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Impurity and dispersion effects on the linear magnetoresistance in the quantum limit
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Magnetoresistance, that is, the change of the resistance with the magnetic field, is usually a quadratic
function of the field strength. A linear magnetoresistance usually reveals extraordinary properties of a system.
In the quantum limit where only the lowest Landau band is occupied, a quantum linear magnetoresistance
was believed to be the signature of the Weyl fermions with 3D linear dispersion. Here, we comparatively
investigate the quantum-limit magnetoresistance of systems with different band dispersions as well as different
types of impurities. We find that the magnetoresistance can also be linear for the quadratic energy dispersion.
We show that both longitudinal and transverse magnetoresistance can be linear if long-range-Gaussian-type
impurities dominate, but Coulomb-type impurities can only induce linear transverse magnetoresistance. Our
findings well explain some of the linear magnetoresistance observed in the experiments and provide insights to
the understanding of quantum-limit magnetoresistance.
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I. INTRODUCTION

Magnetoresistance effects can often reveal nontrivial char-
acteristics of emergent materials. Among them, the linear
magnetoresistance is of particular interest. Specifically, while
the magnetoresistance of ordinary materials generally in-
creases quadratically with the magnetic field, it increases
linearly for some topological materials [1]. The linear mag-
netoresistance has been attracting considerable attention since
it was found in silver chalcogenides [2] and later in various
systems, including Dirac/Weyl semimetals [3–11], nodal-line
semimetals [12,13], graphene [14], superconductors [15–19],
density-wave materials [20], and magnetic topological mate-
rials [21,22].

Many explanations have been proposed for the origin of the
linear magnetoresistance (see Table I). Abrikosov’s quantum
magnetoresistance theory [1] is believed to be a signature for
the 3D massless Weyl fermions [3,5–10]; the classical theory
of Parish and Littlewood [27] is often used to explain the
linear magnetoresistance in highly inhomogeneous systems
[4,11,14,38,39]; the classical theory of Alekseev et al. [34]
can explain the linear magnetoresistance in compensated
systems [40,41]; the semiclassical theories by Song et al. [36]
and Xiao et al. [37] explain the linear magnetoresistance under
semiclassical strong and weak magnetic fields, respectively.

*luhz@sustech.edu.cn

However, the previous theories focus on the transverse
linear magnetoresistance, leaving the field dependence of the
corresponding longitudinal magnetoresistance undiscussed.
The observations of the longitudinal linear magnetoresistance
[11,12,41,42] remain unexplained. In addition, the impurity
effects on the magnetoresistance of different electronic
structures remains unexplored in a comprehensive way. A
comparative study on the linear magnetoresistance along both
the longitudinal and transverse magnetic-field directions for
different types of impurity and electronic structure is highly
needed.

In this paper, we systematically investigate the longitudinal
and transverse magnetoresistance of typical three-dimensional
(3D) energy dispersions (including massless Dirac fermions,
Dirac/Weyl semimetals, and conventional electron gas) in the
strong magnetic field quantum limit. We consider weak but
different kinds of impurity potentials. Some distinct field de-
pendencies of magnetoresistance are found. For Dirac/Weyl
semimetals and electron gas, both longitudinal and transverse
magnetoresistance can be linear in magnetic field if long-
range-Gaussian-type impurities dominate; but Coulomb-type
impurities can only lead to linear transverse magnetore-
sistance. These field dependencies of magnetoresistance
well explain some experimental observations [11,12,41,42].
Furthermore, we present a clear and standard procedure
to find the quantum-limit magnetoresistance, and we give
many general formulas that can be easily applied to other
systems.
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TABLE I. Comparison of the theories on the linear magnetoresistance in the literature and this paper.

Ref. Field direction Origin of the linear magnetoresistivity Field strength Mechanism

[1,23–26] Transverse Linear dispersion with Coulomb-type impurities Quantum limit Quantum
[27–33] Transverse Carrier density fluctuations in inhomogeneous systems Strong Classical
[34,35] Transverse Near charge neutrality of finite-size samples Strong Classical
[36] Transverse Guiding center diffusion in a smooth random potential Strong Semiclassical
[37] Transverse Intra-scattering semiclassics of Bloch electrons Weak Semiclassical

This paper

Transverse Quadratic dispersion with long-Gaussian-type impurities

Quantum limit Quantum
Longitudinal Quadratic dispersion with long-Gaussian-type impurities
Transverse Quadratic dispersion with Coulomb-type impurities
Transverse Linear dispersion with long-Gaussian-type impurities

The paper is organized as follows. In Sec. II, we summarize
the field dependencies of the quantum-limit magnetoresis-
tance for different systems with different impurity types. In
Sec. III, we present models for massless Dirac fermions,
Dirac/Weyl semimetals, and electron gas, along with their
Landau bands and eigenvectors. The impurity models are also
introduced. Then, we derive the corresponding magnetocon-
ductivities and analyze them in detail. In Sec. IV, we conclude
with a discussion of the results we find and some possible
future research directions. Calculation details are provided in
Appendices A–G.

II. SUMMARY OF THE RESULTS ON THE
QUANTUM-LIMIT MAGNETORESISTANCE

Magnetoresistance can be significantly different for sys-
tems with different energy band dispersions. Here, three
representative 3D systems are investigated, massless Dirac
fermions with linear dispersion, two-node Dirac/Weyl
semimetals where the two nodes merge together at higher
energies, and electron gas with quadratic dispersion. Un-
der magnetic fields, 3D energy dispersion develops into
one-dimensional Landau bands, which disperse along the
magnetic field direction. When the magnetic field is strong
enough, only the lowest Landau band is occupied, i.e., the
system enters the quantum-limit regime. For massless Dirac
fermions, the lowest Landau band is linear, while both
two-node Dirac/Weyl semimetals and electron gas have the
quadratically-dispersed lowest Landau band.

The longitudinal magnetoresistivity is inversely propor-
tional to the longitudinal magnetoconductivity, i.e., ρzz =
1/σzz (the magnetic field is along z direction). The trans-
verse magnetoresistivity is related to magnetoconductivities
through ρxx = σxx/(σ 2

xy + σ 2
xx ). While the leading order of

Hall conductivity is intrinsic, the longitudinal and trans-
verse magnetoconductivities are strongly dependent on the
transport/scattering time. Therefore, impurity effect plays
a pivotal role in determining the field dependence of the
magnetoresistance. Three types of impurity potentials are
studied here: delta potential, Gaussian potential, and screened
Coulomb potential. These potentials can model point defects
in crystals, such as vacancies and interstitials [43,44]. Specif-
ically, the screened Coulomb potential can model the charged
defects.

With the magnetoconductivities derived from the Kubo
formula, we present in Table II the magnetic field dependence
of the quantum-limit longitudinal magnetoresistance for dif-
ferent systems when different types of impurity scattering
dominate. The corresponding analytical expressions and de-
tailed analysis are shown in Sec. III.

For massless Dirac fermions, the longitudinal magnetore-
sistivity always decreases with increasing magnetic field,
regardless of the impurity type. The reason is that the back-
ward scattering (scattering between kF and −kF ) is prohibited
in the linearly-dispersed lowest Landau band, as shown in
the inset of Fig. 1(a). Therefore, the magnetoresistivity is
only affected by the field-independent band broadening effect.
This is guaranteed by the vertex correction in the calculation.
If there is a finite mass term, the lowest Landau bands of
opposite chirality will couple together [25,45], and the back-
ward scattering is allowed. The impurity configuration will
then play a role in the field dependence of the longitudinal
magnetoresistance.

For two-node Dirac/Weyl semimetals and electron gas,
their longitudinal magnetoresistance have the same the field
dependence in the quantum limit, due to the similar quadratic
dispersion of their lowest Landau bands. As shown in
Fig. 1(b), the magnetoresistivity is quadratic in B for delta-
type impurities (when the decay length of Gaussian potential
is set to zero, i.e., d = 0), and it evolves from the quadratic
form to a linear form when the decay length of Gaus-
sian potential is increased. When the screened-Coulomb-type

TABLE II. Magnetic field dependence of the longitudinal mag-
netoresistance in the quantum limit. Three different types of impurity
potentials are listed here: delta potential, long-range Gaussian po-
tential, and screened Coulomb potential. B is the magnetic field
strength. For two-node Dirac/Weyl semimetals or electron gas with
screened-Coulomb-type impurities, the longitudinal magnetoresis-
tance is proportional to Ba, where a can be positive or negative,
depending on the screening length.

