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Phonon-limited carrier mobilities and Hall factors in 4H-SiC from first principles
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Charge carrier mobility is at the core of semiconductor materials and devices optimization, and Hall measure-
ment is one of the most important techniques for its characterization. The Hall factor, defined as the ratio between
Hall and drift mobilities, is of particular importance. Here we study the effect of anisotropy by computing the
drift and Hall mobility tensors of a technologically important wide-band-gap semiconductor, 4H -silicon carbide
(4H -SiC), from first principles. With GW electronic structure and ab initio electron-phonon interactions, we
solve the Boltzmann transport equation without fitting parameters. The calculated electron and hole mobilities
agree with experimental data. The electron Hall factor strongly depends on the direction of external magnetic
field B, and the hole Hall factor exhibits different temperature dependency for B ‖ c and B ⊥ c. We explain this
by the different equienergy surface shape arising from the anisotropic and nonparabolic band structure, together
with the energy-dependent electron-phonon scattering.
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I. INTRODUCTION

Increasing demands in high-power and high-temperature
electronic devices call for wide-band-gap semiconductors as
the alternative functional materials to silicon. Silicon carbide
(SiC) has become one of the most promising materials in
power electronic devices owing to its unique combination of
high carrier mobility, high critical field strength, high satu-
ration velocity, and high thermal conductivity [1–6]. Among
the more than 200 polytypes, 4H-SiC is preferred for its
wider band gap and higher critical electric field than the cubic
3C-SiC and higher carrier mobilities and lower anisotropy as
compared to 6H-SiC. Therefore, it is more technologically
relevant and has become the major functional SiC polytype
for applications in electronic devices [1].

Despite the recent surge of academic and industrial in-
terests in 4H-SiC, many important aspects of its physical
properties and the underlying physics are not clarified yet. For
example, as a hexagonal crystal, anisotropy is expected for
its physical properties like mechanical [7] and transport prop-
erties [1] such as carrier mobilities and the Hall effect. The
carrier mobility is a key functional property that determines
device performance such as on-resistance [8]. The Hall factor
is needed to determine drift mobility from Hall measurement,
and to clarify whether the Hall mobility anisotropy and tem-
perature dependence mainly arises from the drift mobility
contribution or from the Hall factor contribution. However, it
is difficult to experimentally determine Hall factor directly. In
practice, the Hall factors are commonly assumed to be rH = 1,
estimated using empirically parameterized models, or cal-
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culated through carrier concentration estimated from dopant
density and activation energies [8–13]. Additionally, the anal-
ysis of one of most important mechanisms underlying its
charge transport phenomena, i.e., the electron-phonon inter-
actions and scatterings, still relies on empirically determined,
adjustable parameters with significant uncertainty. These ad-
justable parameters were also employed to explain exotic
phenomena such as nonunity hole Hall factors [9,11,12,14].
Therefore, it becomes increasingly important to investigate
such microscopic physics and confirm their respective con-
tributions in the charge transport process without resorting to
uncertain fitting parameters.

Electron-phonon interactions from the density functional
perturbation theory (DFPT) calculations [15] emerged as a
powerful tool for studying importance solid state phenom-
ena and their underlying microscopic mechanisms, including
phonon-limited charge transport [16–18], superconductivity
[19,20], polaron [21,22], phonon-assisted optical absorption
[23], band structure renormalization [24,25], etc. In con-
junction with the Boltzmann transport equation (BTE), the
charge transport in the presence of electrical field and mag-
netic field can be simulated self-consistently to obtain key
quantities like drift mobility [16], breakdown field [26], and
thermoelectricity [27]. Recently, the Hall effects in several
typical cubic semiconductors have been studied by solving
the BTE in the presence of both electric and magnetic fields,
where quantitative agreement has been achieved in compari-
son with experimental measurements [18]. It is thus intriguing
to explore the possible anisotropy in the hexagonal phase, to
compute the Hall factors in the intrinsic limit, and to clarify
the role of electron-phonon interactions in 4H-SiC.

In this work we perform an in-depth analysis of electron-
phonon interactions, phonon-limited charge transport, and
their anisotropy in 4H-SiC by first-principles calculations
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FIG. 1. (a) First Brillouin zone of 4H -SiC and band structure
along high-symmetry path L-M-�-A. The band structure of (b) con-
duction and (c) valence bands near the band edges is also shown
together with the effective masses along (‖) and perpendicular to (⊥)
the c axis.

with accurate band structure shown in Fig. 1(a). Both short-
ranged and long-ranged dipolar/quadrupolar electron-phonon
interactions are included from first principles in combination
with the Wannier-interpolation technique [18,28–31]. We find
that the spin-orbit coupling (SOC) significantly affects the
hole effective masses, even though the SOC splitting is small.
The phonon-limited mobilities agree well with experimental
measurements of lightly doped samples, and hole mobil-
ity exhibits a stronger anisotropy than that of electron. The
electrons are mainly scattered by optical phonons, while the
band-edge holes are mostly scattered by acoustic phonons at
room temperature. The Hall factors depend on the directions
of both the applied magnetic field and the electric current.
Hall factors deviate from 1 for both electrons and holes, and
distinct temperature dependence was predicted. The nonunity
is explained by nonparabolic band structure, nonspherical
equienergy surface, and energy-dependent electron-phonon
scattering strength. This work thus clarifies the anisotropic
charge transport phenomena in 4H-SiC and the impact of
electron-phonon interactions in the intrinsic limit from a mi-
croscopic, ab initio perspective. The predicted Hall factors
without empirical, adjustable parameters also allow possible
comparison between drift mobility and Hall mobility from
experimental measurements.

