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We propose that a spin-dependent second-order topological insulator can be realized in a monolayer
FeSe/GdClO heterostructure, in which substrate GdClO helps to stabilize and enhance the antiferromagnetic
order in FeSe. The second-order topological insulator is free from spin-orbit coupling and in-plane magnetic
field. We also find that two types of distinct corner modes residing in the intersections of two ferromagnetic
edges and two antiferromagnetic edges exist. The underlying physics for the ferromagnetic corner mode follows
a sublattice-chirality-kink picture. More interestingly, the ferromagnetic corner mode shows a spin-dependent
property, which is also robust against spin-orbit coupling. Unexpectedly, the antiferromagnetic corner mode
can be taken as a typical emergent and hierarchical phenomenon from an array of ferromagnetic corner modes.
Remarkably, antiferromagnetic corner modes violate the general kink picture and can be understood as bound
states of a one-dimensional Schrodinger equation under a connected potential well. Our findings not only provide
a promising second-order topological insulator in electronic materials but also uncover some different properties
of corner modes in high-order topological insulators.
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I. INTRODUCTION

Recently, the high-order topological state (HOTS) has at-
tracted intense interest in many fields of physics [1–12].
Among various HOTSs, the two-dimensional (2D) second-
order topological insulator (SOTI) is the simplest one and
is ideal for studying various new physics in HOTSs. To
date, many experimentally feasible platforms have been
shown to host SOTIs, mainly including photonic, phononic,
acoustic, and microwave- and electrical-circuit artificial sys-
tems [13–19]. For electronic materials, in contrast, material
platforms to realize SOTIs are very limited and just the-
oretically proposed in some carbon-based compounds such
as graphdiyne, γ -graphyne, twisted bilayer graphene, and
bismuth heterostructures [20–26]. However, none of the
proposals have been experimentally realized. Furthermore,
spinless or spin-polarized features of these proposals limit
the exploration and study of the spin-dependent physics of
2D SOTIs. Therefore, it remains meaningful and urgent to
explore experimentally feasible electronic materials hosting
2D SOTIs, in particular, the spin-dependent 2D SOTI.

Since superconductivity with ultrahigh transition
temperature (>65 K) was discovered in monolayer
FeSe/SrTiO3 (FeSe/STO) [27], similar heterostructures,
such as FeSe/Nb:BaTiO3/KTaO3, FeSe/MgO, FeSe/anatase
TiO2(001), and FeSe/EuTiO3 [28–31], have attracted
enormous interest in many research fields. In particular,
research on monolayer FeSe/STO was extended to
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the field of topological physics in 2014 [32,33]. The
subsequent theoretical work predicted that a long-range
Néel antiferromagnetic (AFM) order can spontaneously form
in monolayer FeSe/SrTiO3 and a conventional topological
insulator can arise by further taking into account spin-orbit
coupling (SOC) [34]. However, the magnetism in monolayer
FeSe/STO has not been settled [34–41].

In this work, we theoretically predict that a long-range Néel
AFM order in monolayer FeSe can be stabilized and enhanced
by introducing the ferromagnetic (FM) insulating substrate
GdClO. This strategy can avoid the debate over magnetism in
monolayer FeSe. The stability of the heterostructure is veri-
fied by self-consistent first-principles calculations. Once Néel
AFM order is generated with the aid of a GdClO substrate,
we find that a 2D SOTI naturally emerges and is free from
SOC and in-plane magnetic field. Interestingly, the 2D SOTI
hosts two types of distinct corner modes residing in the inter-
sections of two FM edges and two AFM edges, respectively.
FM corner modes can be intrinsic or extrinsic depending on
whether the global or local crystalline symmetry of the four
edge boundaries is enforced or not. Furthermore, FM corner
modes can be understood by a sublattice-chirality-kink picture
and show explicitly spin-dependent properties. This enables
one to study spin physics of 2D SOTIs. Interestingly, AFM
corner modes can be taken as emergent corner modes from
an array of FM corner modes. This demonstrates an emergent
and hierarchical phenomenon of physics in a very simple and
explicit manner. Physically, they violate the general kink pic-
ture and correspond to the bound states of a one-dimensional
Schrodinger equation under a connected potential well.
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FIG. 1. (a) The spatial configuration of a monolayer
FeSe/GdClO heterostructure and the stable magnetic structure
from the first-principles calculations. (b) and (c) Lattice structure
and Brillouin zone of Néel AFM FeSe. The dashed square in
(b) labels the unit cell. (d) The band structure of FM GdClO
with slab geometry. (e) The total band structure of a monolayer
FeSe/GdClO heterostructure with the magnetic structure in (a). (f)
The bands of freestanding monolayer FeSe assuming a Néel AFM
order. The horizontal dashed lines labeled EF in (c) and (d) denote
the focused filling level.