Long Screened
Delta Gaussian Coulomb

Massless Dirac fermions B−1 B−1 B−1

Two-node Dirac/Weyl
B2 B Ba

semimetals and electron gas
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Gaussian potential

Coulomb potential

small

large

(a)

(b)

(c)

scattering

FIG. 1. Magnetic field dependence of the quantum-limit longitu-
dinal magnetoresistivity of (a) massless Dirac fermions, (b) two-node
Dirac/Weyl semimetals when the Gaussian-type impurities domi-
nate, and (c) two-node Dirac/Weyl semimetals when the screened-
Coulomb-type impurities dominate. (a) The magnetoresistivity is
independent on the impurity type; the mean free path is taken as
10 nm. The inset shows that the scattering between the lowest Landau
bands with different chirality is not allowed. (b) The decay length d
of the Gaussian potential is taken as 0,1,2,3,4, and 5 nm. The carrier
concentration n0 is taken as 10−4 nm−3; the impurity parameter niu2

0

is taken as 1 eV2 nm3, and the model parameter M = 5 eV nm2.
(c) Sketch for the field dependence of magnetoresistivity under dif-
ferent limits. n0 is the carrier concentration, and κ is the reciprocal
Debye screening radius.

(b)

(a) Gaussian potential

Coulomb potential

FIG. 2. Transverse magnetoresistivity of two-node Dirac/Weyl
semimetals in the quantum limit with (a) Gaussian-type impurities
dominance and (b) screened-Coulomb-type impurities dominance.
The carrier concentration n0 is taken as 10−5 nm−3 (red line) and
10−4 nm−3 (blue line). For Gaussian potential, the decay length d
is taken as 5 nm (red line) and 1 nm (purple line), and the impu-
rity parameter niu2

0 is taken as 1 eV2 nm3. For screened Coulomb
potential, the relative permittivity εr is taken as 10, and impurity
concentration ni is taken as 0.1n0. Model parameters M = 5 eV nm2,
A = 0.5 eV nm, and kw = 0.1 nm−1.

impurities dominate, the magnetoresistivity is generally non-
monotonic. However, in the long screening length limit,
i.e., small reciprocal Debye screening radius κ , the mag-
netoresistivity increases with increasing magnetic field; in
the short screening length limit, i.e., large κ , negative mag-
netoresistance exists, but becomes weakly B dependent at
extreme low carrier concentration. The magnetic field depen-
dence of the longitudinal magnetoresistance in the presence
of the screened-Coulomb-type impurities is illustrated in
Fig. 1(c).

For all three systems studied, both long-Gaussian-type
and screened-Coulomb-type impurities can bring linear trans-
verse magnetoresistance at low carrier concentration. Fig-
ure 2 shows the transverse magnetoresistivity of two-node
Dirac/Weyl semimetals. When increasing the carrier con-
centration, the magnetoresistivity deviates from the linear B
dependence for both Gaussian and screened Coulomb poten-
tials. Delta-type impurities, on the contrary, result in a linear
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transverse magnetoconductivity at low carrier concentration,
and the corresponding transverse magnetoresistance decreases
with increasing magnetic field.

III. CALCULATION OF THE MAGNETOCONDUCTIVITY
IN THE QUANTUM LIMIT

A. Models and Landau bands

With a zero-mass term, the Dirac Hamiltonian is decoupled
into two parts with opposite chirality [25,45,46]. Each part
describes a massless Weyl cone

HL = h̄vF k · σ, (1)

where h̄ is the reduced Planck constant, vF is the Fermi ve-
locity, k = (kx, ky, kz ) is the wave vector, and σ = (σx, σy, σz )
is the vector form of the Pauli matrix. This low-energy effec-
tive Hamiltonian is favored among many studies because its
simplicity allows a lot analytical deductions. Furthermore, it
directly models materials with a single node around the Fermi
energy, such as Ag2Se [1,2] and ZrTe5 [47,48]. To directly
capture two Weyl nodes, a two-node model is often used,

HQ = A(kxσx + kyσy) + M
(
k2
w − k2

x − k2
y − k2

z

)
σz, (2)

where A, M, and kw are model parameters. This Hamiltonian
describes two Weyl nodes separated along kz with a distance
of kw. In the momentum space, these two Weyl nodes act
as a source and a sink of Berry curvature, respectively [49].
In addition, this two-node model supports special surface
states, i.e., the Fermi arc [50]. Combined with its time-reversal
partner, Eq. (2) can model two-node Dirac semimetals like
Cd3As2 and Na3Bi [51]. When the magnetic field is extremely
strong, the lowest Landau band of the time-reversal partner of
Eq. (2) is buried in the Fermi sea; therefore, it is not consid-
ered in the following calculations of magnetoconductivities.

Under the z-directional magnetic field, B = (0, 0, B), the
vector potential in the Landau gauge is A = (−yB, 0, 0). For
both Eq. (1) and Eq. (2), the eigenvectors have the below form:

|kx, kz, n+〉 =
(

cos θkz ,n

2 |n − 1〉
sin θkz ,n

2 |n〉

)
|kx, kz〉,

|kx, kz, n−〉 =
(− sin θkz ,n

2 |n − 1〉
cos θkz ,n

2 |n〉

)
|kx, kz〉, (3)

|kx, kz, 0〉 =
(

0
|0〉
)

|kx, kz〉,

where integer n � 1. The matrix representation and Dirac
notation are used here. The band index is denoted by n± or
0. For the one-node model, cos θkz,n = kz/

√
k2

z + 2n/l2
B with

the magnetic length lB = √
h̄/(eB) (e is the electron charge);

the Landau bands can be found as

EL
kz,n± = ±h̄vF

√
k2

z + 2n

l2
B

,

(4)
EL

kz,0 = −h̄vF kz.

For the two-node model, cos θkz,n = Mn/
√

M2
n + 2nA2/l2

B
with Mn = M(k2

w − k2
z ) − nω and ω = 2M/l2

B; the Landau

bands can be found as

EQ
kz,n± = ω

2
±
√

M2
n + 2n

A2

l2
B

,

(5)
EQ

kz,0
= ω

2
+ M

(
k2

z − k2
w

)
.

The expressions of Landau bands are independent of the quan-
tum number kx; each bands has a degeneracy of NL = eB/h,
where h is the Planck constant.

Compared to the above two models, the Hamiltonian of 3D
electron gas is much simpler

HEG = h̄2k2

2m
, (6)

where k =
√

k2
x + k2

y + k2
z , and m is the effective mass. It only

has a simple quadratically-dispersed energy band. Under the
magnetic field, the electron gas has Landau bands

EEG
kz,n = h̄2k2

z

2m
+ h̄2

ml2
B

(
n + 1

2

)
(7)

with the eigenvectors |n〉|kx, kz〉 (here n = 0, 1, 2, . . .). The
lowest Landau band has the same kz dependence and magnetic
field dependence as the two-node model.

In a small magnetic field, all the Landau bands are stick-
ing together; since both the spacing between Landau bands
and the degeneracy of Landau bands increase with the field
strength, the Fermi energy crosses fewer bands as the mag-
netic field increases. When the Fermi energy is at the band
bottom of n = 1 conduction band, the critical magnetic field
Bc is reached. For magnetic fields higher than this critical
value, only the lowest Landau band is occupied by the car-
riers. In the quantum limit, if the system has a fixed carrier
concentration n0, the Fermi wave vector is |kF | = πn0/NL

for the quadratic lowest Landau band cases and |kF | =
2πn0/NL for the one-node model. Then, from min(Ekz,1+) =
EkF ,0, the electron gas model and one-node model have Bc =
h̄
e (

√
2π2n0)2/3 and Bc = h̄

e (2
√

2π2n0)2/3, respectively. This
expression does not depend on any model parameters; it can
be used to determine the value of the carrier concentration or
critical field in the experiment. For the two-node model, there
is no simple analytic expression for the critical field, and the
model parameters can affect the results (see Appendix A).

B. Different types of impurity potential

Generally, the impurity potential can be written as

V (r) =
∑

i

U (r − Ri ), (8)

where U (r − Ri ) denotes the potential of the ith impurity that
centered at Ri. If the potential is point-like (i.e., the potential
energy is finite at r = Ri and zero elsewhere), it can be mod-
eled by

U (r − Ri ) = u0δ(r − Ri ), (9)

where u0 is an energy constant describing the strength of
the potential. The Fourier transform of this delta potential is
simply u0. Although analytical derivations are easier when
the delta function is used, the impurity potential cannot be
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perfectly point-like in realistic materials. To model impurity
potentials with a finite range, the Gaussian-type impurities are
used in the studies on the electron density of states [52–55],
yielding a qualitative agreement with the experimental re-
sults. The Gaussian-type impurities have also been used in
the transport studies [56–58], but not for calculating the linear
magnetoresistance. The Gaussian potential reads

U (r − Ri ) = u0

(
1

d
√

2π

)3

e− |r−Ri|2
2d2 , (10)

where d is the decay length. It describes potentials that have
the maximum energy at r = Ri, and the energy decays when

the position is away from Ri. Its Fourier transform is u0e− q2d2

2 ,
which reduces to the delta potential when taking d = 0. An-
other often used finite range potential is the screened Coulomb
potential

U (r − Ri ) = e2

4πε|r − Ri|e−κ|r−Ri|, (11)

where ε = ε0εr is the absolute permittivity, ε0 is the vacuum
permittivity, εr is the relative permittivity, and κ is the recip-
rocal Debye screening radius. Its Fourier transform is e2

ε(q2+κ2 ) .

