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Casimir effect for a stack of graphene sheets
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We consider a stack of parallel sheets composed of conducting planes with tensorial conductivities. Using the
scattering matrix approach, we derive explicit formulas for the Casimir energy of two, three, and four planes as
well as a recurrence relation for arbitrary planes. Specifically, for a stack of graphene, we solve the recurrence
relations and obtain formulas for the Casimir energy and force acting on the planes within the stack. Moreover,
we calculate the binding energy in the graphene stack with graphite interplane separation, which amounts to
Eib = 9.9 meV/atom. Notably, the Casimir force on graphene sheets decreases rapidly for planes beyond the
first one. For the second graphene layer in the stack, the force is 35 times smaller than that experienced by the
first layer.
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I. INTRODUCTION

The Casimir effect [1], which was originally considered
for two perfect slabs, now plays an important role in various
phenomena in physics, chemistry, and biology. For instance,
books [2] and recent reviews [3] have highlighted its signif-
icance in these fields. The importance of the Casimir force,
which can have different values and signs depending on the
types of materials used, such as graphene [4], topological
insulators [5], chiral metamaterials [6], Weyl semimetals [7],
the shape of material boundaries, and the external conditions
including temperature, chemical potential, and magnetic field,
has been demonstrated in chemistry [8], biophysics [9], and in
layered systems such as graphite.

Since the 1970s, van der Waals/Casimir energy and force
have been studied for multilayered periodic systems, includ-
ing a periodic stack of dielectric materials [10]. The Lifshitz
formula has been generalized for layered dielectric systems
using nonstandard recursion relations for Fresnel coefficients
and the fluctuation-dissipative theorem [11]. The Casimir
force acting on a plane in a stack perpendicular to the z axis
was calculated as the difference in the (z, z) component of the
regularized stress tensor of neighboring planes. In Ref. [12], a
plane in a stack was considered as a piston for a five-plane sys-
tem. The Casimir force for a five-layered magnetodielectric
planar system was discussed in Ref. [13] as an ideal system
for detection of the temperature dependence of the Casimir
force, and a path-integral approach was used in Ref. [14]
to calculate the force for a magnetodielectric layered planar
system. The superconducting structure of n-cavity made of
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n-plasma sheets was analyzed in Ref. [15]. Different geome-
tries of multilayered systems were considered in Ref. [16]
in the framework of normal-mode techniques, and a modal
approach was developed for layered materials in Ref. [17].
Finally, Ref. [18] explored the thermal and electrostatic
manipulation of the Casimir force in graphene-dielectric
multilayers and demonstrated the possibility of consistent
modulation of the Casimir pressure by changing the number
of graphene sheets in the stack.

The Casimir energy for a layered system with a different
shape, i.e., a set of cylindrical concentric shells, has been
discussed in Ref. [19]. In Ref. [20], the layered system of
conductive planes was analyzed in details. Two models of
conductivity were considered, namely, the constant conductiv-
ity and the Drude-Lorentz seven-oscillator model of graphene
conductivity, based on the conductivity of graphite [21].

It is important to note that, in all of these references,
the scalar type of materials was considered. Conversely, the
conductivity of graphene has a tensorial form [4,22]. For two
planes with matrix Fresnel reflection coefficients, the formula
for the Casimir energy, including some variations and a cor-
rect derivation, can be found in Refs. [23,24], respectively.
In a system consisting of two planes without virtual photon
production, this formula can be represented as an integral over
imaginary frequency ξ = −iω,

E2 = �
∫∫

d2k

(2π )3

∫ ∞

0
dξ ln det[I − exp (−2dkE )r′

1r2],

(1)

where r′
1 and r2 are the Fresnel reflection matrices for the

first and second planes, d represents the interplane distance,
and kE =

√
ξ 2 + k2. The Casimir free energy and pressure

between two graphene sheets at both nonzero and zero tem-
perature were calculated in Ref. [25] using the formalism of
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FIG. 1. The scattering on the plane j is shown. The waves mov-
ing from the left (right) to the right (left) are defined by factor
exp(+ikzz)[exp(−ikzz)].

the polarization tensor, which considers both the transversal
and longitudinal conductivity of graphene, i.e., its tensorial
form. The generalization of this expression for more planes is
not obvious and requires careful derivation, which is the main
focus of this paper.

In Sec. II, the scattering problem for a layered system
containing n parallel conductive planes with tensorial conduc-
tivity is formulated. A general expression of Casimir’s energy
is obtained, and it is calculated for n = 2, 3, and 4 planes with
different conductivities and interplane distances.

In Sec. III, recurrent relations for the energy are derived,
and a relation for energies for n, n − 1, and n − 2 planes is
obtained. In the case of a stack of graphene with equal in-
terplane distance, this recurrent relation can be solved in
manifest form. By using eigenvalues of the reflection Fresnel
matrix, the matrix form of solutions is represented as a sum of
scalar forms over eigenvalues. Analogous to Casimir’s energy,
the Casimir force acting on a specific plane in the stack is
determined.

