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Acoustic phonon contribution to the resistivity of twisted bilayer graphene
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We calculate the contribution to the doping (n) and temperature (T ) dependence of the electrical resistivity
of twisted bilayer graphene (TBLG) due to scattering by acoustic phonons. Our calculation retains the full
Bistritzer-MacDonald (BM) band structure, with a focus on understanding the role of the complicated geometric
features present in the BM band structure on electronic transport theory. We find that the band geometry
plays an important role in determining the resistivity, giving an intricate dependence on both n and T that
mirrors features in the band structure and complicates the Bloch-Grüneisen (BG) crossover. Our calculations
predict pronounced departures from the standard simplistic expectation of a linear T dependence above the BG
crossover. In particular, we are able to explain the presence of the resistance peaks that have been observed in
experiment, as well as quantitatively predict the temperatures at which they occur. Our calculated theoretical
results are germane to an ongoing debate over the existence of a strange metal state in TBLG by providing a
quantitatively accurate theory for the TBLG resistivity at finite temperatures.
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I. INTRODUCTION

Following the discovery of superconductivity (SC) prox-
imate to correlated insulator states in magic angle twisted
bilayer graphene (TBLG) [1–8], understanding the nature of
SC in TBLG has become a central contemporary challenge
in condensed matter physics. While the SC transition critical
temperature (Tc) is not particularly high (Tc ≈ 3 K), the pres-
ence of the flat bands produced at the magic angle increase the
relative importance of electron-electron interaction and render
the problem “strongly correlating” [9]. The fact that a 2D
strongly correlated system displays phenomenology similar
to that seen in the high-Tc superconductors (e.g., neighboring
insulating phases, strong doping dependence) has inspired
hopeful speculation that the SC in magic angle TBLG has
its origin in the same strong correlation physics. If so, fur-
ther experiment on TBLG could offer clues that could finally
lead to the solution of the long-standing high-Tc SC problem.
But, in sharp contrast to the high-Tc cuprates, there is also
strong experimental evidence favoring a physical picture for
TBLG in which the SC exists at all dopings except for at
commensurate moiré filling fractions, where it is preempted
due to strong correlation effects. This picture may imply that
SC and strongly correlated insulating phases actually compete
in TBLG, and arise from completely different underlying
mechanisms, such as electron-phonon interactions in the case
of the SC (as in most SC materials) and electron-electron
interactions in the case of the insulators [7].

*smdavis1@umd.edu

Motivated by the above, there has been a huge amount
of theoretical work on TBLG over the last few years, in-
vestigating its properties and drawing various connections to
other strongly correlated systems capable of SC. On the other
hand, theories of phonon-mediated BCS-style SC have also
been put forth that are able to predict roughly-accurate tran-
sition temperatures for TBLG SC [10,11]. In addition, there
is direct experimental support for electron-phonon interaction
induced SC in TBLG: External gating enhances (suppresses)
the SC phase (the correlated insulating phase), presumably be-
cause gating reduces the electron-electron interaction through
screening, leading to stronger SC by virtue of the suppression
of the repulsive Coulomb interaction [12,13]. Further, the ef-
fective electron-phonon coupling in TBLG—estimated based
on the Tc for SC using the standard BCS theory—agrees with
that estimated from (phonon-limited) transport properties in
TBLG, again strongly suggesting the crucial role of electron-
phonon interaction in both the observed SC as well as the
metallic resistivity of TBLG [10,14].

The investigation of TBLG SC has evolved naturally into
a debate as to whether or not TBLG exhibits a strange metal
phase [3,14–17]. The strange metal—often discussed for T >

Tc in the cuprates and in other strongly correlated supercon-
ducting systems—is characterized by a linear-in-T resistivity
that spans an unusually large range of temperatures and of-
ten, but not always, has an anomalously large temperature
coefficient for the resistivity [18]. Indeed, TBLG has been
reported to exhibit linear-in-T resistivity over a large range
of temperatures and dopings [15]. However, the debate is
complicated by the fact that phonon scattering also generally
produces linear-in-T resistivity above a crossover temperature
T ∗

BG [18–20]. Especially since acoustic phonons provide a
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plausible theory of SC in TBLG (as well as in moiréless
crystalline layered graphene systems) it is important to care-
fully differentiate whether the T -linear resistivity could arise
from phonon scattering. This is particularly relevant since
the corresponding linear-in-T resistivities of regular mono-
layer and bilayer graphene are well accounted for by acoustic
phonon scattering with a quantitative agreement between the-
ory [20,21] and experiment [22].

The usual physics of acoustic-phonon-limited resistivity
in metals and semimetals is as follows [10,11,18–21,23]. At
low T , where the bosonic quantum statistics of the phonon
dominate, the resistivity is characterized by a power-law
scaling ρ ∝ T d+2, where d is the dimension of the sample.
This behavior defines the “Bloch-Grüneisen” (BG) regime.
At higher temperatures, in the so-called equipartition regime
where the phonon thermal occupancy is basically classical,
there is then a crossover to linear scaling (ρ ∝ T ), which takes
place roughly around the BG crossover temperature T ∗

BG. In
the case of a circular Fermi surface and quasielastic scattering
(vp << vF ) we find that

kBT ∗
BG = CBG · (2h̄vpkF ), (1.1)

where vp is the phonon velocity, kF is the Fermi momentum,
and CBG ≈ O(1) is a material-specific constant. (Further, we
define the BG temperature to be kBTBG ≡ 2h̄vpkF .) Above
T ∗

BG, in the so-called “equipartition” (EP) regime, we instead
expect linear-in-T resistivity. Single-layer graphene is a text-
book example, displaying these features elegantly with CBG ≈
1/6 [20,22]. We note that in situations (e.g., normal metals)
where the Debye temperature is much smaller than TBG, the
crossover temperature becomes the Debye temperature be-
cause it is the maximum allowed phonon energy [19].

While phonon scattering in TBLG has been investigated
previously using the Dirac cone approximation [10], the full
Bistritzer-MacDonald band structure is much more elabo-
rate, containing Van Hove singularities, Lifshitz transitions,
multibands, and a wide range of particle velocities and Fermi
surface geometries. All of these features considerably com-
plicate phonon-limited transport as detailed in Fig. 1, and
cannot be captured qualitatively or quantitatively by the Dirac
cone approximation. In this paper, we present a theoretical
treatment of acoustic phonon scattering induced electrical
resistivity in TBLG, focusing on the effects of the detailed ge-
ometric features of the Bistritzer-MacDonald band structure.

The purpose of this paper is to give a concrete calculation
of the transport properties resulting from acoustic phonon
scattering in TBLG. We give predictions for the doping (n)
and temperature (T ) dependence of the resistivity of these sys-
tems in the limit of phonon-dominated transport. Tuning the
twist angle can significantly alter the band structure, including
not only the Fermi velocity and the bandwidth, but also the
location of the Van Hove singularities, affecting both the SC
and the many correlated insulating phases. We therefore also
predict the twist angle dependence of the transport properties
arising from the acoustic phonon scattering.