C. Longitudinal magnetoconductivity in the quantum limit

In the limit of zero temperature, with one-loop diagram
approximation, the longitudinal and transverse magnetocon-
ductivity can be found from

σαα = π h̄e2

V

∑
u,u′

Au(EF )Au′ (EF )
∣∣〈u′∣∣vα|u〉∣∣2, (12)

where V is the volume of the system, vα is the velocity
operator, α = x, y or z, and u denotes the quantum number,
including kx, kz, and the band index. The spectral func-
tion Au(EF ) = i

2π
[GR

u (EF ) − GA
u (EF )], the retarded/advanced

Green’s function GR/A
u (EF ) = 1/[EF − Eu ± ih̄/τu(EF )], and

τu(EF ) is the scattering time. The detailed deductions can be
found in Appendix D.

For the longitudinal magnetoconductivity, vz = 1
h̄

∂H
∂kz

, and
〈u′|vz|u〉 is nonzero only when u′ = u. The leading term of the
square of the spectral function Au(EF ) is 1

2π2 GR
u (EF )GA

u (EF ),
which is approximately 1

π h̄τu(EF )δ(EF − Eu) [49,59]. The
delta function is centered at Eu = EF , which means that only
the bands crossing EF have nonzero contribution. In the quan-
tum limit, the longitudinal magnetoconductivity is found as

σzz = e2

h
NL

∑
i

∣∣vki
F ,0

∣∣τki
F ,0, (13)

where ki
F denotes the ith Fermi wave vector, the Fermi

velocity vki
F ,0 = 1

h̄
∂Ekz ,0

∂kz
|kz=ki

F
, and τki

F ,0 ≡ τki
F ,0(EF ) is the

scattering time of the state with ki
F in the lowest Landau band.

For the lowest Landau band of the one-node model, there is
only one kF (negative value), and σ L

zz = e2

h NL|vF |τkF ,0. If τkF ,0

has no magnetic field dependence, σ L
zz is simply proportional

to B. For the lowest Landau band with quadratic dispersion,
there are ±kF (the notation kF denotes the positive value for
the case of quadratic lowest Landau band in this paper), and

σ Q
zz = 2 e2

h NLvkF ,0τkF ,0. In contrast to the linear lowest Landau
band, the Fermi velocity here is proportional to kF . This
results in that the Fermi velocity is inversely proportional to
B if the carrier concentration is fixed. Therefore, when τkF ,0

is not magnetic-field dependent, σ Q
zz is B independent with a

fixed carrier concentration. When the Fermi energy is fixed
instead, σ Q

zz is proportional to B.
The scattering time is related to the imaginary part of

self-energy through h̄
2τu(EF ) = −Im[R

u (EF )]. Generally, the
self-energy is contributed by the scattering from impurities,
electrons, and phonons; here, we consider the case in which
impurity scattering dominates. In the Born approximation, the
self-energy of the state u can be found by

R
u (EF ) =

∑
u′

|〈u′|V̂ |u〉|2
EF − Eu′ + iη

, (14)

where η is a positive infinitesimal quantity, and the
impurity potential V (r) = 〈r|V̂ |r〉. The impurity average
〈V (r1)V (r2)〉imp is needed in the calculation, which gives [60]

ni

∫
dq

(2π )3 u(q)u(−q)eiq(r1−r2 ), where ni denotes the concentration
of the impurity, and u(q) is the Fourier transform of U (r −
Ri ). From the Cauchy relation, one has Im[1/(EF − Eu′ +
iη)] = −πδ(EF − Eu′ ); therefore, in the quantum limit, only
the lowest Landau band contributes to the self-energy. After
some cumbersome but straightforward calculations (details in
Appendix C 1), the scattering time can be found as

h̄

2τkF ,0
= πni

∫
dq

(2π )3

[
δ(EF − EkF −qz,0)

× u(q)u(−q)e− 1
2 (q2

x +q2
y )l2

B
]
. (15)

This is the general form of the scattering time of the lowest
Landau band. After substituting the specific expressions of
impurity potentials, it reduces to

h̄

2τG
kF ,0

= niu2
0

4π l2
B

(
1 + 2d2/l2

B

)
×
∫ ∞

−∞
dqzδ

(
EF − EkF −qz,0

)
e−q2

z d2
, (16)

h̄

2τC
kF ,0

= nie4l2
B

16πε2

∫ ∞

−∞
dqz

{
δ
(
EF − EkF −qz,0

)

×F1

[
l2
B

2

(
q2

z + κ2)]}, (17)

for the Gaussian and screened Coulomb potentials,
respectively. Here, F1[x] = 1

x + exEi[−x], and Ei[−x] =
− ∫∞

x
1
t e−t dt is the exponential integral function. The

behavior of F1[x] is studied in Appendix C 1.
Combining the expressions of scattering time and band dis-

persion with Eq. (13), the longitudinal magnetoconductivity
for the one-node model can be found,

σ L,G
zz = e2

h

(h̄vF )2

niu2
0

[
1 + 2

(
d

lB

)2
]
, (18)

σ L,C
zz = e2

h

ε2

nie4l4
B

4(h̄vF )2

F1
[ l2

B
2 κ2

] . (19)
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Delta

Long-Gaussian

Coulomb

FIG. 3. Magnetic field dependence of the longitudinal magneto-
conductivity for the one-node model. The red, purple, and blue lines
represent cases where delta-type, long-Gaussian-type, and screened-
Coulomb-type impurities dominate, respectively. The inset shows
the result after the vertex correction, which is independent of the
impurity type. The decay length d is taken as 5 nm for the long
Gaussian potential. For the screened Coulomb potential, the impurity
concentration ni is taken as 3 × 10−4 nm−3; the relative permittiv-
ity εr is taken as 50. Other parameters are the same as those in
Fig. 1.

The longitudinal magnetoconductivity is inversely propor-
tional to the impurity concentration and strength. For the field
dependence, only lB and κ are B dependent in above expres-
sions. Therefore, one can easily found that: for delta-type
impurities, i.e., d = 0 in Eq. (18), the longitudinal magne-
toconductivity is field independent, as shown by the red line
in Fig. 3; once d �= 0, there will be a linear-B term in σ L,G

zz ,
and this linear-B term dominates when 2d2 	 l2

B, as shown
by the purple line in Fig. 3; for the screened-Coulomb-type
impurities (κ ∝ √

B for the one-node model, see Appendix E),
F1[l2

Bκ2/2] is independent on magnetic field, and the longitu-
dinal magnetoconductivity is proportional to B2, as shown by
the blue line in Fig. 3.

In the same way, but using the dispersion expressions of
the two-node model, the longitudinal magnetoconductivity of
the two-node model can be found,

σ Q,G
zz = e2

h

(h̄vkF ,0)2

niu2
0

2
(
1 + 2d2/l2

B

)
1 + e−4k2

F d2
, (20)

σ Q,C
zz = e2

h

ε2

nie4l4
B

8(h̄vkF ,0)2

F1
[ l2

B
2

(
4k2

F + κ2
)]+ F1

[ l2
B
2 κ2

] . (21)

Unlike the case of one-node model, the Fermi velocity
vkF ,0 is B dependent here. Equation (20) is a general ex-
pression with a Gaussian decay length d; when the decay
length is taken as zero, it reduces to Eq. (24) in Ref. [49].
From Eq. (20), one can find that: for delta-type impurities
(d = 0), the longitudinal magnetoconductivity has a simple
B−2 dependence, as shown in Fig. 4(a); for Gaussian-type
impurities, there is one more B−1 dependent term in the
longitudinal magnetoconductivity (e−4k2

F d2 ≈ 1 for small kF ),

and it dominates when 2d2 	 l2
B, as shown in Fig. 4(b).

The field dependence of the longitudinal magnetoconductivity
in the case of screened-Coulomb-type impurity is compli-
cated, as depicted in Figs. 4(c) and 4(d). Generally, Eq. (21)
shows a nonmonotonic B dependence, which is contained
in F1[l2

B(4k2
F + κ2)/2] + F1[l2

Bκ2/2] [note that (vkF ,0/l2
B)2 is

B independent]. The reciprocal Debye screening length κ ∝
B for the quadratically-dispersed lowest Landau band (see
Appendix E). When 4l2

Bk2
F � l2

Bκ2, the longitudinal magne-
toconductivity is in proportion to F−1

1 [l2
Bκ2/2]; if l2

Bκ2/2 �
1, it is proportional to B; if l2

Bκ2/2 	 1, it is proportional
to B2. When 4l2

Bk2
F 	 l2

Bκ2, the above results still hold;
this is because that F1[l2

B(4k2
F + κ2)/2] ∝ (2l2

Bk2
F )−1 and

F1[l2
Bκ2/2] ∝ (l2

Bκ2/2)−1 lead to F1[l2
Bκ2/2] 	 F1[l2

B(4k2
F +

κ2)/2].
For 3D electron gas, its longitudinal magnetoconductivity

share the same expression with the two-node model. This is
due to the fact that after the replacement h̄2/(2m) → M, the
expression of the lowest Landau band of electron gas only
has a constant energy difference Mk2

w compared to that of the
two-node model. From Eqs. (13) and (15), one can find that
a constant energy difference in the lowest Landau band does
not affect the result.