II. THE FIRST-PRINCIPLES CALCULATION AND
MODELING RESULTS

Inspired by the heterostructure of monolayer FeSe/STO,
we believe that the natural cleavage surface of a promising
substrate should be a square lattice with a matched lattice
constant similar to that of FeSe. We note that the ready
compound GdClO [42–46] fulfills such requirements due to
its space group P4/nmm symmetry and because its matched
lattice constant is the same as that of FeSe. Figure 1(a) shows
the configuration of a FeSe/GdClO heterostructure. It is well
known that GdClO is a FM insulator with a very large gap
of 5 eV, as shown in Fig. 1(d). The ferromagnetism is from
Gd, with a magnetic moment of 7μB. Note that Gd atoms
have double-layer structures, and only the top layer Gd atoms
strongly couple to one sublattice of Fe square lattices through
van der Waals (vdW) interaction. It is expected that sublattice
A of Fe square lattices can generate ferromagnetism with the
aid of the top layer of Gd. However, the magnetism of sublat-
tice B of Fe square lattices cannot be intuitively determined.
Thus, we perform a first-principles calculation to consider the
magnetic configuration of the FeSe/GdClO heterostructure
(see Appendixes A and B for details). Figure 1(a) shows
the determined stable magnetic configuration. Interestingly,
monolayer FeSe generates a stable long-range Néel AFM
order on a FM substrate GdClO. Figure 1(e) gives the band
structures of the FeSe/GdClO heterostructure. The electronic
states are nearly decoupled between the FeSe monolayer and
GdClO substrate due to weak vdW interaction and lack of
charge transfer. Figure 1(f) gives the band structure of free-
standing monolayer FeSe with an assumed Néel AFM order
(also see Fig. 6 in Appendix B). It is the same as the FeSe part

of the FeSe/GdClO heterostructure shown in Fig. 1(e). Note
that some recent works focused on the small-gap regime near
0 eV at the M point in Fig. 1(f) and discussed possible 2D
SOTSs induced by SOC and in-plane magnetic field [47,48].
In the following, we focus on the large-gap regime ∼ 0.3 eV,
labeled by EF in Figs. 1(e) and 1(f), and explicitly demon-
strate that a pristine 2D SOTS emerges and is free from SOC
and in-plane magnetic field.

The bulk topology of such a pristine 2D SOTI can be
characterized by both a topological invariant and a bulk
quadrupole moment. From Fig. 1(b), monolayer Néel AFM
FeSe has symmetries of P̂T̂ , {Ĉ2x|1/2, 0}, {Ĉ4zP̂|0, 1/2},
and {Ĉ4zT̂ |0, 1/2}, with P̂, T̂ , and {Ê |1/2, 0} being the in-
version, time-reversal, and fractional translation symmetries,
respectively. The topological invariant characterizing the bulk
topology of 2D SOTIs can be calculated with the method
developed in the case of chiral HOTSs but limited to two
dimensions [4]. Since the topological invariant depends only
on the � = (0, 0) and M = (π, π ) points, where the represen-
tation of fractional translation symmetry eikx/y/2 takes a value
of 1 or i and is redundant, (Ĉ4zP̂)4 = −1, and the eigenvalues
of Ĉ4zP̂ are four roots of −1. Due to [Ĉ4zP̂, P̂T̂ ] = 0 and P̂T̂
being antiunitary, they have to come in complex-conjugate
pairs {ξeiπ/4, ξe−iπ/4}, with ξ = 1 or −1. The topological
invariant can be defined as