Our calculations are done in the framework of Boltzmann
kinetic theory, and we model the acoustic phonons via the
Debye approximation. We retain the full electronic band
structure obtained by the diagonalization of the Bistritzer-
MacDonald Hamiltonian. We numerically solve the linearized

FIG. 1. We depict the complex band geometry at play in twisted
bilayer graphene scattering processes. Panel (b) plots the density of
states of TBLG for the twist angle θ = 1.3◦, while (a) depicts the
Fermi surface geometry at various doping levels. Orange bars denote
the edges of the nearly flat bands. Panel (d) gives an power law for
the resistivity, calculated via ∂ log[ρ(n, T )]/∂ log T . Comparison of
(d) and (b) shows the extent to which the T dependence of resis-
tivity is altered due to the geometry of the band structures. Panels
(c) and (e) depict scattering manifolds for TBLG, showing the set
of kinematically allowed scattering states for a given reference state
marked by arrows. The log of the individual scattering rates between
Bloch states are given by the color plot. The calculation is done at
100 K and for chemical potentials fixed at μ = −0.015 eV (c) and
μ = 0.005 eV (e).

Boltzmann equation in the anisotropic band geometry and
quantitatively calculate the resistance. In particular, this al-
lows us to identify various scaling regimes for the resistivity
and the BG crossover temperature T ∗

BG—see Fig. 2. Treating
the non-isotropic band structure in TBLG correctly leads to
significant technical complication, beyond the techniques of
prominent earlier analytical treatments of resistivity in 2D
layered graphene structures [10,11,18,20,21].

The complicated electronic structure of the BM Hamilto-
nian for TBLG causes significant departures from the usual
BG picture. While the EP regime behavior of the scattering
rate of an individual Bloch state is linear, 1/τk ∝ kBT , band
curvature effects cause a complicated nonlinear T dependence
of the resistivity. This is demonstrated in Figs. 2–5. Further,
we note that the anisotropy in the band structure alters the
low-T BG relaxation rate T 4 power law to a nonuniver-
sal, k-dependent T dependence. While this nonlinear-in-T
equipartition-regime phonon-limited resistivity defies the
norm in the context of Boltzmann theory, we note that it has
been detected experimentally in TBLG systems [16].

The debate over the presence of a strange metal phase in
TBLG is but one important area of relevance for our current
results. More generally, the recent progress in synthesizing
2D layered van der Walls heterostructures has brought this
novel class of materials to the frontier of condensed matter
physics [1–9,12,15–17,24–51]. The sensitivity of the band
structures of these materials to external control parameters
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FIG. 2. We give approximate scaling power laws for the T dependence of the resistivity as a function of both doping (n) and temperature
(T ), extracted via ∂ log[ρ(n, T )]/∂ log T . We present results for several different twist angles: θ = 1.4◦ (top left), θ = 1.3◦ (top right), θ = 1.2◦

(bottom left), θ = 1.1◦ (bottom right). These graphs depict the Bloch-Grüneisen crossover, which predicts a T 4 scaling for resistivity at low T
and a linear-in-T scaling at high T , above a crossover temperature T ∗

BG [cf. Eq. (1.1)]. We emphasize that our results predict large regions where
the resistivity scales sublinearly with T , depicted in dark blue. These T -nonlinear regions are due to the band geometry. Near the magic angle,
the band structure geometry is quite sensitive to twist angle. In these results, we can see how this sensitivity is passed on to the T dependence
of resistivity. The bottom of each plot marks the filling in terms of doping density, while the top of each plot gives the filling in terms of the
filling factor [see Eq. (2.1)], marking with ±4.0 the ends of the first moiré valence and conduction bands.

(e.g., twist angles, external field) makes them an extremely
versatile family of systems for realizing various exotic phases
of 2D matter. Indeed, in addition to the possibly-exotic su-
perconductivity [1–8,32–34,39,40,51], and possible “strange
metal” resistance scaling at very low temperature [3,15–17]
reported in TBLG, 2D heterostructues have already shown
various correlated insulating states [1,7], ferromagnetism
[29,30], correlation-driven valley and iso-spin polarization
[32,33], anomalous quantum Hall physics [35], topolog-
ical insulator physics [36–38], metal-insulator transitions
[43–48,52], and non-spin-singlet pairing superconductivity
[32,34]. In turn, this highlights the need for a refinement of the
basic theories of phonon-limited resistivity as applied to these
materials, accurately taking complex band geometry into ac-
count. Our results here for TBLG systems constitute a step
in this direction. We emphasize that our paper here centers
on the electron-phonon interaction and ignores the effects of
electron-electron interactions, which we do not believe play
much of a role in determining the transport properties of
TBLG in the metallic phase.

Our paper is organized as follows. We present an overview
of the central results of our paper in Sec. II, where we empha-
size the most important quantitative aspects for comparison

with experiment and qualitative results that run counter to
common expectations. In particular, Sec. II B discusses a
quantitative comparison of our new results with the predic-
tions of a Dirac cone approximation from previous paper
[10]. We then provide a concise review of acoustic phonon
scattering in kinetic theory and present an overview of the
calculation of relaxation times in the TBLG system in Sec. III.
We emphasize the roles of anisotropy, band curvature, and
moiré Umklapp scattering, all of which require more care
than the standard isotropic, Umklapp-free case. For technical
discussions of the role of the relaxation time approxima-
tion in solving the linearized Boltzmann equation and the
iterative numerical solution of relaxation times, please see
the Appendices of Ref. [53], where we developed the corre-
sponding transport theory for untwisted, non-moire multilayer
graphene, including full band structure effects. Our conclud-
ing discussion is presented in Sec. IV.

II. SUMMARY OF MAIN RESULTS

Our central results are the calculations of the doping (n)
and temperature (T ) dependence of the resistivity [ρ(n, T )]
for twisted bilayer graphene for several values of the twist
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FIG. 3. We present the (log) resistivity as a function of both doping (n) and temperature (T ) for several different twist angles: θ = 1.4◦

(top left), θ = 1.3◦ (top right), θ = 1.2◦ (bottom left), θ = 1.1◦ (bottom right). These plots give a global view of our resistivity predictions in
(n, T ) space. We emphasize that the band curvature produces peaks in the resistivity near charge-neutral doping in an intermediate temperature
range of 30 − 200 K. The bottom of each plot marks the filling in terms of doping density, while the top of each plot gives the filling in terms
of the filling factor [see Eq. (2.1)], marking with ±4.0 the ends of the first moiré valence and conduction bands.

angle (θ ). Our numerical results retain the full Bistritzer-
MacDonald [9] Hamiltonian and work under the assumption
that scattering is limited to acoustic phonons (which we treat
in the Debye approximation.) In particular, we give quantita-
tive predictions for the crossover from the Bloch-Grüneisen
regime to the equipartition regime. The key ingredient of the
theory is the nonperturbative inclusion of the full TBLG band
structure as obtained by BM in Ref. [9].

We plot log[ρ(n, T )] for T in (0 − 300 K) for all twist
angles under consideration in Fig. 3. Individual curves of
ρ(n, T ) for fixed n are given in Figs. 4. We note that the
high-T resistivity is not given by a simple T -linear power
law above the BG regime. The resistivity is a complicated
function of n and T . We generally find resistivity peaks,
followed by downturns in ρ(n, T ), which then either remain
flat or return to linear dependence. While the nonlinear T de-
pendence and resistivity peaks are counter to high-T phonon
expectations based on simplistic theories, this behavior has
already been reported in twisted bilayer [16] graphene sys-
tems. This behavior is a manifestation of band curvature,
and can be understood in systems as simple as a massive
Dirac cone. In Sec. III F, we show how to understand this
physics in terms of kinetic theory, and this effect is discussed
extensively in Ref. [53]. We emphasize that these features

of the theory are in general agreement with experimental
observations.