When the carrier concentration is low and the magnetic
field is extremely strong, the carriers will squeeze at the band
bottom of the quadratically-dispersed lowest Landau band. In
this case, the field dependence of Eq. (21) need to be cor-
rected. This is due to the delta function approximation in the
deduction. The delta functions in GR

u (EF )GA
u (EF ), h̄/(2τkF ,0),

and κ2 are obtained by making the finite Lorentz-type broad-
ening approximately equal to zero, which is appropriate in
most cases. However, when the carriers squeeze at the band
bottom (kF → 0), an incorrect factor, which is ∝B, is in-
troduced in the integrals, see details in Appendix F. As
GR

u (EF )GA
u (EF ) ≈ 2π

h̄ τu(EF )δ(EF − Eu), this incorrect factor
cancels out in the expression of longitudinal magnetoconduc-
tivity. Therefore, only the B dependence of κ2 in Eq. (21)
need to be corrected, which leads to F1[l2

Bκ2/2] proportional
to B0.

The conductivity formula, Eq. (12), corresponds to a bub-
ble diagram in the Feynman diagram technique. By making
the vertex correction, ladder diagrams, in which the impurity
scattering links the Green’s functions on both sides of the bub-
ble, can be concluded [60]. Instead of directly calculating the
conductivity from the bubble and ladder diagrams, the vertex
correction for the longitudinal magnetoconductivity can be
made [49,60] by adding (1 − vkF −qz,0/vkF ,0) in the integral of
Eq. (15), i.e.,

h̄

2τ ′
kF ,0

= πni

∫
dq

(2π )3

[(
1 − vkF −qz,0

vkF ,0

)
δ
(
EF − EkF −qz,0

)

× u(q)u(−q)e− 1
2 (q2

x +q2
y )l2

B

]
. (22)

This additional factor weights the scattering. In the above
expression, qz indicates the momentum change after the scat-
tering, and the delta function guarantees the energy has not
changed during the scattering. At the Fermi surface, only qz =
0 is possible for the one-node model, resulting in Eq. (22)
being zero, see Fig. 5(a). This means that the longitudinal
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(a) (b)

(c) (d)

Long-Gaussian

Coulomb
=10

Coulomb
=100

Delta

0.5×10-4 nm-3

0.8×10 -4 nm -3

=10 -4 nm -3

FIG. 4. Magnetic field dependence of the longitudinal magnetoconductivity for the two-node model. [(a), (b)] Cases for delta-type, and
long-Gaussian-type impurities. [(c), (d)] Cases for screened-Coulomb-type impurities with εr = 10 and εr = 100, respectively. The carrier
concentration n0 is taken as 10−4 nm−3 (red line), 8 × 10−5 nm−3 (purple line), and 5 × 10−5 nm−3 (blue line); dashed lines represent results
after the vertex correction, which completely overlay with the solid lines in (a). Insets in (a)–(d) show the corresponding magnetic field
dependence of the inverse of the longitudinal magnetoconductivity. For the screened Coulomb potential, the impurity concentration, ni, is
taken as 0.1n0. Other parameters are the same as those in Fig. 3.

magnetoconductivity, Eq. (13), would not be impaired by the
impurity scattering. When the full massless Dirac Hamilto-
nian is considered, there is another lowest Landau band with

En
er

gy

(a) (b)2+
1+

2−
1−

0

2+
1+

2−
1−

0

FIG. 5. Illustrations of the scattering process for (a) τkF ,0 and
(b) τkF ,1±. The scattering in (a) is between the degenerate states with
the same kz, which does not affect the longitudinal transport.

opposite chirality. However, these two lowest Landau bands
are decoupled, and scattering between them is not allowed, as
shown in the inset of Fig. 1(a). Therefore, with a constant τkF ,0

(the self-energy of Green’s function will not be zero, there are
still other contributions to band broadening, for example, the
temperature effect), the longitudinal magnetoconductivity σ L

zz
is proportional to B, regardless of the impurity type, as shown
in the inset of Fig. 3. For the two-node model and electron gas,
in additional to 0, qz can also take 2kF , i.e., states scattering
between kF and −kF , which gives (1 − vkF −qz,0/vkF ,0) = 2.
In the final expression of the longitudinal magnetoconduc-
tivity, (1 + e−4k2

F d2
) changes to 2e−4k2

F d2
in Eq. (20), and

F1[l2
B(4k2

F + κ2)/2] + F1[l2
Bκ2/2] changes to 2F1[l2

B(4k2
F +

κ2)/2] in Eq. (21). This does not affect the B dependence of
Eq. (20). However, for screened-Coulomb-type potential, the
vertex correction eliminates F1[l2

Bκ2/2] in Eq. (21), leading
to σ Q,C

zz ∝ F−1
1 [l2

B(4k2
F + κ2)/2], which can be proportional

to B−3 or B−6 when 4l2
Bk2

F 	 l2
Bκ2. The dashed lines in Fig. 4

exhibit the results after vertex correction.
The above results and discussions show that bring-

ing the two nodes far apart in the two-node model can
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approach the one-node model if we linearize the dispersion
in the two-node model and ignore the scattering between kF

and −kF .

D. Transverse magnetoconductivity in the quantum limit

Different from the longitudinal magnetoconductivity, in
Eq. (12), 〈u′|vx|u〉 for the transverse magnetoconductivity is
only nonzero when the Landau indexes (i.e., 0 or n) in u′ and
u differ 1. In the quantum limit, one has

σxx ≈ σxx,1+ + σxx,1−,

σxx,1± = h̄e2NL

∫ ∞

−∞

[
Akz,0(EF )Akz,1±(EF )

× |〈kx, kz, 0|vx|kx, kz, 1±〉|2]dkz, (23)

for two-band models. The spectral functions in the above
expression are approximately delta functions. In the quantum
limit, the Fermi energy does not cross Ekz,1±, resulting in
that Akz,1±(EF ) can substantially reduce the value of trans-
verse magnetoconductivity compared to Akz,0(EF ). There-
fore, we take Akz,0(EF ) ≈ δ(EF − Ekz,0) and Akz,1±(EF ) ≈
1
π

1
(EF −Ekz ,1± )2

h̄
2τkz ,1±(EF ) in the following calculation [1].

The impurity effect is included by τkF ,1± ≡ τkF ,1±(EF ).
Unlike longitudinal magnetoconductivity, the transverse mag-
netoconductivity in the quantum limit is more related to the
scattering time of the Landau band of index 1. It can be found
from Eq. (14) that in the quantum limit, the term, of which
u′ has the lowest Landau index 0, dominates Im[R

kF ,1±(EF )].
After some cumbersome but straightforward calculations (see
Appendix C 2), one has

h̄

2τkF ,1+
= πni

(
sin

θkF ,1

2

)2 ∫ dq

(2π )3 δ
(
EF − EkF −qz,0

)
u(q)u(−q)e− 1

2 (q2
x +q2

y )l2
B

(
q2

x + q2
y

)
l2
B

2
. (24)

This is the general form of the scattering time of 1+ band. After substituting the specific expressions of impurity potentials, the
above expression reduces to

h̄

2τG
kF ,1+

= niu2
0

4π l2
B

(
1 + 2d2/l2

B

)2

(
sin

θkF ,1

2

)2 ∫ ∞

−∞
dqzδ

(
EF − EkF −qz,0

)
e−q2

z d2
, (25)

h̄

2τC
kF ,1+

= nie4l2
B

16πε2

(
sin

θkF ,1

2

)2 ∫ ∞

−∞
dqzδ

(
EF − EkF −qz,0

)
F2

[
l2
B

2

(
q2

z + κ2)], (26)

for Gaussian and screened Coulomb potentials, respectively. Here, F2[x] = −1 − (1 + x)exEi[−x]. The behavior of F2[x] is
studied in Appendix C 2.

For linearly-dispersed lowest Landau band with a small
carrier concentration, 1+ and 1− bands contribute to
transverse magnetoconductivity approximating equally, i.e.,
σ L

xx,1+ ≈ σ L
xx,1− (see Appendix D 2), one has

σ L,G
xx ≈ e2

h

niu2
0

(4π h̄vF )2l2
B

1(
1 + 2d2/l2

B

)2 , (27)

and

σ L,C
xx ≈ e2

h

nie4l2
B

(8π h̄vF )2ε2
F2

[
l2
B

2
κ2

]
. (28)

From Eq. (27), one can find that, contrary to longitudinal
magnetoconductivity, the transverse magnetoconductivity is
proportional to the impurity concentration and strength; σ L,G

xx
is proportional to B when delta-type impurities dominate, and
the field dependence changes to B−1 when the long-range-
Gaussian-type impurities (2d2 	 l2

B) dominate; for the case
of screened-Coulomb-type impurities, σ L,C

xx is proportional to
B−1. These behaviors are illustrated in Fig. 6. The B−1 de-
pendence of the transverse magnetoconductivity in the case of
screened Coulomb potential was first found by Abrikosov [1].
Here, the general result for the transverse magnetoconductiv-
ity of the one-node model with screened Coulomb potential is
given in Appendix D 2. Equation (28) is for the case of small
carrier concentrations, and it reduces to Eq. (36) in Ref. [1]
when a large relative permittivity is taken.

