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Nonsymmorphic crystals can host characteristic double surface Dirac cones with fourfold degeneracy on
the Dirac points, called wallpaper fermion, protected by wallpaper group symmetry. We clarify the charge
and spin Hall effect of wallpaper fermions in the presence of the (anti)ferromagnetism. Based on a four-
sublattice model, we construct the effective Hamiltonian of wallpaper fermions coupled with the ferromagnetic
or antiferromagnetic moment. Both ferromagnetic and antiferromagnetic moments induce an energy gap for the
wallpaper fermions, leading to quantized (spin) Hall conductivity. The ferromagnetic wallpaper fermion induces
the Hall conductivity quantized into e2/h, which is twice that for a single Dirac fermion on the surface of
topological insulators. On the other hand, the spin Hall conductivity decays and reaches to be a finite value as
the antiferromagnetic coupling increases. We also show that the results above are valid for a general model of
wallpaper fermions from symmetry consideration.

DOI: 10.1103/PhysRevB.107.235301

I. INTRODUCTION

Topological insulators (TIs) host a single Dirac fermion
on their surfaces, gapless surface excitations protected by
time-reversal symmetry (TRS) [1–9]. In recent years, there
has been growing interest in characteristic topological surface
states that arise from nonsymmorphic space-group symmetry
[10–14]. One is the surface states protected by two glides,
called a wallpaper fermion [15–17], which has a fourfold-
degenerate Dirac point accompanied by linear dispersions.
Therefore, a wallpaper fermion potentially exhibits phenom-
ena distinct from those in TIs, and can be a platform for a
highly efficient device with novel functionality, such as spin-
tronics.

A single Dirac fermion on the surface of TIs yields unique
spintronic properties, thanks to its topological and spin-
momentum-rocking natures [18–20]. On the other hand, one
promising direction of spintronics is to use an antiferromagnet
[21–24], owing to their varieties and high-frequency response
[25–29]. Differently from a single Dirac fermion on the sur-
face of TIs, a wallpaper fermion can be coupled with both
ferromagnetic (FM) and antiferromagnetic (AFM) moments,
due to the fourfold degeneracy stemming from the spin and
sublattice degrees of freedom. Therefore, a wallpaper fermion
is a candidate for the AFM spintronics with topological elec-
tronic states [30,31].

In this study, we clarify the fundamental properties of the
FM and AFM wallpaper fermions, deriving an effective model
from a four-sublattice model. Both FM and AFM couplings
are shown to induce an energy gap for the wallpaper fermions.
The Hall conductivity for the FM case is quantized into
twice the value predicted for conventional TIs. The spin Hall
conductivity (SHC) decreases with increasing the FM/AFM
coupling. In the strong-coupling limit, the SHC vanishes for
the FM case, while it remains a finite value for the AFM case.
The model is proven to be generic for wallpaper fermions
from symmetry consideration.

This paper is organized as follows. In Sec. II, we derive
an effective Hamiltonian of a wallpaper fermion. Next, we
consider the effect of FM and AFM coupling in Sec. III.
In this section, we show the behavior of SHC and the de-
generacy of eigenvalues of the Hamiltonian. In Sec. IV, we
prove that the effective Hamiltonian is sufficiently generic
from the viewpoint of symmetry. We give some comments
about our model in Sec. V, and summarize our work in
Sec. VI.

II. EFFECTIVE MODEL FOR SURFACE STATES

In this section, we construct an effective Hamiltonian of
the wallpaper fermion on the xy surface in a four-sublattice
model [15] with space group P4/mbm (No. 127), as depicted
in Fig. 1. The obtained Hamiltonian is beneficial for calcu-
lating physical quantities such as (spin) Hall conductivity, as
discussed in the subsequent sections.

A. Bulk Hamiltonian

First of all, we review a four-sublattice model given in
Ref. [15]. The crystal structure of the model is the square lat-
tice stacking along the z axis, and consists of four sublattices
A, B, C, and D. The A and B (C and D) sublattices are located
on the z = 0 (z = 1/2) plane.

