t )

}
dτ, (19)

�
gu+
l = �R(z, t )2

2

∫ ∞

0

{
(cosh (φ(τ )) − 1) Im[〈B〉�]h(z, t, τ ) + sinh (φ(τ ))

Re[〈B〉�] sin (η(z, t )τ )
η(z, t )

}
dτ, (20)

�
gu−
l = �R(z, t )2

2

∫ ∞

0

{
(cosh (φ(τ )) − 1) Re[〈B〉�]h(z, t, τ ) − sinh (φ(τ ))

Im[〈B〉�] sin(η(z, t )τ )

η(z, t )

}
dτ, (21)

where f (z, t, τ ) = (	2
l cos (η(z, t )τ ) + �R(z, t )2)/η(z, t )2, h(z, t, τ ) = 	l (1 − cos (η(z, t )τ ))/η2(z, t ), and η(z, t ) =√

�R(z, t )2 + 	2
l with the polaron-shifted Rabi frequency, �R(z, t ) = 〈B〉|�(z, t )|, �S (z, t ) = Re[〈B〉�(z, t )]2 −

Im[〈B〉�(z, t )]2, �T (z, t ) = 2 Re[〈B〉�(z, t )] Im[〈B〉�(z, t )].

Next, we use Maxwell wave equation to describe the prop-
agation dynamics of the electromagnetic field inside the QD
medium (

∇2 − 1

c2

∂2

∂t2

)
�E (z, t ) = μ0

∂2

∂t2
�P(z, t ) (22)

where μ0 is the permeability of free space. The induced po-
larization �P(z, t ) originates from the alignment of the medium
dipole in the presence of an applied field. Therefore it de-
pends on the coherence term of the density matrix equation.
For lth QD, the coherence term of the density matrix equa-
tion can be written as ρ12(	l , z, t ) = 〈1(ωl )|lρ(z, t )|2(ωl )〉l .
The medium consists of a large number of QD with contin-
uous frequency distribution centered at ωc. Therefore we can
safely replace the summation with integration by redefining
the discrete variable 	l to a continuous variable 	. The in-
duced macroscopic polarization can be written in terms of the
density matrix element as

�P(z, t ) = N
∫ ∞

−∞
( �d12ρ12(	, z, t )ei(kz−ωLt ) + c.c.)g(	)d	,

(23)
where N is the QD volume number density. The inhomoge-
neous level broadening function in the frequency domain is
defined by g(	). In our calculation, the form of g(	) is

g(	) = 1

σ
√

2π
e− (	−	c )2

2σ2 , (24)

where the standard deviation is σ . The detuning between the
applied field and the QDs central frequency is represented
by 	c. By applying slowly varying envelope approximation,
one can cast inhomogeneous second-order partial differential
Eq. (22) to first-order differential equation as(

∂

∂z
+ 1

c

∂

∂t

)
�(z, t ) = iη

∫ ∞

−∞
ρ12(	, z, t )g(	)d	, (25)

where the coupling constant η is defined by

η = −3Nλ2γ /4π (26)

and λ is the carrier wavelength of the QD transition. The self
consistent solution of Eqs. (15) and (25) with proper initial
conditions can display the spatiotemporal evolution of the
field inside the medium. Moreover the analytical solution of
the coupled partial differential equation is known only for
some special conditions, hence we adopted numerical integra-
tion of Eqs. (15) and (25) to depict the results. For numerical
computation, a useful frame transformation τ = t − z/c and
ζ = z is needed, which removes the explicit time variable
from Eq. (25), which now only depends on the one variable ζ .