Finally, Sec. IV is dedicated to a particular case of a
stack of graphenes, where the Casimir energy and force are
numerically calculated at zero temperature, considering the
conductivity tensor determined within the framework of three-
dimensional quantum electrodynamics [4].

Throughout this paper, the units where h̄ = c = 1 are used.

II. SCATTERING PROBLEM

Let us consider the scattering problem for the system of
n conductive planes, which are perpendicular to the axis z in
the points z1 < z2 < · · · < zn. This system divides all space
on n + 1 domains (D1|z1|D2|z2| . . . , |zn|Dn+1). For a plane j
at position z = z j (see Fig. 1), we have the following scatter-
ing problem: ( ←

E j
→
E j+1

)
= S j

( →
E j

←
E j+1

)
, (2)

where

S j =
(

r j t′
j

t j r′
j

)
, (3)

is the scattering 4 × 4 matrix on the plane j ( j = 1, . . . , n).
Here, r j and t j are the 2 × 2 reflection and transmission

coefficients of plane j, correspondingly. Here,
→
E j (

←
E j ) is

the two-component vector (Ex, Ey)T in the domain Dj . The

movement to the right
→
E j (left

←
E j) is defined by factor

exp(+ikzz)[exp(−ikzz)]. To simplify notation, we do not
write out the factors with a position of planes. They may be
restored by replacements:

r j → r j exp(2ikzz j ),

r′
j → r′

j exp(−2ikzz j ),

t j → t j,

t′
j → t′

j . (4)

The scattering matrix of total system S is defined by the
relation:( ←

E1
→
En+1

)
= S

( →
E1

←
En+1

)
=

(
R T′
T R′

)( →
E1

←
En+1

)
. (5)

To obtain matrix S, we represent the set of connected scatter-
ing equations in Eq. (2) into the form M · E = 0, where

M =

⎡
⎢⎢⎢⎢⎣

A1 C1 0 0 · · · 0 0
0 A2 C2 0 · · · 0 0
0 0 A3 C3 · · · 0 0
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · An+1 Cn+1

⎤
⎥⎥⎥⎥⎦,

E =

⎡
⎢⎢⎢⎢⎣

E1

E2

E3
...

En+1

⎤
⎥⎥⎥⎥⎦,

and

Ai =
(

ri −I
ti 0

)
, Ci =

(
0 t′

i−I r′
i

)
, Ei =

(→
Ei
←
Ei

)
.

(6)

Here, I is the identity matrix 2 × 2. To obtain a relation
between E1 and En+1, we make elementary transformations
of lines in the matrix M to the form where the last line has the
first and last elements only. To do this, we sequentially make
zero blocks, starting with the third line.

Let us illustrate these transformations by using an example
with three planes. We multiply the second line of M on the
left on −A3C−1

2 and add it to third line of the matrix:

M =
⎛
⎝A1 C1 0 0

0 A2 C2 0
0 −A3C−1

2 A2 0 C3

⎞
⎠. (7)

Next, we multiply on the left the first line on A3C−1
2 A2C−1

1
and add it to the third line and then multiply the third line
on C−1

3 :

M =
⎛
⎝ A1 C1 0 0

0 A2 C2 0
C−1

3 A3C−1
2 A2C−1

1 A1 0 0 I

⎞
⎠. (8)
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The last line corresponds to equations:

K3

(→
E1
←
E1

)
=

(→
E4
←
E4

)
, (9)

where

K3 = (
C−1

3 A3
)(

C−1
2 A2

)(
C−1

1 A1
) = B3B2B1, (10)

and Bi = C−1
i Ai (the general structure of these matrices may

be found in Appendix A). For a system with n planes, we
obtain

(−1)n+1Kn

(→
E1
←
E1

)
=

(→
En+1
←
En+1

)
, (11)

where

Kn = BnBn−1 · · · B1 (12)

are the matrices 4 × 4. For n = 0, there is no scattering at
a whole, and therefore, K0 = I4, the identity matrix 4 × 4.
By using simple algebra, we can represent this system in the
form of Eq. (5) and obtain the scattering matrix of the total
system in terms of the matrix K (we omit index n in Kn for
simplicity):

R = −K−1
22 K21,

R′ = K12K−1
22 ,

T′ = (−1)n+1K−1
22 ,

T = (−1)n+1(K11 − K12K−1
22 K21). (13)

For n = 0, we obtain R = R′ = 0 and T = T′ = I, as should
be the case. The determinant of this block matrix reads

det K = det(K22) det(K11 − K12K−1
22 K21) = det T

det T′ . (14)