The Hamiltonian H(k) = H1
xy(k) + H2

xy(k) + Vz(k) for
bulk is given by

H1
xy(k) = cos

(
kxa

2

)
cos

(
kya

2

)
[t1τx + vr1τyσz]

+ sin

(
kxa

2

)
cos

(
kya

2

)
[vs1τxμzσy]

− cos

(
kxa

2

)
sin

(
kya

2

)
[vs1τxμzσx], (1)
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H2
xy(k) = t2[cos(kxa) + cos(kya)]

+ sin(kxa)[vs2τzμzσx + v′
s2μzσy]

+ sin(kya)[vs2τzμzσy − v′
s2μzσx], (2)

Vz(k) = cos

(
kzaz

2

)
u1μx + sin

(
kzaz

2

)
u2μy

+ cos

(
kzaz

2

)
{cos(kxa) + cos(kya)}v1μx

+ sin

(
kzaz

2

)
{cos(kxa) + cos(kya)}v2μy, (3)

where τ , μ, and σ are the Pauli matrices acting in the
in-plane sublattice (A,B) [(C,D)], layer sublattice (A,C)
[(B,D)], and spin spaces, respectively. H1

xy is the nearest-
neighbor hopping in the same layer, H2

xy is the next-
nearest-neighbor hopping in the same layer, and Vz is the
spin-independent hopping between neighboring layers.

B. Surface state on the M̄ point

Next, we obtain the effective Hamiltonian of the surface
states near the M̄ point (kxa = kya = π ), where the wallpaper
fermions appear. To derive the effective Hamiltonian, we first
obtain the wave function of the surface state for kxa = ky

a = π . From this solution, we can construct an effective the-
ory in the vicinity of the M̄ point by perturbation expansion.

The Hamiltonian for kxa = kya = π in the bulk, HM̄ ≡
H(π/a, π/a, kz ), is written as

HM̄ = −2t2 + A1μx cos

(
kzaz

2

)
+ A2μy sin

(
kzaz

2

)
, (4)

with A1 = u1 − 2v1 and A2 = u2 − 2v2. We further transform
the above Hamiltonian by U = eikzazμz/4 as

HSSH(kz ) ≡ U †HM̄U = −2t2 + R · μ, (5)

with

Rx = A1 − A2

2
+ A1 + A2

2
cos(kzaz ), (6)

Ry = A1 + A2

2
sin(kzaz ), (7)

Rz = 0. (8)

The above is equivalent to the Su-Schrieffer-Heeger (SSH)
model [32], which is of class BDI [33], and has the Z clas-
sification by the winding number, as shown below.

We can define the winding number νw ∈ Z of the parame-
ter vector (Rx, Ry) wrapping the origin by

νw ≡ i

2π

∫ π

−π

dkzq
∗ ∂q

∂kz
, q = Rx − iRy√

R2
x + R2

y

, (9)

which corresponds to the number of surface zero modes.
Therefore, when A1A2 < 0, the winding number satisfies
νw = 0. On the other hand, when A1A2 > 0, the winding
number satisfies νw = 1. From above, we can find that this
Hamiltonian is topologically nontrivial when A1A2 > 0.

To obtain the concrete form of wave function for the
surface state, we solve the tight-binding model HSSH in the
semi-infinite (z � 0) space as

HSSH =
∑
ν,ρ

0∑
i=−∞

[c†
ν,iεν,ρcρ,i + (c†

ν,i−1tν,ρcρ,i + H.c.)],

ε =

⎛
⎜⎝ −2t2

A1 − A2

2
A1 − A2

2
−2t2

⎞
⎟⎠, t =

(
0 0

A1 + A2

2
0

)
,

(10)

where c†
ν,i is the creation operator of the fermion on the

ν = AB, CD layer at the ith site. The system is terminated
at i = 0 by the CD layer. The Schrödinger equation is given
by HSSH|ψ〉 = E |ψ〉. The wave function has the form

|ψ〉 =
∑

ν

0∑
i=−∞

αν,ic
†
ν,i|0〉, (11)

where |0〉 is the vacuum which satisfies cν,i|0〉 = 0. From the
above Schrödinger equation, we can find the recurrence form
of αi = (αAB,i, αCD,i )T as follows:

εαi + tαi+1 + t†αi−1 = −2t2αi for i � −1, (12)

εα0 + t†α−1 = −2t2α0 (13)

for the state with the energy E = −2t2. Now, we assume an
exponential form αi = λiu, where u = (u, v)T is a two-spinor.
Equation (12) is rewritten as follows:

[A1 − A2 + (A1 + A2)λ−1]v = 0, (14)

[A1 − A2 + (A1 + A2)λ]u = 0. (15)

The solutions are obtained to be

λ = −A1 + A2

A1 − A2
, u =

(
0
1

)
, (16)

and

λ = −A1 − A2

A1 + A2
, u =

(
1
0

)
. (17)

For A1A2 > 0, the former solution decays into i → −∞,
|λ| > 1. The normalized form is given by

|ψ〉 = 2
√

A1A2

A1 + A2

0∑
i=−∞

(
−A1 + A2

A1 − A2

)i

c†
CD,i|0〉, (18)

which also satisfies the boundary condition, Eq. (13). On the
other hand, for A1A2 < 0, Eq. (17) is a decaying function but
does not satisfy Eq. (13). This means that the zero-energy
surface state appears only for A1A2 > 0, which is consistent
with the discussion based on the winding number. Note that
the zero-energy surface states in the whole system are fourfold
degenerate with respect to τ and σ degrees of freedom.
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FIG. 1. Crystal structure of the toy model. This crystal has a
symmetry of space group P4/mbm (No. 127) (D4h). The model also
has mirror symmetry in the z = 1/4, 3/4 plane.

Finally, we derive the effective Hamiltonian of the wall-
paper fermion by mapping the bulk Hamiltonian onto the
surface states at the M̄ point. The surface states derived above
consist of only the c†

CD,i component, where all the states have
μz = −1, then μx = μy = 0. Therefore, only the in-plane
hoppings (1) and (2) appear in the effective model. We obtain
the effective Hamiltonian

Hwp = HM̄ |μz=−1,μx=μy=0 = H1
wp + H2

wp, (19)

with

H1
wp = −vs1

2
τx(kxσx − kyσy) + vs2

2
τz(kxσx + kyσy)

+ v′
s2

2
τ0(kxσy − kyσx ),

H2
wp = 1

4 (t1τx + vr1τyσz )kxky, (20)

up to the second order of k, where kx and ky are measured
from the M̄ point. Here we set a = 1 for simplicity. The last
term, proportional to kxky, is derived from the first-order ex-
pansion of Eq. (1), and the second-order expansion of Eq. (2)
is neglected, assuming the band gap is sufficiently large. In
addition, the term t2(k2

x + k2
y )σ0τ0 is also omitted in order to

reproduce only double Fermi surfaces (lines) in the Brillouin
zone projected onto the (xy) surface. This assumption can be
justified by introducing the cutoff momentum or higher-order
terms.

The energy dispersion is shown in Fig. 2. We can find
the fourfold-degenerate point protected by the double glide

D D

FIG. 2. Energy dispersion of the wallpaper fermion. The param-
eters are taken as t1 = 0.03, vr1 = 0.05, vs1 = 0.1, vs2 = −0.2, and
v′

s2 = 0.15. (a) Gapless dispersion around the M̄ point. There is
fourfold degeneracy for kx = ky = 0. (b) The corresponding two-
dimensional (2D) plot along the ky = 0 (X̄ M̄) and kx = ky (M̄�̄)
lines. Each dispersion on the X̄ M̄ line is twofold degenerate due to
the glide symmetry of the system.

and TRSs for kx = ky = 0 and twofold-degenerate dispersion
protected only by the glide on the ky = 0 line.

C. Effective linear model

This section shows that the linear terms H1
wp of the effective

Hamiltonian are equivalent to two independent Dirac fermions
and that the quadratic terms H2

wp give a mass term and hy-
bridize the Dirac fermions.

We define the unitary matrix V = e−iφτzσz/2 where
φ = arg(vs2 + iv′

s2). The effective Hamiltonian is transformed
by this matrix as

H1′
wp = V †H1

wpV

= v2

2
τz(kxσx + kyσy) − vs1

2
τx(kxσx − kyσy),

(21)

where v2 =
√

v2
s2 + v′2

s2. The effective theory has a conserved
charge X :

X = τyσz,
[
X, H1′

wp

] = 0. (22)

Here we apply the following unitary transform:

P = 1√
2

(|+〉τ |+〉σ , |−〉τ |−〉σ , |−〉τ |+〉σ , |+〉τ |−〉σ ), (23)