III. NUMERICAL RESULT

A. Phonon-induced scattering rates

First we discuss various decay rates for the QD system
with experimentally available parameter regions [29,30]. The
medium comprises InGaAs/GaAs QDs with volume density
N = 5 × 1020 m−3 and a length of 1 mm. The central QD
excitation energy is h̄ωc = 1.3 eV with a Gaussian spectral
distribution having FWHM of 23.5 meV. The QD is driven by
the optical pulse at ζ = 0 with a hyperbolic secant profile

|�(0, τ )| = �0 sech

(
τ − τc

τ0

)
(27)

where τ0, and τc define the width and center of the pulse,
respectively. For numerical computation, the amplitude and
width of the pulse are taken to be �0 = 0.2 meV and τ0 =
6.373 ps. The phonon bath temperature T = 4.2 K gives 〈B〉 =
0.95. Other parameters are αp = 0.03 ps2, ωb = 1 meV. The
system under consideration has a relaxation rate γ = γd =
2 µeV (2 ns). In order to normalize all the system parameters
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FIG. 2. The variation of phonon-induced scattering rates with
detuning and time of a QD at ζ = 0 for the applied secant pulse
in Eq. (27). (a) Phonon-induced pumping rate �σ+

[Eq. (16)].
(b) Phonon-induced decay rate �σ−

[Eq. (16)]. (c) Phonon in-
duced dephasing �cd[Eq. (17)]. (d) Phonon induced detuning
	σ+σ−

[Eq. (19)] for peak Rabi frequency �0 = 0.2 meV, pulse width
τ0 = 6.373 ps and pulse center γnτc = 40. The phonon bath tem-
perature T = 4.2 K corresponds to 〈B〉 = 0.95 with spectral density
function parameters αp = 0.03 ps2, ωb = 1 meV.

to a dimensionless quantity we have chosen normalization
frequency to be γn = 1 rad/ps.

In Fig. 2, the color bar represents the variation of various
phonon-induced scattering rates as a function of detuning
and time, both at normalized units along the x and y axis
respectively. In the QD system, various phonon processes are
connected with exciton transitions. In the case of ground state
to exciton transition, phonon absorption occurs while in the
opposite process, phonon emission occurs. Now we discuss
the physical process associated with the phonon scattering
rates �σ+

and �σ−
. For positive detuning, the applied field

frequency is larger than the QD transition frequency. Subse-
quently a phonon generates with 	 frequency in order to make
a resonant QD transition. These emitted phonons develop
an incoherent excitation in the system referred by the �σ+

.
Oppositely for negative detuning, the applied field frequency
is smaller than the QD transition frequency, and a resonant QD
transition is possible only when some phonon of frequency
	 will be absorbed from the bath. With this mechanism, QD
exciton to ground-state decay enhances the radiation, which is
represented by the �σ−

. This low-temperature asymmetry is
clearly visible in Figs. 2(a) and 2(b). At higher temperatures,
this asymmetry gets destroyed, and both rates overlap and
are centered at 	 = 0. Figure 2(c) shows the variation of
�cd , which is only present in the off-diagonal density matrix
element and responsible for the additional dephasing in the
system dynamics. The additional detuning 	σ+σ−

from the
simplified master equation plotted in Fig. 2(d) shows a very
tiny value compared to the system detuning 	. We also no-
tice that the sign of 	σ+σ−

changes according to the system
detuning 	. It is important to keep in mind that we display

the variation along the y axis around γnτ = 40, which is the
center of the pulse with the secant profile.

B. Pulse area theorem

It is well know from Beer’s law, that a weak pulse gets
absorbed inside the medium due to the presence of opacity at
the resonance condition. However, McCall and Hahn showed
that some specific envelope pulse shape remains intact for
a long distance without absorption, even at resonance [1,2].
Inspired of this phenomena, we have taken into account of
a time-varying pulse whose envelope shape is stated in the
Eq. (27). The area �(z) enclosed by its hyperbolic envelope
shape is defined as

�(z) =
∫ +∞

−∞
�(z, t ′)dt ′. (28)

By formally integrating Eq. (25) over time and detuning, one
can find the spatial variation of the pulse area closely followed
by the McCall and Hahn study. The evolution of the pulse
area �(z) during its propagation in a two-level absorbing QD
medium is given by

d�(z)

dz
= −α

2
sin �(z) (29)

where α is the optical extinction per unit length. The optical
extinction depends on the various system parameters as α =
2πηg(0). The solution of the Eq. (29) is

tan
�(z)

2
= tan

�(0)

2
e−αz/2, (30)

where �(0) is the pulse area at z = 0. It is clear from the above
expression that �(z) = 2nπ is the stable solution, whereas
�(z) = (2n + 1)π is an unstable one. The pulse area of the
given envelope as stated in Eq. (27) is �(0) = π�0τ0. Thus,
the envelope with amplitude �0 = 2/τ0 gives 2π area pulse.
This envelope shape remains preserve for the long propa-
gation distance even though it interacts resonantly with the
medium.