As noted in Ref. [24], due to symmetry, the scattering in
opposite directions must be considered. All quantities in the

opposite direction we will mark by asterisks
∗
g = g(−kz ). In

Ref. [24], it was shown that
∗
R ′ = (R′ − TR−1T′)−1,

∗
R = (R − T′R′−1T)−1,

∗
T ′ = (T − R′T′−1R)−1,

∗
T = (T′ − RT−1R′)−1, (15)

where the right-hand side is calculated for +kz. Changing
kz → −kz, we obtain the inverse formulas:

R′ = (
∗
R ′ − ∗

T
∗
R−1 ∗

T ′)−1,

R = (
∗
R − ∗

T ′ ∗
R ′−1 ∗

T )−1,

T′ = (
∗
T − ∗

R ′ ∗
T ′−1 ∗

R )−1,

T = (
∗
T ′ − ∗

R
∗
T−1 ∗

R ′)−1. (16)

These relations are valid for a scattering matrix of each
plane, too.

The Casimir energy is defined by the logarithm of the
determinant of the scattering matrix, and it may be represented
in the following form [24]:

det S = det R

det
∗
R ′

= det T′

det
∗
T ′

. (17)

By using the relation in Eq. (13), we obtain the following
formula (see Appendix A):

det S = det T′

det
∗
T ′

= det
∗
K 22

det K22
. (18)

The contribution to the Casimir energy,

ln det S = ln det
∗
K 22 − ln det K22, (19)

is the difference of scatterings in opposite directions.
Without changing the Casimir energy, we can multiply the

matrix Kn on the arbitrary nondegenerate matrix W, which
has no dependence on the positions of planes. We use this
freedom and define the matrix Dn = K22W in a way that
Dn = I + . . . Then

det S = det
∗
Dn

det Dn
, (20)

and the Casimir energy reads

En = �
∫∫

d2k

(2π )3

∫ ∞

0
dξ ln det Dn, (21)

where Dn is calculated at the imaginary axis ω = iξ .
The special cases with n = 1, 2, 3, and 4 planes are consid-

ered in Appendix B. They are

D1 = I,

D2 = D(21)
2 = I − r2r′

1,

D3 = D(32)
2 t′−1

2 D(21)
2 t′

2 − r3t2r′
1t′

2,

D4 = D(43)
2 t′−1

3 D(32)
2 t′−1

2 D(21)
2 t′

2t′
3

− D(43)
2 t′−1

3 r3t2r′
1t′

2t′
3 − r4t3r′

2t′−1
2 D(21)

2 t′
2t′

3

− r4t3t2r′
1t′

2t′
3. (22)

The positions of planes are restored by replacement in Eq. (4).
Here, D(il )

2 = I − rir′
l is the matrix for two planes i and l

(numeration of planes starts from one for the first plane and
up to n for the last one). We observe in the above expressions
that the matrices t appear for internal planes only. The first
terms are additive contributions to the energy; the rest of the
terms describe the nonadditivity of the Casimir energy. For
example, the first term for n = 3 planes gives the following
contribution:

ln det
[
D(32)

2 t′−1
2 D(21)

2 t′
2

] = ln det D(32)
2 + ln det D(21)

2 , (23)

which is the sum of the contribution of pairs of neighboring
planes—first with the middle and the middle with the last one.
The second term in D3 contains reflection matrices of the first
and last planes and a transmission matrix of the middle plane.
It looks like a contribution due to the interaction of the first
and last terms through the middle.

III. RECURRENT RELATIONS

To obtain a recurrent relation for Dn, we use Eq. (12). The
matrix Kn has the following form:

Kn+1 = Bn+1Kn. (24)
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By using this relation for index n, n + 1 and the manifest form
of matrix Bn in Eq. (A3), we obtain the recurrent relation for
block (2, 2), the matrix Kn:

K22
n+2 = φnK22

n+1 + ψnK22
n , (25)

where

φn = −t′−1
n+2

[
I − rn+2

(
r′

n+1 − tn+1r−1
n+1t′

n+1

)]
,

ψn = −t′−1
n+2rn+2tn+1r−1

n+1. (26)

We define matrices

Dn = (−1)nt′
nKnt′

1t′
2 · · · t′

n−1 = I + . . . ,

D1 = D0 = I. (27)

In terms of these matrices, we obtain the relation we need:

Dn+2 = �nDn+1t′
n+1 + �nDnt′

nt′
n+1, (28)

where

�n = (I − rn+2r′
n+1)t′−1

n+1 + rn+2tn+1r−1
n+1,

�n = −rn+2tn+1r−1
n+1t−1

n . (29)