τyσz|τ 〉τ |σ 〉σ = τσ |τ 〉τ |σ 〉σ , (24)

as

P†XP = diag(1, 1,−1,−1). (25)

Therefore, using this matrix P, the Hamiltonian is decom-
posed into H±

wp in the X = ±1 sectors as

H1′′
wp = P†H1′

wpP =
(

H+
wp 0

0 H−
wp

)
, (26)

with

H±
wp = v2

2
(kxσx + kyσy) ∓ vs1

2
(kxσy + kyσx ). (27)

This 2 × 2 representation is useful for evaluating the Hall
conductivity in the ferromagnetic case, as discussed in the
subsequent section. On the other hand, the quadratic part H2

wp

hybridizes the X = ±1 sectors. The second-order term H2
wp is

transformed as

H2′′
wp = P†V †H2

wpV P

= Tv

4
[sin(δ + φ)τyσz + cos(δ + φ)τzσ0]kxky, (28)

where we define as vr1 + it1 = Tv exp(iδ).

III. MAGNETIC WALLPAPER FERMION

In this section, we consider the wallpaper fermions coupled
with a FM or AFM moment, as shown in Fig. 3. In general, the
gap opening in a gapless topological state can trigger a tran-
sition to a distinct topological phase [34,35]. A representative
example of the transition is the surface of three-dimensional
(3D) TIs; a single Dirac fermion on them can be coupled
with only a FM moment in the long-wavelength limit k � 0
and opens the energy gap. In contrast, a wallpaper fermion
can be coupled with both FM and AFM moments, owing to
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FIG. 3. Schematic of the FM (a) and AFM (b) moments perpen-
dicular to the xy surface.

double degrees of freedom originating from a nonsymmorphic
sublattice structure. The resulting charge and spin Hall effects
are discussed as below.

A. Ferromagnetic wallpaper fermion

Ferromagnetic moments induce an energy gap in the
wallpaper fermion, resulting in the quantization of Hall con-
ductivity, as in a single Dirac fermion on the surface of a
topological insulator. In this section, we verify that the Hall
conductivity is quantized into double that in a single Dirac
fermion. Furthermore, we point out that the linear model
derived in the previous section exhibits a singular behavior,
the plateau transition without gap closing. On the other hand,
the plateau transition disappears in the model, including the
second-order terms. These results imply that the linear model,
often used in Dirac systems, is inappropriate for the wallpaper
fermions.

First, we consider the FM case as in Fig. 3(a). The Hamil-
tonian of the FM coupling is written as

HF = Mσzτ0, (29)

in the original basis adapted in Eq. (20). This Hamiltonian HF

is decomposed into the X = ±1 sectors

H±
F = Mσz. (30)

The eigenvalues of the Hamiltonian HX
wp + HX

F are given by
±EX (k) with

E±(k) =
√

v2
2 + v2

s1

4
k2 ∓ v2vs1kxky + M2, (31)

and are shown in Fig. 4. The FM moment M induces an energy
gap.

D D

FIG. 4. Energy dispersion in the presence of the FM cou-
pling around the M̄ point with t1 = 0.03, vr1 = 0.05, vs1 = 0.1,

vs2 = −0.2, v′
s2 = 0.15, and M = 0.1. The twofold degeneracy on

the line ky = 0 (X̄ M̄ line) remains.

Next, we show the Hall conductivity from the linear re-
sponse theory. The Hall conductivity is written as

σxy = −ih̄e2
∫

d2k

(2π )2

∑
n �=m

f (En) − f (Em)

(En − Em)2

× 〈n|v̂x|m〉〈m|v̂y|n〉, (32)

f (E ) = 1

e(E−μ)/T + 1
, (33)

where En and |n〉 are the nth eigenvalue and eigenvector of
Hwp + HF, respectively. The Fermi distribution function is
denoted by f (E ) and v̂i is the velocity operator defined as

v̂i ≡ ∂H

∂ (h̄ki )
. (34)

When the Fermi level is in the energy gap, the Hall con-
ductivity is rewritten in terms of the Berry curvature of the
occupied bands [36];

σxy = e2

h

∫
d2k

2π

∑
X=±

[∇k × AX (k)]z, (35)

AX (k) = −i〈ψX |∇k|ψX 〉. (36)

