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Complex fixed points of the non-Hermitian Kondo model in a Luttinger liquid
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Non-Hermitian physics in open quantum many-body systems provides novel opportunities for the discovery
of exotic quantum phenomena unexpected in Hermitian systems. A previous study of the non-Hermitian Kondo
problem in ultracold atoms reports reversion of renormalization group flows which violates the g theorem
and produces an unusual quantum phase transition. In this work, we study the effect of electron-electron
interactions by considering the non-Hermitian Kondo problem in a Luttinger liquid. By performing a perturbative
renormalization group analysis to two-loop order, we find that the interplay between non-Hermitian Kondo
couplings and electron-electron interactions can produce a pair of complex fixed points. Complex fixed points
have often been discussed in an attempt to understand the extremely long correlation length of Hermitian systems
with weakly first-order transitions. Here, we show that complex fixed points arise naturally and can be physically
realized in open quantum systems. We discuss consequences of the complex fixed points and future directions.
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I. INTRODUCTION

The recent popularity of ultracold atomic systems as a
playground to engineer exotic quantum many-body physics
has presented new opportunities to study open quantum
systems [1–7]. In contrast to typical quantum statistical me-
chanics, where the system is in equilibrium with an external
bath, an open quantum system may lose energy or particles
to the bath via dissipation. These dissipative effects manifest
as non-Hermitian terms in the effective Hamiltonian of the
system [1,3], and allow phenomena prohibited by the uni-
tarity condition of ordinary Hermitian quantum theory, for
example continuous phase transitions without gap closing [8]
and anomalous enhancement of the superfluid correlation with
spontaneous PT -symmetry breaking [9].

The most common way to design experiments exhibiting
non-Hermitian physics is through ultracold atoms. In recent
years, experimentalists have been able to construct multi-
band models, which opened up the possibility for systems
such as the Anderson or Kondo models [10–14]. In par-
ticular, alkaline-earth-metal atoms can have both long-lived
metastable excited states playing the role of a localized im-
purity, while their ground states play the role of conduction
electrons [11–14]. If we consider two-body loss/gain induced
by the inelastic scattering between ground states and excited
states [11,15–17], it introduces the non-Hermitian Kondo
effect [18]. Previous studies of the non-Hermitian Kondo
problem using a renormalization group (RG) analysis have
revealed a reversion of the RG flow; even though the ini-
tial parameters are in the antiferromagnetic Kondo coupling
regime, the system can flow toward the non-Kondo phase
characterized by the Gaussian fixed point [18]. This result,
which violates the g theorem [19,20], also has been confirmed
by the Bethe ansatz. These previous studies, however, have
neglected the electron-electron interaction.

In this work, we analyze the non-Hermitian Kondo effect in
a Luttinger liquid to investigate the effect of electron-electron

interactions in non-Hermitian systems. We consider a
one-dimensional model of interacting electrons with
non-Hermitian forward and backward Kondo interactions
with a spin-1/2 localized impurity, the non-Hermitian part of
which arises from the interactions with the environment. We
analyze the problem by computing the RG flow equations up
to two-loop order. In the case of the Hermitian Kondo
interactions, the system flows toward the isotropic strong-
coupling limit with a Kondo singlet [21–23]. In the case of the
non-Hermitian Kondo interactions without electron-electron
interactions, there is the previously observed reversion of
the RG flow near the Gaussian fixed point [18,24]. However,
introducing a weak repulsive electron-electron interaction
yields a pair of complex fixed points on the real-forward and
imaginary-backward Kondo coupling plane. The fixed-point
values depend on the strength of the electron-electron
interaction, and have a complex-valued scaling dimension.
These fixed points are stable in the isotropic limit. These
complex fixed points are in the perturbative regime which is
controlled by the strength of the electron-electron interaction
and is the result of the interplay between the non-Hermitian
Kondo interaction and electron-electron interaction, and is
absent when only one of the two is present. Interestingly, due
to the imaginary part of the scaling dimension, the RG flow
shows spiral-like behaviors near the complex fixed points
[25–30]. In the anisotropic case (XXZ Kondo interaction), the
complex fixed point is no longer stable, but in its vicinity the
RG flow shows walking behavior [31–35] and hence spends
a long time there, leading to an unusually long correlation
length. Eventually, however, the RG runs to the isotropic
(antiferromagnetic) strong-coupling limit or an Ising fixed
plane with strong backward-scattering Kondo coupling.

This result provides a novel example of the interplay be-
tween the electron-electron interaction and the non-Hermitian
interaction. Such complex fixed points have been mainly in-
vestigated in a theoretical setting where a Hermitian system
with weakly first-order transitions is analytically continued
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to the complex plane [32–35]. The presence of complex
fixed points close to the real axis in the complex plane
was suggested to be responsible for the weakly first-order
behavior and the long correlation length in the Hermitian
system [32–35]. In the current work, we show that complex
fixed points can be realized in open quantum systems via
electron-electron interaction. Our work has direct implications
to experiments on open quantum systems and provides an
exciting platform for making connections between complex
conformal field theory and cold-atom experiments.

