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Universality in the relaxation of spin helices under XXZ spin-chain dynamics
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We describe the dynamics of a transverse spin-helix state—a product state with spatially rotating
magnetization—under XXZ spin chain evolution. Due to experimental relevance we especially focus on mag-
netization dynamics. At long times the U (1) symmetry of the Hamiltonian is restored, leading to the decay of
transverse magnetization, which can be described as an exponential decay of a spatially harmonic profile. We
show that the dependence of the short- and intermediate-time decay timescale, which in principle depends on
all different parameters, like the wave vector of the initial helix, the anisotropy, etc., can be described well by a
single scaling function. We also briefly discuss the evolution of magnetization current.
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I. INTRODUCTION

New experimental techniques allow one to create novel
quantum states with unusual properties. Among them, helices
in Heisenberg magnets with a uniaxial anisotropy were pro-
duced and manipulated in cold-atom experiments [1–4]. The
simplicity of creation and chiral properties of the quantum
helices, their nontrivial topology, and large magnetization
current makes quantum helices attractive for potential appli-
cations in spintronics and quantum computing. With the aid
of two-dimensional helices one finds nonequilibrium univer-
sality features [5]. Using helicity degrees of freedom as qubits
was recently discussed in [6]. The stability of one-dimensional
(1D) helix states to external noise can exceed the stability of
the ground states, as was argued in [7]. The helices can be pre-
pared from most simple initial “vacuumlike” states by applica-
tion of resonant fields [8] or by an adiabatic rotation [9]. Due
to their simple structure, helices can be also maintained by dis-
sipation; namely, they become dark states under properly cho-
sen local dissipative protocol, affecting only boundary spins
[10,11]. Finally, 1D helices have a nontrivial content in terms
of quasiparticles: in the Bethe ansatz framework, helices are
formed by exotic quasiparticles carrying zero energy and finite
momentum, the so-called phantom Bethe excitations [12].

Our purpose is to set up a general theoretical framework
for a problem, addressed in an experiment [2,4]. The problem
is to describe the time evolution of helices with arbitrary wave
vector under a XXZ spin- 1

2 coherent dynamics characterized
by z-axis anisotropy �. Note that, unlike the helices with
modulation in the XZ plane discussed in [3,13,14], we treat
transverse helices with modulation in the XY plane. These
two helix types behave completely differently under the XXZ
dynamics; in particular, transverse helices can be long-lived
quantum states [2,15]. A central object of interest in exper-
imental studies [2,4] is the decay rate of transverse helix
amplitude which is calculated from raw data using some ad
hoc or phenomenological fit function. Here we show that the
problem exhibits scaling features leading to universal behav-
ior of the decay rate. More specifically, we show that the rate

of change of the transverse amplitude γ (Q,�) of a helix with
wave vector Q under the XXZ dynamics with anisotropy �

exhibits self-similar scaling,

γ (Q,�)

cos Q
= γ

(
0,

�

cos Q

)
, (1)

valid for short-time and intermediate-time windows. The
range of validity of Eq. (1) depends on system parameters.
For � = 0 (noninteracting fermions), the scaling (1) is exact,
and moreover, we find multipoint correlations to satisfy their
own scaling relations. For other regimes, we supply arguments
that Eq. (1) holds at least up to times where the transverse
spin-helix state (SHS) amplitude drops by a factor of 2, which
is the most experimentally relevant time window. Note that
the decay rate γ always depends on time via its definition.
Here we accept definition (37) based on a threshold, in order
to make direct comparison with experiment [2].

In the following, we set up the problem and derive con-
ceptually important properties and symmetries. We find that
two real functions (the amplitude and the phase) fully de-
scribe the temporal dynamics of one-point correlations, and
investigate these functions numerically and analytically. In the
free-fermion XX case we find remarkable scaling properties
for all equal time observables. Then we treat the general XXZ
case, and derive scaling relation (1) leading to data collapse
of experimentally accessible quantity, a half-amplitude decay
rate. We compare our findings with existing experimental
data. At the end we discuss the evolution of the magnetization
current and give verifiable quantitative predictions.

II. SETUP OF THE PROBLEM

We are interested in the temporal evolution of a 1D SHS,

|�Q,θ,ϕ〉 =
N−1⊗
n=0

(
e−i Qn+ϕ

2 cos θ
2

ei Qn+ϕ

2 sin θ
2

)
, (2)

QN = 0 mod 2π, (3)
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describing a helix spiral with period 2π/Q in lattice units,
constant polar angle 0 � θ � π , and phase ϕ. In the following
we also use a shorthand notation |�Q〉 ≡ |�Q,θ,ϕ〉 and, espe-
cially for a spatially homogeneous version of SHS (Q = 0),
we use |�0〉:

|�0〉 =
(

e−i ϕ

2 cos θ
2

ei ϕ

2 sin θ
2

)⊗N

.

Chiral and homogeneous SHSs are related as |�Q〉 = UQ |�0〉
via the simple transform UQ given in Eq. (10). SHS (2) evolves
via coherent quantum dynamics described by the XXZ Hamil-
tonian with periodic boundary conditions,

H =
N−1∑
n=0

hn,n+1, N + n ≡ n,

(4)
hn,n+1 = σ x

n σ x
n+1 + σ y

n σ
y
n+1 + �

(
σ z

nσ z
n+1 − I

)
,

with z-axis exchange anisotropy �. Equation (3) provides
commensurability of a SHS in a periodic system. The time
evolution e−iHt |�Q,θ,ϕ〉 is characterized by expectation values
of observables, denoted as

〈A(H, t )〉Q ≡ 〈�Q,θ,ϕ | eiHt A e−iHt |�Q,θ,ϕ〉 (5)

[explicit dependence on θ, ϕ is omitted from the left-hand
side of Eq. (5) for brevity], where A is the operator of an
observable. Further on, we also omit unnecessary variables
in 〈A(H, t )〉Q and |�Q,θ,ϕ〉 whenever it will not lead to misun-
derstanding (the omitted variable is the same for all terms in
an equality).

The particularity of state (2) is its chirality, characterized
by integer QN/(2π ), the winding number in the clockwise
direction, and current of z magnetization,

〈 jz(t = 0)〉 = 2 sin2 θ sin Q,
(6)

jz = 2
(
σ x

n σ
y
n+1 − σ y

n σ x
n+1

)
.

In addition, for cos Q = �, SHS (2) is an eigenvector of
H |�=cos Q with eigenvalue zero [12,16], so time evolution (5)
can be viewed as a result of a quench from H |�=cos Q to H
with arbitrary anisotropy at time t = 0. Finally, the SHS can
be prepared in experiments by manipulating homogeneously
polarized equidistantly separated qubits with a magnetic field
gradient [2].

Under standard assumptions (see Appendix A for details),
one can assume that a U (1)-invariant operator like H on
an infinite lattice will impose U (1) symmetry on any of
its subsystem of finite size asymptotically in time, leading,
specifically, to decay of transversal magnetization:

lim
t→∞ lim

N→∞
〈σ±

n (t )〉 = 0, ∀n, (7)

where σ±
n = 1

2 (σ x
n ± iσ y

n ).