(−1)vc =
N/2∏
n=1

ξn,�ξn,M . (1)

Here, N labels the number of filled bands. Monolayer
Néel AFM FeSe has 22 occupied bands, and the 11
calculated ξ values at �/M points are ξ(1,...,11),�/M =
(±1,−1,±1,∓1,∓1, 1,−1, 1,∓1,∓1,±1). This yields
vc = 1, explicitly confirming a 2D SOTI. In the pioneering
work on HOTSs [1,2], high-order topology was also
understood from the change in the bulk charge dipole moment
px/y and quadrupole moment qxy, which are defined as

px/y = e

2

(∑
n

2pn
x/y mod 2

)
, (2)

qxy = e

2

(∑
n

2pn
x pn

y mod 2

)
. (3)

Here, pn
x/y = qn

x/y/2, with qn
x/y fulfilling the equation

(−1)qn
x/y = ηn(M )/ηn(�). ηn(M/�) denotes the nth band’s

eigenvalue of Ĉ4zP̂ at the M/� point with η = ξe±iπ/4. Note
that px = py due to Ĉ4zP̂ symmetry, and the summation is
over all the occupied bands. The 22 (11 pairs) eigenvalues of
Ĉ4zP̂ symmetry at the M/� point are listed in Tables I and II
in Appendix C. Then, (px, py) = 0, and qxy = e/2. This
supports a 2D SOTI in monolayer Néel AFM FeSe/GdClO.

From the generalized bulk-boundary correspondence, a
2D SOTI enables the existence of zero-dimensional corner
modes. Figure 2(a) shows a typical cluster of monolayer
Néel AFM FeSe. It has two kinds of corners formed by
two edges with the same and opposite FM orders. The exis-
tence of corner modes can be understood under the following
sublattice-chirality-kink picture. From the edge spectrum in
Figs. 2(c) and 2(e), two spatially separated one-dimensional
massive Dirac bands at two parallel x or y edges can be
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FIG. 2. (a) and (b) Illustration of a monolayer Néel AFM FeSe cluster with a size of 4 × 4 in units of the unit cells shown in Fig. 1(b).
(c) The edge spectrum of spin-up and -down Hamiltonians H↑ and H↓, respectively. The relevant spin-polarized half massive Dirac bands are
schematically plotted near four edges of the cluster in (a) and (b). (d) The full massive Dirac bands can be obtained by sticking two parallel
edges corresponding to (a). (e) The full edge spectrum without the spin-resolved property. (f1)–(f3) Three kinds of sublattice chirality kinks
for three types of corners in (a) and (b).

recombined by sticking two parallel edges together in each
spin polarization subspace, as shown in Figs. 2(a) and 2(d).
Then, low-energy effective Hamiltonians to describe the edge
spectrum can be expressed as

H↑,x/y(kx/y) = ±vkx/yτy/x + mτz, (4)

H↓,x/y(kx/y) = ±vkx/yτy/x − mτz. (5)

Here, v is an effective velocity. kx/y are momenta along the
x/y direction, and τx/y/z are three Pauli matrices defined in
sublattice space with intertwined orbital degrees of freedom.
m is the mass induced by the AFM order. Note that the effec-
tive Hamiltonians in Eqs. (4) and (5) involving the quadratic
terms of k can well capture the edge spectrum shown in Fig. 7
in Appendix D. The cluster in Fig. 2(a) has P̂T̂ , Ĉ2(1,1)T̂ ,
and m̂(1,1) symmetries and two different corners formed by
intersections of two of the same and opposite FM edges. Note
that Ĉ2(1,1)T̂ builds an intra-spin-subspace connection, and P̂T̂
and m̂(1,1) construct an inter-spin-subspace connection. Con-
sidering the orbital weight of bulk bands near EF in Fig. 1(e),
the basis functions of the Hamiltonians in Eqs. (4) and (5)
can be defined as ψ↑(k) = [dA,z2,↑(k), dB,xz+iyz,↑(k)]T [32,33]
and ψ↓ = P̂T̂ ψ↑(k) (see Fig. 6 in Appendix B). Then, the
representation matrix U of Ĉ2(1,1)T̂ is 1