We present data for θ = 1.4◦ and 1.3◦ in Fig. 4. In both
cases, we find gradual resistance peaks at T ≈ 100 K as long
as the filling factor ν falls in the range −4 � ν � 4, where ν

is the number of electrons per moiré unit cell. Explicitly, we
have

ν ≡ nA0, (2.1)

where n is the doping density (units of length−2) and A0

is the area of the moiré unit cell. Since we have a fourfold
degeneracy due to spin and valley, the edges of the first moiré
conduction and valence band are at ν = ±4. (We show results
for ν varying between up to ±4 in Fig. 4). The height of
the peak is relatively insensitive to doping. When the Fermi
level is doped outside the first conduction (valance) moiré
band range (|ν| > 4) we do not see pronounced resistivity
peaks. Such smooth resistivity maxima in temperature in the
resistivity are generically observed in all TBLG transport
experiments.

Similar results are given for θ = 1.2◦ and 1.1◦ in Fig. 5,
where we see the same qualitative features as in Fig. 4. Doping
levels in the range −4 � ν � 4 give resistivity curves with
low-T peaks, with sharper peaks than found for the larger
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FIG. 4. Curves depicting the temperature (T ) dependence of the resistivity [ρ(n, T )] for various dopings (n). The left portion of the figure is
for TBLG at twist angle θ = 1.4◦, while the right portion is for θ = 1.3◦. We plot resistivity over the temperature range (0 K, 300 K), and we
denote on the density of states plot, which dopings the ρ(T ) curves correspond to. Each color of the resistivity plot corresponds to the doping
level shown in the discrete color points in the corresponding density of states curves next to it. In the density of states plots, orange lines mark
the ν = ±4 fillings [see Eq. (2.1)], which correspond to the edges of the first moiré valence and conduction band.

twist angle examples in Fig. 4. The systems corresponding
to lower twist angles (flatter bands) give sharper peaks. These
examples also show that the magnitude of the resistivity is
mostly unaffected by the doping within |ν| � 4; the exception
is doping levels very close to the band edge, |ν| ≈ 4, which
have a sharper and more pronounced peak. We point out that
the sharp increase in resistivity for dopings very close to the
band edge has also been seen in experiments [16]. Finally, we
emphasize that as the bands flatten, the overall magnitude of
the resistivity increases dramatically, varying over an order of
magnitude over the twist angles that we study. This provides a
possible clue for why earlier, simpler transport theories using
the Dirac cone approximation necessitated an arbitrary up-
ward adjustment of the electron-phonon coupling constant in
order to obtain a quantitative agreement with the experimental
TBLG transport data [10].

In Fig. 2, we plot d log[ρ(n, T )]/d log(T ) as an approxi-
mate scaling exponent for the temperature-dependent power
law of the resistivity. These plots act as an effective “phase
diagram” for the various regimes of T dependence in the re-
sistivity profile. Corroborating our discussion above, we find
there is a region where the resistivity curve flattens out to be
essentially constant with T , sometimes after a downturn. Fur-
ther, these plots show the Bloch-Grüneisen crossover, where
the T scaling of the resistivity approaches T 4 at low T . Fig-
ure 2 shows that for all twist angles, the BG region (red) sets in
for T around 10 K, and this is essentially doping-independent

throughout the flat band. However, it is also clear that the
sharpness of the crossover regime can change dramatically
with doping, as the geometry of the Fermi surface changes.
In particular, as we dope the sample near the edge of the flat
band, the sharp BG crossover evolves to one that interpolates
between the BG and EP behavior over a temperature range
spanning 100 K. In general, however, we do not find a sit-
uation where the linear-in-T TBLG resistivity persists to a
temperature much less than 10 K, e.g., never to below 1 K
for any doping or twist angle.

A. Additional Results on BG crossover

In Fig. 6 we plot our calculated resistivity for the
low-temperature regime containing the BG crossover. This
figure mirrors Figs. 4 and 5. These results clarify our pre-
dictions of the typical temperatures at which a BG crossover
should be expected. We see an essentially doping-independent
BG crossover that takes place roughly near to 10 K for all
twist angles and doping levels under consideration. We ex-
plicitly give estimates of the crossover temperature to linear
resistivity in Fig. 7. These results make it clear that for
small twist angles θ ∈ (1.1◦, 1.4◦), and generic filling fac-
tor |ν| � 4, we see a crossover to T a>1 decay below a BG
crossover temperature that ranges from 5 − 15 K. Only for
dopings extremely close to the Dirac point do we see a
suppression of the BG temperature below 5 K, and this is
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FIG. 5. Curves depicting the temperature (T ) dependence of the resistivity [ρ(n, T )] for various dopings (n). The left portion of the figure is
for TBLG at twist angle θ = 1.2◦, while the right portion is for θ = 1.1◦. We plot resistivity over the temperature range (0 K, 300 K), and we
denote on the density of states plot, which dopings the ρ(T ) curves correspond to. Each color of the resistivity plot corresponds to the doping
level shown in the discrete color points in the corresponding density of states curves next to it. In the density of states plots, orange lines mark
the ν = ±4 fillings [see Eq. (2.1)], which correspond to the edges of the first moiré valence and conduction band.

in line with the standard theory of transport in Dirac sys-
tems [10,20,21]. We emphasize that it is difficult to assign
a precise value to the crossover temperature to the linear-
in-T resistivity regime in TBLG. In general, even in the
simplest systems the BG crossover to the equipartition regime
is never sharp. Further, in the case of TBLG, we see that
band-curvature effects lead to a highly nonlinear dependence
of ρ(T ) on T , even in the equipartition regime. In some
cases, these crossovers take place at the same temperature
and it is impossible to delineate them from each other from
resistivity data. Figure 7 represents the best estimate at a
crossover temperature possible from our data. The important
point is that the crossover regime is generally contained in
the interval between 5 and 15 K for the twist angles we
study.

B. Comparison with Dirac cone approximation

Earlier results on phonon-induced resistivity in TBLG have
predicted giant linear-in-T resistance using only the Dirac
cone approximation [10]. The new theoretical idea under-
lying this resistivity enhancement in TBLG, which agrees
with experiments, is the strong suppression of the effective
Dirac velocity in TBLG due to the band flattening in the
moiré system. This earlier paper [10] uses the BM model for
TBLG to extract v∗

F near the Dirac point for various twist
angles. Once v∗

F is extracted, Ref. [10] followed the theory of
Ref. [3] (for monolayer graphene, but with the reduced Fermi

velocity, v∗
F ) to get a simple analytical result for the scaling of

the resistivity in a Dirac system,

ρ(θ, T, n) = F (θ )

v∗
F (θ )2

4D2kF

e2ρMvp
I

(
T

TBG

)
, (2.2)

I (z) = 1

z

∫ 1

0
dx x4

√
1 − x2

ex/z

(ex/z − 1)2
. (2.3)

Above, v∗
F (θ ) is the twist-angle-dependent flatband Fermi

velocity and F (θ ) is a form factor accounting for changes
in the electron-phonon matrix element. (See [10] for
details.) The other parameters above are explained in
Sec. III A.

