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Motivated by recent developments in measurements of electron spin resonances of individual atoms and
molecules with a scanning tunneling microscope (ESR-STM), we study electron transport through an impurity
under periodic driving as a function of the transport parameters in a model junction. The model consists
of a single-orbital quantum impurity connected to two electrodes via time-dependent hopping terms. The
hopping terms are treated at the lowest order in perturbation theory to recover a Lindblad-like quantum master
equation with electron transport. As in the experiment, the ESR-STM signal is given by the variation of the
long-time DC current with the driving frequency. The density-matrix coherences play an important role in the
evaluation of the ESR-STM signal. Electron correlation is included in our impurity mode. The charging energy
U has significant influence on the spin dynamics depending on the sign and magnitude of the applied DC bias.
Our model allows direct insight into the origin of the ESR signal from the many-body dynamics of the impurity.

DOI: 10.1103/PhysRevB.107.235404

I. INTRODUCTION

The use of time-dependent techniques in scanning tun-
neling microscopes (STMs) at gigahertz (GHz) frequencies
ushered in the acquisition of electron spin resonances (ESRs)
with STMs [1–16]. These developments grant access to new
phenomena thanks to the unprecedented high-energy reso-
lution of ESRs combined with the subatomic precision of
the STM. Examples include the analysis of elusive atomic
configurations on surfaces by measuring the actual magnetic
moment of f -electron atoms [2] and the determination of
isotopes of single adsorbates [6].

The ESR-STM technique measures the direct current (DC)
through a localized spin impurity, such as a single atom or
molecule, in the STM junction as the tip-sample bias is period-
ically modulated. At a certain modulation frequency, the DC
current experiences a variation that can be detected. The ESR
spectra are values of the junction DC current as a function of
driving frequency, typically in the GHz (μeV) range. To drive
the localized electron spin, a suitable alternating electric field
is fed either directly to the tip [1–11] or to the entire sample
via an antenna [1,4]. The mechanism that couples the electric
field to a local magnetic moment is not clear, and substantial
effort has been devoted to trying to understand under what
circumstances an ESR is produced (for a recent review refer
to Ref. [17]). Clarifying the origin of ESRs in the STM is
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not only conceptually but also practically important because
full development of the ESR-STM technique requires a high
degree of control to acquire meaningful signals.

In the present work, we address the effect of the transport
parameters in the ESR signal. Understanding how transport
affects the signal yields key information about the way the
ESR is produced. In previous publications [18,19], we showed
that a time-dependent modulation of the tunneling matrix
elements between electrodes and impurity is sufficient to
produce a sizable ESR signal. It is well known that elec-
tric fields efficiently modulate these transfer matrix elements
[20,21], and in turn, this modulation drives the spin [18,19].
Moreover, the suggested adiabatic motion of the impurity in
the time-dependent electric field [1,22] would only increase
the tunneling modulation. Our model is based on a trans-
port description of the electron current in the presence of
driving via the modulation of the tunneling matrix elements.
We treat the spin degrees of freedom via a reduced density
matrix, which allows us to develop a quantum master equa-
tion for the transport process under driving and with quantum
spins [19].

The present work includes important differences from
Refs. [18,19]. Here, we use a quantum master equation that
is correct in the limit of small couplings to the electrodes
[23]. However, in Ref. [18], we adopted a simplified two-level
system to define a quantum master equation with heuristic
rates computed in the cotunneling regime. The present work
is consistent in that the quantum master equation implies
small couplings and hence a sequential tunneling regime. This
approach was already used in Ref. [19], where a simplified
U → ∞ impurity model was adopted. Here, we introduce a
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FIG. 1. (a) Scheme of the electron transport geometry for an im-
purity (here, a molecule) in a junction under an external drive given
by the applied bias. In an ESR-STM setup, the left (L) and right (R)
electrodes represent the STM tip and substrate. (b) The model used
in our Hamiltonian representing the system in (a). A single orbital is
connected via time-dependent hopping elements, TL (t ) and TR(t ), to
the left and right free-electron electrodes. Under an external magnetic
field, the singly occupied spin up (↑) and down (↓) levels are split
by the Zeeman energy with Larmor or resonance frequency f0. The
orbital contains electron-electron correlation by the introduction of a
charging energy (or intraorbital Coulomb repulsion) U .

finite charging energy U while keeping the full complexity of
the spin degrees of freedom, treated via a spin Hamiltonian. To
simplify the discussion of results, we will discuss a spin-1/2
system in the present work.