Figure 3 exhibits the variation of pulse area with the prop-
agation distance inside the QD medium. It is evident from this
figure that the propagation dynamics of 2π area pulse through
the medium of length L has negligible loss in pulse area. In
the absence of phonon (black line) interaction, the system
behaves identical to the atomic system and hence follows � ≈
2π (1 − τ0/T ′

2 ) reported earlier by McCall and Hahn [2]. The
loss in pulse area comes from the finite lifetime T ′

2 of the QD,
which is inversely proportional to γd . Ideally, the pulse will
retain initial pulse area for an arbitrary distance in absence
of decay and decoherence. However, in presence of phonon
contribution, we have noticed the pulse area gets enhanced by
a small amount. The amount of raise in the pulse area linearly
depends on the bath temperature as indicated in Fig. 3. This
effect can be explained by carefully examining the definition
of an effective Rabi frequency �R(z, t ) = 〈B〉|�(z, t )| where
〈B〉 is dependent on the bath temperatures. The inset of Fig. 3
illustrate the convergence of the pulse area shifted from the
2π value at different temperatures.

To explain the behavior of Fig. 3, we study the absorp-
tion and dispersion properties of the medium as a function
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FIG. 3. Evolution of the pulse area(�) as a function of prop-
agation distance ζ started with 2π sech-type pulse for different
temperatures. The applied pulse has a width of τ0 = 6.373 ps and
centered at γnτc = 40. The system under consideration without
phonon bath (black) and with phonon bath maintaining temperature
T = 4.2 K (red), 10 K (blue), 20 K (green) with electron phonon
coupling αp = 0.03 ps2 and cut off frequency ωb = 1 meV. The
central QD detuning 	c = 0 with spontaneous decay and the pure
dephasing rate γ = γd = 2 µeV (2 ns).The optical extinction per unit
length α = 10 mm−1. The inset figure shows the stability of the pulse
area higher than 2π for different phonon bath temperatures.

of detuning at various time intervals of the pulse. Figure 4
delineates the physical process behind the dispersion and ab-
sorption. We assume all the population in the ground state,
before the leading edge of the pulse reaches the medium. The
peak of incident pulse enters inside the medium at γnτc =
40. It is clear from Fig. 4(a) that most of the leading edge
pulse energy gets absorbed by the ground-state population and

FIG. 4. The real (black) and imaginary red) part of the coherence
ρ12 of a single QD at different times for a 2π sech-type short pulse
with pulse center at γnτc = 40 as a function of detuning. The pulse
has a width τ0 = 6.373 ps. Corresponding phonon bath parameters
are T = 4.2 K, αp = 0.03 ps2, ωb = 1 meV. Considered QD relax-
ation rates are γ = γd = 2 µeV (2 ns).

FIG. 5. The variation of excited state population with input pulse
area at resonance condition 	c = 0. The system and bath parameters
are τ0 = 6.373 ps, γnτc = 40, T = 4.2 K, αp = 0.03 ps2, ωb =
1 meV, γ = γd = 2 µeV (2 ns).