In this subsection, we compare our results to this earlier
Dirac cone theoretic calculation [10]—our current results
use the same model parameters for the electron and phonon
band structures and couplings as in Ref. [10]. We numerically
extract v∗

F from the BM model and compare Eq. (2.2) for the
Dirac model with the temperature dependence of the resistiv-
ity of the full BM system, doped very close to the Dirac point.
These results are given in Fig. 8. Here we also compare our
small-angle results with larger twist angles, showing that the
Dirac cone approximation holds to much higher temperatures
for larger twist angles. This is expected since the moiré band
structure effects are dominant only for lower twist angles,
and the Dirac cone approximation improves with increasing
twist angle. These results offer an understanding of the
limitations of the Dirac cone approximation in fully capturing

235155-6



ACOUSTIC PHONON CONTRIBUTION TO THE … PHYSICAL REVIEW B 107, 235155 (2023)

FIG. 6. Curves depicting the temperature (T ) dependence of the resistivity [ρ(n, T )] for various dopings (n), focusing on the low-T BG
crossover regime. This figure recreates Figs. 4 and 5, but limits the scope to the low-T regime. The upper left portion of the figure is for
TBLG at twist angle θ = 1.4◦, the upper right portion is for θ = 1.3◦, the lower left portion is for θ = 1.2◦, and the lower right portion is
for θ = 1.1◦. We plot resistivity over the temperature range (0 K, 50 K), and we denote on the density of states plot, which dopings the ρ(T )
curves correspond to.
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FIG. 7. We plot the effective crossover temperature to a regime
of approximately linear resistivity scaling as a function of doping,
for twist angles θ = 1.1◦ (blue), θ = 1.2◦ (orange), θ = 1.3◦ (green),
θ = 1.4◦ (red). The crossover temperatures vary from around 5 K to
16 K for the various angles and dopings, with an exception for the
data point very close to the Dirac point of the θ = 1.1◦ model, where
the crossover temperature is about 3 K. We emphasize that the BG
crossover is generally not sharp, and in a complicated system like
TBLG, the nonlinearity in ρ(T ) due to band curvature competes with
the BG process.

the transport physics at low temperatures as the twist angle
is lowered. We emphasize that at very low temperatures,
the two theories coincide. For angles as large as 5.0◦, the
Dirac cone model is valid up to around 50 K. However, for
small twist angles in 1.1◦ − 1.4◦, the theories start to differ
at as low as a few Kelvin. We also note that for large twist
angles, the departure from the Dirac cone model takes the
form of a sharp kink in the slope of the resistivity curve,
followed by another regime of linear scaling, corresponding
to the thermal activation of intercone scattering in the BM

band structure. This upward kink explains why the observed
low-angle TBLG resistivity is much higher than the Dirac
cone approximation results (necessitating an increase in the
effective electron-phonon coupling parameter in Ref. [10]).
At twist angles closer to the magic angle condition, the Dirac
cone approximation becomes inaccurate, and the whole band
structure is important for the transport calculation even at low
temperature.

Our transport theory based on the full BM band structure
is able to offer several significant improvements over the
simplified transport theory of the Dirac cone model. Similar
to Dirac cone model, the full BM theory predicts a crossover
at low temperatures to a roughly linear-in-T regime as the
relaxation times enter the equipartition regime (see Sec. III C),
as observed experimentally [16]. However, beyond the
scope of the Dirac model, the band curvature of the BM
model causes nonlinear behavior at higher temperatures. In
particular, this gives the resistance peaks located at around
100 K, with the resistivity starting to decrease at higher
T , as seen in experimental measurements [16] (which has
no explanation whatsoever within the Dirac cone model,
where the resistivity would continue increasing as linear-in-T
forever). Figure 8 shows that even very close to the Dirac
point, the BM band structure still has a nontrivial effect
and leads to significant enhancement of the resistivity over
the Dirac cone result. We emphasize that this enhancement
of the resistivity brings the theoretical results into much
better agreement with experiments without any need for
arbitrary adjustments of the deformation potential coupling.
In particular, the resistivity peak at approximately 10 k�

and 70 K for the 1.1◦ system is in excellent agreement
with experimental results for small twist-angle systems
[16]. Finally, our model is also able to predict the observed

FIG. 8. Comparison of Dirac approximation to the full BM model. In each panel, we plot resistivity curves ρ(T ) for both (A) the BM
model (for several doping values very near to the charge-neutrality point) and (B) the results of the corresponding Dirac cone approximation of
Eq. (2.2) (for several doping values very near to the Dirac point). For large twist angles, we see that the Dirac cone approximation is accurate
for temperatures up to 20 K − 50 K. For these systems, the departure from the Dirac cone approximation takes the form of a kink and sharp
increase in slope, corresponding to the thermal activation of intercone scattering in the BM model. However, as the twist angle is decreased,
the entire band structure becomes relevant for transport and the Dirac cone approximation is only valid for very low temperatures.
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enhancement of the resistivity at the filling factors |ν| ≈ 4,
near the edge of the first moiré conduction and valence bands.
Thus, the theory accounts both for the large enhancement
in the resistivity as well as its slow decrease at higher
temperatures.

III. RESISTIVITY VIA BOLTZMANN KINETIC THEORY

Boltzmann kinetic theory (BKT) is a powerful and well-
established theoretical technique for the calculation of linear
response resistivities [19–21,23]. In this section, we outline
the application of BKT to the problem of collisions between
acoustic phonons and Bloch state electrons in twisted bilayer
graphene. We introduce the model in Sec. III A and state
the central formulas of the kinetic theory in Sec. III B. In
Sec. III C, we provide the physical intuition for the Bloch-
Grüneisen (BG) and equipartition (EP) scattering regimes
and then in Sec. III E we explain how these paradigms
are altered to account for band anisotropy. In Sec. III G,
we discuss the enhanced role of Umklapp scattering due
to the small size of the moiré Brillouin zone. Finally, we
give an overview of the resistivity computation protocol in
Sec. III H.

A. Model

Our electron-phonon model is described by the Hamilto-
nian

H = He + H ph + He−ph, (3.1)

where the single-particle electron part is given by the
Bistritzer-MacDonald (BM) Hamiltonian [9]

He ≡
∑
k,k′

c†
k′ HBM

k′,kck, (3.2)

=
∑

b,k∈MBZ

εBM
b,k c̃†

b,kc̃b,k, (3.3)

where A is the system area and c†
k ≡ c†

s,ξ ,σ,l,k creates an
electron with momentum k (relative to the Dirac point in the
continuum model of graphene), spin s, valley ξ , sublattice σ ,
and layer l .