II. METHODS

A. Carrier mobility and Hall effect calculations

In a typical Hall measurement for Hall mobility along α

direction, an electric current density j along α and magnetic
field B along γ are applied, and the induced Hall field E and
corresponding Hall voltage along β are measured, where α,
β, and γ are orthogonal. In the linear regime of small Bγ , the
Hall coefficient is

RH
αβγ = Eβ

jαBγ

= [σ−1(Bγ ) − σ−1(0)]βα

Bγ

≈
[
σ−1(0)

σ (Bγ ) − σ (0)

Bγ

σ−1(0)

]
βα

. (1)

Therefore, the calculation of the carrier mobility and Hall co-
efficient involves computing the magnetic field B-dependent
conductivity tensor

[σ (B)]αβ = −e

Vuc

∑
n

∫
BZ

d3k

�BZ
vnkα∂Eβ

f B
nk. (2)

Here Vuc is the unit-cell volume, vnkα = ∂εnk
∂ h̄kα

is the band
velocity defined as the k derivative of eigenenergy εnk along
α direction, and ∂Eβ

f B
nk is the solution of the linearized BTE

with magnetic field B:

− evnkβ

∂ f 0
nk

∂εnk
− e

h̄
(vnk × B) · ∇k∂Eβ

f B
nk

=
∑

m

∫
BZ

d3q

�BZ

(
τ−1

mk+q→nk∂Eβ
f B
mk+q − τ−1

nk→mk+q∂Eβ
f B
nk

)
,

(3)

with f 0
nk and �BZ being the equilibrium Fermi-Dirac distri-

bution and first Brillouin zone volume, and electron-phonon
(e-ph) scattering rate defined as

τ−1
nk→mk+q = 2π

h̄

∑
ν

|gmnν (k, q)|2

× [(
nνq + 1 − f 0

mk+q

)
δ(εnk − εmk+q − h̄ωνq)

+ (
nνq + f 0

mk+q

)
δ(εnk − εmk+q + h̄ωνq)

]
. (4)

The e-ph matrix element gmnν (k, q) is induced by a phonon
νq that scatters an electron from state |nk〉 to |mk + q〉, and
nνq is the equilibrium Bose-Einstein distribution.

The BTE can be further recast into a form that is more
suitable for iterative solution:[

1 − e

h̄
τnk(vnk × B) · ∇k

]
∂Eβ

f B
nk

= evnkβτnk
∂ f 0

nk

∂εnk
+ 2πτnk

h̄

×
∑

m

∫
BZ

d3q

�BZ

(
τ−1

mk+q→nk∂Eβ
f B
mk+q

)
. (5)

The total scattering time is

τ−1
nk =

∑
m

∫
BZ

d3q

�BZ
τ−1

nk→mk+q. (6)

The above equations can be solved from first principles
without any empirical parameters [17,18,32,33]. By solving
Eq. (5) iteratively one obtains the self-consistent solution of
∂Eβ

f B
nk. One common approximated solution is the so-called

self-energy relaxation time approximation (SERTA), which is
computed using the scattering time τnk by omitting the second
term on the right-hand side of Eq. (5). This is equivalent to the
first step in an iterative solution of Eq. (5). Further approxima-
tion, i.e., the constant relaxation time approximation (CRTA),
can be made by assuming τnk to be a universal constant τ0

such that only band structure information is included.
Given the Hall coefficient and conductivity tensor, the Hall

mobility along α direction with Bγ can be computed as

μ
H,Bγ

α = σααRαβγ , (7)
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and the drift mobility is

μα = σαα

ne
. (8)

Thus the Hall factor is the ratio between Hall and drift
mobility

rH
αβγ = μ

H,Bγ

α

μα

= Rαβγ ne. (9)

B. First principles calculations

Evaluation of the e-ph scattering rate in Eq. (4) requires
knowledge of gmnν (k, q) and εnk in the whole Brillouin zone.
Here we compute the band structure εnk using density func-
tional theory on a 8×8×2 k grid, which is sufficient for
accurate Wannier-interpolation as shown in Appendix A. The
gmnν (k, q) on the same k/q grid were calculated using rela-
tivistic DFPT [15] as implemented in QUANTUM ESPRESSO
[34,35]. Subsequent Fourier-Wannier-interpolation onto much
finer grids [36] using maximally localized Wannier functions
[37,38] were carried out with EPW software [39,40]. Dipolar
and quadrupolar corrections to the interpolation were also
included [18,28–31,41–43], with Born effective charge Z∗