the population goes to the excited state. Hence the medium
shows maximum absorption at γnτ = 30, thus elucidating
the absorption phenomenon at resonance. Simultaneously, the
nature of the dispersion curve is anomalous as previously
reported [31]. The anomalous dispersion accompanied fast
velocity is completely prohibited due to huge absorption at
the resonance condition. The medium becomes saturated as
the center of the pulse enters the medium; consequently, the
medium turns less absorbent to the pulse. Nonetheless, a tiny
absorption peak still exists at the resonance condition due to
the presence of various decay processes of the medium as indi-
cated by Fig. 4(b). Therefore, the excited state gets populated
during the passage of the leading edge pulse. This population
can leave the excited state and return to the ground by stimu-
lated emission in the presence of the trailing edge of the pulse.
As a results, a gain can be experienced by the incident pulse at
γnτ = 50 as revealed in Fig. 4(c). From these three panels, we
can conclude that the leading edge of the pulse gets absorbed
by the medium, while the tailing edge of the pulse experiences
gain. Towards the trailing end of the pulse, the dispersive
nature of the medium changes from anomalous to normal, as
shown in Fig. 4(d). The positive slope of the dispersion curve
lead to slow group velocity that started at γnτ = 60 shown
in Fig. 4(d). Figures 4(d)–4(f) indicate that the optical pulse
regeneration process is completed due to the medium-assisted
gain; hence, the pulse shape remains preserved. This is the
explanation of the underpinning mechanism behind SIT. The
claim of the above physical mechanism can be supported by
studying population dynamics at the excited state. For this
purpose, we have plotted the excited state population as a
function of the pulse area in Fig. 5. A noticeable population
redistribution among the levels is feasible within few widths
of incident pulse wherein intensity is appreciable. As soon
as the pulse intensity diminishes at the trailing end, sponta-
neous emission takes care of depletion of the excited-state
population. This leads to vanishing population at the excited
state after a sufficiently long time from the pulse center. As
a consequence, it is crucial to decide the observation time of
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the QD population. Hence, we display the exciton population
at just the end of the pulse γnτ = 60, to capture the outcome
of the pulse. It is clear from Fig. 5 that the excited-state pop-
ulation shows a decaying Rabi oscillation kind of behavior. It
is also confirmed that the population never fully transferred
to the excited state or fully returned to the ground state for
any pulse area, indicating to nonconstant phonon induced
decay and gain process involved in the system. The decaying
features of the local population maximum can be justified by
the examining the photon and phonon induced decay rates.
The various phonon decay rates are given in Eqs. (16)–(21)
where increasing incident pulse amplitude �(z, t ) results in
the enhancement of these decay rates. This field amplitude
dependent phonon decay together with constant photon decay
can explain the gradual decay of the population local maxima.
On the contrary, the dip of local minima increases due to the
presence of phonon induced gain processes �σ+ as suggested
in Eq. (16). The local maximum and minimum of the exciton
population are located respectively near odd and even integer
multiples of π pulse area. The maxima signifies the pulse
absorption by the medium, resulting in population inversion.
Similarly, minima manifests the transparency of the medium.
Thus, the leading edge of the pulse excite the population
whereas the tailing edge assists in stimulated emission leaving
the population in the ground state of the medium. It is evi-
dent that only even integer multiples of π pulse can propagate
through the medium without absorption that is consistent with
the pulse area theorem. That the local maxima and minima of
exciton population never match exactly with the integer value
can be figured out later by investigating pulse propagation
dynamics. Previously, we found the stable pulse area is higher
than 2π as shown in Fig. 3, which also agrees with the above
observation. Therefore, the analysis of coherence and popula-
tion ensures us that SIT phenomena can be accomplished in
the QD medium.

C. Self-induced transparency

A homogenous QD medium with length 1 mm is taken into
account for studying spatiotemporal evolution of hyperbolic
secant optical pulse. To achieve a stable pulse propagation,
we have chosen the initial pulse area to be 2π . Figure 6
confirms the area theorem by showing a stable optical pulse
propagation for a longer distance. However, the pulse shape
at larger distances has noticed some distortion and absorption.
Figure 6 also indicates that the pulse’s peak value gradually
decreases by increasing the propagation distance. This sug-
gests a finite absorption in the QD medium that prohibited
complete transparency in the system. In particular, the state-
ment agrees well with the small absorption peak at resonance
in the absorption profile shown in Fig. 4(b). Figure 7 displays
the individually normalized pulse for different propagation
distances. Inspection says that the input pulse experiences
delay and a little broadening during the propagation through
the medium. The sole reason behind the pulse broadening is
the dispersive nature of the system. In the frequency domain,
a temporal pulse can be treated as a linear superposition
of many traveling plane waves with different frequencies.
These individual frequency waves gather different phases and
move with varying velocities during the pulse propagation