HBM
k′,k ≡ δs,s′δξ,ξ ′HBM

σ ′,l ′,σ,l,k′,k (3.4)

is a matrix coupling together layer, sublattice, and momentum
degrees of freedom through a periodic moiré potential. Our
convention is that sums over unwritten indices {s, ξ , σ, l}
are implicit. In Eq. (3.2), the k summation is unbounded,
reflecting the continuum limit in the Bistritzer-MacDonald
treatment of the constituent graphene layers. (However, a
high-energy cutoff is reintroduced in our numerical calcula-
tions.) In Eq. (3.3), we introduce the moiré-Bloch functions

c̃†
s,ξ ,b,k =

∑
σ,l,G

Vb,k;σ,l,G c†
s,ξ ,σ,l,k+G, (3.5)

where k is in the moiré Brillouin zone, G runs over the recip-
rocal lattice, and b is the band index of the BM eigenfunction.
The basis-change matrix Vb,k;σ,l,G defines the representation
of the Bloch wavefunctions in the moiré Brillouin zone crys-
tal momentum basis. The four degenerate spin-valley flavors
remain decoupled in our calculation and contribute equally

to the conductivity (inverse resistivity). We will generally
stop referencing them in the following. We use the standard
BM Hamiltonian with the interlayer hopping parameters ω0 =
90 meV, ω1 = 117 meV and the bare graphene Dirac cone
velocity vF = 106 m/s, which places the “magic angle” at
θ = 1.025◦ [10].

We are primarily interested in the effects of the geometry
of the BM band structure, so we restrict our model to in-plane
longitudinal acoustic phonons and adopt a simple Debye de-
scription. We thus take the phonon Hamiltonian to be

H ph =
∑
l,q

h̄ωqa†
l,qal,q, (3.6)

where ωq is the phonon dispersion and we use the Debye
approximation ωq ≈ vp|q|, where vp is the phonon (or sound)
velocity of graphene. In turn, the phonons couple to the
electrons via the deformation potential coupling Hamiltonian
[20,23,54],

He−ph =
√

D2h̄

2ρMA
∑
l,q

n̂q,l√
ωq

(−iq · êq)(aq,l + a†
−q,l ). (3.7)

Here, D is the deformation potential, ρM is the mass density of
monolayer graphene, and êq is the displacement unit vector of
the phonon. Throughout this paper, we set D = 25 eV, ρM =
7.6 × 10−8 g/cm2, and vp = 2.0 × 106 cm/s, following the
standard graphene literature [10,20–22]. Finally, the electron
density operator is

n̂q,l ≡
∑

k

c†
(k+q),l ck,l . (3.8)

As before, sums over s, ξ , and σ are implicit in Eq. (3.8).

B. Kinetic theory

The “relaxation time approximation” [19] to Boltzmann
kinetic theory (BKT) gives a simple formula for the resistivity
tensor (ρ),

[ρ i j (n, T )]−1 = 4e2

A
∑

S

τSv
i
Sv

j
S∂μ f (εS ), (3.9)

where T is temperature, e is the electron charge, S ≡ {b, k}
denotes a moiré-Bloch state, v j

S are components of the velocity
of the state S, ε is the energy of S, f (ε) is the Fermi distribu-
tion function, and the τS are the state-dependent relaxation
times of the various Bloch states. The summation on S in
Eq. (3.9) runs over all moiré-Bloch states. If the band structure
and moiré-Bloch states are known, the main challenge in the
calculation of the resistivity is the computation of the relax-
ation times. The factor of 4 follows from the spin and valley
degeneracies of the TBLG.

A standard “Fermi’s golden rule” calculation—assuming a
thermal equilibrium distribution for the phonons—gives the
scattering rate between Bloch states S and S′ as

WS→S′ = πD2|q|
ρMvp

�S,S′
∑

l

|〈S′|n̂l,q|S〉|2,

≡ h̄vp|q|�S,S′CS,S′ , (3.10)
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FIG. 9. Plots of kinematically allowed scattering manifolds for TBLG and a simple Dirac cone (for comparison). These are the points
picked out by the energy-momentum conserving delta functions in Eq. (3.15). In each image above, a reference state is marked in pink, the
corresponding Fermi surface is plotted in black, and the kinematically allowed scattering manifold (SM) is plotted in color. In each figure,
the top left, top right, and bottom left panels depict scattering manifolds for θ = 1.3◦ twisted bilayer graphene, with a reference state at
μ = 0.012 eV. The top left panel neglects Umklapp scattering entirely, the top right panel allows Umklapp scattering only to the ring of
adjacent Brillouin zones, and the bottom left panel allows Umklapp scattering to the first two rings of adjacent Brillouin zones. The bottom
right panel shows the SM of a simple Dirac cone, at μ = −0.2 eV. All panels are plotted over the region a(kx, ky ) ∈ [−0.1, 0.1]2. In the
figure on the left, the SM is color coded to indicate the scattering rate from the reference state to each state on the SM (the scattering rates have
been computed at 100 K). On the right, the SM is color coded to indicate the wavefunction overlap between the reference state and each state
on the SM. In the Dirac cone example, we can see that conservation laws provide a hard cutoff to the states available for scattering. Conversely,
in the TBLG example, we see that small-momentum moiré-Umklapp scattering provides access to kinematically allowed scattering states for
a wide range of energies, and there is not a hard cutoff imposed by kinematic constraints. In the TBLG, the decay of the wavefunction overlap
term is thus necessary for a Bloch-Grúneisen crossover.

with

q ≡ k′ − k + Q, (3.11)

�S,S′ ≡ Nqδ(ε′ − ε − h̄vp|q|)
+ (Nq + 1)δ(ε′ − ε + h̄vp|q|), (3.12)

Nq ≡ 1

exp(h̄vp|q|/kBT ) − 1
, (3.13)

for some moiré reciprocal lattice vector Q. The Dirac δ func-
tions in Eq. (3.12) enforce conservation of energy and moiré
lattice momentum and Nq gives the occupation numbers of
phonons available for scattering. The first line in Eq. (3.12)
refers to phonon absorption processes while the second refers
to phonon emission.

The conservation laws in Eq. (3.12) determine a scattering
manifold for each Bloch state, defining the set of final states
that can be scattered to without violation of energy or moiré
crystal momentum. Examples of scattering manifolds are de-
picted in Fig. 9, where the TBLG case is compared with the
much simpler case of a Dirac cone.

Noting that

h̄vp|q|�S,S′ = ε′ − ε

exp[(ε′ − ε)/kBT ] − 1
�̃S,S′ , (3.14)

with

�̃S,S′ ≡ δ(|ε′ − ε| − h̄vp|q|), (3.15)

and enforcing self-consistency of the relaxation time approxi-
mation on the Boltzmann equation, we find that

1

|vS|A
∑

S′
�̃S,S′CS,S′Fμ,T

S,S′ [lS − lS′ cos θv] = 1, (3.16)

where lS ≡ |vS|τS are the “relaxation lengths” (mean free
paths), θv is the angle between the Bloch velocities vS and
vS′ . As in Eq. (3.9), the summation over S′ is over all moiré-
Bloch states and �̃S,S′ restricts the summation to the scattering
manifold. We also have defined the function

Fμ,T
S,S′ ≡ 1 − f (ε′)

1 − f (ε)

(ε′ − ε)

exp[(ε′ − ε)/kBT ]) − 1
, (3.17)

which encodes all implicit dependence of the relaxation
lengths on the temperature or chemical potential.

In the thermodynamic limit, Eq. (3.16) becomes an integral
equation. For a finite-size system, it is a matrix equation that
can be inverted to find the relaxation lengths [53]. Solving
this integral equation is the fundamental problem in the BKT
approach to transport.