The scattering matrix for conductive plane s, with conduc-
tivity tensor ηs = 2πσs was found in Ref. [24]:

rs = exp(2ikzzs)αs,

r′
s = exp(−2ikzzs)αs,

ts = I + αs,

t′
s = ts,

∗
r s = − exp(−2ikzzs)(I + 2αs)−1αs,

∗
r ′

s = − exp(2ikzzs)(I + 2αs)−1αs,

∗
t s = (I + 2αs)−1(I + αs),
∗
t ′

s = ∗
t s, (30)

where

αs = − ω2ηs − k ⊗ kηs + Ikzω det ηs

ω2trηs − (kkηs) + kzω(1 + det ηs)
,

[αs]
i
j = − ω2[ηs]

i
j − kikl [ηs]l j + δi

jkzω det ηs

ω2trηs − (kkηs) + kzω(1 + det ηs)
, (31)

and k = (k1, k2) = (k1, k2), kz = √
ω2 − k2. All of these ma-

trices commutate with each other. At imaginary axes, ω →
iξ (kz → ikE ), we obtain

αs = − ξ 2ηs + k ⊗ kηs + IkEξ det ηs

ξ 2trηs + (kkηs) + kEξ (1 + det ηs)
, (32)

where kE =
√

ξ 2 + k2. For identical planes αs = α for
all s, and

Dn+2 = [I + exp(−2kE dn+2,n+1)(I + 2α)]Dn+1

− exp(−2kE dn+2,n+1)(I + α)2Dn, (33)

where di, j = z j − zi is the distance between planes i and j. For
identical planes αs = α and equal interplane distances di, j =

d , we obtain at the imaginary axis

Dn+2 = [I + exp(−2kE d )(I + 2α)]Dn+1

− exp(−2kE d )(I + α)2Dn, (34)

and

D2 = I − exp(−2kE d )α2,

D3 = [I − exp(−2kE d )α2]2 − exp(−4kE d )α2(I + α)2,

D4 = [I − exp(−2kE d )α2]3

− 2 exp(−4kE d )[I − exp(−2kE d )α2]α2(I + α)2

− exp(−6kE d )α2(I + α)4. (35)

To solve the recurrent relations in Eq. (34), we use a genera-
tion function method extended for matrix-valued coefficients.
Let us consider the matrix-valued recurrent relations:

Dn+2 = uDn+1 + vDn, (36)

with commutative matrices u and v, [u, v] = 0, and a genera-
tion function:

G =
∞∑

s=0

Dsz
s. (37)

Here,

u = I + exp(−2kE d )(I + 2α),

v = − exp(−2kE d )(I + α)2. (38)

Considering the recurrent relation in Eq. (36), we obtain

G = D0 + (D1 − uD0)z + uGz + vGz2. (39)

Therefore,

G = D0 + (D1 − uD0)z

I − uz − vz2
. (40)

Then we expand over z:

(I − uz − vz2)−1 =
∞∑

s=0

Msz
s, (41)

where

Ms =
[s/2]∑
l=0

us−2l vlCs−l
l . (42)

Here, [. . .] is the integer part, and Cs
l is the binomial coeffi-

cient:

Cs
l = s!

l!(s − l )!
. (43)

We set M−1 = 0, and from Eq. (42), we obtain M0 = I, M1 =
u. Considering this expansion, we have the relation:

G =
∞∑

s=0

zs[D0Ms + (D1 − uD0)Ms−1] =
∞∑

s=0

zsDs. (44)

The solution of this relation reads

Ds = D0Ms + (D1 − uD0)Ms−1. (45)
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For s = 0, 1, these relations become identities. Therefore,

Dn = Mn − Mn−1 exp(−2kE d )(I + 2α). (46)

Here, D0 = D1 = I and D2,D3 are given by Eq. (35). If the
matrices u and v are numbers u, v, then the sum in Eq. (42)
may be calculated in close form:

Mn = (u + √
u2 + 4v)n+1 − (u − √

u2 + 4v)n+1

2n+1
√

u2 + 4v
. (47)

If u and v are diagonal matrices:

u = diag(u1, u2), v = diag(v1, v2), (48)

then the matrix Ms is diagonal, too, with diagonal elements:

M (i)
n =

[
ui +

√
u2

i + 4vi
]n+1 − [

ui −
√

u2
i + 4vi

]n+1

2n+1
√

u2
i + 4vi

.

The matrix α may be diagonalized with eigenvalues rte, rtm,
which correspond to the reflection coefficients of TE and
TM modes [26]. Therefore, the matrices u and v in Eq. (38)
are diagonalized, too, and the matrices Dn are diagonal with
eigenvalues:

Dx
n = Mx

n − exp(−2kE d )Mx
n−1(1 + 2rx ), (49)

where

Mx
n =

[
ux + √

u2
x + 4vx

]n+1 − [
ux − √

u2
x + 4vx

]n+1

2n+1
√

u2
x + 4vx

,

ux = 1 + exp(−2kE d )(1 + 2rx ),

vx = − exp(−2kE d )(1 + rx )2, (50)

and x = te, tm. The matrix α has the following eigenvalues:

rte = −
(

1 + kE

ηξ

)−1

, rtm = −
(

1 + ξ

ηkE

)−1

, (51)

for the constant conductivity case η = 2πσ = ηI, and

rte = −
(

1 + kE

ηgr k̃�

)−1

,

rtm = −
(

1 + k̃

ηgrkE�

)−1

, (52)

for the case of graphene at zero temperature and chemical
potential:

η = ηgr
k̃

ξ

(
I − v2

F

k ⊗ k

k̃2

)
�

(
k̃

2m

)
, (53)

where ηgr = 2πσgr = πe2/2 = 0.0114, vF is the Fermi ve-
locity, m is mass of quasiparticles in graphene (mass gap
parameter), and

�(y) = 2

πy

{
1 + y2 − 1

y
arctan y

}
,

k̃ =
√

ξ 2 + v2
F k2.

To compare with the constant conductivity case in Ref. [20],
we define a new variable tx by the relation:

rx = − tx
1 + tx

. (54)

For the constant conductivity case,

tte = ηξ

kE
, ttm = ηkE

ξ
, (55)

and

tte = ηgr k̃�

kE
, ttm = ηgrkE�

k̃
, (56)

for the graphene sheets. With this definition (z = kE d),

Mx
n = e−nz

(1 + tx )n

1 − f 2(n+1)
x

f n
x

(
1 − f 2

x

) , (57)

where

fx =
√

(cosh z + tx sinh z)2 − 1 + cosh z + tx sinh z. (58)

Considering these relations, we obtain

Dx
n = e−nz f 1−n

x

(1 + tx )n

[
1 − f 2(n+1)

x

fx
(
1 − f 2

x

) − e−z 1 − f 2n
x

1 − f 2
x

(1 − tx )

]
. (59)

After some algebra, we can transform this expression to the
form obtained in Ref. [20] for the case of scalar constant
conductivity:

Dx
n = exp[−(n − 1)z] f 2−n

x

(1 + tx )n

×
[

1 + tx
fx

1 − f 2n
x

1 − f 2
x

− e−z 1 − f 2(n−1)
x

1 − f 2
x

]
. (60)

Therefore, we obtain that, for a stack of n identical conductive
planes with conductivity tensor σ and with identical inter-
plane distance d , the Casimir energy has the following form:

En = E te
n + E tm

n

=
∫∫

d2k

(2π )3

∫ ∞

0
dξ

(
ln Dte

n + ln Dtm
n

)
, (61)

where function Dn is given by Eq. (60). For an infinite number
of planes n → ∞, the Casimir energy is divergent, but the
energy per unit plane En = En/n is finite; it is given by the
same expression with replacement of Dx

n → Dx, where

Dx = lim
n→∞

n
√

Dx
n = e−z fx

1 + tx
. (62)

Let us analyze the limits of small and large separations. To
make this, we change integrand variables ki → ki/d and ξ →
ξ/d to make integrand dimensionless. The only place with
d dependence is the argument of function � = �(k̃/2md ).
For small separations d → 0, we observe that � → 1, and
the integrand does not depend on the interplane distance, and
therefore, En ∼ 1/d3. In the zero order of the Fermi velocity
vF = 0, the relations in Eq. (56) are transformed to the con-
stant conductivity case in Eq. (55), and the energy coincides
with that obtained in Ref. [20] for the constant conductiv-
ity case. The Drude-Lorentz model considered in Ref. [20]
gives 1/d5/2 dependence. For large separations d → ∞, the
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FIG. 2. The plane l = s in the stack of n planes is shifted on ε to
the right.

function � ≈ 8k̃/(3πmd ) → 0. Expanding the integrand in
Eq. (61) over tx � 1, we obtain

En = − η2
gr (n − 1)

225d3(md )2
∼ 1

d5
. (63)

The dependence 1/(m2d5) is observed in Ref. [4]. For the
case of graphene/perfect metal, the energy is ∼1/(md4). To
obtain a force acting on the plane s in the stack, we consider
a stack of graphene with equal distances except for plane s,
which is shifted on the distance ε (see Fig. 2), and calculate
the derivative:

D′
n = ∂Dn

∂ε

∣∣∣∣
ε=0

. (64)

For this system, the recurrent relation in Eq. (33) is valid:

Dl = uDl−1 + vDl−2, 1 � l � s − 1,

Ds = u(ε)Ds−1 + v(ε)Ds−2, l = s,
Ds+1 = u(−ε)Ds + v(−ε)Ds−1, l = s + 1,

Dl = uDl−1 + vDl−2, l � s + 2,

(65)

where

u = I + exp(−2kE d )(I + 2α),

v = − exp(−2kE d )(I + α)2,

u(ε) = I + exp[−2kE (d + ε)](I + 2α),

v(ε) = − exp[−2kE (d + ε)](I + α)2.