FIG. 6. The Rabi frequency normalized with the input peak value
is plotted against retarded time at different propagation distances
inside the medium at resonance condition 	c = 0. The input pulse
has the following parameters �(0) = 2π , τ0 = 6.373 ps, γnτc = 40.
The chosen QD inhomogeneous level broadening in normalized units
σ/γn = 15. Other parameters are T = 4.2 K, αp = 0.03 ps2, ωb =
1 meV, γ = γd = 2 µeV (2 ns).

in a dispersive medium. Therefore the pulse gets broader as
the leading part(low frequency) moves faster, and the tail-
ing end(high frequency) goes slower. In the QD system, the
pure dephasing rate is also responsible for this broadening
as it destroys the coherence. From Fig. 7, a distinct peak
shift is observed while optical pulse propagating through the
medium. This peak shift arises because of normal dispersive
medium that induced slow group velocity of the optical pulse
inside the medium. We adopt the analytical expression of
time delay in the ideal case by considering σ 
 1/τ0 reported
earlier [32]. The analytical expression for time delay found
to be γnτd = αLγnτ0/4. Here the absorption coefficient α is
approximately 10 mm−1 calculated from the chosen param-
eters. Therefore the calculated analytical time delay γnτd ≈

FIG. 7. The Rabi frequency normalized with the individual peak
value is plotted against retarded time at different propagation dis-
tances inside the medium at resonance condition 	c = 0. All the
other parameters are the same as Fig. (6).
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FIG. 8. The normalized Rabi frequency displayed with retarded
time after passing the medium for three different QD broadening σ .
All the other parameters are the same as Fig. 6.

15 shows excellent agreement with the numerical result. The
inhomogeneous level broadening σ plays an important role
in pulse propagation dynamics. In our calculation, we are in
the regime where the pulse width is greater than the inho-
mogeneous broadening time στ0 
 1. Therefore, the higher
spread of the QD parameter σ leads to fewer QD resonantly
interacting with the propagating pulse. This results in a negli-
gibly small change in pulse shape. Alternatively, the effective
QD density becomes less, indicating the lower value of the
optical extinction parameter α. Henceforth a lower time delay
is expected in the final output pulse due to its presence in the
righthand term of Eq. (25). In Fig. 8, the final output pulse
shape variation is presented for the three different QD spreads.
The pulse delay decreases with an increasing QD broadening
σ . On the other hand, the pulse peak value decreases with
the lower QD spreads. This observation matches our previous
prediction that higher σ produce a lower pulse delay in the
medium. Also, more resonant QD absorb more energy from
the pulse, resulting in a lesser peak value in the final pulse
shape. Hence spread of the QD is also a determining factor
for the shape and delay of the output pulse. Recalling the
pulse area theorem again, we observe that the pulse area
is almost constant throughout the propagation near 2π . The
result is consistent because as the pulse amplitude decreases,
the pulse width increases, maintaining the constant area under
the curve. Therefore an absorbing QD medium can exhibit the
SIT phenomena at low temperatures.

D. Phonon bath parameter dependence on SIT

In the simplified master equation (15), various phonon-
induced scattering rates depend on both the system and bath
parameters. Hence it is crucial to study the effect of phonon
bath on the SIT dynamics. The phonon contribution comes
to the picture in two ways; one from the reduced Rabi fre-
quency, which depends on the 〈B〉, and the other is the
phonon-induced scattering rates connected with the phonon
spectral density function. Therefore, increasing phonon bath
temperatures reduces the value of 〈B〉 and h̄ω/2KbT present
in the expression of φ(τ ) given in the Eq. (13). Consequently,

FIG. 9. The plot of Rabi frequency envelope with time at a
propagation distance ζη/γn = 50 for different phonon bath temper-
atures at resonance condition 	c = 0. The common parameters are
�(0) = 2π , τ0 = 6.373 ps, γnτc = 40, αp = 0.03 ps2, ωb = 1 meV,
γ = γd = 2 µeV (2 ns). The figure display four different configura-
tions, system without a phonon bath (black) and with a phonon bath
at a temperature T = 4.2 K (red), 10 K (blue), 20 K (green).