C. Bloch-Grüneisen regime

Here we provide some intuition for the Bloch-Grüneisen
power-law regime at low temperature in the standard case. We
consider a system that is isotropic (lk → lεk and vk ‖ k) and
quasielastic (ε′ ≈ ε), and we assume there is only a single
band. In this case, we can replace the velocity angle with
the momentum angle (θv = θk) and can refer to a state S by
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its lattice momentum k. With these assumptions, Eq. (3.16)
reduces to a direct formula for the relaxation time,

1

τk
= 1

A
∑

k′
�̃k,k′Ck,k′Fμ,T

k,k′ [1 − cos θk], (3.18)

where �̃S,S′ ≈ 2δ(ε′ − ε) essentially restricts the summation
to the Fermi surface, which is taken to be indistinguishable
from the scattering manifold in the quasielastic approxima-
tion.

Now we consider the limit of very low temperatures. For
low T , the phonon occupation function Nq (via Fμ,T

S,S′ ) strongly
suppress k′ in the sum in Eq. (3.18) that involves large mo-
mentum transfer. We are left with k′ such that h̄vp|q| � kBT .
Therefore, in the summand of Eq. (3.18), we may expand in
small q. Doing this, we see that 1 − cos θk ≈ |q|2 and Ck,k′ ≈
1, and the summand of Eq. (3.18) scales with q roughly as
|q|3. Since the sum is effectively restricted to h̄vp|q| � kBT ,
the important contribution comes from the roughly spherical
[(d − 1)-dimensional] neighborhood of the scattering mani-
fold with a radius proportional to T . Summing |q|3 over this
sphere gives the famous power-law defining the BG regime,

1

τk
∝ T d+2. (3.19)

D. Equipartition regime

The high-T equipartition (EP) regime for the relaxation
length lS sets in when

|ε′ − ε| � kBT (3.20)

for all points S′ on the scattering manifold for the state S. In
the isotropic case, this is simply the condition that

kBT � kBTBG ≡ 2h̄vpkF . (3.21)

If TBG > TDebye, as is true for all normal metals, then TDebye

replaces TBG in the inequality above. (This is not relevant for
graphene where TDebye > 103 K and TBG is usually less than
50 K.) When Eq. (3.20) is satisfied, we can expand in small
|ε′ − ε|/(kBT ),

Fμ,T
S,S′ = kBT + O(�ε/T ). (3.22)

Inserting this into Eq. (3.16) gives

kBT

|vS|A
∑

S′
�̃S,S′CS,S′ [lS − lS′ cos θv] = 1 + O(�ε/T )2.

(3.23)

Solving Eq. (3.23) order-by-order in 1/T , we see that the
high-T form of the relaxation length is

lS = cS

kBT
+ O(�ε/T )3, (3.24)

where the cS give the asymptotic proportionality constant be-
tween the relaxation length and the inverse temperature in the
high-T limit. In the high-T equipartition regime, all geometric
information about the band structure relevant to the transport
properties of the system is contained in the constant cS .

We note that the O(1) term in the �ε/T expansion of
Fμ,T

S,S′ in Eq. (3.22) rather remarkably vanishes, preventing a
O(�ε/T )2 term in Eq. (3.24). This implies that the high-T

scattering rate (due to phonons) of a given Bloch state should
be purely linear, going to zero in the T → 0 extrapolation.

We emphasize that the EP scaling law in Eq. (3.24) may
set in at a physical crossover temperature T ∗

BG, which could
be lower than TBG. While kBTBG defines the largest energy
differences allowed in scattering by kinematic constraints,
other terms in Eq. (3.16), such as the wavefunction over-
lap term CS,S′ , can suppress large-energy scattering. This
is demonstrated for the simple Dirac cone Hamiltonian in
Fig. 9. Indeed, monolayer graphene displays a BG crossover
to linear-in-T resistivity scaling at T ∗

BG ≈ TBG/6 [20–22].
This feature is more important in moiré systems, where
multiple-Umklapp scattering events are possible due to the
small moiré-Brillouin zone. Thus, TBG is simply a paramet-
ric crossover temperature scale above which the linear-in-T
equipartition applies, the real crossover is often at a tempera-
ture much lower than TBG. We revisit this in Sec. III G.

E. Alterations due to band anisotropy

The BG crossover is more complicated with a non-
isotropic system. First, in the low-T limit, if we do not assume
isotropy, then we must restore

1 − cos θk → 1 − lS′

lS
cos θv (3.25)

in Eq. (3.18). The small-|q| limit of the left-hand side of
Eq. (3.25) is simply proportional to |q|2. However, the small-
|q| limit of the right-hand side is more complicated since it
also depends on the limits lS′ → lS and vS′ → vS as S′ → S.

We therefore expect anisotropy to introduce nonuniversal,
state-dependent modifications of the BG power law in the T
dependence of each relaxation time τS. The isotropic Dirac
cone approximation misses these subtleties.

Further, different points on a noncircular Fermi surface
may have qualitatively different scattering manifolds, and
therefore may cross into high-T scaling at different thresh-
olds. To discuss the high-T limit, we must generalize the
isotropic result in Eq. (3.21). We define the generalized (state-
dependent) BG temperature as

kBTBG(S) = max
S′∈SM(S)

|ε′ − ε|. (3.26)

The equipartition regime is the range of temperature for which
Eq. (3.24) holds for all Block states S in the thermally-active
energy range around μ(n, T ). Since the BG temperatures are
state-dependent, we should generally expect a more gradual
BG crossover than seen in isotropic systems.

However, the linear-in-T power law for the relaxation
rate of the EP regime is not affected by anisotropy, unlike
its BG regime counterpart. Eq. (3.22) does not depend on
state-specific information, so as long as all states are in their
BG scaling regime, Eq. (3.24) holds and all band structure
information is encoded in the constants cS , introduced in
Eq. (3.24).

F. Resistivity peaks and high-T nonlinear ρ(T )

We have seen in Eq. (3.24) that in the equipartition regime
(asymptotic high-T regime), the relaxation rate for each in-
dividual Bloch state scales linearly with temperature. This
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result is very general and holds for an arbitrary electronic band
structure. It is commonly stated [19] that this implies that the
high-T resistivity is also linear in temperature, at least in the
kinetic theory prediction. This is in fact not true due to the
thermal averaging in Eq. (3.9).

More precisely, let us define the function

δi jg(ε) ≡ 1

A
∑

S

vi
Sv

j
S

|vS| cS δ[ε − εS], (3.27)

where cS are the proportionality constants defined in
Eq. (3.24). The equipartition regime resistivity is expressed
simply in terms of g(ε),

1

ρ(μ, T )
= 1

(kBT )2

∫
dε g(ε) f (ε)[1 − f (ε)]. (3.28)

From Eq. (3.28), it is clear that we should expect linear-in-T
resistivity in the equipartition regime as long as the integral
over ε scales linearly with T . This is true, in particular, if g(ε)
is roughly linear as a function of energy in a neighborhood of
width kBT about the chemical potential μ(n, T ) [i.e., g′′(ε) is
small in the range (μ − kBT, μ + kBT )]. For example, in the
case of a Dirac cone band structure, one finds that g(ε) is con-
stant, and a linear-in-T resistivity is robust at high T . On the
other hand, if the integral in Eq. (3.28) does not scale linearly
with T , we can expect a more complicated dependence of the
resistivity on T . This is possible if curvature in the band struc-
ture leads to nonlinear behavior in g(ε) In particular, g(ε) nec-
essarily vanishes in a band gap; we often find resistivity peaks
or saturation when carriers near a band edge are thermally
activated. This effect is explored extensively in Ref. [53].