The transverse magnetoconductivity of the two-node
model can be found in the same procedure. It is more param-
eter dependent than its longitudinal magnetoconductivity (see
Appendix D 2). Approximately, one has

σ Q,G
xx ≈ e2

h

niu2
0

8π2(h̄vkF ,0)2l2
B

(
1 + e−4k2

F d2)
(
1 + 2d2/l2

B

)2 , (29)

σ Q,C
xx ≈ e2

h

nie4l2
B

32π2ε2(h̄vkF ,0)2

×
{
F2

[
l2
B

2

(
4k2

F + κ2
)]+ F2

[
l2
B

2
κ2

]}
. (30)

When the decay length in Eq. (29) is taken as zero (the delta
potential case), it reduces to Eq. (41) in Ref. [49], and it is pro-
portional to B3. In the case of long-range Gaussian potential
(2d2 	 l2

B), Eq. (29) is proportional to B. When the carrier
concentration is low, the correction is required, resulting in
σ Q,G

xx ∝ B for the case of delta-type impurities and σ Q,G
xx ∝

B−1 for the case of long-range-Gaussian-type impurities.
These magnetic field dependence of the transverse magne-
toresistance with varying carrier concentrations are illustrated
in Figs. 7(a) and 7(b). For the case of Coulomb potential,
like the longitudinal magnetoconductivity, σ Q,C

xx is also non-
monotonically B dependent, as depicted in Figs. 7(c) and 7(d).
The B dependence of Eq. (30) is contained in l2

B{F2[l2
B(4k2

F +
κ2)/2] + F2[l2

Bκ2/2]}/(vkF ,0)2. When 4l2
Bk2

F � l2
Bκ2, Eq. (30)

235202-8



IMPURITY AND DISPERSION EFFECTS ON THE LINEAR … PHYSICAL REVIEW B 107, 235202 (2023)

Delta

Long-Gaussian

Coulomb

FIG. 6. Magnetic field dependence of the transverse magneto-
conductivity for the one-node model. The red, purple, and blue
lines represent cases where delta-type, long-Gaussian-type, and
screened-Coulomb-type impurities dominate, respectively. The de-
cay length d is taken as 5 nm for the long Gaussian potential. For
the screened Coulomb potential, the impurity concentration ni is
taken as 10−3 nm−3; the relative permittivity εr is taken as 50. Other
parameters are the same as those in Fig. 2.

is in proportion to l2
BF2[l2

Bκ2/2]/(vkF ,0)2. If l2
Bκ2/2 � 1, it

is approximately proportional to B; if l2
Bκ2/2 	 1, it is pro-

portional to B−1. When 4l2
Bk2

F 	 l2
Bκ2, one has F2[2l2

Bk2
F ] �

F2[l2
Bκ2/2], and the result is the same as when 4l2

Bk2
F � l2

Bκ2.
However, when the carrier concentration is low, the correction
makes the field dependence in F2[l2

Bκ2/2] disappear, leading
to σ Q,C

xx ∝ B−1.
The analytical expression of the transverse magnetocon-

ductivity of the electron gas is similar to that of the two-node
model (see Appendix D 2 for details), but it is less dependent
on parameters.

Unlike the longitudinal magnetoconductivity, which relies
on the scattering between the states of the lowest Landau
band, the transverse magnetoconductivity is decided by the
scattering between the lowest Landau band and the bands with
Landau index 1. Figure 5(b) shows the scattering process of
τkF ,1± for the one-node model. Different from τkF ,0 and τkF ,1+,
which have the scattering processes between states with same
sign of vz, the scattering process of τkF ,1− is between states
with opposite signs of vz. The transverse magnetoconductivity
is not decided by vz, and the its vertex correction is different
from that of the longitudinal magnetoconductivity. It has been
verified in Ref. [23] that the vertex correction cannot make
dramatic changes to the transverse magnetoconductivity.

IV. CONCLUSIONS AND DISCUSSION

We have investigated the longitudinal and transverse mag-
netoresistance of three different systems (one-node model,
two-node model, and electron gas) with three types of im-
purities (delta type, Gaussian type, and screened-Coulomb
type), i.e., totally of 2 × 3 × 3 = 18 situations. Among these,
three situations have been previously explored in Refs. [1,49],
specifically, the transverse linear magnetoresistance of the

one-node model with the screened Coulomb impurity poten-
tial [1] and the longitudinal and transverse magnetoresistance
of the two-node model with the delta-type impurity po-
tential [49]. More importantly, here our focus is the four
new cases of linear magnetoresistance compared to that in
Ref. [1] (as shown in Table I), while no linear magnetore-
sistance is addressed in Ref. [49]. Furthermore, we have
presented a standard procedure for finding the magnetoresis-
tance in the quantum limit, and given many general formulas.
Equation (13) is the general formula for the longitudinal
magnetoconductivity in the quantum limit. With the Fermi
velocity of 3D electron gas, it reduces to the classical Drude
formula [61]. The transport time caused by impurities with
arbitrary potential can be derived from the general expres-
sion Eq. (22). For transverse magnetoconductivity, general
formulas of two-band model, Eqs. (23) and (24), have been
found. After small modifications, they can be directly applied
to single-band models. Utilizing these general formulas, the
quantum-limit magnetoresistance of a new system can be
easily investigated.

We have already discussed in detail in Sec. II that different
impurity potentials and band structures can lead to negative
or positive magnetoresistance, and here we further extend on
three points. First, the linear magnetoresistance we found can
occur in both longitudinal and transverse directions or only
in one direction, depending on the system studied. Differ-
ent from those classical theories of linear magnetoresistance
[27–37], our results are closely related to the band structure
and impurity type. Second, the quantum-limit longitudinal
magnetoresistance of massless Dirac fermions is special be-
cause of the combined effect of the linear dispersion and
scattering mechanism. In real materials, there is very likely
to be a small mass term in the single-Dirac-cone semimetals.
Even a very small mass term can couple together the lowest
Landau bands of opposite chirality. In this case, the magne-
toconductivity will be described by Eqs. (20), (21), (29), and
(30) but with a constant v0,kF (thus still distinguishable from
the quadratic lowest Landau band). Nevertheless, the massless
Dirac fermions are still possible to be explored in the acoustic
[62] and photonic crystals [63]. Third, in some cases we stud-
ied, the longitudinal magnetoresistance can be negative. In the
earlier theories [64–66], the negative longitudinal magnetore-
sistance was attributed to the chiral anomaly. Later, it was
found that there is no necessity to use the chiral anomaly to
explain the negative longitudinal magnetoresistance. For ex-
ample, the negative longitudinal magnetoresistance has been
observed in topological insulators [67], but there is no well-
defined chirality, not to mention the chiral anomaly [68].
The same treatment used in this paper can also be used to
address the negative longitudinal magnetoresistance in the
quantum limit. For the one-node model, the negative longitu-
dinal magnetoresistance is found in the quantum limit [64,65],
but where the scattering time (τ ) is assumed to be a constant.
Later, it is found that the dependence of the scattering time on
the magnetic field can be considered, by including the disorder
scattering [49]. In this paper, we show that for the one-node
model, the scattering time has no magnetic field dependence
after including the vertex correction to the velocity from the
disorder scattering, so we have a negative magnetoresistance
in Fig. 1(a), but the microscopic mechanism is subtly different
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(a) (b)

(c) (d)

Long-Gaussian

Coulomb
=10

Coulomb
=100

Delta

0.5×10-4  nm
-3

10-4  nm-3

0.1×10-4  nm-3

=

FIG. 7. Magnetic field dependence of the transverse magnetoconductivity for the two-node model. [(a),(b)] Cases for delta-type, and
long-Gaussian-type impurities. [(c),(d)] Cases for screened-Coulomb-type impurities with εr = 10 and εr = 100, respectively. The carrier
concentration n0 is taken as 10−4 nm−3 (red line), 5 × 10−5 nm−3 (purple line), and 10−5 nm−3 (blue line). Insets in (a)–(d) show the
corresponding magnetic field dependence of the inverse of the transverse magnetoconductivity. For the screened Coulomb potential, the
impurity concentration ni is taken as 0.1n0. Other parameters are the same as those in Fig. 6.

from the earlier prediction [64,65]. For the two-node model,
we find that the longitudinal magnetoresistance is generally
positive [Figs. 1(b) and 1(c)], but it can be negative at a large
carrier concentration in the presence of the short-screening-
length Coulomb potential [Fig. 1(c) large κ].