III. GENERAL PROPERTIES OF SHS OBSERVABLES
UNDER XXZ EVOLUTION

Property I: Relation between spatially shifted observables.
Let An and An+1 be the same operator, shifted by one site (the

operator itself can act on an arbitrary number of sites). Then,

〈An+1〉 = 〈V †
QAnVQ〉,

VQ =
⊗

n

e−i Q
2 σ z

n . (8)

For a proof, denote by T an operator of a shift by one lattice
site to the right. Obviously, [T, H] = [VQ, H] = 0. Using the
easily verifiable relation

T |�Q〉 = VQ |�Q〉 ,

we obtain

〈An+1(t )〉 = 〈�Q| T †eiHt An e−iHt T |�Q〉
= 〈�Q|V †

QeiHt An e−iHtVQ |�Q〉
= 〈�Q| eiHtV †

Q An VQ e−iHt |�Q〉 ,

i.e., Eq. (8). Iterating Eq. (8) k times we get 〈An+k〉 =
〈(V −k

Q An V k
Q )〉 for an expectation value of an operator shifted

by k lattice units.
Property II: Scaling relation between expectations calcu-

lated with homogeneous state |�0〉 and with chiral state |�Q〉.
Let A be an arbitrary operator and let Q satisfy Eq. (3). Then,

〈A(H, t )〉Q = 〈A′(H ′, t )〉0, (9)

where

A′ = U †
QAUQ, UQ = e−i Q

2

∑N−1
n=0 n σ z

n , (10)

H ′ = cos Q
N−1∑
n=0

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1 + �

cos Q

(
σ z

nσ z
n+1 − I

))

+ sin Q

2
J, (11)

J = 2
N−1∑
n=0

(
σ x

n σ
y
n+1 − σ y

n σ x
n+1

)
. (12)

For a proof, note that |�Q〉 = UQ |�0〉. Inserting unity
U †

QUQ = I in the proper places, we obtain

〈A(H, t )〉Q = 〈�0| eiH ′t A′e−iH ′t |�0〉 = 〈A′(H ′, t )〉0,

where X ′ = U †
Q XUQ.

Each term σα
n σα

n+1 in H becomes (σα
n )′(σα

n+1)′ after the UQ

transformation. To simplify further, we use easily verifiable
relations: (

σ x
n

)′ = cos(nQ) σ x
n − sin(nQ) σ y

n , (13)

(
σ y

n

)′ = cos(nQ) σ y
n + sin(nQ) σ x

n , (14)

(
σ z

n

)′ = σ z
n . (15)

Inserting the above into H ′ and using trigonometric identities
we get Eq. (11).

In the thermodynamic limit N → ∞, Q is arbitrary. Then,
Eq. (9) allows to reduce a problem of SHS evolution with
arbitrary wavelength Q to evolution of a homogeneous state
Q = 0, under the transformed Hamiltonian H ′, containing an
additional Dzyaloshinskii-Moriya term [17,18], proportional
to the total current of magnetization, J (12).

235408-2



UNIVERSALITY IN THE RELAXATION OF SPIN … PHYSICAL REVIEW B 107, 235408 (2023)

FIG. 1. Decaying traveling wave: x component of the magneti-
zation profile at equal time intervals versus site number, for θ =
π/5, Q = 0.42, � = 0. Magnetization profiles at different times
t = 0, 1, . . . , 5 are shown with additional offsets for better visibil-
ity. Points are TEBD numerics for a chain with 64 sites and open
boundary conditions, while interpolating harmonic curves are given
by Eq. (20). Open boundary conditions generate perturbations at the
edges, propagating in the bulk with the velocity vprop ≈ 4 per unit
time (red dashed lines). The green line shows the location of the
constant phase and is given by n = vt + a where v ≈ 8.5 per unit
time.

In the following, we apply Properties 1 and 2 to study one-
point observables, i.e., spin-helix magnetization profile, and
selected two-point observable, the current of magnetization.

IV. DECAY OF TRANSVERSAL SHS COMPONENTS

The magnetization profile of SHS (2) at t = 0 is harmonic
in space, 〈

σ x
n (0)

〉
sin θ

= cos(Qn + ϕ), (16)
〈
σ

y
n (0)

〉
sin θ

= sin(Qn + ϕ), (17)

where θ is the polar angle and ϕ is the overall phase shift.
Applying Eq. (8) with An = σα

n and using ei Q
2 σ z

σ±e−i Q
2 σ z =

e±iQσ±, and ei Q
2 σ z

σ ze−i Q
2 σ z = σ z, we obtain

〈σ±
n+1(t )〉 = e±iQ〈σ±

n (t )〉, (18)

〈σ z
n+1(t )〉 = 〈σ z

n (t )〉. (19)

Equation (18) entails that the magnetization profile of the SHS
stays strictly harmonic in space at all times t (see Fig. 1 for
an illustration) and can therefore be described via a rescaled
amplitude SN (t ) ≡ SN (Q, θ,�, t ) and a phase shift φ(t ) ≡
φ(Q, θ,�, t ), as〈

σ x
n (t )

〉
sin θ

= SN (t ) cos(Qn + ϕ − φ(t )), (20)
〈
σ

y
n (t )

〉
sin θ

= SN (t ) sin(Qn + ϕ − φ(t )), (21)

〈
σ z

n (t )
〉 = cos θ,

(22)
SN (0) = 1, φ(0) = 0.

Here, Eq. (22) follows from Eq. (19) and the fact that the XXZ
dynamics conserves total z magnetization.

Both SN and φ depend not only on time and system size N
but also on Q, θ , and �, while there is no dependence on the
overall phase ϕ for obvious physical reasons. SN (t ) and φ(t )
satisfy the relations

SN (t ) = SN (−t ), φ(t ) = −φ(−t ), (23)

SN (Q, θ ) = SN (−Q, θ ) = SN (Q, π − θ ),

SN (Q,�) = SN (π − Q,−�) for even N,

φ(π − θ ) = −φ(θ ), (24)

φ(Q) = φ(−Q)

(omitted parameters are the same on both sides), imposed
by symmetries of the Hamiltonian and the SHS (see Ap-
pendix B). In particular it follows from Eq. (24) that

φ(θ, t )|θ=π/2 = 0, (25)

i.e., decay of the fully transversal SHS (the SHS with polariza-
tion lying in the XY plane) is described by just one function
SN (t ) in Eqs. (20) and (21). For θ �= π/2, and |�| < 1, φ(t )
quickly converges to φ(t ) = vt , which allows to view the
magnetization profile as a traveling wave (see green line in
Fig. 1). Further details about the phase are given in Sec. VIII.
Note that the amplitude SN (t ) can be easily measured experi-
mentally while the phase is usually unknown.

We obtained explicit analytic form of SN (t ) in several
cases: for |�| → ∞ [see Eq. (36)], for θ → 0 (see Ap-
pendix D), and for the free-fermion case � = 0, via an explicit
determinantal representation [Eq. (28)].

Further, we are interested in thermodynamic limit
SN (t )|N→∞ → S(t ), since it is an experimentally measurable
quantity [2]. From Eq. (7) we expect the asymptotic decay of
S(t ) → 0 at large times for any choice of parameters, apart
from the case when the SHS is an eigenstate of H , i.e., for
cos Q = �. We can determine early time behavior of S(t ) or
any other observable via exact Taylor expansion [see Eqs. (34)
and (39)].