effective coupling between QD and applied field gets reduced,
but the phonon-induced decay rates get enhanced. From
Fig. 9, we notice that the final pulse shape experiences more
deformation for higher temperatures. The peak of the output
pulse is also very much reduced for the higher temperature T
= 20 K. Therefore, the bath temperature should be minimized
to see the SIT in the QD medium. Another controlling factor
of the SIT is the interaction strength between the QD and the
phonon bath. So the increment of system-bath coupling leads
to the reduction of the coherence in the system. This state-
ment is understandable by looking at the phonon correlation
function shown in Eq. (13). Thus the final pulse shape for
the equal propagation distances is significantly modified by

FIG. 10. The Rabi frequency envelope with time at a propagation
distance ζη/γn = 50 for different electron-phonon coupling strength
αp at resonance condition 	c = 0. All the parameters are same as
Fig. 9 except T = 4.2 K and various electron-phonon coupling αp =
0.03 ps2 (red), 0.06 ps2 (blue), 0.12 ps2 (green).
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FIG. 11. The propagation dynamics of a 4π area pulse in an
absorbing QD medium as a function of both space and time at
resonance condition 	c = 0. All other parameters are same as Fig. 6.

the electron-phonon coupling constant, as shown in Fig. 10.
Therefore we also have to ensure that the QD bath interacts
weakly to get SIT phenomena in the QD medium.

E. Higher pulse area and pulse breakup

Finally, we discuss the behavior of a pulse propagating
through the absorbing QD medium with a higher pulse area
than 2π . Therefore we consider the next stable pulse area so-
lution 4π for further investigation. The numerical result of the
pulse propagation in both space and time is shown in Fig. 11.
Unlike the 2π pulse case, here, the initial pulse breaks into
two pulses as it travels through the medium. This phenomenon
is also well explained by the pulse area theorem where 2nπ

pulse is split into n number of 2π pulses. Surprisingly, the
initial pulse breakup into two pulses is not identical in shape.
One pulse gets sharper, and the other gets broader in the time
domain and adjusts the peak value such that the area under the
curve is 2π . The broader pulse component shows a prominent
time delay, whereas the sharper pulse component propagates

with a tiny time delay. As a result, total pulse area is constant
throughout the propagation distance near 4π .

IV. CONCLUSIONS

We have investigated the SIT phenomena in an inhomoge-
neously broadened semiconductor QD medium. In our model,
we have included the effect of phonon in the total Hamil-
tonian to describe the modified optical properties of QD in
the presence of a thermal environment. We then adopted the
polaron ME formalism to analytically derive the simplified
ME with various phonon-induced decay rates. These phonon-
induced scattering rates are plotted against detuning and time,
which verify the presence of low-temperature asymmetry of
phonon-induced pumping and decay in our system. We solve
numerically the density matrix equation and Maxwell equa-
tion self-consistently with suitable parameters. We observe
that stable pulse propagation is possible in the QD medium
with pulse area slightly higher than 2π , depending on the
phonon bath temperature. The physical mechanism of the
SIT is clearly understood by analyzing the absorption and
dispersion of the medium. The leading edge of the pulse gets
absorbed by the medium, whereas the tailing edge of the
pulse experience gain, hence the pulse shape remains intact
and propagate through medium with short length. However,
for longer propagation distances, we find that even though
the pulse propagation through the medium is possible, the
propagating pulse gets absorbed and broadened. The final
pulse shape is preserved on exiting the medium. Increasing the
phonon bath temperature and coupling produce more defor-
mation in the final pulse shape, as it destroys the coherence in
the system. Finally, we explore the propagation of a 4π pulse
in the QD medium, which shows prominent pulse breakup
phenomena reported earlier in the literature. Therefore, our
investigation ensures that a short pulse can propagate through
the considered QD medium with a tiny change in shape.
Hence, this paper may have potential applications in quantum
communication, quantum information, and mode locking.
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