This paper is organized as follows. In Sec. II, we summa-
rize the model and the theoretical approach. In the present
paper, we put special emphasis on clarifying the different
equations and on how to treat the extended basis set to include
electronic correlations under a finite charging energy U . We
present the results of simulations with a set of parameters
compatible with experimental ESR-STM setups in Sec. III.
The calculations explore the behavior of the continuous-wave
(CW) ESR-STM signal (change in DC current as the driving
frequency is changed) as a function of the DC bias. The results
clearly show the role of the involved states, the importance
of having changing populations and coherences, and their
influence on the DC current that is ultimately the experi-
mental observable. The results corroborate the importance of
coherent charge fluctuations to have a measurable signal in
ESR-STM.

II. THEORETICAL APPROACH

Figure 1 shows a representative model of the type of sys-
tem considered in this work. A central region that can be
solved exactly is coupled via some hopping matrix elements
to electron reservoirs. These hoppings need to be small com-
pared to the typical energies of the central region in order to
obtain a quantum master equation (QME), as will be shown
in the following. We solve this QME in the long-time limit

using Floquet’s theorem, which treats linear differential equa-
tions under a periodic drive [24]. Finally, in this section, we
derive the equation for the time-dependent electronic current
and for its DC component in this long-time limit.

A. The model Hamiltonian

The model for the full quantum system consists of a quan-
tum impurity (a magnetic adsorbate, such as a single atom
or molecule) tunnel coupled to two electron reservoirs (see
Fig. 1). The full system is described by

H (t ) = Helec + HI + HT(t ), (1)

where the first term describes the two electrodes, the second
term is the impurity Hamiltonian, and the third term is the
tunneling Hamiltonian, which is the only time-dependent one.
The electrodes are assumed to be described by one-electron
states,

Helec =
∑
αkσ

εαkc†
αkσ

cαkσ , (2)

where α identifies the electrode (α = L,R), σ =↑,↓ is the
electron spin projection along the quantization axis, and k is
its momentum. Each electrode is characterized by a chemical
potential μα such that the total DC bias is eVDC = μL − μR.
Following Ref. [19], the quantum impurity consists of a sin-
gle orbital with intraorbital correlation represented by the
charging energy U . The impurity is subjected to an external
magnetic field such that its Hamiltonian is given by

HI =
∑

σ

εd†
σ dσ + Un̂d↑n̂d↓ + gμBB · ŝ, (3)

where ε is the orbital energy of the impurity, U is the
corresponding Coulomb repulsion, and n̂dσ = d†

σ dσ is the
occupation operator of the orbital. Its spin operator ŝ has
components ŝ j = h̄

∑
σ,σ ′ d†

σ σ̂
j

σσ ′dσ ′/2, where σ̂ j ( j = x, y, z)
are the Pauli matrices. The last term of Eq. (3) is the Zeeman
contribution to the Hamiltonian.

The coupling between the impurity and the two reservoirs
is described by the tunneling Hamiltonian

HT (t ) =
∑
αkσ

[Tα (t )c†
αkσ

dσ + T ∗
α (t )d†

σ cαkσ ]. (4)

The periodic drive is introduced by a time-dependent hopping
Tα (t ), parameterized as

Tα (t ) = T 0
α [1 + Aα cos(ωt )], (5)

following Refs. [18,19]. This approximation captures the
effect of the driving electric field on the electron transfer
probability because of the changing tunneling barrier. Fig-
ure 2(a) shows a simple scheme for the modulation of the
transmission of the wave function across one of the barriers,
under varying external electric field. Although not needed,
the presence of piezoelectric effects [25] would enhance the
tunneling modulation in the time-dependent electric field.