In TBLG, the narrow bandwidth of the first moiré con-
duction and valence bands cause the integral in Eq. (3.28) to
scale nonlinearly with T at relatively low T , explaining the
observed resistance saturation. As expected, at larger twist an-
gles, where the bandwidth is significantly larger, we observe
linear-in-T resistivity to higher temperatures (see Fig. 8).
Previous work has conjectured that excitations of carriers in
higher bands is responsible for the resistivity peaks in TBLG
[16]. We emphasize that while thermal excitations to higher
bands can indeed contribute to nonlinear-in-T resistivity in the
equipartition, higher bands are not necessary for this physics.
The nonlinearity and/or a resistivity peak arises naturally
from the complex BM band structure without invoking higher
bands.

G. Moiré-Umklapp scattering in TBLG

In TBLG, the moiré Brillouin zone is much smaller than
the Brillouin zone of regular (monolayer) graphene or a stan-
dard crystal lattice; near the “magic angle”, the moiré recip-
rocal lattice basis vectors (RLBV) have a length a|QRLBV| ≈
0.1, where a is the monolayer graphene lattice constant. This
greatly enhances the importance of Umklapp scattering in the
moiré zone. A phonon carrying the momentum of the RLBV
will only have energy h̄vp|QRLBV| ≈ 0.005 eV and these will
be thermally active at low temperatures.

The availability of moiré Umklapp scattering causes TBLG
to host huge scattering manifolds compared to those in non-
moiré systems. Examples of scattering manifolds found in
TBLG states are compared with those for simple Dirac cone

graphene in Fig. 9. It is clear that the availability of essentially
unlimited Umklapp scattering can make TBG, as defined via
Eq. (3.26) ill defined. In this case, it is possible that the
kinematical conservation laws do not provide the same sharp
cut-off to the scattering manifolds of TBLG that they do in
the standard picture. Instead, we must look to the decay of the
overlap term,

h̄ρMv2
p

πD2
CS,S′ =

∑
l

|〈S′|n̂l,q|S〉|2, (3.29)

to provide a smooth cutoff to the states (S′) that can mean-
ingfully contribute to the scattering rate of S. We thus should
understand the BG crossover in TBLG to be a more gradual
process than that in non-moiré systems.

With regard to the inner product, we have

〈S′|n̂l,q|S〉 =
∑

σ,G,G′
V ∗

b′,k′;σ,l,GVb,k;σ,l,G′δk′+G′,k+G+q. (3.30)

We see that the δ function implements a sort of “shift matrix”
for the overlap of states connected by an Umklapp process.
Figure 9 plots the magnitude of the overlap over a multi-
Umklapp scattering manifold for TBLG, comparing it to the
analogous situation in Dirac cone graphene. We note that even
in Dirac cone graphene, the overlap term suppresses scattering
to the far side of the Fermi surface and reduces the effective
crossover temperature T ∗

BG.

H. Resistivity computation

Equations (3.9)–(3.13) combined with knowledge of the
Bloch states give all the tools necessary to make a resistivity
prediction. We solve Eqs. (3.16) for scattering lengths for
each Bloch state. We emphasize that in general, the relaxation
lengths {lk} implicitly depend on temperature and chemical
potential through the Fermi functions and phonon occupation
number (Nq) in Eq. (3.16). Once the {lk} are known for a given
pair (n, T ), the resistivity can be computed through Eq. (3.9).

It is important to note that as we scan T for a fixed n,
μ(n, T ) can change, and this can be quite drastic near a gap, a
Van Hove singularity, and especially in the presence of a flat
band. We must therefore calculate μ(n, T ) self-consistently
via

n = 4

A
∑

S

f (ε). (3.31)

The prefactor 4 above follows from the spin and valley
degeneracies. We stress that accurately computing the T
dependence of μ(n, T ) near band edges, Van Hove singulari-
ties, or in nearly flat bands, requires keeping extensive band
structure data in this calculation, even if T is far too low
to excite carriers in these features. This can be a nontrivial
numerical task, requiring great accuracy.

The main result of this paper is the application of the above
analysis to twisted bilayer graphene at several twist angles
near the “magic” angle corresponding to the flat band. These
results are presented and discussed already in Sec. II. We do
this using the full BM Hamiltonian [9]. The nontrivial band
geometry of these systems gives scattering manifolds that
depend qualitatively on not only the Fermi level, but also the
specific Bloch state in question, as depicted in Fig. 1. Since
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the bands are not isotropic and the phonon scattering cannot
be considered “quasielastic” [20], we need to find the full so-
lution of Eq. (3.16). Solving Eq. (3.16) for the {lk} repeatedly
for many values of n and T , we calculate the resistivity data
given in Figs. 3–5.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the electrical resistivity of twisted
bilayer graphene due to scattering from acoustic phonons.
We extend previous studies by using the detailed BM band
structure and focusing our attention on the effects due to the
geometry of the band structure, including anisotropy, band
curvature, excitation gaps, nearly flat bands, and Umklapp
scattering across the moiré Brillouin zone.

We develop a thoroughly nontrivial transport theory for
carrier resistivity due to electron-acoustic phonon interaction
in twisted bilayer graphene, currently one of the most ex-
perimentally relevant systems to condensed matter physics.
While we use the standard graphene acoustic phonons and the
conventional electron-phonon deformation potential coupling,
we include the full effects of the BM band structure. We use an
iterative numerical technique to accurately solve the integral
Boltzmann transport equation, and resolve the full effect of
the BM band structure on the resistivity. This technique is able
to incorporate the full complexity of the BM band structure,
including the nearly flat bands, the Van Hove singularities, the
curvature near the band edges, the anisotropy of the Fermi
surface, and the abundance of Umklapp scattering due to
the small moiré Brillouin zone. Inclusion of these geometric
features leads to several qualitative elements in the temper-
ature and doping dependence of the resistivity, unlike those
discussed in the transport literature (e.g., resistance peaks and
apparent resistance saturation, nonlinear temperature depen-
dence at high-T , complication of the BG crossover, among
other features). We give concrete predictions for the dop-
ing and temperature dependence of the resistivity in TBLG,
demonstrating how the results differ from the Dirac cone ap-
proximation. These results constitute a specific self-consistent
theory to which experiments may be compared.

Our results are an important contribution to the ongoing
discussion on the existence and nature of a strange metal
phase in TBLG. It is crucial in the investigation of the ori-
gin of the superconductivity and presence of a strange metal
phase in TBLG to understand the relative importance of var-
ious scattering mechanisms. Our paper provides a clear and
concrete picture of how the resistivity should behave in a
phonon-dominated system. If strong deviations from these
results are seen in experiment, that could serve as evidence
that scattering mechanisms other than phonons may some-
times play dominant roles in transport. We emphasize that
phonon scattering is always present, and must be considered
in any discussion of the temperature-dependent resistivity in
any material, including TBLG. More generally, the exotic
physics of TBLG is but one example of the capability of
2D layered heterostructures to host a wide variety of exotic
phases and phenomena. As this class of materials has rapidly
become an important subfield of condensed matter physics,
it is imperative to study the relationship between their band
geometries and transport directly.