The recurrent relations for derivatives have the following
form:

D′
l = 0, 1 � l � s − 1,

D′
s = u′Ds−1 + v′Ds−2, l = s,

D′
s+1 = −u′Ds + uDs − v′Ds−1, l = s + 1,

D′
l = uD′

l−1 + vD′
l−2, l � s + 2,

(66)

where

u′ = −2kE exp(−2kE d )(I + 2α),

v′ = 2kE exp(−2kE d )(I + α)2. (67)

The generation function for this recurrent relation starts from
power zs:

G =
∞∑

l=s

D′
l z

l = zuG + z2vG + D′
sz

s + (D′
s+1 − uD′

s)zs+1.

Therefore,

G = D′
sz

s + (D′
s+1 − uD′

s)zs+1

I − zu + z2v
. (68)

Then we use expansion for the denominator in Eq. (41) and
obtain

D′
n = D′

sMn−s + (D′
s+1 − uD′

s)Mn−s−1. (69)

For all planes l � s, we must use the solution in Eq. (46). Let
us now obtain an expression for force acting on graphene with
number s in the stack of n graphene:

Fs,n = − ∂En

∂ε

∣∣∣∣
ε=0

= − lim
ε→0

En(ε) − En(0)

ε

= −� lim
ε→0

∫∫
d2k

(2π )3

×
∫ ∞

0
dξ

ln det Dn(ε) − ln det Dn(0)

ε

= −�
∫∫

d2k

(2π )3

∫ ∞

0
dξ tr

(
D−1

n D′
n

)

= −�
∑

x=te,tm

∫∫
d2k

(2π )3

∫ ∞

0
dξDx

n
−1Dx

n
′
. (70)

Direct calculation gives

Dx
n
−1Dx

n
′ def= Gx

s,n

= 2zt2
x e−z f [ f 2(s−1) − f 2(n−s)]

e−z f
[
1 − f 2(n−1)

x
] − (1 + tx )

(
1 − f 2n

x

) . (71)

This expression is the same as that obtained in the scalar case
in Ref. [20]. For an infinite amount of graphene in a stack
n → ∞ and finite s, we obtain

Gx
s = 2zt2

x f 2(1−s)

1 − ez f (1 + tx )
. (72)

Therefore, we obtain that the expression for force has the same
form as that obtained for the scalar constant conductivity case
but with corresponding reflection coefficients for TE and TM
modes.

IV. STACK OF GRAPHENE

The numerical evaluation of the Casimir energy for a stack
of n graphene at zero temperature is plotted in Figs. 3 and 4
as a function of parameter p = md and amount of graphene
in the stack. We evaluate the function En = En/nECas—the
energy per unit graphene in units of the Casimir energy
ECas = −π2/720d3 for two ideal planes. The bottom line in
Fig. 3 relating to the case of two graphene sheets agrees with
the computational results of Ref. [25]. For m = 0.1 eV and
interplane distance in graphite dc = 0.3345 nm, the parameter
pc = 1.69 × 10−4. With this value of mass gap, the domain of
distances in Fig. 3 is d ∈ [0, 100dc]. The energy En is lowered
by 16 times in this interval. For small separation, we observe
the 1/d3 dependence for the Casimir energy En as was proved
above. For large separation, we observe 1/d5 dependence of
the energy En. The n dependence of En is plotted in Fig. 4 for
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FIG. 3. The Casimir energy per unit graphene En as a function of
interplane distance. Here, n = 2, 4, 6, ∞ from the bottom upwards.
The insert shows the neighborhood of origin of the figure.

different interplane distances. The energy decreases in accu-
racy with increasing interplane distance, as should be the case
(the insert in Fig. 4). It is useful to compare these calculations
with the case of the constant conductivity case with universal
conductivity of graphene ηgr, which was considered in detail
in Ref. [20]. The constant conductivity leads to 1/d3 depen-
dence, and therefore, En does not depend on the interplane
distance. The better agreement appears for small distances,
where for the graphene case, En is approximately constant
(see Fig. 3). The case of constant conductivity gives a greater
value ∼10%. Let us estimate the binding energy due to the
Casimir energy for graphite. For graphite interplane separa-
tion dc = 0.3345 nm, we obtain the following energy per unit
plane in an infinite stack of graphene: E∞ = 59.23 erg/cm2.
The binding energy Eib = E∞/dcρc, where ρc = 2.23 g/cm3

FIG. 4. The Casimir energy per unit graphene En as a func-
tion of the number of planes in the stack. Here, m = 0.1 eV, and
d = dc, 10dc, 20dc from the top down, where dc = 0.3345 is the
interplane distance in graphite. The insert shows the energy for a
stack of an infinite number of graphene as a function of interplane
distance up to 50dc.