Finally, our results apply to the case where the impurity
strength is weak. Further studies can be carried out on the
quantum-limit transport under strong disorder. It has been
reported that strong disorder can induce resonance states to
the spectrum [44,69], which further modifies the signature of
the optical conductivity [70,71]. The effect of strong disorder
to Landau bands is unknown, and the corresponding magne-
toresistance remains to be explored.
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APPENDIX A: CRITICAL MAGNETIC FIELD
FOR THE TWO-NODE MODEL

kz of the minimum EQ
kz,1+ varies with the magnetic

field. When k2
w > 2/l2

B, the minimum EQ
kz,1+ has kz =

±
√

k2
w − 2/l2

B . Then, the relation between the critical mag-
netic field Bc and the carrier concentration n0 is

√
2

A2

l2
Bc

M2
= (

2π2l2
Bc

n0
)2 − k2

w, (A1)
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FIG. 8. Illustrations of the relation of n0 and EF in the quantum
limit for (a) one-node model and (b) two-node model. Solid lines and
dashed lines denote the occupied and unoccupied states, respectively.
The red solid lines represent the carriers in the system.

where lBc = √
h̄/(eBc). When k2

w � 2/l2
B, the minimum EQ

kz,1+
has kz = 0. Then, one has√√√√(k2

w − 2

l2
Bc

)2

+ 2
A2

l2
Bc

M2
= (

2π2l2
Bc

n0
)2 − k2

w. (A2)

APPENDIX B: RELATION OF n0 AND EF

IN THE QUANTUM LIMIT

In the case of the one-node model, the lowest Landau
band has an equal number of states above and below zero
energy. This allows for the definition of carrier concentration
as the difference between the number of occupied states above
zero energy and the number of holes below zero energy, see
Fig. 8(a). On the other hand, for the two-node model, the
lowest Landau band is quadratic, and thus the carrier concen-
tration is defined using the traditional method employed in the
case of electron gases, i.e., the number of all occupied states,
see Fig. 8(b).

For the one-node model, the relationship between the
Fermi energy EF and carrier concentration n0 can be found
through their relations with the Fermi wave vector kF as

n0 = NL
|kF |
2π

, (B1)

EF = h̄vF |kF |
= 4π2h̄vF l2

Bn0. (B2)

Similarly, for the two-node model,

n0 = NL
2|kF |
2π

, (B3)

EF = ω

2
+ M

(
k2

F − k2
w

)
= M

[
1

l2
B

+ (
2π2n0l2

B

)2 − k2
w

]
. (B4)

If the carrier concentration of the two-node model is defined
as the occupied states above zero energy, one has

n0 = NL
2
(|kF | − ∣∣k0

z

∣∣)
2π

, (B5)

k0
z = ±

√
k2
w − 1/l2

B, (B6)

where k0
z is the value of kz when EQ

kz,0
equals zero (B �

k2
w h̄/e). Although this modification will alter the field de-

pendence of kF , it will not eliminate it. Consequently, the
magnetoresistance expression of the two-node model will still
have a B-dependent vkF ,0. When B > k2

w h̄/e, the entire low-
est Landau band will shift to energies above zero. Defining
the carrier concentration of the two-node model in this way
requires the total number of occupied states in the lowest
Landau band to vary with the magnetic field strength to keep
the number of occupied states above zero energy fixed. In
summary, defining the carrier concentration in this way is not
suitable for the two-node model.

APPENDIX C: GREEN’S FUNCTION AND SELF-ENERGY
FOR LANDAU BANDS

A general Hamiltonian reads

Ĥ = Ĥ0 + V̂ , (C1)

Ĥ0|u〉 = Eu|u〉, (C2)

where V̂ is the operator of the impurity potential. By its
definition, Matsubara Green’s function is

Ĝ(iωm) = (iωm − Ĥ )−1

= {[Ĝ0(iωm)]−1 − V̂ }−1

= {1 − Ĝ0(iωm)V̂ }−1Ĝ0(iωm), (C3)

where iωm/h̄ are the imaginary frequency. Equivalently, the
above expression can be written as

Ĝ(iωm) = Ĝ0(iωm) + Ĝ0(iωm)V̂ Ĝ0(iωm)

+ Ĝ0(iωm)V̂ Ĝ0(iωm)V̂ Ĝ0(iωm) + · · · . (C4)

In the nonperturbation energy basis |u〉, the nondiagonal
terms of 〈u|Ĝ|u′〉 is generally nonzero. The quantum number
u contains band index b and momentum k. After the impurity
average [60], 〈b, k|Ĝ|b′, k′〉 reduces to 〈b, k|Ĝ|b′, k〉, but the
interaction brought by the impurity potential between states
with different band indexes still exists. Assuming that states
will not be scattered from one band to another, only the di-
agonal terms remain, i.e., only the effect of band broadening
from impurity is considered. One has

Gu(iωm) = 〈u|Ĝ(iωm)|u〉
= 〈u|Ĝ0(iωm)|u〉 + 〈u|Ĝ0(iωm)V̂ Ĝ0(iωm)|u〉

+ 〈u|Ĝ0(iωm)V̂ Ĝ0(iωm)V̂ Ĝ0(iωm)|u〉 + · · · ,

(C5)

where the first term is the nonperturbation part, and the second
term gives a constant energy shift that can be included in the
Fermi energy. Note that the notion of impurity average on
Green’s functions and the following correlation functions is
omitted. In the first Born approximation, the self-energy can
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be extracted from the third term,

〈u|Ĝ0(iωm)V̂ Ĝ0(iωm)V̂ Ĝ0(iωm)|u〉

= 1

iωm − Eu
〈u|V̂ G0(iωm)V̂ |u〉 1

iωm − Eu

= 1

iωm − Eu

∑
u′

〈u|V̂ |u′〉 1

iωm − Eu′
〈u′|V̂ |u〉 1

iωm − Eu
.

(C6)

That is

u(iωm) =
∑

u′

|〈u′|V̂ |u〉|2
iωm − Eu′

. (C7)

Utilizing the Dyson equation [60], one has the approximating
Green’s function

Gu(iωm) ≈ 1

iωm − Eu − u(iωm)
, (C8)

and its operator form

Ĝ(iωm) =
∑

u

|u〉〈u|
iωm − Eu − u(iωm)

. (C9)

1. Self-energy for the lowest Landau band

For the lowest Landau band, the retarded self-energy is

R
kz,0(EF ) =

∑
k′

x,k
′
z,b

′

|〈k′
x, k′

z, b′|V̂ |kx, kz, 0〉|2
EF − Ek′

z,b
′ + iη

, (C10)

where b indicates the band index. In the quantum limit, only
b′ = 0 contributes to the imaginary part of the self-energy.
One has

〈k′
x, k′

z, 0|V̂ |kx, kz, 0〉

=
∫∫

drdr′〈k′
x, k′

z, 0|r〉〈r|V̂ |r′〉〈r′|kx, kz, 0〉, (C11)

with 〈r|V̂ |r′〉 = V (r)δ(r − r′), and

〈r|kx, kz, 0〉 = 〈x, z|kx, kz〉
(

0
〈y|0〉

)

= 1√
LxLz

ei(xkx+zkz )

(
0

φ0(y, kx )

)
, (C12)

where

φn(y, kx ) = 1√
n!2n�B

√
π

e
− 1

2

(
y

�B
−kx�B

)2

Hn

(
y

�B
− kx�B

)
,

(C13)
with Hermite polynomials Hn(x). Together with the complex
conjugate of Eq. (C11), one has

|〈k′
x, k′

z, 0|V̂ |kx, kz, 0〉2|

= ni

∫
dq

(2π )3 u(q)u(−q)δk′
z,kz−qzδk′

x,kx−qx

∫
dydy′

× eiqy (y−y′ )φ0(y, kx )φ0(y, k′
x )φ0(y′, kx )φ0(y′, k′

x ). (C14)

Here the impurity average is taken, 〈V (r)V (r′)〉imp =
ni

∫
dq

(2π )3 u(q)u(−q)eiq(r−r′ ). After integrating y and y′,∫
dye±iqyyφ0(y, kx )φ0

(
y, k′

x

) = e− 1
4 [(kx−k′

x )2+q2
y ]l2

B± 1
2 iqy (kx+k′

x )l2
B ,

(C15)
one has

Im
[
R

kF ,0(EF )
] = −πni

∫
dq

(2π )3 δ
(
EF − EkF −qz,0

)
u(q)u(−q)

× e− 1
2 (q2

x +q2
y )l2

B . (C16)

For Gaussian potential, u(q) = u0e− q2d2

2 , the integral over
qx, qy in above expression can be performed,∫∫

dqxdqy

(2π )2 e−(q2
x +q2

y )d2
e− 1

2 (q2
x +q2

y )l2
B

= 1

2π

∫ ∞

0
q‖e−q2

‖(d2+ 1
2 l2

B )dq‖

= 1

2π
(
2d2 + l2

B

) , (C17)

where q‖ =
√

q2
x + q2

y (the integral is calculated in the polar
coordination). Then, one has Eq. (16).

To find Eq. (17), one need to use Coulomb potential u(q) =
e2

ε(q2+κ2 ) ,∫∫
dqxdqy

(2π )2

e4

ε2
(
q2

x + q2
y + q2

z + κ2
)2 e− 1

2 (q2
x +q2

y )l2
B

= e4

2πε2

∫ ∞

0
q‖

1(
q2

‖ + q2
z + κ2

)e− 1
2 q2

‖ l2
B dq‖

= e4l2
B

8πε2
F1

[
l2
B

2

(
q2

z + κ2)], (C18)

where F1[x] = 1
x + exEi[−x] and Ei[−x] = − ∫∞

x
1
t e−t dt .