2 [(1 + τz ) − i(1 −
τz )]K, with K being the complex conjugate. For instance,
in spin-up subspace, UH↑,x(kx )U †|kx→−ky = vkyτx + mτz. In
comparison with H↑,y(ky), the sublattice chirality defined
by �k × �τ changes sign. Namely, there exists a sublattice-

chirality kink, as shown in Fig. 2(f1). Thus, a corner mode
must appear for the corner formed by two of the same FM
edges [49]. However, for the corner formed by two opposite

FM edges, H↑,x (kx )
m̂(1,1)−→ H↓,y(ky)

P̂T̂−→ H↑,y(ky). Namely, two
edge Hamiltonians are identical under m̂(1,1) in the restricted
H↑(k) subspace, as shown in Fig. 2(f2). Thus, no zero mode
will emerge. Similarly, in spin-down subspace, another corner
mode appears from the sublattice-chirality-kink picture, as
shown in Fig. 2(f3). Figure 3(a) gives the spectrum of the
cluster. One can find two degenerate corner modes located on
two corners of two of the same FM edges. Clusters with other
patterns are shown Fig. 8 in Appendix E. Note that corner
modes are robust against SOC and in-plane magnetic field (see
Figs. 9 and 10 in Appendix F). Different from the robustness
of topological boundary states in conventional topological in-
sulators, the corner modes in 2D SOTIs depend on the details
of the patterns of the clusters (see Fig. 8 in Appendix E).
Thus, the role of crystalline symmetry is subtle. The 2D SOTI
can be intrinsic if four edges are globally considered and
Ĉ2(1,1)T̂ is enforced. Otherwise, the 2D SOTI can be extrinsic
if two edges are considered locally [6,50,51]. In any case, two
FM edges connected by Ĉ2(1,1)T̂ are the key to enabling the
appearance of corner modes.

Different from previous proposals, the above spin-
dependent sublattice-chirality-kink picture indicates the FM
corner modes should also be spin dependent. Figures 3(b)
and 3(c) give the spin-dependent spectrum and distribution of
the spin-polarized corner modes. The location of the corner
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FIG. 3. The discrete energy spectrum of the cluster in Fig. 2(a) without SOC for (a) non-spin-resolved case and (b) and (c) for spin-
dependent cases. The insets in (a)–(c) give the density distribution of the corner modes. The cluster size is 20 × 20 in the calculations.
(d) and (e) The relative hopping integral patterns between Fe xz/yz/z2 and the Se z orbital for two spin-decoupled Hamiltonians without SOC,
respectively. The strong and weak hoppings are labeled by thick and thin connections, respectively. (f) Summary of the distribution of corner
modes with definite spin-up and -down polarization in several different of clusters.

modes can be understood from Figs. 3(d) and 3(e), where the
strong and weak hopping integrals are schematically plotted
in spin-up and -down subspaces, respectively (see Fig. 11 in
Appendix F). The strong bonds of iron atoms in the bottom
left and top right corners are broken in spin-up and -down
subspaces, respectively. This leaves the relevant corners with
isolated spin-dependent corner modes in Figs. 3(b)–3(e). Note
that the fidelity of spin polarization is 99.6% with SOC be-
cause the spin-dependent nature is governed by magnetic
splitting with an energy scale of 2.5 eV in comparison to the
tiny SOC energy ∼ 0.03 eV. This indicates the spin-dependent
feature is robust against other weak external perturbations
and enables one to manipulate the spin degree of freedom
of corner modes in possible applications. In Fig. 3(f), we
give various possibilities to realize corner modes in two spin
channels.