κ , di-
electric ε∞, and dynamical quadrupole tensors Q∗

κ calculated
from linear response [44,45] as implemented in QUANTUM

ESPRESSO [34,35] and ABINIT [46,47]. The e-ph matrix el-
ement gmnν (k, q) contains the long-ranged part arising from
dipolar

gL,D
mnν (k, q) = i

4π

Vuc

e2

4πε0

∑
κ

(
h̄

2NpMκωνq

)1/2

×
∑
G 	=q

(G+q) · Z∗
κ · eκνqe−i(G+q)·τκ

(G + q) · ε∞ · (G + q)
(Uk+qU †

k )mn

(10)

and quadrupolar interactions

gL,Q
mnν (k, q) = 4π

Vuc

e2

4πε0

∑
κ

(
h̄

2NpMκωνq

)1/2

×
∑
G 	=q

(G + q) · (G + q) · Q∗
κ · eκνqe−i(G+q)·τκ

2(G + q) · ε∞ · (G + q)

× (Uk+qU †
k )mn, (11)

where the Z∗
κ contribution to the quadrupolar interactions were

neglected [18]. Here eκνq is the eigendisplacement of atom κ

in phonon mode νq, and Uk is the Wannier rotation matrix.
PBEsol generalized gradient approximation [48] and

norm-conserving pseudopotentials from PseudoDojo project
[49] with a wave-function cutoff energy of 90 Ry were used
for the structural relaxation and DFPT calculations. The re-
laxed lattice constants are a = 3.0787 Å and c = 10.0785
Å, and they agree well with the experimentally measured
room temperature values of a = 3.0798 Å and c = 10.0820
Å, considering the small thermal expansion coefficients of
α11 ≈ 3.21×10−6 and α33 ≈ 3.09×10−6 [1]. The GW quasi-
particle band structure εnk is computed using YAMBO [50,51]
at the G0W0 level with plasmon-pole approximation for the
screening. Here 800 bands were used for the screening and

TABLE I. The effective masses of electrons (e) and holes (hh for
heavy hole, lh for light hole, and sh for crystal-field split-off hole)
along transverse (⊥, in basal plane) and longitudinal (‖, along the
c axis) directions. All masses are given in the unit of electron rest
mass me.

Without SOC With SOC

HSE GW HSE GW Exp.

me
M� 0.58 0.54 0.58 0.54 0.58 ± 0.01 [54]

me
⊥ me

MK 0.28 0.29 0.28 0.29 0.31 ± 0.01 [54]
me

⊥ 0.4 0.39 0.4 0.39 0.425 [54]
me

‖ me
‖ 0.34 0.33 0.34 0.33 0.33 ± 0.01 [54]

mhh
⊥ 3.04 12.9 0.64 0.65 0.66 ± 0.02 [55]

mh
⊥ mlh

⊥ 0.29 0.31 0.45 0.44
msh

⊥ 1.37 1.14 1.40 1.42
mhh

‖ 1.48 1.48 1.48 1.50 1.75 ± 0.02 [55]
mh

‖ mlh
‖ 1.48 1.48 1.30 1.35

msh
‖ 0.20 0.20 0.20 0.21

Green’s function calculations, and the exchange and dielectric
function cutoff energies were 360 Ry and 40 Ry, respectively.
Hybrid functional band structure was computed with HSE06
functional [52,53] using the same 90 Ry cutoff and 8×8×2 k
grid for both the wave functions and the exchange (Fock)
operator.

III. RESULTS AND DISCUSSION

A. Band structure

We first compare the computed effective masses with those
from experiments [54,55], as detailed in Table I. The effective
masses are computed through polynomial fitting of the band
structure near band extrema, as shown in Fig. 1. Since the
valence bands are very anisotropic and nonparabolic, quartic
polynomials were used for them, and the effective masses
were computed from the quadratic term coefficients. The con-
duction band edge is at M point, as shown in Figs. 1(a) and
1(b), and the valley is anisotropic in all three directions. The
electron effective mass is almost not affected by band struc-
ture method (GW and HSE) or spin-orbit coupling (SOC),
possibly due to the low intravalley degeneracy. The transverse
electron effective mass me

⊥ in the basal plane, which is the
average of effective masses along M-K and M-� directions,
is around 0.39. The longitudinal electron effective mass me

‖
along the c axis (M-L direction) is calculated to be around
0.33. All components of electron effective masses are very
close to the experimental values from cyclotron resonance
measurements [54]. On the other hand, the hole effective
mass is strongly affected by the SOC, while GW shows very
small improvement over HSE. The measured transverse hole
effective mass me

⊥ of 0.66 ± 0.02 is very close to the predicted
heavy hole (hh) effective mass from GW +SOC calculation
[55]. The measured longitudinal hole effective mass me