Tunneling modulation is very efficient in driving the spin.
In Ref. [18], we showed that the tunneling modulation directly
enters the Rabi flip-flop rate in an effective two-level system
where electrons hop in and out the impurity. Indeed, the
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FIG. 2. (a) Barrier modulation, represented here by a one-
dimensional barrier along direction z at two different external electric
fields. The transmitted wave function (given by the log of the density
shown by thick orange and cyan curves corresponding to the two
different electric-field values) is much larger for one of the applied
biases, illustrating the effect of the modulation of the hopping that
provides the electric-field coupling to the impurity spin. (b) Energy
scheme of the quantum impurity. The four possible states are |p〉 =
↑, ↓, 2, ∅. For representation and discussion purposes, we assume
that the eigenstate basis |l〉 is, in the first approximation, the same
as the |p〉 basis, although all calculations are performed using the
numerical eigenstates of the complete impurity Hamiltonian, which
can be of considerable complexity. In order to be able to compare the
energies of states with different numbers of electrons, we assume that
the missing electrons are at the chemical potential of the electrodes
at zero bias. The zero-electron state is at zero energy.

tunneling modulation implies an effective change in the state
of the impurity due to charge transfer from the electrodes.

To formulate the problem in terms of the reduced den-
sity matrix, we consider all possible configurations for zero,
one, and two electrons in the impurity. Figure 2(b) shows
an energy diagram with the four possible eigenstates of the
simplest spin-1/2 system. These configurations are |p〉, with
p =↑,↓, 2,∅. The first two account for one-electron states,
while the third and fourth label the spin singlets with two and
zero electrons, respectively. The impurity Hamiltonian in this
basis is given by

HI =
∑

p

εp|p〉〈p| + gμB

2
{(Bx + iBy)|↓〉〈↑|

+ (Bx − iBy)|↑〉〈↓|}, (6)

where εp takes the values εσ = ε + gμBBzσ for σ =↑ or ↓,
ε2 = 2ε + U , and ε∅ = 0. The tunneling Hamiltonian in this
|p〉 basis set is

HT (t ) =
∑
αkσ

[Tα (t )c†
αkσ

|∅〉〈σ | + Tα (t )c†
αkσ

|σ̄ 〉〈2| + H.c.],

(7)
where σ̄ indicates the opposite to the σ spin projection.

Since the impurity Hamiltonian does not depend on time,
we can use the eigenbasis of the impurity to describe the
reduced density matrix. This eigenstate basis is given by

HI|l〉 = El |l〉. (8)

From now on, Latin characters (l, j, u, v, . . . ) refer to eigen-
states that are combined electronic and spin configurations
of the impurity. Accordingly, we write HT (t ) in terms of
the Hubbard operators |l〉〈 j| obtained from these impurity

many-body eigenstates [26],

HT (t ) =
∑
αkσ l j

(Tα (t )c†
αkσ

λl jσ |l〉〈 j| + H.c.),

which explicitly contain the matrix element that reflects the
change in the many-body configurations of the impurity j of
N + 1 electrons to l of N electrons:

λl jσ = 〈l|dσ | j〉 = 〈l|∅〉〈σ | j〉 + 〈l|σ̄ 〉〈2| j〉. (9)

B. The quantum master equation

We derive the QME by treating the coupling between the
impurity and the reservoirs to the lowest order in perturbation
theory in HT like in Refs. [19,27–33]. This approximation
amounts to the Born-Markov approximation [34,35]). The
reduced density matrix in the impurity eigenstate basis set is

ρl j (t ) = Tr[ρ̂T (t )|l〉〈 j|], (10)

with the trace taken over all the degrees of freedom of the total
system and ρ̂T (t ) being the time-dependent density matrix of
the total system [19,33].