The FeSe/GdClO cluster can have distinct AFM edges, as
shown in Fig. 4(a). Figures 4(b) and 4(c) give the relevant
edge spectra. The remarkable feature is the emergence of two
nearly flat bands near EF ∼ −0.35 eV. Their formation can
be understood according to Fig. 4(d), in which the strong and
weak hopping integrals are labeled in spin-up and -down sub-
spaces, respectively. Then, each spin-down and -up iron atom
with broken strong bonds can bind a corner mode, as shown
in the top and bottom panels in Fig. 4(d), respectively. The
isolated corner modes arrange into a one-dimensional array
and have weak coupling, forming two degenerate flat bands,
as shown in Fig. 4(b). SOC can further induce weak coupling
to break the degeneracy of flat bands, as shown in Fig. 4(c).
Numerical calculations for a square cluster with four AFM
edges indicate four different AFM corner modes with each of
the four quadruple degeneracies exist, as shown in Fig. 4(f).

The AFM corner modes have lower energy than the bottom
of the flat bands. This indicates the general kink picture is
violated. Interestingly, we find that AFM corner modes can
be understood by following the one-dimensional Schrodinger
equation by considering the edge mapping shown in Fig. 4(e),

HAFM(k → −i∂x )ψ (x) = Eψ (x), (6)

with

HAFM(k → −i∂x ) = − h̄2

2m∗
d2

dx2
+ V (x). (7)

Here, m∗ is the effective mass of the flat bands. V (x)
is the effective potential well near a corner of two AFM
edges. V (x) can be approximately expressed by a square
potential well. V (x) = −Vi when |x| < a/2, and otherwise,
V (x) = 0. Here, a denotes the width of the potential. i is
1 or 2, labeling two different flat bands. The bound-state
solutions of Eq. (6) are standard. The even-parity solution
is Ei,n = π2 h̄2

2m∗a2 (2n + 1)2 − Vi and ψn(x) ∼ cos knx for |x| <

a/2 and ∼e−αn|x| for |x| > a/2. The odd-parity solution is
Ei,n = π2 h̄2

2m∗a2 (2n + 2)2 − Vi and ψn(x) ∼ sin knx for |x| < a/2
and ∼e−αn|x| for |x| > a/2. n takes values of 0, 1, 2, . . . . The
numerical results in Fig. 4(f) indicate the four different emer-
gent corner modes correspond to E1,0, E2,0, E1,1, E2,1, with
consistent even and odd alternating distribution patterns, as
shown in Figs. 4(f)–4(i). It seems that the AFM corner modes
are not topologically protected. However, their emergence can
be traced back to the FM corner modes. Thus, both FM and
AFM corner modes are topologically protected in a different
hierarchical manner. Note that at least one AFM corner mode
exists for any V (x) well.
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FIG. 4. (a) A cluster of monolayer FeSe with a size of 4 × 4 in units of the
√

2 unit cell shown in Fig. 1(b). The cluster size is 14 × 14
in the calculations in (e)–(h). (b) and (c) The AFM edge spectrum without SOC and with SOC, respectively. (d) The relative hopping integral
patterns for decoupled spin-up (top panel) and -down (bottom panel) Hamiltonians without SOC. (e) The mapping of two AFM edges from the
orthogonal to linear configuration. (f) The discrete energy spectrum corresponds to (a). The inset gives the density distribution of the corner
mode with four-quadruple degeneracy and the lowest energy. (f)–(h) The density distributions of the other three corner modes with increasing
energy.