FIG. 5. The Casimir force Fs,n acting on the graphene s in the
stack of 10 and 20 planes.

is the graphite mass density. For these values, we obtain Eib =
9.9 meV/atom, which is 10% smaller than for the constant
conductivity case [20]. From first principles, the cohesion
energies are 24–26 meV/atom [27] and 24 meV/atom [28].
The experimental data give cohesion 35 ± 10, 15 meV/atom
[29], and 61 ± 5 meV/atom [30]. Most likely, the Casimir
energy gives an essential contribution to the binding energy.
The numerical evaluations of force acting on the graphene s in
the stack of n graphene are plotted in Figs. 5 and 6. We eval-
uate the function Fs,n = Fs,n/FCas, where FCas = −π2/240d4

is the Casimir force for two ideal planes. From Fig. 5, we
observe that the value of the force falls very quickly, begin-
ning at the first graphene sheet. The force acting on the second
graphene is 35 times smaller than the force acting on the first
one. Figure 6 shows that the force very quickly becomes the
force for an infinite amount of graphene—already the stack
of 10 graphene sheets gives the same force as for an infinite
stack.

V. CONCLUSIONS

We considered here the Casimir energy for a stack of con-
ductive planes and a force acting on the plane on this stack.

FIG. 6. The Casimir force Fs,n acting on the first and second
(insert figure) graphene in the stack of n graphene.

235405-7



EMELIANOVA, KHUSNUTDINOV, AND KASHAPOV PHYSICAL REVIEW B 107, 235405 (2023)

To calculate the Casimir force, the scattering theory is used.
Starting from the scattering on the single plane, we found the
scattering matrix for the set of planes and found the recurrent
relation in Eq. (28) for the Casimir energy in Eq. (21). In the
particular case of a stack of graphene with equal interplane
distance, the recurrent relation in Eq. (35) may be solved in the
manifest form in Eq. (46). The reflection Fresnel matrix may
be diagonalized with eigenvalues corresponding to the TE and
TM electromagnetic modes. The resulting expression for the
Casimir energy is the sum of contributions of these modes in
Eq. (61). The function Dn has the same form in Eq. (60) which
was found in Ref. [20] for the constant conductivity case.
We must use only the corresponding reflection coefficients for
graphene in Eq. (52). The explicit form of these coefficients
was obtained in the framework of the Dirac model, which is
applicable at energies <∼3 eV [31]. The characteristic energy
of the Casimir interaction is equal to 1 eV at the separation
of 100 nm between the planes and decreases with increasing
separation. Because of this, at a > 100 nm, the above compu-
tational results are fully justified physically. At a < 100 nm,
they should be considered as an estimation obtained, strictly
speaking, using the Dirac model outside the region of its appli-
cability. For small interplane separations md � 1, the Casimir
energy is divergent as 1/d3 (without mass gap parameter m).
In the opposite limit of large distances, the energy falls as
1/(m2d5), in accordance to Ref. [4]. The binding energy of
an infinite stack of graphene with interplane separation of
graphite dc is Eib = 9.9 meV/atom, which is 10% smaller
than for the constant conductivity case considered in Ref. [20].
The obtained value of binding energy depends only weakly on
the mass gap parameter because the case of graphite interplane
separation corresponds to the case mdc � 1 (see the insert in
Fig. 3). The Casimir force acting on the graphene s in the stack
of n graphene is a sum of two contributions in Eq. (70), where
function Gs,n has the same form in Eq. (71) as for constant
conductivity case found in Ref. [20], with corresponding re-
flection coefficients for TE and TM modes. The force acting
on graphene falls very quickly—for the second plane, it is
35 times smaller than for the first graphene (see Fig. 5). The
extremes of graphene squeeze the stack. The force acting on
graphene in a stack is quick n ∼ 10 (see Fig. 6) and becomes
the same as for an infinite stack. The influence of nonzero
temperature and chemical potential can be considered by em-
ploying the corresponding conductivity obtained in Ref. [22].
We will analyze this influence in forthcoming papers.
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APPENDIX A: SOME RELATIONS

(I) First, we prove the formula in Eq. (18). By using the
relations in Eqs. (15), (16), and (13), one has

det S = det R

det
∗
R ′

= det R
det(R′ − RR−1T′)−1

= det
[−K−1

22 K21
]

det
[
K11K−1

21

]−1 = det K11

det K22
. (A1)

(II) The different forms of the matrices Bi. By directly solving
the relation C−1

i Ci = I, we obtain

C−1
i =

(
r′

it
′−1
i −I

t′−1
i 0

)
. (A2)

Therefore, we can represent the matrix Bi in different forms:

Bi =
(

− ∗
t ′−1

i −r′
it

′−1
i

t′−1
i ri −t′−1

i

)
=

⎛
⎝− ∗

t ′−1
i

∗
t ′−1

i

∗
r i

∗
r ′

i

∗
t ′−1

i −t′−1
i

⎞
⎠, (A3)

considering the relations in Eqs. (15) and (16). Therefore, the
matrices have the following structure:

Bi =
(

bi
11 bi

12
∗
b i

12

∗
b i

11

)
=

(∗
b i

22

∗
b i

21

bi
21 bi

22

)
. (A4)

With replacement of Eq. (4), the dependence of the position
appears:

Bi =
[

bi
11 bi

12 exp(−2ikzzi )

bi
21 exp(2ikzzi ) bi

22

]
. (A5)

Some properties:

B−1
i =

( −t−1
i t−1

i r′
i

−rit−1
i − ∗

t−1
i

)
, det Bi = det ti

det t′
i

. (A6)

Therefore, due to the relations in Eq. (A4), the matrix K has
the following structure:

K =
(

K11 K12
∗
K 12

∗
K 11

)
=

( ∗
K 22

∗
K 21

K21 K22

)
. (A7)

The matrices Bi may be represented in the following forms:

Bi = τiρi = ρ′
iτi, (A8)

where

ρi =
(

−I
∗
r i

ri −I

)
, ρ′

i =
(

−I −r′
i

− ∗
r ′

i −I

)
,

τi =
(∗

t ′−1
i 0
0 t′−1

i

)
.

It easy to see that

ρi+1ρ
′
i =

(
I − ∗

r i+1
∗
r ′

i r′
i − ∗

r i+1
∗
r ′

i − ri+1 I − ri+1r′
i

)
. (A9)

APPENDIX B: DIFFERENT NUMBERS OF PLANES

1. The case without planes, n = 0

Without planes, there is no scattering, and K0 = I4 is diag-
onal matrix 4 × 4. We define D0 = I.
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2. Single plane, n = 1

The matrix K1 = B1 has the following form [see Eq. (A3)]:

K1 =
(

− ∗
t ′−1

1 −r′
1t′−1

1

t′−1
1 r1 −t′−1

1

)
. (B1)

Therefore,

D1 = −K22
1 t′

1 = I. (B2)

This expression does not depend on the position of the plane
and gives no contribution to the Casimir energy.

3. Two planes, n = 2

In this case,

K2 = B2B1 = τ2

(
I − ∗

r2
∗
r ′

1 r′
1 − ∗

r2
∗
r ′

1 − r2 I − r2r′
1

)
τ1. (B3)

Therefore,

D2 = I − r2r′
1. (B4)

4. Three planes, n = 3

For three planes, one has

K3 = B3B2B1

= −τ3

(
I − ∗

r3
∗
r ′

2 r′
2 − ∗

r3
∗
r ′

2 − r3 I − r3r′
2

)( ∗
t ′−1

2

∗
t ′−1

2 r′
1

t′−1
2

∗
r ′

1 t′−1
2

)
τ1.

(B5)

Then by using the relations:

∗
r ′ ∗

t ′−1 = −t′−1r,
∗
t ′−1 ∗

r = −r′t′−1, (B6)

and Eqs. (15) and (16), we obtain

D3 = D(32)
2 t′−1

2 D(21)
2 t′

2 − r3t2r′
1t′

2, (B7)

where D(i j)
2 = I − rir′

j for two planes i and j. In manifest
form:

D3 = I − r3r′
2 − t′−1

2 r2r′
1t′

2 + r3r′
2t′−1

2 r2r′
1t′

2 − r3t2r′
1t′

2.

By using replacement of Eq. (4), we observe that the second
term ∼ exp(2ikzd3,2), the third term ∼ exp(2ikzd2,1), and the
last two terms ∼ exp(2ikzd3,1), where di,k is the distance be-
tween planes i and k. A comment is in order. The first term in
the expression obtained in Eq. (B7) directly gives the sum of
energies of pars. Indeed,

ln det
[
D(32)

2 t′−1
2 D(21)

2 t′
2

] = ln det D(32)
2 + ln det D(21)

2 . (B8)

The second term breaks the additivity of the Casimir energy.
It contains refraction coefficients for the first and last planes
without the middle plane.

5. Four planes

We have

K4 = τ4

(
I − ∗

r4
∗
r ′

3 r′
3 − ∗

r4
∗
r ′

3 − r4 I − r4r′
3

)

× τ3τ2

(
I − ∗

r2
∗
r ′

1 r′
1 − ∗

r2
∗
r ′

1 − r2 I − r2r′
1

)
τ1.

Let us express now this expression without asterisks. We use
the relations in Eq. (B6). Then

D4 = D(43)
2 t′−1

3 D(32)
2 t′−1

2 D(21)
2 t′

2t′
3

− D(43)
2 t′−1

3 r3t2r′
1t′

2t′
3 − r4t3r′

2t′−1
2 D(21)

2 t′
2t′

3

− r4t3t2r′
1t′

2t′
3. (B9)

The first term describes the additive part of the Casimir en-
ergy, and the rest of the terms give nonadditivity of the energy.
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