The QME for ρl j (t ) is directly extracted from [19]

h̄ρ̇l j (t ) − i�l jρl j (t ) =
∑
vu

{[	vl, ju(t ) + 	∗
u j,lv (t )]ρvu(t )

−	 jv,vu(t )ρlu(t ) − 	∗
lv,vu(t )ρu j (t )},

(11)

where we have denoted �l, j = El − Ej . All indices (l, j, v, u)
refer only to many-body eigenstates of the impurity Hamilto-
nian HI.

The above QME, Eq. (11), is physically meaningful in
the limit of weak coupling between impurity and electrodes.
Here, weak means that the induced broadening of the impurity
levels is smaller than the typical separation between levels
�l, j . In this way, we make sure that the dynamics induced by
the electrode is a small perturbation of the intrinsic impurity
dynamics. In this limit, the different approaches to obtain a
linear equation in the reduced density matrix yield the same
QME [23].

The rates 	(t ) can be written as the sum of two contribu-
tions per electrode α:

	vl, ju(t ) =
∑

α

[	−
vl, ju,α (t ) + 	+

vl, ju,α (t )]. (12)

These rates can be expressed as

	−
vl, ju,α (t ) = i

2π

∑
σ

λvlσ λ∗
u jσ [1 + Aα cos(ωt )]γασ

×
∫ ∞

−∞
dε fα (ε)

(
1

ε − � ju + ih̄/τc

+ eiωt Aα/2

ε − � ju + h̄ω + ih̄/τc

+ e−iωt Aα/2

ε − � ju − h̄ω + ih̄/τc

)
(13)
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and

	+
vl, ju,α (t ) = − i

2π

∑
σ

λ∗
lvσ λ juσ [1 + Aα cos(ωt )]γασ

×
∫ ∞

−∞
dε[1 − fα (ε)]

(
1

ε + � ju − ih̄/τc

+ eiωt Aα/2

ε + � ju + h̄ω − ih̄/τc

+ e−iωt Aα/2

ε + � ju − h̄ω − ih̄/τc

)
. (14)

The Fermi occupation function is given by fα (ε) =
1/(eβα (ε−μα ) + 1), where βα is the inverse temperature times
the Boltzmann constant for electrode α. Additionally, γασ is
the level broadening due to the hopping T 0

α to electrode α for
spin σ :

γασ = 2πDασ

∣∣T 0
α

∣∣2
, (15)

which depends on the spin-dependent density of states, given
by

Dασ = Dα (1/2 + σPα ). (16)

Here, σ = ±1/2, Pα is a real number between −1 and 1 giving
the spin polarization of the electrode, and Dα is the density of
states of the electrode at the Fermi energy.

The above rate expressions neglect the time dependence of
the electrodes [19]. This approximation is valid when the AC
amplitude is much smaller than the DC component of the bias;
otherwise, Eq. (13) should include further Bessel functions
to take into account the time dependence of the electrode’s
Green’s function [20,21].

The physical interpretation of the rates is straightforward.
The rates are proportional to γασ , Eq. (15), which is the usual
broadening induced by the hopping-matrix elements and the
density of states of the electrodes. Whether the process in-
volves electrons or holes is contained in the appearance of the
Fermi occupation factors. The expressions given in Eqs. (13)
and (14) contain the λ matrix elements that take in the right
weights of each impurity state. Finally, the factors including
the magnitude of the hopping modulation Aα take into account
whether the electron-transfer process involves the absorption
or emission of a photon from the microwave field.

Finally, a finite 1/τc improves the convergence of the
Green’s function. Its inclusion leads to a small renormal-
ization (or Lamb shift) of the spectrum. The value of this
number is crucial as it affects the imaginary part of the Green’s
function and has a significant impact on the overall dynamics.
As with any numerical implementation, it is essential to be
careful with the chosen values, particularly for a quantity that
should be infinitesimal. To ensure accuracy, we verify all our
calculations against variations in 1/τc.