III. DISCUSSIONS AND CONCLUSIONS

In many previous proposals, in-plane external magnetic
field or the magnetic proximity effect was induced to drive
2D SOTIs. Corner modes are sensitive to these fine tunings.
They increase the difficulty of constructing electronic devices
based on corner modes. The 2D SOTI and relevant corner
modes here are robust against in-plane external magnetic field
and other perturbations (see also Figs. 10 and 12 in Appendix
F). The corner modes here lie 0.35 eV below the original
Fermi energy. To experimentally detect them, scanning tun-
neling spectroscopy is a feasible technique because it can
measure the spin-resolved local density of states by changing
the voltage in a large regime. The transport properties of the
corner modes can be studied only when their energy is tuned
to the Fermi level. Such tuning can be experimentally real-
ized by electrostatic gating or proton gating techniques, both
of which are mature and have special advantages in layered
heterostructures [52–54]. In particular, such gated tuning has
been realized in FeSe thin flakes [55–57]. Once appropriate
hole carriers are induced by gating to change corner mode
energy to Fermi energy, monolayer FeSe/GdClO could be
an ideal platform to study the properties of 2D SOTIs and
relevant corner modes.

In conclusion, we proposed that a monolayer FeSe/GdClO
heterostructure can realize a 2D second-order topological in-

sulator which is free from SOC and in-plane magnetic field.
Furthermore, we found that corner modes are protected by
a large gap of about 0.3 eV and can be detected at high
temperature. We also found two distinct types of FM and
AFM corner modes exist. More interestingly, we showed that
FM corner modes follow a sublattice-chirality-kink picture
and have a unique spin-dependent property and AFM corner
modes emerge from the FM corner mode array. The diversity
of FM and AFM corner modes provides a way to construct
relevant devices by utilizing their spin degree of freedom.
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FIG. 5. (a) The phonon spectrum of a monolayer FeSe/GdClO
heterostructure. (b) The AIMD evolutions of total energy at 300 K
for the monolayer FeSe/GdClO heterostructure. (c) The total band
structure of a FeSe/GdClO heterostructure on monolayer substrates.
(d) The total band structure of a FeSe/GdClO heterostructure on
multilayer substrates.

computations was performed at the Hefei Advanced Comput-
ing Center.

APPENDIX A: FIRST-PRINCIPLES
CALCULATIONS METHOD

In this and the following Appendixes, we give the details
of the first-principles calculation method, a clarification of
the stability and magnetism of the heterostructure, cases for
clusters with other patterns, and numerical evidence of the ro-
bustness of the HOTI and corner modes against perturbations,
including SOC, in-plane magnetic field, etc.

FIG. 6. (a) and (b) Spin-polarized band structures of the A and
B sublattices of Fe atoms in the monolayer Néel AFM FeSe, respec-
tively. (c) and (d) For the spin-up/-down-polarized band structure of
the monolayer Néel AFM FeSe, the weights of the dz2 orbitals of
sublattice A/B and the dxz/yz orbitals of sublattice B/A are shown in
red and purple, respectively.

TABLE I. The 11 ξ values calculated at points � and M. From
left to right, the ξ values are sorted from the lowest to the highest
occupied band.

ξ

� +1, −1, +1, −1, −1, +1, −1, +1, −1, −1, +1
M −1, −1, −1, +1, +1, +1, −1, +1, +1, +1, −1

The first-principles calculations based on density func-
tional theory (DFT) were carried out using the Vienna Ab
initio Simulation Package (VASP) program [58] with the
generalized gradient approximation with the Perdew-Burke-
Ernzerhof functional (PBE) [59]. A vacuum layer 20 Å thick
was used to ensure decoupling between neighboring slabs,
and the vdW corrections were included using the density
functional theory including dispersion correction (DFT-D3)
method in our calculations of the monolayer FeSe/GdClO
heterostructure [60]. All atoms were fully relaxed until the
forces on each atoms were smaller than 0.01 eV/Å in het-
erostructure relaxations. We adopted the PBE + U calculation
method to deal with the 3d orbitals of Fe with Ueff = 0.5 eV
and the 4 f orbitals of Gd with Ueff = 5 eV. The first-
principles-based tight-binding Hamiltonian with 32 Wannier
orbits of AFM FeSe was obtained from the band fitting by
using the WANNIER90 package [61].