‖ of
1.75 ± 0.02 is 17% heavier than the predicted value. Con-
sidering the low measurement temperature (4 K) and large
SOC gap between hh and lh bands (10 meV), only hh near
VBM should be occupied and contributing to the cyclotron
resonance signals, as discussed in Ref. [55]. Overall, the
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FIG. 2. (a) Anisotropic electron mobilities compared with experimentally measured values by Ishikawa et al. [13]. (b) The mode-resolved
electron-phonon interactions |gmnν (k, q)| with the initial state mk at conduction band edge (M point) and q along a high-symmetry path. The
red circles mark the phonon energy measured at 10 ◦C [57]. Contributions of acoustic phonons, longitudinal optical (LO) phonons, and other
optical phonons are compared with the total electron scattering rate at 300 K in (c). The long-ranged (LR) e-ph interactions contributions are
shown in (d). On top of the scattering rate analysis, the mobility limited by (e) acoustic and optical phonon branches and (f) certain scattering
mechanisms including dipolar, quadrupolar, intravalley, and intervalley scatterings are also compared with the mobility calculated with all
mechanisms included.

electron effective mass predictions are closer to the experi-
mental counterparts than those for holes, similar to the case of
Si [56].

B. Intrinsic mobility

By solving the full-band BTE iteratively, we compute car-
rier mobilities using Eq. (1) to (8). The GW +SOC band
structure and electron-phonon matrix elements from PBEsol
calculations were employed in the BTE. An adaptively broad-
ened Gaussian function was employed to approximate the
energy-conserving Dirac function [18]. By increasing the den-
sity of k/q Brillouin zone mesh sampling from 15×15×5
to 75×75×25, we observe a rapid convergence of the drift
mobilities. The Hall mobility, on the other hand, converges
slower with a linear trend in k-mesh density 1/Nk towards
Nk → ∞. Therefore, we linearly extrapolate the mobility data
towards Nk → ∞ following Poncé et al. [18] using the three
points with densest k mesh, as detailed in Appendix B. Error
bars from least-squared fitting are also shown in Figs. 2(a),
3(a), and 4.

We first compare the computed anisotropic electron mobil-
ities with experimental measurement on an epitaxial sample
fabricated on SiC (1120) substrate with a donor density of
2.1×1015cm−3 [13]. As shown in Fig. 2(a), the experimentally
measured Hall mobilities are slightly lower than the predicted
phonon-limited Hall mobilities and close to the predicted drift
mobilities. This is expected as additional scattering mecha-
nisms such as impurities are not included in the calculations.
The temperature dependence is also studied by fitting with a
power-law relation, μ ∝ T −β . The typical β value for lightly

n-doped 4H-SiC is 2.4 to 2.8 [1], while Ishikawa et al. [13]
found an decreasing β with increased doping concentration
with highest β = 2.67 for μH

‖ and β = 2.58 for μH
⊥ at donor

concentration of 2.1×1015cm−3. The calculated β in this work
is 2.82 ± 0.03 for μH

‖ and 2.83 ± 0.03 for μH
⊥ , which is ex-

pected to be the intrinsic limit. The stronger T dependence
of intrinsic mobility is expected as defect scatterings are ab-
sent and the strongly T -dependent e-ph scattering is the only
mobility-limiting factor.

Next we investigate the mode-resolved contributions to the
e-ph scatterings. As shown in Fig. 2(c), most of the scatter-
ings for high-energy electrons are contributed by the optical
phonons, particularly the polar longitudinal optical (LO)
phonons. Near the conduction band edge, the LO phonon con-
tribution reduces due to energy mismatch, and the low-energy
electrons are scattered by all phonon branches. Moreover,
by computing the scattering rate only with long-ranged (LR)
interactions, i.e., those from dipolar and quadrupolar e-ph
interactions in Eq. (10) and Eq. (11), LR contribution is re-
vealed to be important for both high- and low-energy electrons
as shown in Fig. 2(d). The dominance of optical phonon
scatterings can also be observed in Fig. 2(e) where the optical-
phonon limited mobility is very close to the final mobility with
all scatterings. The importance of acoustic phonons is com-
parable only to optical phonons at lower temperature where
the optical phonon populations are significantly reduced. For
example, at 200 K, the acoustic-phonon-limited mobility is
very close to the optical-phonon-limited one. At 300 K,
however, the acoustic-phonon-limited mobility is about three
times that of optical phonons. Further decomposition into
scattering mechanisms in Fig. 2(f) shows that the dipolar part
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FIG. 3. (a) Anisotropic hole mobilities compared with experimental measurement from the literature [12,60–62]. (b) Mode-resolved
electron-phonon interactions |gmnν (k, q)| with heavy hole state at valence band edge (� point) being initial state mk and q along the
high-symmetry path. The red circles mark the phonon energy measured at 10 ◦C [57]. Contributions of acoustic phonons, longitudinal optical
(LO) phonons, and other optical phonons are compared with the total hole scattering rate at 300 K in (c). The long-ranged (LR) e-ph interactions
contributions are shown in (d).