C. The long-time limit

The rate is periodic in time at a fixed drive of frequency
ω/2π and can be expanded in terms of Fourier components,
allowing us to express all equations in Floquet components.
We introduce the Floquet index n as the Fourier index of the

rate [24]:

	vl, ju,α (t ) =
∑

n

e−inωt 	vl, ju,α;n(ω). (17)

From Eqs. (11) and (17), we can write the Floquet master
equation,

�l jρl j;n + nh̄ωρl j;n

= i
∑
vu;n′

{[	vl, ju;n′ (ω) + 	∗
u j,lv;−n′ (ω)]ρvu;n−n′

−	∗
lv,vu;−n′ (ω)ρu j;n−n′ − 	 jv,vu;n′ (ω)ρlu;n−n′ }. (18)

D. Expressions for the electronic current

The current flowing out of electrode α is defined as Iα =
−e d〈Nα〉

dt . This translates into the usual Meir-Wingreen formula
[36], where now the matrix elements of all quantities appear
in terms of many-body eigenstates, l, j, and u (see Ref. [19]):

Iα (t ) = 2e

h̄

∑
l ju

Re{ρlu(t )[	−
l j, ju,α (t ) − 	+

l j, ju,α (t )]}. (19)

Using IL = −IR, we symmetrize the current by setting I =
(IL + IL )/2 = (IL − IR)/2, and the above expression can be
rewritten as

I (t ) = −2e

h̄

∑
l ju

Re{ρlu(t )[	−
l j, ju,R(t ) + 	+

l j, ju,L (t )

−	−
l j, ju,L (t ) − 	+

l j, ju,R(t )]}. (20)

This expression differs from previous approaches because it
now contains the contribution of the coherences of the density
matrix, not only the populations [37–39]. We will show that
under certain conditions the coherences are crucial for the
correct calculation of the ESR signal.

Since CW ESR-STM experiments measure the DC current
in the long-time limit, we express it in Floquet components as

I (ω) = −2e

h̄

∑
l ju;n′

Re{ρlu;−n′ (ω)[	−
l j, ju,R;n′ + 	+

l j, ju,L;n′

−	−
l j, ju,L;n′ − 	+

l j, ju,R;n′ ]}. (21)

Finally, let us emphasize that a full description based on
a QME is possible when keeping to the lowest order in the
hopping terms. This order is sufficient when the impurity level
lies within the two Fermi levels. However, outside this bias
window, higher-order terms may become comparable to or
larger than the lower-order term. These higher-order terms
contain sums over intermediate states, opening the possibil-
ity of cotunneling processes and of Kondo scattering (see,
for example, Refs. [18,40,41]). In the present approach these
processes are absent.

III. RESULTS

Our model consists of an S = 1/2 impurity that is weakly
connected to two electrodes under a finite DC bias and a CW
drive. Our aim is to explore the behavior of the ESR signal as
the DC voltage is varied for a set of parameters intended to
mimic conditions found in ESR-STM experiments.
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A. Model parameters

The model parameters are chosen under the proviso of
obtaining a strong ESR signal of an S = 1/2 system weakly
connected to two electrodes under electrical driving. To
achieve this, we need the following: (1) an imbalance in the
transport-electron spin in order to make the main rates dif-
ferent from zero, which is achieved by having different spin
polarizations of the electrodes; (2) a predominant long-time
average population of one electron in the impurity so that the
system does not behave like a S = 1/2 system; (3) an elec-
tronic level ε within the DC-bias range; (4) to flip the transport
spin using a magnetic field transverse to the electron spin
polarization; (5) a modulation of the tunneling hopping with
the spin-polarized electrode by the oscillating electric field;
and (6) a low temperature (we take 1 K for both electrodes).