For the calculation, we solve the eigenvalue problem of
HX

Fwp = HX
wp + HX

F as

HX
Fwp|ψX 〉 = sEX |ψX 〉, (37)

where s = ±1 and EX is given in Eq. (31). The above equa-
tion is rewritten in the matrix form as⎛
⎝ M − sE±

v2

2
ke−iθk ± i

vs1

2
keiθk

v2

2
keiθk ∓ i

vs1

2
ke−iθk −M − sE±

⎞
⎠(

u±
v±

)
= 0,

(38)

with kx + iky = keiθk . Therefore, we obtain the eigenstates as

(
u±
v±

)
=

⎛
⎜⎜⎜⎜⎝

√
1

2

(
1 + sM

E±

)

seiϕ±

√
1

2

(
1 − sM

E±

)
⎞
⎟⎟⎟⎟⎠ ≡ |ψ±〉I, (39)

where ϕ± = arg( v2
2 keiθk ∓ i vs1

2 ke−iθk ). We define
|ψ±〉II = e−iϕ± |ψ±〉I. The Berry connection AX

I/II(k) =
−i〈ψX |∇k|ψX 〉I/II of the valence band of s = −1 defined
by |ψ±〉I (|ψ±〉II) has the singularity at the origin (k = 0)
for M > 0 (M < 0). Using the Stokes’ theorem, therefore,
the Hall conductivity is obtained by the contour integral for
k → ∞ as

σxy = e2

h

∫ 2π

0

dθk

2π

∑
X=±

lim
k→∞

eθk ·
{

AX
II (k), M > 0,

AX
I (k), M < 0.

(40)

The Berry connection is asymptotically given by

lim
k→∞

AX
I (k) = 1

2

∂ϕX

∂θk
eθk , (41)

lim
k→∞

AX
II (k) = −1

2

∂ϕX

∂θk
eθk . (42)
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FIG. 5. Vector field d+ mapping onto the (kx, ky ) plane.
(a) Meron-like structure for tan−1(vs1/v2) = π/8. (b) Anti-meron-
like structure for tan−1(vs1/v2) = π/3.

As a result, the Hall conductivity is obtained to be

σxy = −e2

h
sgn(M )

∫ 2π

0

dθk

4π

∑
X=±

∂ϕX

∂θk

= −e2

h
sgn(M )

×
∫ 2π

0

dθk

4π

∂

∂θk
(−i) ln

(
v2

2e2iθk + v2
s1e−2iθk

)

= −e2

h
sgn(M )sgn

(
v2

2 − v2
s1

)
. (43)

From this expression, one finds that the Hall conductivity
changes its sign at v2

s1 = v2
2 without gap closing, which is

not seen in the surfaces of topological insulators. This change
of sign is understood from the vector dX defined as HX

Fwp =
dX · σ. The half-quantized Hall conductivity is equivalent to
the winding number of the vector dX in the k space. For
v2

2 > v2
s1, the vector dX has a meronlike structure shown in

Fig. 5(a), resulting in the winding number +1/2. On the other
hand, for v2

2 < v2
s1, the winding number is −1/2 because the

vector dX has an anti-meronlike structure shown in Fig. 5(b).
These two configurations are continuously connected since
dX is a three-dimensional vector. Note that these configura-
tions break the fourfold-rotation symmetry of the system. In
fact, for each sector the Hamiltonian HX

Fwp contains the term
(vs1/2)(kxσy + kyσx ), which is fourfold-rotation odd, breaks
the symmetry. The total Hamiltonian restores the symmetry as
H+

Fwp and H−
Fwp are swapped by the fourfold rotation, allowing

the sign change of the quantized Hall conductivity without gap
closing. This is a consequence of nonsymmorphic structure of
glides.