FIG. 4. Hall factor rH for (a) electrons and (b) holes for current
j and magnetic field B parallel to (‖) or perpendicular to (⊥) the c
axis.

of long-ranged e-ph scatterings dominate over the quadrupolar
contribution, in line with the observation that the LO phonon
couples most strongly with electrons shown in Fig. 2(b). In the
case of GaN, a similar hexagonal semiconductor with piezo-
electricity, inclusion of quadrupolar effect was demonstrated
to be critical for correctly predicting e-ph interactions, while
the e-LO coupling is also the dominant scattering channel for
electrons [31]. The intervalley scattering is much weaker than
the long-wavelength intravalley scattering. It can be seen from
Fig. 2(d) that even for high-energy electrons, the long-ranged
interactions are still the dominant scattering mechanism, in
contrast to the case of GaAs [42]. This is because the second
electron valley in 4H-SiC is at least 2 eV higher as shown in
Fig. 1(a), unlike the case of GaAs, which was only 0.3 eV.

For further clarification of scattering mechanisms, the e-ph
interactions between the conduction band edge state at the M
point and phonons along the high-symmetry path are visual-
ized in Fig. 2(b). It is evident that the electron-LO-phonon
interactions are the strongest due to the diverging Fröhlich
interaction from nonzero Born effective charges whose av-
erage values are Z∗

‖ ≈ 2.78 and Z∗
⊥ ≈ 2.68, respectively. The

full Born effective charge and dynamical quadrupole tensors
are tabulated and discussed in Appendix C. Additionally, the
optical phonons around 75 meV at M point, which could
scatter the electrons at one M valley to another M valley, are
also significant and become another major scattering mech-
anism apart from the Fröhlich interaction. e-ph interactions
with other intervalley phonons branches are much weaker.
The interactions with acoustic phonons are rather weak, which
could be attributed to the floating nature of conducting elec-
trons in SiC, whose wave functions are away from atoms or
bonds [58]. The short-ranged part of electron-ion interactions
can be reduced in this case, resulting in weaker deformation
potential. The deformation potential constants for electrons
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are obtained from the slope of g, as tabulated in Table II in
Appendix C. Indeed, the average value of 3.76 eV is weaker
than that of holes, 7.10 eV, and that of electrons in silicon,
8.21 eV [59].

The hole mobilities are also computed and compared with
experimental values from several references [12,60–62], as
shown in Fig. 3(a). The experimental data were all measured
for epilayers on (0001) or slightly off-axis (0001) substrate.
Therefore, the measured mobility should be close to the in-
basal-plane component and are compared with μ⊥. While the
measured mobilities are close to or lower than the computed
Hall mobility μH

⊥ around room temperature, at higher tem-
perature the measured mobility decreases at a faster rate than
the predictions. Previous studies attributed the strong decrease
partially to the reduced hole Hall factor at high temperature,
which can be further reduced by high doping levels [11,12].
The impact of e-ph interactions on Hall factor will be further
discussed in the next section.

The hole scattering rates are also decomposed into dif-
ferent phonon branches, as shown in Figs. 3(c) to 3(e). The
holes at valence band edge are mainly scattered by acoustic
phonons, while at higher energy above 0.1 eV the optical
phonon scatterings are dominant since the emission of high-
frequency optical phonons becomes available in this region.
This, in conjunction with the enhanced optical phonon popu-
lation at high temperature, explains the change of dominant
scatterers from acoustic phonons below 400 K to optical
phonons above 400 K, as shown in Fig. 3(e). At 300 K,
the acoustic phonon is the dominant scatterer for band edge
holes as shown in Figs. 3(c) and 3(e). The acoustic phonon
contribution to the scattering rates exhibits very weak energy
dependence, as shown in Fig. 3(c). This can be explained
by the counterbalance between the τ−1 ∝ E1/2 trend of the
deformation potential scattering and the τ−1 ∝ E−1/2 trend
of the piezoelectric scattering [63], similar to the observa-
tions in GaAs [64] and GaN [31]. The strong deformation
potential (7.10 eV on average) scattering arises from the sp3

bond nature of the valence states (holes), which can strongly
couple with the atomic displacement through bond distortion.
Although the intermediate-frequency intervalley phonons still
couple strongly with holes, there is no final states available
for scattering as the valence band edge is centered at the �

point. Therefore, the holes are mainly scattered by intravalley
acoustic and optical phonons.

C. Hall factor

Using the fully ab initio band structure without resorting to
approximate parabolic or k · p band models, we first compute
the Hall factor tensors in the constant relaxation time approxi-
mation without considering the scattering mechanisms. In this
case, we eliminate the impact of scattering, and their deviation
from rH = 1 solely reflects the realistic band structure, i.e., the
band multiplicity, anisotropy, and nonparabolicity.