To obtain the observables at intermediate times t = O(1)
we use time-evolving block decimation (TEBD) calculations
(see Appendix G). The raw TEBD data are illustrated in Fig. 1.
We use the central area near the middle site n = N/2 for all
measurements, in order to avoid an influence of the borders.
The data thus obtained effectively coincide with those from
an infinite system. The quality of the TEBD data for the bulk
can be checked by monitoring deviations for bulk integrals
of motion. For instance, the 〈σ z

n 〉 component of the magneti-
zation in the bulk must stay constant in space and time [see
Eq. (22)]. Thus, we trust the density matrix renormalization
group data for S(t ) up to the times when 〈σ z

n (t )〉 − 〈σ z
n (0)〉

deviations start to appear in the middle of the chain, where
we do the measurements. For the bond size χ = 20 this leads
to parameter-dependent tmax, the typical value being tmax ≈ 3,
which is enough for our purposes (see Appendix G for more
details). In addition, we checked the TEBD correctness di-
rectly by comparison with the exact result of Eq. (28).

The case � = 0 is special and deserves separate
discussion.
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V. XX CASE: SCALING FORM OF CORRELATIONS FOR
DIFFERENT SHS WAVELENGTHS

For the free-fermion case H ≡ HXX = ∑
n(σ x

n σ x
n+1 +

σ
y
n σ

y
n+1), the total magnetization current J from Eq. (12)

is a constant of motion: [HXX, J] = 0. This renders the
Dzyaloshinskii-Moriya term containing J in Eq. (11) irrele-
vant, if the initial state is an eigenstate of J . Indeed, in our
case one can obtain J |�0〉 = 0 (no gradient, no current), re-
sulting in e−iH ′

XXt |�0〉 = e−iHXXt cos Q |�0〉. Consequently, for
H ≡ HXX the scaling property (9) simplifies as

〈A(HXX, t )〉Q = 〈A′(HXX, t cos Q)〉0. (26)

An immediate consequence of Eq. (26) is a scaling relation
for the SHS amplitude,

SN (Q, t ) = SN (0, t cos Q), (27)

i.e., the curves SN (t ) for different Q differ just by rescaling
of time. Note that Eq. (27) is valid for any finite N , provided
commensurability of Q [Eq. (3)].

For even N and � = 0, one finds [19] explicit expressions
of SN (t ) for θ = π/2 and Q = 0:

SN (t ) = 1

NN

∑
p,q

cos(Ep,qt ) det G(p) det G(−q)

× det F (p, q),

Fnm(p, q) = 1

ei(pn−qm ) − 1
, n, m = 1, 2, . . . , N/2, (28)

Gnm(p) = e2inpm (1 + e−ipm ),

Ep,q = 4
N/2∑
j=1

(cos p j − cos q j ),

where F, G are N
2 × N

2 matrices and p ≡ {p1, p2, . . . , pN/2},
q ≡ {p1, p2, . . . , pN/2}, with pk , qk all different and satisfying
eipk N = 1, eiqk N = −1 (see [19] for details). For N = 4, 6,
Eq. (28) gives

S4(t ) = 1
8 (2 cos(4t ) + (3 + 2

√
2) cos(4(

√
2 − 1)t ) + (3 − 2

√
2) cos(4(1 +

√
2)t )),

S6(t ) = 1
96 (8 cos(4t ) + 2 cos(8t ) + 4 cos(4

√
3t ) + (26 + 15

√
3) cos(4(

√
3 − 2)t )

+ 2(7 + 4
√

3) cos(4(
√

3 − 1)t ) + 2(7 − 4
√

3) cos(4(1 +
√

3)t ) + (26 − 15
√

3) cos(4(2 +
√

3)t ) + 2).

For sufficiently large N , SN from Eq. (28) gives an excel-
lent approximation for S(t ) up to times when S(t ) becomes
vanishingly small (see Fig. 2). The number of terms in SN

[Eq. (28)] grows exponentially with N .
Equation (27) allows to study just the homogeneous case

Q = 0 without losing generality. The curves S(t ) for Q = 0
and different θ , obtained via TEBD, are given in Fig. 3. We
see that the decay rate decreases with θ .

FIG. 2. Decay of the amplitude S(t ) for homogeneous initial
state |�0〉, with θ = π/2 under XX dynamics (� = 0). Points stem
from exact formula (28) for N = 22 sites. Interpolating red curve is
given by 1.49e−2.54t . Interpolating blue curve is given by renormal-
ized symmetric α-stable Lévy distribution [20] with α = 1.8.

For the two-point correlations Sαβ
n,m(Q, t ) =

〈σα
n σβ

m (HXX, t )〉Q, we get, for the simplest case n = 0
using Eq. (26),

Sα±
0,m(Q, t ) = e±imQ Sα±

0,m(0, t cos Q), (29)

Sαz
0,m(Q, t ) = Sαz

0,m(0, t cos Q). (30)

For general n, m the scaling relations can be obtained from
Eqs. (29) and (30) using Eq. (8). Generalization to the multi-
point correlations is straightforward.

FIG. 3. Decay in time of the rescaled amplitude S(t ) of homoge-
neous SHS |�0〉, obtained from the TEBD calculations for N = 64,
� = 0, and different θ . Curves from top to bottom correspond to
increasing θ values of θ/π = 0.1, 0.15, 0.2, . . . , 0.5.
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FIG. 4. Rescaled SHS amplitude S(t ) for Q = 0 for different �, for θ = π/2 (left) and θ = 2π/3 (right), from TEBD for open XXZ
spin-1/2 chain with 64 sites. Full curves correspond to |�| � 1, namely, � = 1, 0.8, 0.6, 0.4, 0.2, 0 (from top to bottom). Dashed curves
correspond to � > 1, namely, � = 1.2, 1.8, 2.4, 3; the shorter curves (i.e., those with smaller maximal value of t shown) correspond to larger
�. The largest reported time for each dashed curve is given by 3 tchar from Eq. (35).

VI. XXZ CASE (ARBITRARY �)

For � �= 0 we find the early time evolution of observables
using the expansion

eX Ae−X = A + [X, A] + 1

2!
[X, [X, A]] + · · ·=

∞∑
n=0

1

n!
adn

X (A),

(31)
adX (A) = [X, A], ad0

X (A) = A,

with X substituted by iHt and A being the operator of a chosen
observable. For the expectation values, Eq. (31) yields

〈A(t )〉 = 〈A(0)〉 +
∑
k>0

Ck tk, (32)

valid for the thermodynamic limit N → ∞ (see Appendix F
for details). Generically, a characteristic timescale at which
〈A(t )〉 changes significantly can be estimated as

tchar =
∣∣∣∣ Cks

〈A(0)〉
∣∣∣∣

1
ks

, (33)

where Cks is the first nonvanishing coefficient in Eq. (32). For
the rescaled SHS amplitude, we obtain

S(t ) = 1 − 4t2(� − cos Q)2 sin2 θ + O(t4)

= 1 −
(

t

tchar

)2

+ O(t4), (34)

tchar = |2(� − cos Q) sin θ |−1. (35)

So, S(t ) initially decreases with time, thus driving the one-
site density matrix towards the U (1)-symmetric point S = 0.
The states with larger initial amplitude (larger sin θ ) decay
faster. The amplitude expansion (34) for � = 0 up to the order
t12 is given in Appendix F.