In addition to the analytical calculations limited to the
first-order terms of the wave vector, we also numerically com-
pute the Hall conductivity from Eq. (32). Figure 6(a) shows
the verification of the plateau transition without gap closing
discussed above. Within the energy gap (|E | < 0.1), the Hall
conductivity is quantized into −e2/h for v2

2 > v2
s1 and e2/h for

v2
2 < v2

s1, reproducing Eq. (43).
This plateau transition does not occur in the system with

the second-order terms. Figure 6(b) shows the quantized
Hall conductivity of σxy = −e2/h irrespective of the sign of
v2

2 − v2
s1, implying that the plateau transition is an artifact of

FIG. 6. Density of states (DOS) and the Hall conductivity for
M = 0.1 as a function of the Fermi energy. (a) DOS and Hall con-
ductivity in the linear model for t1 = vr1 = 0, vs1 = 0.5, vs2 = 0.8,
and v′

s2 = 0.6 for the case of v2
2 > v2

s1, while for t1 = vr1 = 0, vs1 =
1.0, vs2 = 0.3, and v′

s2 = 0.4 for the case of v2
2 < v2

s1. (b) DOS and
Hall conductivity in the model including the second-order terms for
vr1 = v′

s2 = 0.0, t1 = 0.05, vs1 = 0.3, and vs2 = 0.2 for the case
of v2

2 > v2
s1 while for vr1 = v′

s2 = 0.0, t1 = 0.05, vs1 = 0.2, and
vs2 = 0.3 for the case of v2

2 < v2
s1.

the model. If we consider a slab system with FM coupling
instead of the effective surface model, the Hall conductivity is
equivalent to the Chern number; hence no plateau transition
without gap closing occurs. Therefore, linear terms alone are
not sufficient for the minimal model of a wallpaper fermion,
and at least second-order terms must be included.

B. Antiferromagnetic wallpaper fermion

AFM moments induce an energy gap in the wallpaper
fermion, which is a notable feature that distinguishes it from
the case of a single Dirac fermion on the surface of a TI.
Here we focus on the SHC, which is nonzero for both the FM
and AFM cases. The SHC is not quantized in the presence of
spin-orbit interaction but partially characterizes the nontrivial
topology of the surface state through the partial Chern number
[37]. We show that in the strong-coupling limit, the SHC
remains finite for the AFM case while it vanishes for the FM
case.

The Hamiltonian of the AFM coupling shown in Fig. 3(b)
is written as

HAFM = Mτzσz. (44)

In Fig. 7, we show that the energy spectrum of the AFM
wallpaper fermion Hwp + HAFM is gapped.

Next, we calculate the SHC. The spin current operator is
defined by

Ĵ z
i ≡

{
v̂i,

h̄σz

2

}
. (45)
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D D

FIG. 7. Energy spectrum of the AFM wallpaper fermion for
t1 = 0.03, vr1 = 0.05, vs1 = 0.1, vs2 = 0.2, v′

s2 = 0.15, and M =
0.1. (a) The gap is induced by AFM coupling. (b) Energy spectrum
is not degenerate except for k = 0 (M̄ point).

Note that Ĵ z
i = 0 for the linear model. The SHC is written as

σ z
xy = ieh̄

∫
d2k

(2π )2

∑
n �=m

[ f (En) − F (Em)]

× 〈n|Ĵ z
x |m〉〈m|v̂y|n〉

(En − Em)2
, (46)

Jz
x = 1

2 (t1τxσz + vr1τy)ky. (47)

We show the SHC in Fig. 8. As shown in Fig. 8(a), the SHC
has a plateau within the energy gap which takes a parameter-
dependent value. The value of the plateau decreases as the
FM/AFM coupling increases, as shown in Fig. 8(b), reaching
to be a finite value and zero in the strong-coupling limit,
respectively, as shown in Fig. 8(c). On the other hand, since
the AFM case has a magnetic-reflection symmetry, the Hall
conductivity is zero for the AFM case.

C. Degeneracy of energy spectrum

We showed the energy spectrum of the model with the
FM (AFM) coupling, in which doubly degenerate bands (do
not) appear along the X̄ M̄ line, as reshown in Fig. 9. These

FIG. 8. Spin Hall conductivity as a function of the Fermi en-
ergy (a) and the FM/AFM coupling (b and c) for t1 = 0.1, vr1 =
0.0, vs1 = 0.3, vs2 = 0.4, v′

s2 = 0.3, and M = 0.1.

FIG. 9. Comparison of degeneracy on the X̄ M̄ line for the FM
(a) and AFM (b) cases.

behaviors are understood by TRS � and the glides gx,y the
system holds, which are shown in Fig. 10.