APPENDIX B: STABILITY, BAND DECOUPLING, AND
MAGNETIC CONFIGURATION OF THE FeSe/GdClO

HETEROSTRUCTURE

For the stability of the FeSe/GdClO heterostructure, we
calculated the phonon spectrum. The result is shown in
Fig. 5(a). We can see that the no imaginary frequency appears.
We further performed ab initio molecular dynamics (AIMD)
simulations at 300 K for 10 ps, as shown in Fig. 5(b). The
results show that the FeSe/GdClO heterostructure possesses
both thermal and dynamical stability. Figure 5(c) shows that
the electronic states are nearly decoupled between monolayer
FeSe and the monolayer GdClO substrate. For comparison,
we constructed a heterostructure with three layers of the Gd-
ClO substrate, which has 15 layers of atoms and is about

TABLE II. The 22 η values calculated at points � and M. From
left to right, the η values are sorted from the lowest to the highest
occupied band.

η

� {eiπ/4, e−iπ/4}, {−eiπ/4, −e−iπ/4}, {eiπ/4, e−iπ/4},
{−eiπ/4, −e−iπ/4}, {−eiπ/4, −e−iπ/4}, {eiπ/4, e−iπ/4},
{−eiπ/4, −e−iπ/4}, {eiπ/4, e−iπ/4}, {−eiπ/4, −e−iπ/4},

{−eiπ/4,−e−iπ/4}, {eiπ/4, e−iπ/4}
M {−eiπ/4, −e−iπ/4}, {−eiπ/4, −e−iπ/4}, {−eiπ/4, −e−iπ/4},

{eiπ/4, e−iπ/4}, {eiπ/4, e−iπ/4}, {eiπ/4, e−iπ/4},
{−eiπ/4, −e−iπ/4}, {eiπ/4, e−iπ/4}, {eiπ/4, e−iπ/4},

{eiπ/4, e−iπ/4}, {−eiπ/4, −e−iπ/4}
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FIG. 7. The modified low-energy effective Hamiltonian energy
spectrum. We have set α = −0.8, β = 1, υ = 0.4, and m = 0.2.

20 Å thick. As shown in Fig. 5(d), the band structures of
the FeSe/GdClO heterostructure on monolayer and multi-
layer substrates indicate that the band structures of FeSe
and GdClO remained almost decoupled. The spin-polarized
band structures of monolayer Néel AFM FeSe are shown
in Fig. 6.

The A sublattice of the Fe square lattices can generate
ferromagnetism with the aid of the top layer of Gd. There-
fore, the different magnetism of the B sublattice of the Fe
square lattices will form the different monolayer FeSe mag-
netic configuration. For different magnetic configurations of
FeSe in a monolayer FeSe/GdClO heterostructure, the total
energy of AFM-FeSe is 609 meV lower than that of FM-FeSe,
EAFM − EFM = −609 meV, which indicates that the antiferro-
magnetic configuration of FeSe in a monolayer FeSe/GdClO
heterostructure is more stable. In addition, we also performed
a self-consistent calculation without setting the magnetic mo-
ment on the B sublattice of the Fe square lattices initially,
and the results show that it will spontaneously form in the
opposite polarization of the A sublattice of the Fe square
lattices.

FIG. 9. The FM edge spectrum and discrete energy spectrum of
the cluster with a size of 20 × 20 unit cells (a) and (b) without SOC
and (c) and (d) with SOC, respectively. The red circles in (b) and
(d) correspond to the corner modes.

APPENDIX C: TOPOLOGICAL CHARACTERIZATION
OF THE SOTI

The ξ and η values in Eqs. (1)–(3) at points � and M are
listed in Tables I and II.