Another important feature of Eq. (35) is the divergence
of tchar for � → cos Q. Indeed for cos Q = � the SHS
|�Q,θ,ϕ〉 becomes an XXZ eigenstate [12], leading to the
time-independent SHS amplitude, and tchar → ∞. To obtain
S(t ) for intermediate times t = O(1) and arbitrary � we use

TEBD. Figure 4 shows the rescaled amplitude S(t ) for Q = 0
and different values of � and θ .

We observe the onset of oscillations of S(t ) for � > 1
(dashed curves in Fig. 4) with slower overall decay of the
oscillation envelope. The emergence of the oscillations can
be understood by considering the �  1 limit, which yields
an oscillatory solution for S(t ) (see Appendix E):

S(t )|�1 = 1 + cos2 θ

2
+ 1

2
sin2 θ cos(4(� − a)t ), (36)

where the nonuniversal shift a = O(1) results from 1/� cor-
rections. In addition, the presence of hopping terms [neglected
in the derivation of Eq. (36)] leads to overall decay of the
oscillation envelope with time, well visible in the TEBD data
for �  1 (see Fig. 5).

Following [2], we characterize the SHS decay S(t ) by a
parameter γ , the inverse time of the amplitude decay by one-

FIG. 5. Rescaled SHS amplitude S(t ) for Q = 0 for large �,
for θ = 2π/3 from TEBD. Solid curves connecting data points
correspond to � = 6, 8, 10, 12, while dashed curves show theoret-
ical �  1 expressions (36) with fitted nonuniversal shift a = 0.9.
Shorter curves correspond to larger �.
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FIG. 6. Half-amplitude decay rate γ versus � for Q = 0 and θ = π/2 (red data set), θ = 2π/3 (lower blue data set), calculated from
the data similar to the ones shown in Fig. 4, respecting the color code. Left: Solid straight lines have slopes, predicted from Eq. (38) for the
� → ∞ limit. Right: Close-up view of left panel. Dashed straight lines show t−1

char = 2|(� − 1) sin θ | for θ = π/2 (red), θ = 2π/3 (blue).

half,

S(1/γ ) = S(0)

2
= 1

2
. (37)

A rough estimate for γ is given by the quantity 1/tchar in
Eq. (35). For monotonic S(t ) dependence as in Fig. 3, γ has
the meaning of a decay rate of the amplitude, while for �  1
when Eq. (36) is approximately valid, γ gives a measure for
the rate of the amplitude change.

Note that the asymptotic � → ∞ values of S(t ) [Eq. (36)]
obey S(t ) � cos2 θ . Our definition of γ in Eq. (37) is therefore
valid for cos2 θ < 1/2, i.e., when π/4 < θ < 3π/4. From
Eq. (36) we obtain

γ |�1 = 8(� − a)

π + 2 arcsin(cot2 θ )
,

predicting the asymptotic slope

∂γ

∂�

∣∣∣∣
�1

= 8

π + 2 arcsin(cot2 θ )
. (38)

The decay rates γ versus � for Q = 0 and fixed θ , shown
in Fig. 6, play a crucial role. In what follows we demonstrate
that γ for arbitrary Q is obtainable from γ for Q = 0 via an
approximate scaling.

VII. APPROXIMATE SCALING FOR THE SHS
AMPLITUDE DECAY RATE

It is tempting to generalize the convenient scaling property
(26) relating expectations taken with respect to homoge-
neous (Q = 0) and nonhomogeneous (Q �= 0) initial states
for the � �= 0 regime. Simply “ignoring” the J-containing
Dzyaloshinskii-Moriya (DM) term in Eq. (11) is not possi-
ble: even if in the first order in time, the DM term gives no
contribution

e−iH ′t |�0〉 ≈ (I − it H ′ + O(t2)) |�0〉
= (I − itH ′|J→0 + O(t2)) |�0〉 ,

and already for t2 order the DM term cannot be neglected,
since J and H do not commute.

However, in expansion (32) some coefficients Ck , k � 2,
can become J independent, depending on the observable. In
particular, one-point correlations 〈σα

0 〉 turn out to be J in-
dependent up to the order t5. For example, for θ = π/2 we
obtain

〈
σ x

0 (H, t )
〉
Q = 1 − κ (Q)t2 + 4t4

3
κ (Q) (2 cos2 Q + �2

− � cos Q) + O(t6),

κ (Q) = 4(� − cos Q)2, (39)

and the same Taylor expansion is valid for
〈σ x

0 (H |�→�/ cos Q, t cos Q)〉0, as can be easily checked.
The equivalence of S(Q,�, t ) − S(0, �

cos Q , t cos Q) = O(t6)
means approximate overlap of the two functions at early
times, and in most cases the overlapping region extends up to
the time of one-half amplitude decay, as exemplified in Fig. 7.
This allows to relate the half-amplitude decay rates γ of

FIG. 7. Illustrating early time equivalence of S(Q, �, t ) (black
curve) and S(0,�/ cos Q, t cos Q) (red curve) for � = 0.5, Q =
1.87. Despite being qualitatively different at later times, the two
curves overlap at early times, which allows an accurate estimate of
γ from Eq. (40) at the threshold value given by crossing of S(t ) with
the dashed line, explaining the data collapse in Fig. 8.
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FIG. 8. Data collapse. Rescaled γ are plotted versus rescaled �

for set of chosen parameters: � = 0.5, 1, 2.2 (blue, yellow, and green
points, respectively) and equidistant Q = 0.07, 0.27, . . . , 3.07, for
θ = π/2 (upper data set), θ = 2π/3 (lower data set). Dashed curves
show γ (0, �) for Q = 0 obtained from the points in Fig. 6 by linear
interpolation.

homogeneous and nonhomogeneous SHS in an approximate
way via

γ (Q,�) ≈ cos Q × γ

(
0,

�

cos Q

)
, (40)

generalizing exact Eq. (27) to � �= 0. Technically, Eq. (40)
predicts the data collapse of γ points with rescaled co-
ordinates {�/ cos Q, γ (Q,�)/| cos Q|} on a single curve
{�, γ (0,�)}, i.e., the curves in Fig. 6. Such a data collapse
indeed exists (see Fig. 8), and it confirms the validity of
Eq. (40). In addition, the approximate relation (40) becomes
exact in various limits: � = 0, � → cos Q, Q → 0, π , and
also for �  1, up to �−1 corrections. Note that γ (Q,�) for
some polar angle θ is related by Eq. (40) to the universal curve
γ (0,�) with the same value of θ . The curve γ (0,�) at large
� becomes a straight line with slope (38).

We conclude that the half-amplitude decay rate γ for
nonzero Q can be found with good accuracy by measuring the
decay rate of a homogeneous initial state with the same value
of θ and a rescaled anisotropy � → �/ cos Q, via Eq. (40).