In the nonmagnetic case, the degeneracy along the X̄ M̄ line
is protected by �gy for ky = 0 and �gx for kx = 0 [15]. This
symmetry is retained for the FM case and broken for the AFM
case because the glide exchanges the sublattices A and B and
reverses the z component of spin, and TRS � also reverses
the z component of spin but does not exchange the sublattices.
Therefore, the FM case shows the degeneracy on the X̄ M̄ line
by the symmetry �gx and �gy while the AFM case does not.

IV. SYMMETRY-ADAPTED MODEL

So far, we have worked on a concrete lattice model. In this
section, we stress that the results from the model are irrelevant
to the details of the system, constructing a general effective
Hamiltonian from symmetry consideration.

We construct an effective model for a wallpaper fermion
on the (001) surface of a crystal with the space group P4bm
(No. 100) symmetry. The surfaces where a wallpaper fermion
emerges have either pgg or p4g wallpaper-group symmetry.
We concentrate on p4g, which corresponds to the P4bm space
group without 〈001〉 translations. This implies that analyzing
the irreducible representation of the M̄ point in the P4bm
space group is adequate. The wallpaper fermion is realized on
the M̄ point as a four-dimensional irreducible representation
(irrep) that is the M̄6M̄7 irrep [38–42]. The M̄6M̄7 irrep of the
generators is given by

D({4+
001|0, 0, 0}) = − 1√

2
σ0τz + i

1√
2
σzτ0, (48)

D({m010|1/2, 1/2, 0}) = − 1√
2
σ0τx − 1√

2
σzτy, (49)

and time reversal

� = −iσyτ0K. (50)

FIG. 10. Schematic of glide symmetry of the model. The glides
gx and gy flip the spins and exchange the sublattices A and B.
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TABLE I. Irreducible decomposition of matrices on the M point of P4bm.

E 2C4 2cv Basis TR even TR odd

A1 1 1 1 z σ0τ0 σzτ0

A2 1 1 −1 xy(x2 − y2) σ0τz σzτz

B1 1 −1 1 x2 − y2 σyτx , σxτx

B2 1 −1 −1 xy σxτy, σyτy

(σzτx + σ0τy, σzτx − σ0τy )
E 2 0 0 (x, y) (σ0τx + σzτy, σ0τx − σzτy ) (σyτz + σxτ0, σyτz − σxτ0 )

(σxτz − σyτ0, σxτz + σyτ0 )

By using these representations, we take the irreducible de-
composition of 16 matrices σμτν , μ, ν = 0, 1, 2, 3, which is
summarized in Table I.

The effective Hamiltonian is given as a totally sym-
metric representation. Two-dimensional momentum (kx, ky)
belongs to the TR-odd E irrep and is coupled with the same
irreps (σzτx + σ0τy, σzτx − σ0τy), (σyτz + σxτ0, σyτz − σxτ0),
and (σxτz − σyτ0, σxτz + σyτ0) as

kx√
2

(σzτx + σ0τy) + ky√
2

(σzτx − σ0τy) ≡ kxα1 + kyα2, (51)

kx√
2

(σyτz + σxτ0) + ky√
2

(σyτz − σxτ0) ≡ kxα3 + kyα4, (52)

and

kx√
2

(σxτz − σyτ0) + ky√
2

(σxτz + σyτ0) ≡ kxα5 + kyα6, (53)

resulting in the Hamiltonian

HGwp = v1(kxα1 + kyα2) + v2(kxα3 + kyα4)

+ v3(kxα5 + kyα6), (54)

where vi is an arbitrary real number. In this basis, the z
component of the FM moment, which belongs to the TR-odd
A2 irrep, is represented by Mτzσz and the z component of
the AFM moment, which belongs to the TR-odd A1 irrep, by
Mτ0σz. On the other hand, the x and y components of the mo-
ments cannot be uniquely determined only by the symmetry
consideration.

We verify that the Hamiltonian (54) reproduces those of
Eq. (19). The nonmagnetic case [Figs. 11(a) and 11(b)] hosts
the fourfold degeneracy on the M̄ point (k = 0), while the FM
[Fig. 11(c)] and the AFM [Fig. 11(d)] cases host a gapped
spectrum with and without degenerate bands on the X̄ M̄ line,
respectively. Therefore, the Hamiltonian (54) reproduces that
for the wallpaper fermion. Note that the model derived here is
generic since it is constructed solely based on the symmetry
of the system.