In our calculations, we achieve the above conditions
with the following parameters: (1) The left electrode has a
polarization of PL = 0.45 in Eq. (16). Increasing the polar-
ization up to 100% will increase the ESR signal amplitude.
(2) To stabilize the charge state, we apply different couplings
with γR = 20 × γL = 5 μeV. This coupling asymmetry is of-
ten found in experiments, where the impurity couples more
strongly to the substrate than the STM tip. The DC bias drop
is eVDC = μL − μR. We use the model of a double-barrier
tunnel junction [42] and assume an asymmetric DC bias drop
where μL = (1 − η)eVDC and μR = −ηeVDC with the fac-
tor η = γL/(γL + γR) = 1/21. This means that the bias drop
takes places mostly on the left electrode. (3) The energy of our
model is set to ε = −10 meV. In addition, the electronic states
are assumed to have an intrinsic width of h̄/τc = 10 μeV.
In order to explore the interplay of the many-body states
in ESR processes, we take a fixed charging energy close to
the electronic level energy of U = 3|ε|/2 = 15 meV. (4) In
order to flip the spin, defined along the z axis of the spin
polarization PL, we apply a B-field component along the x axis
perpendicular to the z-axis component. The magnetic field is
taken as B = (0.6, 0, 0.1) T, which gives a Larmor frequency
of approximately 17 GHz. The largest ESR signal takes place
for a magnetic field completely aligned with the x axis, in
good agreement with experiments [16]. (5) The modulation
of the tunneling matrix element is AL = 50%, Eq. (5), and
applied only to the left electrode, which is the polarized one.
Since the right electrode is not spin polarized, AR does not
contribute to the resonance, only to the background current.

B. Nonzero rates: The opening of transport channels
with applied bias

A transport channel opens when the corresponding rates,
Eq. (12), are different from zero. Inspection of Eq. (13) shows
that this occurs when two conditions are met: The first one is
energy conservation, largely controlled by the Fermi factors.
The energy conservation implies that the change in state has
to be compensated by the applied bias. Under our present
conditions, the bias drop takes place largely at the left elec-
trode; then �v,l = Ev − El has to be larger than μL = eVL =
(1 − η)eVDC. This is due to the appearance of the term f (�v,l )
in Eq. (13) when 1/τc → 0+. The second condition is that the
sequential transport process leads to a change in the charge
state of the impurity such that λvlσ �= 0 when v and l differ

FIG. 3. (a) and (b) ESR signal �I ( f ) = I ( f ) − IBG as a function
of relative frequency δ = f − f0 for two different signs of the DC
bias. In (a) the DC bias is negative, and in (b) the DC bias is
positive, which inverts the ESR amplitude. f0 is the natural resonance
frequency of the Hamiltonian (Larmor frequency) plus the renormal-
ization imposed by the Lamb shift. (c) ESR signal and (d) real part
of the coherence ρ↑↓ between spin up and down as a function of DC
bias when on resonance (δ = 0). The transport channels are closed
for VDC � U + ε (neglecting the Zeeman energy) and VDC � ε. In
this work we took U = 3|ε|/2, so the ESR signal is zero between
VDC/|ε| � 0.5 and VDC/|ε| � −1. The behavior of the ESR signal
reflects the behavior of the coherences except for a sign.

in one electron of spin σ . Then, the difference in energy
�v,l in the rates (12) always addresses states differing by one
electron.

C. DC-bias dependence of the ESR signal

The DC bias will determine when the transport channels of
the system open. But the occurrence of ESR further depends
on the possibility of a spin-flip process. For this, the transport
channel must be compatible with spin-flip processes.

First, we study the dependence of the magnitude and sign
of the ESR signal �I as a function of the magnitude and
sign of the applied DC bias. Figures 3(a) and 3(b) show two
representative spectra taken at opposite signs of the DC bias.
The difference between the two spectra is more than a change
in sign. To better understand this behavior, Fig. 3(c) shows the
ESR peak intensity as a function of VDC. Take, for example, a
positive bias where we obtain a large negative value of the
ESR signal. This correlates with a large contribution of the
coherence term ρ↑↓ between spin up and down [Fig. 3(d)].
We emphasize that this occurs in the long-time limit under
substantial decoherence of the system as long as the drive
sustains the coherences. The connection between the ESR
signal and coherences of the density matrix can be understood
by studying the behavior of the electronic current, Eq. (19).