Now we can generate the decay curves and make compar-
ison to experimental data. By linear extrapolation of TEBD
data from Fig. 6 on the full � axis, we obtain a set of curves
γ (0,�) for different θ . From the curves γ (0,�) we generate
surface γ (Q,�) (see Fig. 9) using Eq. (40), and compare a
few cuts of this surface with the direct TEBD data (Fig. 10)
and with the experimental data for the same quantity, called
decay of contrast, in [2]. The data in Fig. 10 confirm the
validity of Eq. (40), and are in qualitative accordance with
the experimental data (Figs. 3(a)–3(c) in [2]) as well but
there are also discrepancies worth discussing. The fit function
γ (Q) = γ0 + γ1|� − cos Q|, used in [2] to find the anisotropy
�, is equivalent to an approximation γ = const × (1/tchar )
where tchar is given in Eq. (35), if the offset γ0 (due to noise)
is neglected, γ0 → 0 (another fit function used in [2], S(t ) =
1 − γ t , violates S(t ) = S(−t ) symmetry). While for � = 0,
the approximation γ ∼ t−1

char is exact due to Eq. (27), and is rea-
sonable for large � [where γ is also large and Q-dependence
can be neglected, see (36)], for � �= 0 and intermediate γ

FIG. 9. Contour plot of decay rate γ versus Q/π and �, for θ =
π/2, obtained by using scaling relation (40). The green curve � =
cos Q, where the SHS eigenvalue condition is met, gives the location
of points with no decay, γ = 0. Cuts of the surface γ (Q, �) along
the red straight lines are shown in red in Fig. 10.

values it appears rather poor (see discrepancy between dashed
and solid lines in the right-hand panel of Fig. 6). A usage of
scaling relation (40) with tabulated γ (0,�) appears a more
promising option for the calibration of the anisotropy.

VIII. SHS: PHASE VELOCITY OF AN ASYMPTOTIC
TRAVELING WAVE

Finally, we discuss the behavior of the SHS phase φ(t )
in Eqs. (20) and (21). From Eqs. (23) and (24), φ(t ) is an
odd function of t and is nonzero only for θ �= π/2, and for
� �= cos Q. For the easy-plane regime |�| � 1, φ(t ) is an
approximately linear function of t (see data in Fig. 11, left),
thus allowing to view the SHS profile evolution as a decay-
ing traveling wave with time-dependent phase velocity as in
Fig. 1. Indeed, for linear φ(t ), Eq. (20) becomes〈

σ x
n (t )

〉
sin θ

= S(t ) cos(Q(n − vt ) + ϕ),

v = 1

Q

∂φ

∂t
. (41)

The initial phase velocity v0 at time t = 0 can be estimated by
a perturbative analysis (treating transversal SHS components
as a perturbation; see Appendix C), yielding

1

Q

∂φ

∂t

∣∣∣∣
t=0

= v0 = 4(cos Q − �) cos θ

Q
, (42)

which we find in qualitative accordance with numerics (see
solid lines in Fig. 12). For small θ (or π − θ ) values, the phase
velocity (42) stays constant in time (see Appendix D). Gener-
ically, for |�| � 1, the phase velocity v = φ′(t )/Q changes
monotonically in time and quickly reaches an asymptotic
value, which can be determined numerically (see open sym-
bols in Fig. 12). On the other hand, in the easy-axis regime
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FIG. 10. Decay rate γ versus Q/π for fixed �, reported on the y-axis label, and selected θ = π

2 , 5π

12 , 2π

3 (red, green, and blue data points,
respectively). Curves with the same color code show γ calculated using the scaling relation (40) and numerical data for Q = 0 (like that in
Fig. 6 for θ = π/2 and θ = 2π/3).

(|�| > 1), φ′(t ) shows decaying oscillatory behavior (see
right-hand panel of Fig. 11), related to the oscillatory behavior
of S(t ) itself (see dashed curves in Fig. 4). We expect that an
asymptotic phase velocity also exists in this case but it cannot
be determined from TEBD because of slow convergence.

IX. TIME DEPENDENCE OF MAGNETIZATION CURRENT
UNDER THE XXZ DYNAMICS

At the end, we discuss the time evolution of the SHS
magnetization current j(t ) ≡ 〈 jz(t )〉. Operator jz is a U (1)-
invariant quantity, and therefore j(t ) is not expected to decay

FIG. 11. Data points show phase φ versus time, obtained by tracking position of constant phase in the decaying SHS (see green line in
Fig. 1), from TEBD calculations, for � = 0.5 (left) and � = 1.5 (right), for Q = 0.14 and different polar angles θ . Curves from top to bottom
in the left panel (bottom to top in the right panel) correspond to increasing θ values θ/π = 0.05, 0.1, 0.15, 0.2, . . . , 0.5.
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FIG. 12. Phase velocity of decaying SHS v = φ′(t )/Q, for t = 0
(solid symbols) and t = tmax (open symbols), versus θ/π , obtained
from the TEBD calculations, for Q = 0.14, and different anisotropies
� = 0, 0.5, 1.5 (black, red, and blue points, respectively). Solid lines
show the prediction (42). Open symbols show the asymptotic phase
velocity, determined from TEBD; the dashed lines are guides for
the eye. For � = 1.5 (the blue data) the asymptotic phase velocity
cannot be determined because of oscillatory behavior (see text).

with time. From Eq. (31) we find the early time behavior

j(t ) = j(0) − 8t2� sin Q(� − cos Q) sin4 θ + O(t4), (43)

where j(0) = 2 sin Q sin2 θ is the initial SHS magnetization
current. From Eq. (33) the characteristic timescale for the
current to change is given by

tchar (J ) = |2�(� − cos Q) sin2 θ |− 1
2 . (44)

For � = 0, the magnetization current is a conserved quantity,
so it is time independent, which is reflected in the divergence
of tchar (J ) at � = 0.

From the TEBD, we observe that the early time behavior
sets the current difference at later times, namely,

jz(t > 0) − jz(0) > 0, if �(cos Q − �) sin Q > 0,

jz(t > 0) − jz(0) < 0, if �(cos Q − �) sin Q < 0 (45)

FIG. 14. Magnetization current j(t ), for different Q, for cos Q > � = 0.5 (left) and 0 � cos Q � � = 0.5 (right), from TEBD. Parameters:
left, θ = π/2, Q = 0.07, 0.17, . . . 0.97 (curves from bottom to top); right, θ = π/2, Q = 1.07, 1.17, . . . , 1.57 ≈ π/2 (curves from top to
bottom at the right corner). The largest reported time for curves in the right-hand panel is given by 3 tchar (J ) [Eq. (44)].

FIG. 13. Magnetization current j(t ) measured at time tchar

[Eq. (44)], from TEBD (points), versus Q/π . Parameters: � =
0.5, θ = π/2. Dashed curve shows the initial SHS current j(0) =
2 sin Q. Dashed vertical line at Q = π/3 corresponds to special point
cos Q = � for which |�Q〉 is an H eigenstate and the current stays
constant in time.

(see Fig. 14 for an illustration). The TEBD data for � = 0.5
(Fig. 13) and for other � values (data not shown) suggest (a)
validity of Eq. (45), (b) qualitative change of behavior j(t )
across the eigenfunction SHS point cos Q = �, exemplified
by the difference between the curves on the left and on the
right in Fig. 14, and (c) the wave vector Q = π/2 (where the
t = 0 SHS current is maximal) becomes a local minimum for
the current value at late times.

Observations (a)–(c) deserve further study. Especially it
would be interesting to see if they are valid also for the asymp-
totic value of the current j(∞). Unfortunately, we cannot
determine j(∞) precisely enough because of the fast growth
of the entanglement with time, and slow convergence. For
selected parameters we tried to push the TEBD calculations
as far as possible; however, the “entanglement” barrier pre-
vents precise measurements for t > 4, which is not enough
to see the convergence (see Fig. 15, and technical details in
Appendix G).