As shown in Fig. 4(a), the electron Hall factors are not
significantly temperature dependent. When the magnetic field
B‖ is applied along the c axis, rH is around 0.9. The devi-
ation from 1 is attributed to the in-plane anisotropy of the
conduction valley, where the electron effective mass along
M-� direction is about twice that of M-K direction, leading

(b)

CB

Μ

ΚΜ

Γ

B
||c

VB

(a)

CBB
Γ

VB

FIG. 5. Equienergy lines of conduction (blue) and valence (red)
bands in a k-plane perpendicular to the applied magnetic field, with
(a) B along the c axis and (b) B perpendicular to the c axis, respec-
tively. The equienergy lines are 0.1 eV above the conduction band
edge and below the valence band edge.

to the elliptic equienergy line shown in Fig. 5(a). When B⊥ is
applied, the mass anisotropy in the planes perpendicular to B⊥
is reduced because me

‖ is between me
M� and me

M� . Therefore,
the Hall factors with B⊥ are very close to 1 as shown in
Fig. 4(a).

The case of holes is more complicated. The hh and lh bands
are energetically close and are all involved in the transport
process at the temperatures studied here. Moreover, these
bands are very anisotropic and nonparabolic in the vicinity of
the valence band edge, as revealed by the effective masses and
equienergy line shape (Fig. 5). Therefore, a deviation from
unity is naturally expected even without any specific scatter-
ing mechanism as in CRTA. Indeed, the computed hole Hall
factors are all away from unity. Interestingly, we observed
different temperature-dependent Hall factors when magnetic
fields are applied in different directions: when B‖ is applied,
rH decreases as temperature increases; when B⊥ is applied,
rH slightly increases at higher temperature. Such behaviors
can be traced back to the equienergy line shapes of differ-
ent bands. As illustrated in Fig. 5, in the (0001) plane, the
low-energy heavy-hole hh bands shows a complex, nonelliptic
equienergy line, while the high-energy lh bands have an al-
most isotropic, circular equienergy line. Therefore, as temper-
ature increases, lh bands participate in the transport process,
which explains the rH approaching 1 at high temperature with
B‖. In the case of B⊥, as shown in Fig. 5(b), the hh bands are
elliptic while the lh band becomes nonelliptic. Therefore, rH

deviates further from 1 as the temperature increases.
When the e-ph interactions are included and the BTE is

self-consistently solved, the Hall factor rH changes drastically.

235203-6



PHONON-LIMITED CARRIER MOBILITIES AND HALL … PHYSICAL REVIEW B 107, 235203 (2023)

The electron rH increases to as high as 1.6 at 1000 K and
remains anisotropic depending on the direction of the applied
magnetic field. Specifically, when the magnetic field is applied
perpendicular to the c axis, the Hall factor is almost isotropic.
But the value changes significantly when the magnetic field
is switched to B ‖ c axis, from around 1.6 to around 1.4 at
high temperature. Additionally, the electron rH is increas-
ing with temperature in contrast to the CRTA results, which
are almost constant across the studied temperature range.
Similarly, the hole Hall factor is also different from CRTA
results, but the change is less significant. This is attributed
to the energy-dependent τ , whose contribution can be ap-
proximately described in isotropic case by the Hall scattering
factor rs = 〈〈τ 2〉〉

〈〈τ 〉〉2 where 〈〈τ i〉〉 = ∑
nk εnk fnkτ

i
nk/

∑
nk εnk fnk

[63]. The computed rs is 1.22 for electrons and 1.09 for
holes at 300 K, which also reflects the different distributions
of τ for electrons and holes near the band edge. The dif-
ference arises from both the difference in major scattering
mechanisms, as discussed in the previous section, and the
difference in band structure complexity. Due to the strong
anisotropy, nonparabolicity, and band multiplicity, the avail-
able scattering phase space is more complex than the simple
parabolic conduction band. This leads to not only the differ-
ence in CRTA rH, but also different rs in the presence of e-ph
interactions.

The complexity in Hall factor temperature dependence
has also been observed in many cubic semiconductors [18].
Poncé et al. found that Hall factors calculated from Boltzmann
transport equations in magnetic field can be very different
from those estimated through the isotropic model rs = 〈〈τ 2〉〉

〈〈τ 〉〉2 .
The electrons in 4H-SiC studied in this work exhibit in-
creasing Hall factors at elevated temperature, similar to the
observations in Si, 3C-SiC, and c-BN. Some other n-type
semiconductors may exhibit decreasing or more complicated
temperature dependence. The rise-and-fall trend of hole Hall
factors with j⊥ and B‖ is similar to those of GaAs and AlAs,
while certain p-type semiconductors such as Si and AlP may
exhibit a significant drop in hole rH . Such complexity in
simple semiconductors calls for further careful study of Hall
effects to achieve solid and deep understanding of magneto-
transport phenomena in different semiconductors.