When the applied bias is positive (μL − μR > 0), spin-
polarized electrons flow from the left electrode into the
impurity. A negative ion is formed if μL > �2,↓ = E2 − E↓ ≈
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U + ε (we have neglected the Zeeman energy), which cor-
responds to a transition from a singly occupied level (with
spin down, u =↓) to a doubly charged level (v = 2). At the
same time, we need μR < �2,↓, which is the case at positive
bias. Similarly, the formation of the positively charged ion is
energetically possible. However, there is an important asym-
metry due to the very different couplings between impurity
and electrodes (γL  γR) as well as in the bias drop. As a
consequence the formation of the negative ion is favored over
the positive one for the present case. Then, we can simplify
the expression for the electron current, Eq. (19), by neglecting
the involvement of the positive ion and considering only the
negative ion as the intermediate step in the electron transfer
between electrodes through the impurity:

I (ω) = 2e

h̄
Re{ρ↓(ω)	−

↓2,2↓,L;0 + ρ↑(ω)	−
↑2,2↑,L;0

+ ρ↓,↑(ω)	−
↓2,2↑,L;−1 + ρ↑,↓(ω)	−

↑2,2↓,L;1}, (22)

where, for instance, 	−
↓2,2↓,L;0 is the electron rate for a process

that involves a non-spin-flip transition (spin-up state) through
the doubly occupied one by exchanging an electron with the
left electrode, Floquet index n = 0. At the same time, ρ↓ =
ρ↓↓,0, while ρ↓↑ = ρ↓↑,1 and ρ↑↓ = ρ↑↓,−1, where −1, 0, 1
are Floquet indices.

At a large enough bias, all channels are open, giving a
background current IBG:

IBG = 2e

h̄
Re{ρ↓(ω)	−

↓2,2↓,L;0 + ρ↑(ω)	−
↑2,2↑,L;0},

which recovers the usual expression for the current for very
asymmetrical couplings [36]. The background current shows
a small frequency dependence as it is largely given by the rates
with Floquet index n = 0. Indeed, there is no coherence in the
density matrix when the driving frequency is different from
the Larmor frequency (off resonance) and I (ω) = IBG.

Only on resonance is the coherence ρ↓,↑(ω) different from
zero. Then, there is a clear frequency-dependent contribution
to the current at the Larmor frequency that originates in the
coherences of the density matrix. Accordingly, the coherence
contribution to the DC current depends on the Floquet indices
n = ±1.

Increasing the value of the charging energy U moves the
doubly occupied state energy (E2 = 2ε + U ). For U → +∞,
it becomes impossible to open the channel connecting the
single-electron states with the doubly occupied one. As a con-
sequence, the ESR signal completely disappears for positive
bias.

At negative bias, μL < �↓,∅ = −10 meV marks the
threshold for having a current, where v = ∅ corresponds to
the positively charged impurity. As in the discussion above,
we have neglected the Zeeman energy. The ESR signal also
follows the behavior of −ρ↑↓ as above (Fig. 3).

The intermediate state mediating the transport process at
negative bias is the one corresponding to the positive ion, v =
∅. Then Eq. (19) can be simplified by taking the positive ion
contribution:

I (ω) = −2e

h̄
Re{ρ↓(ω)	+

↓∅,∅↓,L;0 + ρ↑(ω)	+
↑∅,∅↑,L;0

+ ρ↓,↑(ω)	+
↓∅,∅↑,L;−1 + ρ↑,↓(ω)	+

↑∅,∅↓,L;1}, (23)

FIG. 4. DC current as a function of the driving frequency δ =
f − f0 for the four different positive voltages: (a) VDC = 0, (b) VDC =
2.5 mV, (c) VDC = 5 mV, and (d) VDC = 7.5 mV. The background
current was not removed. The current changes in a small interval
about the resonance frequency. For DC bias below the threshold (at
5 mV here) the DC current drops dramatically as the channel closes
and the line shape as a function of frequency becomes increasingly
asymmetric. Moreover, the width of the resonance also increases
with the DC bias, leading to smaller T2 times as the decoherence
is enhanced. The more asymmetric Fano profiles are found near the
transport-channel thresholds.

where, again, the ESR signal originates in the coherences of
the density matrix. Contrary to the positive-bias case, the limit
U → ∞ does not alter the results since the doubly occupied
level is not involved.