235408-9
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FIG. 15. Magnetization current 〈 jz(t )〉 versus time, from TEBD calculations with varied size χ of matrix-product state matrices in the
TEBD method (see Appendix G for details). Parameters: left, � = 0.5, Q = 2π/3, θ = π/2; right, � = 0.5, Q = 0.9, θ = π/2. In both cases
the early time behavior is well approximated by Eq. (43), indicated by dashed lines.

X. DISCUSSION

We have studied the time evolution of transversal spin
helices under coherent XXZ dynamics with arbitrary z-axis
anisotropy. Spin helices are chiral factorized states that can
be prepared experimentally and they are of potential practi-
cal importance. We established a fundamental fact that the
helix retains its harmonic space dependence at all times,
which allows to describe the density profile as a traveling
wave with decaying amplitude. We studied the helix profile
evolution in the whole phase space via exact and approxi-
mate approaches, supported with TEBD. We found that the
amplitude decay rate, the most important characteristic from
a practical viewpoint, satisfies the scaling relation, relating
decay of homogeneous (Q = 0) and inhomogeneous (Q �= 0)
setups. The scaling relation allows to obtain the decay rate
of a transversal helix with arbitrary wavelength in a system
with arbitrary anisotropy from a single scaling function. At
the free-fermion point, the scaling relation holds for all quan-
tum observables. Furthermore, we studied how the current
of magnetization evolves in time. We proposed a criterion
for the asymptotic current and pointed out open problems of
interest for further investigations. We expect that our findings
are of direct interest for experimentalists and can serve for
calibration purposes in future experiments.
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APPENDIX A: SHS DECAY: TIME ASYMPTOTIC FORM IN
THE THERMODYNAMIC LIMIT N → ∞

Under usual generic assumptions (the eigenstate thermal-
ization hypothesis), a U (1)-invariant operator like H on an
infinite lattice, acting on a generic state, imposes the U (1)

symmetry on any finite subsystem asymptotically in time,
making the asymptotic reduced density matrix of the subsys-
tem commute with the generator of U (1), namely,

lim
t→∞ lim

N→∞
[
ρn1n2···nM (t ), σ z

n1
· · · σ z

nM

] = 0, ∀M, {nk} (A1)

(note that the limits t → ∞ and N → ∞ do not commute),
where σ z

n1
· · · σ z

nM
is the generator of the U (1) symmetry Uz =⊗

n σ z
n restricted to the subsystem. In terms of averages (5),

Eq. (A1) yields

lim
t→∞ lim

N→∞
〈
σα1

n1
σα2

n2
· · · σαk

nk
(t )

〉 = 0, if m+ �= m−, (A2)

where α j = +,−, z and m+ (m−) is the total number of pluses
+ (minuses −) in the upper row of indices in Eq. (A2). Indeed
only the operators σα1

n1
σα2

n2
· · · σαk

nk
with m+ = m− commute

with Uz. For one- and two-point correlations we have

lim
t→∞ lim

N→∞
〈σ±

n (t )〉 = 0, ∀n, (A3)

lim
t→∞ lim

N→∞
{〈σ±

n σ z
m(t )〉, 〈σ+

n σ+
m (t )〉, 〈σ−

n σ−
m (t )〉} = 0, ∀n, m.

(A4)

Consequently, the reduced density matrices for one and two
sites written in the computational basis, asymptotically in time
become block diagonal:

lim
t→∞ lim

N→∞
ρn(t ) = 1

2

(
a 0
0 d

)
, ∀n, (A5)

lim
t→∞ lim

N→∞
ρn,m(t ) =

⎛
⎜⎜⎝

a 0 0 0
0 b b1 0
0 b∗

1 c 0
0 0 0 d

⎞
⎟⎟⎠, ∀n, m. (A6)

The generic form of the asymptotic-in-time reduced density
matrix for arbitrary sites M is block diagonal as in Eq. (A6),
and satisfies Eq. (A1).
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APPENDIX B: SYMMETRIES OF SHS AMPLITUDE AND
PHASE SN (Q, θ, �, t ) AND φ(Q, θ, �, t )

Consider operator Ux = ⊗∞
n=−∞ σ x

n , and the operator R of
mirror reflection with respect to the middle site 0 which has
the property

Ux |�Q,θ 〉 = |�−Q,π−θ 〉 , (B1)

R |�Q,θ 〉 = |�−Q,θ 〉 , (B2)

where θ is the polar angle characterizing the SHS. Using the
properties [H,Ux] = 0, R† = R, U †

x = Ux, we obtain

〈A〉Q,π−θ = 〈UxAUx〉−Q,θ , (B3)

〈A〉−Q = 〈RAR〉Q. (B4)

Here and below we use the shorthand notations 〈A〉Q,θ ,
〈A〉Q,ϕ , 〈A〉Q to denote generic expectation of an operator
A: 〈A(H, t )〉Q,θ,ϕ = 〈�Q,θ,ϕ | eiHt A e−iHt |�Q,θ,ϕ〉 (e.g., using
〈A〉Q means that θ and ϕ are the same on both sides of an
equality).

In particular, for one-point correlations we obtain〈
σ x

n

〉
Q,π−θ

= 〈
σ x

n

〉
−Q,θ

, (B5)

〈
σ y,z

n

〉
Q,π−θ

= −〈
σ y,z

n

〉
−Q,θ

, (B6)

〈
σα

0

〉
−Q = 〈

σα
0

〉
Q, α = x, y, z, (B7)

the last one following from R σα
0 R = σα

0 , since mirror reflec-
tion R does not touch the central site.

Comparing an identity 〈σ+
n 〉π−θ = 〈R σ−

n R〉θ = 〈σ−
−n〉θ and

comparing to Eqs. (20) and (21), we obtain

SN (π − θ ) = SN (θ ), φ(π − θ ) = −φ(θ ). (B8)

Analogously, analyzing the identity 〈σ+
n 〉Q = 〈R σ+

n R〉−Q =
〈σ+

−n〉−Q,

SN (Q) = SN (−Q), φ(Q) = φ(−Q). (B9)

Since 〈σ x
n (t )〉Q,ϕ is a real number, we obtain〈
σ x

n (t )
〉
Q,ϕ

= 〈�Q,ϕ | eiHtσ x
n e−iHt |�Q,ϕ〉

= 〈�−Q,−ϕ | e−iHtσ x
n eiHt |�−Q,−ϕ〉

= 〈
σ x

n (−t )
〉
−Q,−ϕ

. (B10)

With the help of Eqs. (B9), one can prove

SN (Q, t ) = SN (−Q, t ) = SN (Q,−t ), (B11)

φ(Q, t ) = φ(−Q, t ) = −φ(Q,−t ). (B12)

For an even N , if Q satisfies Eq. (3), π ± Q satisfies Eq. (3) as
well. Using Eq. (9), one can prove that when Q → Q + π

H ′|Q→Q+π = −H ′|�→−�,

(σ±
n )′|Q→Q+π = e±iπn(σ±

n )′,

〈σ±
n (H, t )〉Q+π = e±iπn〈σ±

n (H |�→−�,−t )〉Q,

which leads to the relations

SN (Q,�, t ) = SN (−Q,�, t ) = SN (π − Q,−�,−t )

= SN (π − Q,−�, t ), (B13)

φ(Q,�, t ) = φ(−Q,�, t ) = φ(π − Q,−�,−t )

= −φ(π − Q,−�, t ). (B14)

Selected relations of this Appendix are quoted in the text,
omitting the repeated symbols for brevity.