The power function fitting of F1[x] is shown in Fig. 9(a).

2. Self-energy for the n = 1 Landau band

The self-energy for the b = 1+ and 1− bands in the quan-
tum limit can be found in the same procedure.

For R
kz,1+(EF ),

〈r|kx, kz, 1+〉 = 〈x, z|kx, kz〉
(

cos θkz ,1

2 〈y|0〉
sin θkz ,1

2 〈y|1〉

)

= 1√
LxLz

ei(xkx+zkz )

(
cos θkz ,1

2 φ0(y, kx )
sin θkz ,1

2 φ1(y, kx )

)
,

(C19)

and∫
dye±iqyyφ1(y, kx )φ0(y, k′

x )

= 1√
2

lB(kx − k′
x ± iqy)e− 1

4 [(kx−k′
x )2+q2

y ]l2
B± 1

2 iqy (kx+k′
x )l2

B .

(C20)
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(a) (b)

FIG. 9. Power function fitting of (a) F1[x] and (b) F2[x].

Therefore,

Im
[
R

kF ,1+(EF )
] = −πni

∫
dq

(2π )3 δ
(
EF − EkF −qz,0

)(
sin

θkF ,1

2

)2

u(q)u(−q)e− 1
2 (q2

x +q2
y )l2

B

(
q2

x + q2
y

)
l2
B

2
. (C21)

The integrals of qx and qy for Gaussian and Coulomb potentials are more complicated compared to that in Im[R
kF ,0(EF )],∫∫

dqxdqy

(2π )2 e−(q2
x +q2

y )d2
e− 1

2 (q2
x +q2

y )l2
B

(
q2

x + q2
y

)
l2
B

2
= l2

B

4π

∫ ∞

0
q3

‖e−q2
‖ (d2+ 1

2 l2
B )dq‖

= l2
B

2π
(
2d2 + l2

B

)2 , (C22)

and ∫∫
dqxdqy

(2π )2

e4

ε2
(
q2

x + q2
y + q2

z + κ2
)2 e− 1

2 (q2
x +q2

y )l2
B

(
q2

x + q2
y

)
l2
B

2
= e4l2

B

4πε2

∫ ∞

0
q3

‖
1(

q2
‖ + q2

z + κ2
)e− 1

2 q2
‖ l2

B dq‖

= e4l2
B

8πε2
F2

[
l2
B

2

(
q2

z + κ2
)]

, (C23)

where F2[x] = −1 − (1 + x)exEi[−x]. The power function fitting of F2[x] is shown in Fig. 9(b).

APPENDIX D: KUBO FORMULA FOR MAGNETOCONDUCTIVITY

The conductivity is related to the retarded current-current correlation function �R
αα ,

Re[σαβ] = − lim
�→0

h̄

�
Im
[
�R

αβ (�)
]
. (D1)

From the bubble diagram, one has

�αβ (i�) = e2kBT

V

∑
m

Tr[vαĜ(iωm)vβĜ(iωm + i�)], (D2)

where i�/h̄ is the imaginary frequencies, kB is the Boltzmann constant, T is temperature. After substituting Eq. (C9) into above
expression, one has

�αβ (i�) = e2kBT

V

∑
m

∑
u,u′

Tr[vα|u〉〈u|vβ |u′〉〈u′|]
[iωm − Eu − u(iωm)][iωm + i� − Eu′ − u′ (iωm)]

= e2kBT

V

∑
m

∑
u,u′

〈u′|vα|u〉〈u|vβ |u′〉
[iωm − Eu − u(iωm)][iωm + i� − Eu′ − u′ (iωm)]

, (D3)

where the trace operation is performed using the fact that the trace is invariant under cyclic permutations, and the trace of a inner
product gives the inner product itself.
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To sum m, make use of the identity 1
iωm−Eu−u (iωm ) = ∫

dω1
Au(ω1 )

iωm−ω1
and kBT

∑
m

1
(iωm−ω1 )(iωm+i�−ω2 ) = nF (ω1 )−nF (ω2 )

ω1−ω2+i� , where
nF (ω1) is the Fermi-Dirac distribution function [60]. Then, the retarded correlation function can be found by making the
analytical continuation i� → � + i0+. By taking its imaginary part (only the part 1

ω1−ω2+�+i0+ is complex in the retarded
correlation function when α = β), one has

Im
[
�R

αα (�)
] = e2

V

∑
u,u′

∫∫
dω1dω2[−πδ(ω1 − ω2 + �)][nF (ω1) − nF (ω2)]Au(ω1)Au′ (ω2)|〈u′|vα|u〉|2

= −πe2

V

∑
u,u′

∫
dω1[nF (ω1) − nF (ω1 + �)]Au(ω1)Au′ (ω1 + �)|〈u′|vα|u〉|2. (D4)

Note that 〈u′|vα|u〉〈u|vα|u′〉 = |〈u′|vα|u〉|2. After taking
the above expression into Eq. (D1) and making
lim�→0

[nF (ω1 )−nF (ω1+�)]
�

= − dnF (ω1 )
dω1

, in the zero temperature

limit [− dnF (ω1 )
dω1

→ δ(ω1 − EF )], one has

Re[σαα] = π h̄e2

V

∑
u,u′

Au(EF )Au′ (EF )|〈u′|vα|u〉|2. (D5)

1. Longitudinal magnetoconductivity

For σzz, the magnetic field is in z direction. Therefore, the
wave vector kz is not Landau quantized. One has

〈u|vz|u′〉 = 〈u|1

h̄

∂H

∂kz
|u′〉

= 1

h̄

∂Eu

∂kz
δu,u′ . (D6)

Because 1
V

∑
kx,kz

= 1
Ly

∫∫ dkxdkz

(2π )2 and 1
Ly

∫ eBLy/h̄

0
dkx
2π

= eB
h (the

guiding center lies between 0 and Ly, 0 � h̄
eB kx � Ly, giving

the limits of kx), the summation 1
V

∑
kx,kz

= NL
∫ dkz

2π
.

With the approximation [Au(EF )]2 ≈ 1
π h̄τu(EF )δ(EF −

Eu), the quantum-limit longitudinal magnetoconductivity is

σzz ≈ π h̄e2NL

∫ ∞

−∞

dkz

2π

[
1

π h̄
τkz,0(EF )δ

(
EF − Ekz,0

)]

×
∣∣∣∣1h̄ ∂Ekz,0

∂kz

∣∣∣∣
2

= e2NL

∫ ∞

−∞

dkz

2π
τkz,0(EF )

⎡
⎢⎢⎣∑

i

δ
(
kz − ki

F

)∣∣∣ ∂Ekz ,0

∂kz

∣∣∣
kz=ki

F

⎤
⎥⎥⎦
∣∣∣∣1h̄ ∂Ekz,0

∂kz

∣∣∣∣
2

= e2

h
NL

∑
i

τki
F ,0(EF )

∣∣vki
F ,0

∣∣, (D7)

where vki
F ,0 = 1

h̄
∂Ekz ,0

∂kz
|kz=ki

F
. For parabolic bands, one has

v−kF ,0 = −vkF ,0 and τkF ,0(EF ) = τ−kF ,0(EF ).

2. Transverse magnetoconductivity

For the transverse magnetoconductivity,

σxx = π h̄e2

V

∑
u,u′

Au(EF )Au′ (EF )|〈u|vx|u′〉|2, (D8)

one need to calculate 〈u|vx|u′〉. For the one-node model,
one has vx = vF σx, which makes 〈u|vx|u′〉 nonzero only if the
Landau indexes (i.e., 0 or n) of u′ and u differ 1. Therefore, the
dominant terms of the quantum-limit magnetoconductivity are
σ L

xx,1+ (when the band index b = 0, b′ = 1+ and b = 1+, b′ =
0) and σ L

xx,1− (when b = 0, b′ = 1− and b = 1−, b′ = 0). One
has

|〈kx, kz, 0|vx|k′
x, k′

z, 1+〉|2 = v2
F

(
cos

θkz,1

2

)2

δkz,k′
z
δkx,k′

x
. (D9)

With the approximation Akz,0(EF ) ≈ δ(EF − Ekz,0) and
Akz,1±(EF ) ≈ 1

π
1

(EF −Ekz ,1± )2
h̄

2τkz ,1±(EF ) ,

σ L
xx,1+ = h̄e2v2

F

π
NL

∫ ∞

−∞
δ
(
EF − Ekz,0

)

×
⎡
⎣( cos θkz ,1

2

EF − Ekz,1+

)2
h̄

2τkz,1+

⎤
⎦dkz

= e2vF

π
NL

⎡
⎣( cos

θkF ,1

2

EF − EkF ,1+

)2
h̄

2τkF ,1+

⎤
⎦. (D10)