There is a strong connection between the charging energy
and the bias dependence. Only at the symmetric point, when
ε = −U/2, is perfect electron-hole symmetry achieved, and
the ESR signal becomes symmetric with respect to the bias
sign. At U → ∞ the electron-hole asymmetry becomes the
largest, with no ESR signal for positive bias and a large signal
for negative bias at the bias threshold marked by the impurity
level. This highlights the important role of the charging energy
in determining the bias dependence and ESR-STM measure-
ments.

D. ESR-STM linewidths

Figure 4 shows four characteristic CW ESR-STM signals
as a function of the frequency of the drive, f = ω/2π , for pos-
itive DC bias. At threshold, VDC ≈ U + ε ≈ 5 mV, a strongly
asymmetric Fano profile is obtained. This behavior can be
traced back to the interference between the on-resonance scat-
tering with the background. As the bias is further reduced,
the transmission channel is increasingly closed, leading to
a smaller background current and a smaller signal. In this
regime, the ESR signal also depends on the change in the
populations, in stark contrast to the open-channel case, where
the ESR signal is basically determined by the coherences.
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Furthermore, the closed-channel region is particularly
intriguing due to its potential for enhancing coherence,
particularly when higher-order transport processes such as
cotunneling are not dominant. Experimental evidence, as re-
ported in Ref. [4], has demonstrated that the flow of electronic
current is a significant source of decoherence. However, when
the current is reduced, such as in the closed-channel region,
there is improved coherence in the spin evolution.

The current approach to studying this regime is valid as
long as cotunneling and other higher-order transport processes
are not dominant. This brings attention to two important
points. First, we emphasize the presence of a closed-channel
region, where even minor changes in population can signifi-
cantly affect the current. Second, this region is characterized
by long decoherence times, making it highly desirable for
experimental purposes.

IV. SUMMARY AND CONCLUSIONS

This work explored the ESR signal in the DC current
through a quantum impurity connected to two electron reser-
voirs under bias. The model is intended to reproduce the
conditions of ESR-STM, where the applied bias contains a
DC component and an AC component usually in the GHz
frequency range. We extended previous work [19] to include
finite intra-atomic correlation, and we showed its impact
on the DC-bias dependence of the ESR signal. Our the-
ory is based on a Linblad-like QME that was obtained by
keeping the modulation of the tunneling matrix element to
lowest order. This limits the transport regime to the sequen-
tial or on-resonance one. This situation seems to be similar
to transition-metal impurities, molecules, and alkali metal
dimers that have s electrons close to the Fermi energy of the
substrate [43–46]. We treated only spin-1/2 systems in the
present study, but the extension to larger spin systems can be
achieved with relative ease.

Our choice for ε and charging energy U values breaks the
electron-hole symmetry of the system. This has wide-ranging
implications for the transport when taking into account the

opening and closing of different transport channels as the
applied DC bias varies. As a consequence, spin-1/2 systems
such as the ones in Refs. [43–46] should exhibit a bias-sign
dependence of the ESR signal in the experiment.

Our work highlights the importance of properly including
the complete reduced density matrix in the calculation of the
ESR signal. In the open-channel case, we found that the ESR
signal is proportional to the coherences or off-diagonal ele-
ments of the density matrix. However, in the closed-channel
region, the diagonal elements or populations play a significant
role. Therefore, the ESR-induced change in the DC current
can be indicative of coherences or population changes of the
system depending on the transport regime.

The present theory is based on a charge-fluctuation descrip-
tion in which the impurity charge changes during the electron
transport process and the fluctuations induce the spin-flip pro-
cesses that, in turn, lead to the ESR signal as long as driving
and polarization are maintained. Our results emphasize the
need to correctly treat the coherent charge fluctuation and
include the coherence in the description of the full transport
processes, not only for the evaluation of the impurity’s popu-
lation but also in the equation for the electron current.
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