APPENDIX C: PROOF OF EQUATION (42)

Consider a time evolution of a density matrix in the form
of a homogeneous diagonal factorized state perturbed by a
nondiagonal term with wave vector Q:

ρε (0) = R⊗N + ε
∑

n

An,

An = R⊗n−1 ⊗ Fn ⊗ R⊗N−n ,

R =
(

a 0
0 d

)
, a = 1

2
+ cos θ

2
, d = 1 − a,

Fn =
(

0 e−iQn

eiQn 0

)
. (C1)

The time-evolved state is

ρε (t ) = ρε (0) − it[H, ρε (0)] − t2

2
ad2

Hρε (0) + · · ·

= ρε (0) − iεt
∑

n

[hn,n+1, An + An+1] + O(t2)

= ρε (0) − iεt
∑

n

R⊗n−1

⊗ [h, Fn ⊗ R + R ⊗ Fn+1] ⊗ R⊗N−n−1 + O(t2), (C2)

where h = σ x ⊗ σ x + σ y ⊗ σ y + �(σ z ⊗ σ z − I ) is the en-
ergy density of the Hamiltonian H and we used [h, R ⊗ R] =
0. Denoting

X ′ = σ zX, (C3)

and substituting easily verifiable relations

[h, F ⊗ R] = 2�(F ′ ⊗ R′) − 2(R′ ⊗ F ′),

[h, R ⊗ F ] = 2�(R′ ⊗ F ′) − 2(F ′ ⊗ R′),

into Eq. (C2), we readily obtain

ρε (t ) = ρε (0) − iεt
∑

n

Zn,n+1 + O(t2),

Zn,n+1 = 2R⊗n−1 ⊗ (�F ′
n ⊗ R′

− R′ ⊗ F ′
n + �R′ ⊗ F ′

n+1 − F ′
n+1 ⊗ R′) ⊗ R⊗N−n−1 .

(C4)

Let us now calculate the observable 〈σ+
n (t )〉 using Eq. (C4):

〈σ+
n (t )〉 = 〈σ+

n (0)〉 − iεt
n∑

m=n−1

tr(Zm,m+1 σ+
n ) + O(t2).

(C5)
Substituting

tr(Zn−1,nσ
+
n ) = 2tr((−F ′

n−1 + �F ′
n ) σ+

n ) tr(RR′)

= 2(eiQ(n−1) − �eiQn) cos θ, (C6)

tr(Zn,n+1σ
+
n ) = 2(−�eiQn + eiQ(n+1)) cos θ, (C7)
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into Eq. (C5) we finally obtain

〈σ+
n (t )〉 = εeiQn(1 − 2it (eiQ + e−iQ − 2�) cos θ ) + O(t2)

≈ εeiQne−4it (cos Q−�) cos θ

= εei(Qn−φ(t )) = εei(Q(n−v0t ), (C8)

v0 = 4(cos Q − �) cos θ

Q
, (C9)

where v0 is the phase velocity of the infinitesimal pertur-
bations. Quite remarkably, our rather simple analysis turns
out to predict qualitatively correctly the initial phase velocity
v0 = φ′(0)/Q, even though the Q-dependent amplitude is not
infinitesimally small (see Fig. 12 of the main text).

APPENDIX D: SN (t ) AND φ(t ) FOR θ → 0 CASE

|�Q,θ,ϕ〉 is a linear combination of N + 1 independent
states |ξ0〉 , |ξ1〉 , . . . , |ξN 〉 [12]:

|�Q,θ,ϕ〉 = e− i
2 (Nϕ+Q

∑N−1
n=0 n) cosN θ

2

N∑
m=0

tanm θ
2 eimϕ |ξm〉 ,

(D1)

|ξm〉 =
∑

k1<k2<...<km

eiQ
∑m

j=1 k j σ−
k1

· · · σ−
km

|↑↑ · · · ↑〉 . (D2)

In the θ → 0 limit, tan θ
2 → 0; therefore, we only consider the

first two leading terms, i.e., |ξ0〉 and |ξ1〉. Since eiNQ = 1, one
can prove that both |ξ0〉 and |ξ1〉 are eigenstates of H :

H |ξ1〉 = 4(cos Q − �) |ξ1〉 , H |ξ0〉 = 0. (D3)

Then, we have
〈
σ x

n (t )
〉 = 〈�Q,θ,ϕ | eiHtσ x

n e−iHt |�Q,θ,ϕ〉

= cos2N θ
2

(〈ξ0| + tan θ
2 e−iϕ+4i(cos Q−�)t 〈ξ1|

)

× σ x
n

(|ξ0〉 + tan θ
2 eiϕ−4i(cos Q−�)t |ξ1〉

) + · · ·

= cos2N θ
2 tan θ

2

(
eiϕ−4i(cos Q−�)t 〈ξ0| σ x

n |ξ1〉

+ e−iϕ+4i(cos Q−�)t 〈ξ1| σ x
n |ξ0〉

) + · · ·

= 2 cos2N θ
2 tan θ

2 cos (nQ − 4t (cos Q − �) + ϕ)

+ · · · , (D4)

〈
σ y

n (t )
〉 = 〈�Q,θ,ϕ | eiHtσ y

n e−iHt |�Q,θ,ϕ〉
= cos2N θ

2

(〈ξ0| + tan θ
2 e−iϕ+4i(cos Q−�)t 〈ξ1|

)
× σ y

n

(|ξ0〉 + tan θ
2 eiϕ−4i(cos Q−�)t |ξ1〉

) + · · ·
= cos2N θ

2 tan θ
2

(
eiϕ−4i(cos Q−�)t 〈ξ0| σ y

n |ξ1〉
+ e−iϕ+4i(cos Q−�)t 〈ξ1| σ y

n |ξ0〉
) + · · ·

= 2 cos2N θ
2 tan θ

2 sin (nQ − 4t (cos Q − �) + ϕ)

+ · · · , (D5)

which leads to the following asymptotic behavior in the limit
θ → 0:

lim
θ→0

〈
σ x

n (t )
〉

sin θ
= cos (nQ − 4t (cos Q − �) + ϕ), (D6)

lim
θ→0

〈
σ

y
n (t )

〉
sin θ

= sin (nQ − 4t (cos Q − �) + ϕ), (D7)

lim
θ→0

SN (t ) = 1, (D8)

lim
θ→0

φ(t ) = 4t (cos Q − �). (D9)

APPENDIX E: ISING CASE

Here we find the SHS amplitude time dependence, for the
�  1 limit. The rescaled amplitude SN is given by

SN (t ) = 2

sin θ

√
〈σ+

0 (t )〉〈σ−
0 (t )〉. (E1)

For large �  1, in the zero-order approximation, we neglect
the hopping part of the Hamiltonian,

〈σ+
0 (t )〉 = 〈�Q| eiH00zt σ+

0 e−iH00zt |�Q〉 , (E2)

where H00z = �
∑N−1

n=0 σ z
nσ z

n+1. Using |�Q〉 = UQ |�0〉, with

UQ = e−i Q
2

∑N−1
n=0 n σ z

n we obtain, using the diagonality of H00z,
and [U, σ α

0 ] = 0,

〈�Q| eiH00zt σ+
0 e−iH00zt |�Q〉

= 〈�0|U †
QeiH00zt σ+

0 e−iH00ztUQ |�0〉
= 〈�0| eiH00zt σ+

0 e−iH00zt |�0〉
= 〈�0|V †

N−1,0V
†

01σ
+
0 V01VN−1,0 |�0〉 , Vn,m = e−i�tσ z

n σ z
m .