We note that in previous references, the Hall factors (de-
duced from experimental Hall measurement, donor/acceptor
density, and ionization energy) are lower than the BTE-
predicted values in this work. Considering the agreement
between theoretical and experimental effective masses, the
discrepancy likely arises from the factors other than the band
structure, including but not limited to scattering. For example,
Asada et al. [11] revealed experimentally that the Hall factors
showed a significant reduction with increased Al doping in
4H-SiC, suggesting that doping can be a factor that low-
ers the Hall factor. Tanaka et al. [12] computed the p-type
4H-SiC Hall factor and mobility using BTE in relaxation
time approximation with a simplified phonon and impurity
scattering model in conjunction with adjustable parameters.
They assumed that the nonpolar optical phonon scattering
may lead to a highly anisotropic scattering rate in the Basal
plane direction (⊥) and reduces the Hall factor. However,
by computing the phonon mode-resolved contributions to the

1

10

100

τ-1
(p
s-
1
)

Total

Acoustic

LO

Other

←K Γ M→

FIG. 6. Mode-resolved scattering rate of holes in a heavy hole
band near the valence band edge. No significant anisotropy is ob-
served for either the total scattering rate or contributions from
individual phonon modes to the band edge holes.

total scattering rate, as shown in Fig. 6, it can be seen that
both the total and mode-resolved scattering rates are almost
isotropic in the basal plane. Therefore, the experimentally ob-
served small Hall factors may not be explained by anisotropic
phonon-limited scattering rate. Deeper understanding of such
phenomena requires further in-depth study of these mecha-
nisms, and the origin of the small Hall factor observed in
doped 4H-SiC still remains an open question. Alternative ex-
planations could be impurity scatterings, dislocation scatter-
ings, and uncertainty in the estimated carrier concentrations in
experimental works using a hydrogenic model, among others.

IV. CONCLUSIONS

In summary, we studied the phonon-limited electron and
hole transport behaviors of 4H silicon carbide by solving the
Boltzmann transport equation in conjunction with Wannier in-
terpolation of band structure and electron-phonon interactions
from density functional (perturbation) theory calculations.
The resulting effective masses and carrier mobilities agree
well with experimental measurement. The anisotropy of band
structure, electron-phonon scattering, and carrier mobilities is
investigated in detail. Spin-orbit interactions must be included

M K Γ M L H A Γ
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E
n
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g
y
(e
V
)

FIG. 7. Comparison between band structures computed using
direct DFT calculation and using Wannier interpolation starting from
a 8×8×2 k-mesh.
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FIG. 8. Comparison between drift mobilities (μ‖, μ⊥) and Hall mobilities (μH
‖ , μH

⊥) calculated using IBTE (solid lines) and SERTA (dotted
lines).

to correctly reproduce the experimental valence band struc-
ture, while both HSE and GW calculations could excellently
reproduce the experimental effective masses. We showed that
the anisotropy of electron effective masses and mobilities is
weaker than that of the holes, while both the electron and hole
Hall factors are strongly direction and temperature dependent.
The Hall factors significantly deviate from 1, which is ex-
plained by the energy-dependent electron-phonon scattering
rate and anisotropic band structure. The results clarified the
role of electron-phonon interactions in the transport phenom-
ena of the technologically relevant 4H-SiC.
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APPENDIX A: WANNIER INTERPOLATION
OF BAND STRUCTURE

To test the Wannier interpolation reliability, we computed
the band structure along a high-symmetry path using both
direct DFT calculation and Wannier interpolation from a
8×8×2 coarse k mesh, as shown in Fig. 7. The agree-
ment is excellent for both conduction and valence bands.

(a)

(b)

FIG. 10. (a) Electron and (b) hole scattering rates calculated us-
ing a 75×75×25 regular Brillouin zone grid (black boxes), compared
with those converged using Cauchy-Lorentz importance sampling
(red circles).
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(c)

(d)

(a)
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FIG. 11. (a) Electron and (b) hole mobilities with all charge carriers (black) and band-edge carriers only (red). The phonon-mode-
decomposed mobilities for band-edge (c) electrons and (d) holes are also shown.

Therefore, the same Brillouin zone sampling is consistently
used throughout this work. The Wannier functions are p-like
orbitals centered on all C atoms for valence bands, and sp3-
like orbitals centered on all Si atoms for conduction bands,
respectively.

APPENDIX B: IMPACT OF NUMERICAL CALCULATIONS
ON THE MOBILITIES

The solution of BTE can be performed either self-
consistently through iterations (IBTE) or by employing the
so-called self-energy relaxation time approximation (SERTA).
The drift and Hall mobilities using these two methods are
compared in Fig. 8. In general, SERTA tends to underestimate
both the drift and Hall mobilities, similar to the observation in
cubic semiconductors [18,65].