Combining the above expression with Eqs. (25) and (26),
one has

σ L,G
xx,1+ = e2

h

niu2
0(

2π l2
B

)2

1(
1 + 2d2/l2

B

)2 f L
1+, (D11)

σ L,C
xx,1+ = e2

h

nie4

(4π )2ε2
F2

[
l2
Bκ2

2

]
f L
1+, (D12)

with

f L
1+ =

(
cos

θkF ,1

2 sin
θkF ,1

2

EF − EkF ,1+

)2

. (D13)

With an observation on Eqs. (23), (24), and (3), one can find
σxx,1− by replacing EkF ,1+ with EkF ,1− in above expressions.
When the carrier concentration is low, one has 2

lB
	 kF under

the strong magnetic field, resulting in f L
1± ≈ l2

B
8(h̄vF )2 .
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For the two-node model, vx = A
h̄ σx − 2M

h̄ [ 1√
2lB

(a + a†)]σz,
in the same procedure, one has

|〈kx, kz, 0|vx|k′
x, k′

z, 1+〉|2

= 1

h̄2

(
A cos

θkz,1

2
+

√
2M

lB
sin

θkz,1

2

)2

δkz,k′
z
δkx,k′

x
, (D14)

and

σ
Q
xx,1+ = e2

π
NL

2

|vkF ,0|

×

⎡
⎢⎣
⎛
⎝ A

h̄ cos
θkF ,1

2 +
√

2M
lBh̄ sin

θkF ,1

2

EF − EkF ,1+

⎞
⎠

2

h̄

2τkF ,1+

⎤
⎥⎦,

(D15)

where the factor 2 comes from ±kF . Note that τkF ,1+ =
τ−kF ,1+ for parabolic bands. Combining the above expression
with Eqs. (25) and (26), one has

σ
Q,G
xx,1+ = e2

h

2niu2
0(

2π l2
BvkF ,0

)2

(
1 + e−4k2

F d2)
(
1 + 2d2/l2

B

)2 f Q
1+, (D16)

σ
Q,C
xx,1+ = e2

h

nie4

2ε2(2πvkF ,0)2

×
{
F2

[
l2
B

(
4k2

F + κ2
)

2

]
+ F2

[
l2
Bκ2

2

]}
f Q
1+, (D17)

with

f Q
1+ =

⎡
⎢⎣

A
h̄ cos

θkF ,1

2 sin
θkF ,1

2 +
√

2M
lBh̄

(
sin

θkF ,1

2

)2

EF − EkF ,1+

⎤
⎥⎦

2

. (D18)

The exact results of the above expressions are parameter
dependent. The parameter-dependent SdH oscillation of this
model has been studied in Ref. [72]. Here, the magnetic de-
pendence is little affected by the choice of parameters. When
2M2 	 A2l2

B, one has f Q
1+ = 0 and f Q

1− = 1
2 ( lB

h̄ )2; actually, this
is the exact result for the 3D electron gas. When 2M2 � A2l2

B,
one has f Q

1± = 1
8 ( lB

h̄ )2; in this case, it is similar to that of the
massless Dirac fermions. Numerical analysis shows that the
dominant term of f Q

1± is always ∝ B−1.
For electron gas, only the following substitutions need to

be made, (
0
|0〉
)

→ |0〉, (D19)(
cos θkz ,1

2 |0〉
sin θkz ,1

2 |1〉

)
→ |1〉. (D20)

With vx = h̄
m

1√
2lB

(a + a†), one has |〈kx, kz, 0|vx|kx, kz, 1〉|2 =
1
2 ( h̄

mlB
)2. Then, the transverse magnetoconductivity of the

electron gas has the same expressions as the above two-node

model, except that f Q
1+ is replaced by l2

B

2h̄2 ..

APPENDIX E: CALCULATION OF THE RECIPROCAL
DEBYE SCREENING LENGTH

The reciprocal screening radius κ for the lowest Landau
band is given by [1]

κ2 = e2kBT

εV

∑
m,kx,kz

(
1

iωm − Ekz,0

)2

= e2

ε
NL

∫
dkz

2π
δ
(
EF − Ekz,0

)
, (E1)

where kBT
∑

m( 1
iωm−Ekz ,0

)2 = δ(EF − Ekz,0) in the zero-

temperature limit. For the one-node model, one has κ2 =
e2

2πε
NL

1
h̄vF

; for the parabolic lowest Landau band, κ2 =
e2

2πε
NL

2
h̄vkF ,0

.

APPENDIX F: CORRECTION WHEN THE FERMI
ENERGY IS NEAR THE BAND BOTTOM

The delta function comes from the approximation
GR

kz,0
(EF )GA

kz,0
(EF ) or AR

kz,0
(EF ) in the magnetoconductiv-

ity formula, and from taking the imaginary part of GR
kz,0

during finding the scattering time. The approximation
limη→0

1
π

η

x2+η2 → δ(x) is making the Lorentz type broaden-
ing approaches zero. Using the delta functions makes the
analytic process possible. For the two-node model,∫ ∞

−∞

1

π

η[
M
(
k2

z − k2
F

)]2 + η2
dkz ≈

∫ ∞

−∞
δ
[
M
(
k2

F − k2
z

)]
dkz

= 1

M|kF | . (F1)

FIG. 10. Hall conductivity of the two-node model. The solid
black line is the result of Eq. (G2). Different terms of Eq. (G2) are
plotted with colored dashed lines (the brown dashed line is for the
first term). The carrier concentration n0 is taken as 10−4 nm−3.
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It is natural that the above result diverges when kF → 0. However, without making the approximation, one can directly get

∫ ∞

−∞

[
1

π

η[
M
(
k2

F − k2
z

)]2 + η2

]
dkz = 1

M

√√√√√k2
F +

√
k4

F + (
η

M

)2

2
(
k4

F + (
η

M

)2) . (F2)

For k2
F 	 η

M , it gives 1
M|kF | (as the result from the delta function), but for k2

F � η

M , it gives
√

1
2ηM . The result of Eq. (F2)

will not diverge because the integrand is not a strict Dirac delta function but a delta-like function with a finite Lorentz type
broadening. Therefore, for the case of very small kF (kF decrease with decreasing n0 or increasing B), the results obtained using
the delta-function approximation need to be corrected.

APPENDIX G: HALL CONDUCTIVITY IN THE QUANTUM LIMIT

The Hall conductivity can be found from

σxy = h̄e2

V

∑
kx,kz,b,b′ �=b

nF
(
Ekz,b

)− nF
(
Ekz,b′

)
(
Ekz,b − Ekz,b′

)2 Im
[〈kz, kx, b|vx

∣∣kz, kx, b′〉〈kz, kx, b′∣∣vy|kz, kx, b〉], (G1)

where vy = A
h̄ σy − 2M

h̄ [−i 1√
2lB

(a† − a)]σz. For the two-node model in the quantum limit, the Hall conductivity is

σxy = e2

h

1

π l2
B

∫
dkz

⎧⎨
⎩nF

(
Ekz,1+

)− nF
(
Ekz,0

)
(
Ekz,1+ − Ekz,0

)2

(
A cos

θkz,1

2
+

√
2M

lB
sin

θkz,1

2

)2

+ nF
(
Ekz,1−

)− nF
(
Ekz,0

)
(
Ekz,1− − Ekz,0

)2

(
−A sin

θkz,1

2
+

√
2M

lB
cos

θkz,1

2

)2

+
∑
n�1

[
nF
(
Ekz,(n+1)+

)− nF
(
Ekz,n−

)
(
Ekz,(n+1)+ − Ekz,n−

)2

×
(

A cos
θkz,n+1

2
cos

θkz,n

2
+

√
2nM

lB
cos

θkz,n+1

2
sin

θkz,n

2
+

√
2(n + 1)M

lB
sin

θkz,n+1

2
cos

θkz,n

2

)2

− nF
(
Ekz,n+

)− nF
(
Ekz,(n+1)−

)
(
Ekz,n+ − Ekz,(n+1)−

)2

(
−A sin

θkz,n

2
sin

θkz,n+1

2
+

√
2nM

lB
cos

θkz,n

2
sin

θkz,n+1

2

+
√

2(n + 1)M

lB
sin

θkz,n

2
cos

θkz,n+1

2

)2
]}

. (G2)

The above expression includes bands with higher Landau indexes. Numerical results show that σxy approximately equals to the
value of the first term (contributed by band 1+ and 0), and a B−1 dependence is found, see Fig. 10.

For the one-node model, one only need to replace A and M in above expression by h̄vF and 0. In addition, the expressions of
Landau bands of the one-node model are simple. Therefore, one can analytically find that the Hall conductivity is approximately
− en0

B when the Fermi energy is near the neutrality point.
For the 3D electron gas, only bands of Ekz,0 and Ekz,1 involve the calculation. The Hall conductivity can be found as
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V

∑
kx,kz

2
[
nF
(
Ekz,1

)− nF
(
Ekz,0

)]
(
Ekz,1 − Ekz,0

)2

(
1√
2lB

h̄

m

)2

= e2

h̄
l2
B

1

V

∑
kx,kz

[−nF
(
Ekz,0

)]

= −en0

B
. (G3)
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