APPENDIX D: MODIFIED LOW-ENERGY
EFFECTIVE HAMILTONIAN

The low-energy effective Hamiltonian model is presented
to directly reflect which combination of different edge spectra
can produce the sublattice-chirality-kink picture to generate
spin-dependent corner modes. In order to further capture the
shape of the edge spectrum obtained from the DFT shown in

FIG. 8. (a)–(d) Different patterns of the monolayer Néel AFM FeSe cluster with a size of 20 × 20 and four FM edges. (e)–(h) The discrete
energy spectrum of the clusters in (a)–(d), respectively. The red circles in (e)–(h) correspond to the corner modes. The insets in (e)–(h) give
the density distribution of the corner modes.
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FIG. 10. Effect of in-plane magnetic field on corner modes of the monolayer Néel AFM FeSe cluster. γ represents the angle of the tilt of
the magnetic moment from the vertical direction caused by the in-plane magnetic field, which is used to represent the magnitude of the in-plane
magnetic field. (a)–(c) The FM edge spectrum of the monolayer Néel AFM FeSe cluster with increasing in-plane magnetic field. (d)–(f) The
discrete energy spectrum of the cluster.

Fig. 2(e), the modified low-energy effective Hamiltonians can
be expressed as

H↑,x/y(kx/y) = αk2
x/y ± vkx/yτy/x + (

m + βk2
x/y

)
τz, (D1)

H↓,x/y(kx/y) = αk2
x/y ± vkx/yτy/x − (

m + βk2
x/y

)
τz. (D2)

Here, the addition of two quadratic terms gives the energy
spectrum a quadratic shape. The first quadratic term is used
to break the particle-hole symmetry. Note that the addition of
two quadratic terms has no effect on the sublattice-chirality-
kink picture. The modified low-energy effective Hamiltonian
energy spectrum is shown in Fig. 7, where it can be seen that
the shape of the edge spectrum shown in Fig. 2(e) can be
captured with appropriate parameters.

FIG. 11. (a) and (b) The relative hopping integral between differ-
ent atomic orbits for decoupled spin-up and spin-down Hamiltonians
without SOC, respectively.

APPENDIX E: DIFFERENT PATTERNS OF THE
MONOLAYER NÉEL AFM FeSe CLUSTER

From the sublattice-chirality-kink picture, we proved that
a corner mode must appear for the corner formed by two of
the same FM edges. Here, we list all possible nonequivalent

FIG. 12. (a) and (b) The discrete energy spectrum of the mono-
layer Néel AFM FeSe cluster with disorder effects in the energy
ranges of ±10 and ±50 meV, respectively. The insets in (a) and
(b) give the density distribution of the corner modes. (c) Some
perturbations are added to simulate the effect of unequal magnetic
moments or some impurity defects on corner modes of the monolayer
Néel AFM FeSe cluster.

235406-8



SPIN-DEPENDENT HIGH-ORDER TOPOLOGICAL STATES … PHYSICAL REVIEW B 107, 235406 (2023)

patterns of the monolayer Néel AFM FeSe cluster. All four
different cluster patterns are shown in Fig. 8(a)–8(d). We can
see that the number of corner modes and the density distri-
butions of the corner modes appear to be very different for
different cluster patterns.

APPENDIX F: THE ROBUSTNESS OF THE
SPIN-DEPENDENT CORNER MODE

Considering SOC, we calculated the edge spectrum and
discrete energy spectrum of the cluster with the patterns in
Fig. 8(a), and the results are shown in Fig. 9. We find that
the two corner states remain degenerate. Similarly, we in-

troduced the in-plane magnetic field and calculated the edge
spectrum and discrete energy spectrum of the cluster with the
pattern in Fig. 8(d), and the results are shown in Fig. 10. The
strong and weak hopping integral patterns between different
atomic orbits for decoupled spin-up and down channels are
shown in Fig. 11. The above results indicate that the corner
modes are robust against SOC and in-plane magnetic field.
In addition, we further consider the influence of different
degrees of disorder effect and some perturbations on the sta-
bility of spin-dependent corner modes of the monolayer Néel
AFM FeSe cluster; as shown in Fig. 12, the corner modes
still exist stably, which is beneficial for possible subsequent
experimental measurements.
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