Ideally, the mobility from BTE could converge to a con-
stant value as the Brillouin zone sampling becomes infinitely
dense. However, this is computationally unattainable. There-
fore, a finite Brillouin zone sampling grid must be used, and its
convergence should be tested. Since only a regular grid can be
employed for an iterative BTE solution implemented in EPW,
its convergence may not be as fast as importance sampling
such as the Cauchy-Lorentz distribution [43,56]. As shown
by Poncé et al. [18], in many cubic semiconductors both the
drift and Hall mobility approach the converged value linearly
in 1/Nk with Nk being the fine k/q sample size along one
direction. Here we also observed similar phenomena in the
hexagonal 4H-SiC. As shown in Fig. 9, both the drift mobility

μd and Hall mobility μH steadily approach their respective
converged values. Therefore, we used the densest three sam-
pling grids for the linear extrapolation towards Nk → ∞.
Additionally, we compared the scattering rate from regular
grid calculations with those using additional Cauchy-Lorentz
samplings near electron band edge and phonon zone center, as
shown in Fig. 10. While those calculated using regular grid for
BTE shows some fluctuations, the convergence of mobilities
and Hall factors can be well extrapolated, similar to the case
of cubic semiconductors observed by Poncé et al. [18].

Both low-energy (band-edge) carriers and high-energy car-
riers participate into the charge transport. To understand their
respective roles and characteristics, we compared the mobility
from band-edge carriers within 0.1 eV above CBM (below
VBM) with the overall mobility, as shown in Fig. 11. The
discrepancy between overall and band-edge mobilities above
400 K indicates that high-energy carriers are dominant at high
temperature. The phonon-mode-decomposed mobilities show
similar trends as the overall mobilities in Figs. 2 and 3, but the
optical phonons dominate only the hole scattering at higher
temperature above 600 K, indicating relatively weaker optical
phonon scattering at the band edge as compared to those for
high-energy holes.

APPENDIX C: DIELECTRIC TENSOR, BORN EFFECTIVE
CHARGES, AND DYNAMICAL QUADRUPOLE TENSORS

The space group of 4H-SiC is P63mc (or C4
6v using the

Schoenflies symbol) [1]. The Si and C atoms at the cubic
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TABLE II. Components of dielectric tensor ε∞, deformation potential DLA for LA phonon, Born effective charges Z∗, and dynamical
quadrupole tensors Q̃. Values from the literature are included for comparison.

This work Exp.

ε∞ ε∞
11 7.17 6.52 (6H [68])

ε∞
33 7.40 6.70 (6H [68])

DLA (eV) De
�K 5.10

De
�M 3.18

De
�A 2.51

Dh
�K 3.06

Dh
�M 3.68

Dh
�A 11.32

Si C

k h k h

Z∗ Z11 2.69 2.68 −2.67 −2.71 |Z̄| = 2.70 (6H [69])
Z33 2.92 2.64 −2.82 −2.74

Q̃ Q15 3.44 3.88 −1.28 −1.08
Q22 5.51 −5.04 −1.82 0.17 QSi = 6.87
Q31 3.33 4.02 −1.19 −0.88 QC = −2.44
Q33 −7.39 −7.63 3.47 2.84 (3C [18])

(k) sites occupy the 2a Wyckoff positions, while those at the
hexagonal sites occupy the 2b Wyckoff positions. Both 2a
and 2b sites have the trigonal 3m (C3v) point group. Being
rank-2 (rank-3) tensors, the Born effective charges (dynamical
quadrupole tensors) share the same tensor shape and symme-
try with the dielectric tensors (piezoelectric tensors) in the
respective point group [66,67] where

ε∞ =
⎛
⎝ε∞

11 0 0
0 ε∞

11 0
0 0 ε∞

33

⎞
⎠, (C1)

Z∗ =
⎛
⎝Z11 0 0

0 Z11 0
0 0 Z33

⎞
⎠, (C2)

Q̃ =
⎛
⎝ 0 0 0 0 Q15 −Q22

−Q22 Q22 0 Q15 0 0
Q31 Q31 Q33 0 0 0

⎞
⎠. (C3)

In the ε∞ and Z∗ tensor, {1, 2, 3} refers to the Cartesian
directions {x, y, z} in both the column and row index. In the
Q̃ tensor, Voigt notation was used instead for the column

index where the Cartesian directions {xx, yy, zz, yz, xz, xy}
were contracted to {1, 2, 3, 4, 5, 6}. The nonzero components
of these tensors are tabulated in Table II. Due to the lack of
values for 4H-SiC in the literature, we included experimental
and theoretical values for 3C or 6H polytypes for comparison.
Similar to that of 6H-SiC [68], the axial component ε∞

33 is
greater than the in-plane component ε∞

11 in 4H-SiC. The Born
effective charges of 4H-SiC are also close to the effective
value for 6H-SiC determined from Raman spectra [69]. Ad-
ditionally, it is apparent that while the in-plane component
Z11 is only slightly different between h and k sites, the axial
component Z33 is strongly site dependent. Such a difference
should be associated with the geometry of h and k sites, which
are different only in the stacking order along the c axis. Only
3C-SiC Q̃ is available in the literature, and the symmetry
is very different from 4H-SiC, so we cannot make direct
comparison between Q̃ tensors in 3Cand 4H-SiC. However,
we note that in general, the dynamical quadrupole charge for
Si is significantly greater than that of C in both polytypes,
suggesting a similar bond type and charge transfer between Si
and C atoms.
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