After straightforward calculation involving three qubits lo-
cated at consecutive positions N − 1, 0, 1, we obtain

〈σ+
0 (t )〉 = 1

8 eiϕ−4i�t sin θ [1 − cos θ + (1 + cos θ )e4i�t ]2.

(E3)

Complex conjugation of the above gives 〈σ−
0 (t )〉. Substituting

in Eq. (E1), after some algebra we obtain

SN (t ) = 1
2 [1 + cos2 θ + sin2 θ cos(4�t )]. (E4)

This describes harmonic motion with a positive nonzero
mean. Note that there is no dependence on the wavelength Q.
For fixed θ �= π/2 (SHS out of the XY plane), the amplitude
stays always positive,

min
t

SN (t ) = cos2 θ. (E5)

The presence of the small hopping term in the Hamiltonian,
neglected in our calculation, for large but finite � leads to
(a) slow gradual decrease of the amplitude S(t ) in accordance
with the U (1) symmetry restoration principle [Eq. (A5)], and
(b) to 1/� corrections to Eq. (E4), which can be incorporated
into a finite shift of � value in Eq. (E4). For Q = 0, θ =
π/2 we found � → � − 1.3 effective shift by a comparison
to numerical data for large � (data not shown).
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APPENDIX F: TAYLOR EXPANSION FOR N → ∞
The operator expansion

eX Ae−X = A + [X, A] + 1

2!
[X, [X, A]] + · · · =

∞∑
n=0

1

n!
adn

X (A),

(F1)

adX (A) = [X, A], ad0
X (A) = A, (F2)

with X substituted by iHt and A being the operator of a chosen
observable, allows to find Taylor expansions, up to certain
order, for any observable in the thermodynamic limit.

From Eq. (31), substituting X → iHt , we obtain

〈A(t )〉 = 〈A(0)〉 +
∑
k>0

Cktk . (F3)

To determine the Ck in Eq. (F3), we embed the operator A
close to site n = 0 and calculate the term by using symbolic

calculations (Mathematica)

Ck = 〈�Q,θ,ϕ | 1

k!
adk

iH (A) |�Q,θ,ϕ〉 , (F4)

where |�Q,θ,ϕ〉 is defined in Eq. (2) and Q satisfies Eq. (3).
The system size N must be chosen sufficiently large to ex-
clude the finite-size effects. For an operator A embedded on a
cluster of sites n ∈ [− f , f ], [H, A] is embedded on a cluster
n ∈ [− f − 1, f + 1], and adk

iH (A) is embedded on a cluster
n ∈ [− f − k, f + k] = [−nL, nR]. To guarantee the absence
of finite-size effects, the cluster [−nL, nR] must lie entirely
inside the segment [−N

2 , N
2 ], i.e.,

N

2
− 1 � nR, −N

2
� −nL. (F5)

For one-point correlations embedded on site n = 0, nL =
nR = k, and we have N � 2(k + 1) from Eq. (F5).

Finally, for products of observables 〈A〉〈B〉, a further re-
summation of the Taylor expansion must be made. The Taylor
expansion of the amplitude S2(t ) = 4

sin2 θ
〈σ+

0 〉〈σ−
0 〉 for Q =

� = 0 thus obtained is

S2(θ, t )

= 1 + 8 sin2 θ

(
− t2 + t4

3
(3 cos(2θ ) + 17) − 2t6

45
(156 cos(2θ ) + 5 cos(4θ ) + 511) + t8

315
(6777 cos(2θ ) + 758 cos(4θ )

+ 7 cos(6θ ) + 19914) − 2 t10

14175
(256792 cos(2θ ) + 68804 cos(4θ )+2792 cos(6θ )+11 cos(8θ )+916529)

+ 2t12

467775
(5602870 cos(2θ ) + 5557480 cos(4θ )+460051 cos(6θ ) + 11410 cos(8θ ) + 55 cos(10θ ) + 48757510)

)
+O(t14),

(F6)

(further terms of the expansions are too bulky to be reported).
With this method we obtain all the other Taylor expansions

in the thermodynamic limit quoted in the main text. Note
that, as usual, the Taylor expansion (F3) has a finite radius
of convergence.

APPENDIX G: NUMERICAL TIME EVOLUTION

To evolve the initial SHS state |�Q〉 with unitary propaga-
tor U (t ) = e−iHt we write the state in the matrix-product state
(MPS) form

|�Q〉 =
∑

s

cs |s〉 , cs=s1,...,sN = 〈1|M (s1 )
1 M (s2 )

2 · · · M (sN )
N |1〉,

(G1)
in terms of two matrices Ms

j of size χ × χ for each site
j, and use the standard TEBD method [21]. In brief, we
split the nearest-neighbor H = A + B into noncommuting
A and B, each acting on even and odd pairs of spins, re-
spectively. Time evolution is split into small time steps of
length dt , for which we then Trotterize the propagator into
terms involving only A, or only B, each involving com-
muting nearest-neighbor transformations. While higher-order
Trotter-Suzuki schemes are advantageous, we here use a
simple leapfrog scheme, U (dt ) ≈ e−iAdt/2e−iBdt e−iAdt/2. Ap-
plying one nearest-neighbor unitary transformation acting on

sites j and j + 1 mixes the MPS form on those two sites,
which is then restored after doing a singular value decomposi-
tion. The time complexity of simulating one unit of time (that
consists of ∼1/dt leapfrog steps) scales as ∼χ3n/dt , while
the error due to the leapfrog scheme scales as ∼(dt )2. Keeping
the MPS representation exact would require the bond size χ to
be equal to the rank of the reduced density operator. Because
that rank quickly grows in t , and soon saturates at its maximal
value that is exponential in N , one needs to truncate matrices
to some fixed maximal size χ . How large truncation errors
due to this finite χ are then depends on the spectrum of the
reduced density matrix. Roughly speaking one can estimate
the required χ to be exponential in the von Neumann entropy.
Because von Neumann entropy will generically grow linearly
in time this means that the maximal reliable time up to which
we can simulate unitary evolution scales as ln χ ; even for
χ ∼ 103 this is rather small.

As an example, in Fig. 15(a) we have an example where
the prefactor in the linear growth of von Neumann entropy
is large: one has S(t = 3) ≈ 6 and S(t = 4) ≈ 8, meaning,
e.g., that with χ = 256 one can simulate up to t ≈ 3, with
χ = 1024 only up to t ≈ 4. Increasing χ from 256 to 1024
increases CPU time by ≈43 = 64 while bringing in only
one additional unit of time. If entanglement is smaller, an
example would be Q = 0.9 in Fig. 15(b), one can go to
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longer times and get more precise results; however, ulti-
mately one again runs into an “entanglement” barrier where
no further simulation in time is feasible. We also note that
in Fig. 15(a) where the current varies a lot we could use

Trotter time step dt = 0.05, while in Fig. 15(b), where the
current changes much less on the shown time t ≈ 10, we
wanted the errors to be much less than 1%, and we had to
use dt = 0.01.
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