The second-order terms of momentum is also derived in
the same manner. (k2

x − k2
y ) is the TR-even B1 irrep and does

not appear in the Hamiltonian due to the absence of matrix of

the same irrep, while kxky of the TR-even B2 irrep is coupled
with σxτy and σyτy.

Finally, we show that the Hamiltonians (54) and (19) are
unitary equivalent. We set the unitary matrix U as

U =

⎛
⎜⎜⎝

ei7π/8 0 0 0
0 0 0 eiπ/8

0 0 eiπ/8 0
0 e−iπ/8 0 0

⎞
⎟⎟⎠, (55)

in the basis that the matrix σμτν is represented as

σ0τν =
(

τν 0
0 τν

)
, σ1τν =

(
0 τν

τν 0

)
, (56)

σ2τν =
(

0 −iτν

iτν 0

)
, σ3τν =

(
τν 0
0 −τν

)
. (57)

FIG. 11. Eigenvalues of the Hamiltonian for the generalized
model (54) with v1 = 0.1, v2 = −0.23, v3 = 0.25, and M = 0.1. (a
and b) Nonmagnetic case. (c and d) FM and AFM cases. (a) Energy
spectrum around the M̄ point. (b) There exists twofold degeneracy
on the X̄ M̄ line and fourfold degeneracy at the origin. (c) The energy
spectrum is gapped by the FM coupling (Mτzσz). Twofold degener-
acy on the line ky = 0 remains. (d) The energy spectrum is gapped
by the AFM coupling (Mτ0σz). There is no degeneracy except at the
origin.
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The matrices are transformed by U as

U †σzτzU = +σzτ0, U †σzτ0U = +σzτz, (58)

U †α1U = −σxτx, U †α2U = +σyτx, (59)

U †α3U = −σxτz, U †α4U = −σyτz, (60)

U †α5U = +σyτ0, U †α6U = −σxτ0, (61)

U †σxτyU = −σzτy, U †σyτyU = +σ0τx. (62)

Thus, the Hamiltonian from symmetry consideration is ob-
viously equivalent to the Hamiltonian for the four-sublattice
model.

V. DISCUSSION

We note the scope of our effective model. The FM and
AFM couplings expressed in Eqs. (29) and (44) are assumed
to be spatially uniform. This situation can be realized when
the system intrinsically becomes the FM or AFM insulating
phase. On the other hand, our theory can apply to the junc-
tion systems attached to FM or AFM insulators, where the
coupling constant is estimated as

∑0
i=−∞ ψ

†
i Miψi with the

spatially decaying function Mi for proximity-induced magne-
tization.

On the other hand, we assume that the FM/AFM moments
are small compared to the band gap in the bulk. If the moments
are substantially large, the system goes into a topologically
trivial or different topological state, e.g., a gapless wallpaper

fermion in magnets [43], which is beyond the scope of the
present study.

VI. SUMMARY

In this study, we found that wallpaper fermions can couple
with both FM and AFM moments and result in the Hall
effects. Firstly, when the FM coupling is present, the Hall con-
ductivity is quantized into twice the value predicted for TIs,
contributed equally from double Dirac cones of the wallpaper
fermion. Additionally, the sign of Hall conductivity for the
linear-order model, the superposition of independent double
Dirac cones, can be inverted without closing the energy gap.
This anomalous behavior is due to the fact that each Dirac
cone breaks the fourfold rotational symmetry of the system,
while the entire wallpaper fermion remains symmetric. The
second-order terms hybridize the Dirac cones, resolving this
anomaly. Combined with the fact that such an anomaly does
not occur in the slab system, the linear-order model is im-
plied to be invalid for wallpaper fermions. Secondly, SHC is
suppressed by both FM and AFM coupling in a different way
from each other. The SHC goes to zero in the strong-coupling
limit for the FM case, while it remains finite for the AFM case.
Thirdly, the eigenvalues of Hamiltonian are degenerate on the
X̄ M̄ line for the FM case, while this degeneracy is lifted by the
AFM coupling breaking the magnetic glide symmetry. Finally,
the effective Hamiltonian was proved valid for general wall-
paper fermions by deriving the symmetry-adapted form of the
Hamiltonian. These results provide a basis for clarifying the
transport phenomena, including spintronics, using wallpaper
fermions.
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