Our results indicate that the BG crossover, below which
the linear-in-T resistivity behavior is suppressed, begins—at
all dopings and twist angles under study—at temperatures
between 5 K and 15 K, with an exception for fillings very
close to the Dirac point. However, the width of the crossover
region can change dramatically with doping, as the geometry
of the Fermi surface changes. In particular, we see that as we
dope out of the |ν| � 4 regime, the T α>1 scaling survives to
much higher T . Further, we see that effects of curvature in the
band, and low velocities in the nearly flat conduction/valence
bands, cause regions of nonlinear T dependence characterized
by resistivity peaks, which are often followed by downturns.
These effects are the strongest in the |ν| � 4 regime.

Although our model is conceptually simple, only using
basic kinetic theory principles, the single particle BM band
structure, and the Debye approximation for phonons, our re-
sults are qualitatively and semiquantitatively compatible with
the experiments. For |ν| � 4, we find a resistivity that varies
by several orders of magnitude as the twist angle is varied by
degrees. We find consistently a low BG crossover temperature
in the 5 − 15 K range, and regions of rough linearity in the
10 − 50K regime. Above this, we find robust resistivity peaks
located around 50 − 100 K, which are sharper for angles
closer to the magic angle condition. At higher temperatures,
we see a sharp decrease of the resistivity down to much more
universal behavior that does not depend as sensitively on twist
angle or doping. These are all consistent with the experi-
mental TBLG data, and are not captured within the Dirac
cone approximation. In particular, the sharp increase in the
resistivity at smaller twist angles (without any adjustment of
the deformation potential coupling) and the resistivity peaks
at higher temperatures are the qualitative hallmarks of our
theory, which have not been captured in the earlier theories of
TBLG transport. The linearity in temperature persisting down
to 5K is also a result in our theory, indicating that the linear-in-
T resistivity in TBLG can persist to temperatures much lower
than the nominal BG temperature of regular graphene.

Many features of our results follow from the nontrivial
band geometry, and can not be predicted using the
simple Dirac cone approximation. However, even at low
temperatures, we see that Dirac cone approximation can
significantly understate the resistivity when compared to the
results of the full BM calculation. We compare the results
of the two approaches extensively in Fig. 8. While the Dirac
cone approximation captures the asymptotic low-T physics
for points very close to the Dirac point, for small twist
angles we see that the full band structure leads to a nontrivial
alteration of the resistivity. In fact, the enhancement of the
resistivity we observe beyond the prediction of the Dirac cone
approximation brings our theory’s predictions much closer to
the experimental observations [16].

We emphasize that the above results quite accurately cap-
ture the experimental picture for temperatures above 5 K.
In particular, our calculation is able to not only explain the
resistivity peaks observed in TBLG experiments, but also give
quantitatively accurate estimates of the temperatures at which
these peaks occur.

On the other hand, our results indicate that in the simplest
phonon scattering picture, the BG crossover should suppress
any linear scaling in resistivity with temperature at temper-
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atures lower than 5 K [Fig. (7)]. Our results thus cannot
explain the occasional reported observations of the “strange
metal” resistivity scaling at very low T for twist angles in the
1.1◦ − 1.4◦ range [15].

We emphasize that myriad other mechanisms at play in
TBLG can alter the resistivity from our predictions. For ex-
ample, our calculation assumes that both the phonon band
structure and the electron-phonon couplings are unchanged
from their values in single-layer graphene and are unaffected
by the moiré structure. We believe that these are reasonable
approximations, but we cannot rule out the possibility that the
phonon dispersion and the deformation potential coupling are
somehow modified by the moiré TBLG structure, which may
be responsible (e.g., a suppression of the phonon velocity)
for the linearity in temperature to sometimes persist to very
low temperatures. In addition, at small twist angles, the Fermi
velocity is comparable to the phonon velocity, which may lead
to new flat band physics not included in our theory, which
applies only for the situation where the Fermi velocity is
greater than the phonon velocity [55].

Finally,w our paper focuses only on the electron-phonon
interaction and neglects effects due to the electron-electron
interaction. It is well known that, due to Galilean invariance,
electron-electron collisions only contribute to long wave-
length resistivity via Umklapp processes, which suppresses
their effect on transport in normal metals. This is simply
because the center of mass and relative motions separate in
the absence of Umklapp, and is formalized in the Prange-
Kadanoff theorem [56,57]. (For example, in normal metals
the effective mass entering the Drude formula is the bare
band mass and should not include any Fermi liquid renor-
malization.) However, since in TBLG the moiré-Brillouin
zone is orders of magnitude smaller, Umklapp effects are
more likely to be important. Additionally, the large density of
states in the nearly flat bands could allow for very efficient
screening that further reduces the importance of electron-
electron collisions. The open questions of the importance of
screening and moiré-Umklapp processes in electron-electron
interactions in TBLG leave it ambiguous to what extent band
renormalizations should be taken into account in a trans-
port theory. It is, however, important to emphasize that the
Umklapp electron-electron scattering traditionally leads to a
T 2 resistivity generically, which is never observed in TBLG
for T > 5 K [15], which is the regime of interest on our
paper (i.e., the equipartition temperate regime where electron-
phonon scattering contributes substantially to the resistivity),

providing some evidence for the absence of any direct electron
interaction effects on the TBLG transport.

In particular, the Hartree effects arising from the electron-
electron interactions can be included straightforwardly in our
formalism if necessary. However, given the huge sample to
sample quantitative differences in the experimentally reported
TBLG resistivity, we believe that such a theory adds little to
the current understanding of the TBLG transport properties
where at this point only a qualitative and semiquantitative
theory based on the standard BM band structure model (as
we do) is meaningful. No theory can explain experimental
results quantitatively when the experiments themselves show
considerable variations.

On the other hand, there is ample evidence [58–60] that
interaction effects lead to a strongly doping-dependent renor-
malization of the nearly flat bands from their noninteracting
form as well as to so-called “cascade physics” [61,62] that
cause spin-valley polarization in the ground state. In principle,
these effects alter the effective band structure and including
them in our calculation would lead to quantitative alterations
of our transport theory. This could be a productive direction
for future work. Conversely, our transport theory of noninter-
acting electrons provide a benchmark that can be compared
with experiment to probe the extent to which interaction ef-
fects indeed modify transport. In particular, our results show
that the temperature at which the resistivity peaks is largely in-
sensitive to the doping throughout the nearly flat band (Figs. 4
and 5), and that the temperature at which the peak is found is
roughly correlated to the bandwidth of the nearly flat band. If
experimental transport data were to consistently show that the
temperature of the resistivity peak shifts strongly with doping,
this would be clear evidence of interaction-induced renormal-
ization indirectly contributing to transport. Our results may
thus be combined with a detailed experimental analysis of the
dependence of the resistivity peak temperatures on doping to
understand the importance of electron-electron renormaliza-
tions in TBLG transport.
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