The remainder of the paper is organized as follows:
In Sec. II, we introduce the Hermitian Kondo model and
non-Hermitian Kondo interactions in a Luttinger liquid. We
consider two cases: one where the Kondo interactions are
isotropic, and also XXZ Kondo interactions. In Sec. III, we
perform the renormalization group analysis for the isotropic
and anisotropic models. First, we review the results of the
isotropic Hermitian case and analyze the non-Hermitian case.
We show how the complex fixed point arises in the simul-
taneous presence of electron-electron interactions and non-
Hermitian Kondo interactions, and discuss its critical proper-
ties. After that, we generalize the model to the anisotropic case
and discuss the general behavior and the walking behavior
near the complex fixed point. In Sec. IV, we summarize the
results and discuss the implications of our work.

II. MODEL

In this work, we start by considering the one-dimensional
Luttinger liquid,

HLL = vF

∑
k,σ

k(ψ†
Rσ,kψRσ,k − ψ

†
Lσ,kψLσ,k )

+ g2

L
∑
k1,k2

∑
p

(
ψ

†
L,k1

σ 0ψL,k1−p
)(

ψ
†
R,k2

σ 0ψL,k2+p
)
,

(1)

where we assume that we are away from half-filling and are on
the Tomonaga-Luttinger fixed line to eliminate both umklapp
and backward scatterings [36–38]. L is the system size, and
a one-dimensional spin-1/2 fermion, �σ (σ =↑,↓), is split
into left and right movers near the Fermi surface via �σ (x) ≈
e−ikF xψLσ (x) + eikF xψRσ (x). The left and right movers behave
as two different bands.

The electron-electron interaction g2 is a repulsive forward
interband scattering, g2 > 0. To establish notation for the Lut-
tinger parameters, which will become important later in this
work, we bosonize the fermion Hamiltonian, Eq. (1). It can
then be expressed as

HLL =
∫

dx

2π

∑
a=s,c

va

2

(
1

Ka
�2

a + Ka(∂xφa)2

)
. (2)

Here, the spin and charge degrees of freedom separate and
accordingly φs/c are the spin/charge boson fields and �s/c are
the corresponding conjugate fields. vs and vc are the velocities
of the spin and charge degrees of freedom which are defined
by vs = vF and vc = vF

√
1 − (g2/πvF )2 , and Ks and Kc are

the Luttinger parameters for the spin and charge. For repulsive
g2 � 0, the Luttinger parameters satisfy Kc =

√
1−g2/πvF

1+g2/πvF
�

1, and Ks = 1, which describes the zero-temperature scaling
behaviors of the Luttinger liquid.

Returning to the fermionic representation, we add the
Kondo interaction between conduction electrons and a spin-
1/2 impurity spin �S localized at the origin (x = 0),

HK = J⊥
2

∑
i=x,y

(�†
0τ i�0)Si + Jz

2
(�†

0τ z�0)Sz

≈ J⊥
2

∑
i=x,y

[(ψ†
L,0 + ψ

†
R,0)τ i(ψL,0 + ψR,0)]Si

+ Jz

2
[(ψ†

L,0 + ψ
†
R,0)τ z(ψL,0 + ψR,0)]Sz, (3)

where J⊥, Jz represent the strength of the Kondo interaction,
τ i is the Pauli matrix acting on the fermion spin, �S is a local-
ized impurity spin located at x = 0, and �0 and ψ(L,R),0 stand
for fermion fields located at x = 0. The Kondo interaction
can be split up into forward and backward impurity scattering
events HK = HF + HB [21] in the following way:

HF = J⊥F

2

∑
i=x,y

[(�†
L,0τ

i�L,0) + (�†
R,0τ

i�R,0)]Si

+ JzF

2
[(�†

L,0τ
z�L,0) + (�†

R,0τ
z�R,0)]Sz, (4)

HB = J⊥B

2

∑
i=x,y

[(�†
L,0τ

i�R,0) + (�†
R,0τ

i�L,0)]Si

+ JzB

2
[(�†

L,0τ
z�R,0) + (�†

R,0τ
z�L,0)]Sz. (5)

In contrast to the Kondo model of higher dimensions, which is
a theory containing either only left or only right movers, in one
dimension both are present. Hence, we have both forward and
backward Kondo interactions. If we take the isotropic limit,
J⊥F = JzF = JF and J⊥B = JzB = JB, HF and HB have SU(2)
symmetry. Note that, in order to later perform the RG analysis,
we construct the impurity in terms of a pseudofermion fα
(α =↑,↓), whereby �S = 1

2

∑
αβ=↑,↓ f †

α �σαβ fβ . To stay within
the physical (singly occupied) subspace, we enforce the con-
straint

∑
α=↑,↓ f †

α fα = 1 via introducing a chemical potential
term λ

∑
α f †

α fα , which is sent to λ → ∞ at the end of the
calculation [39,40].

So far, we constructed a Hermitian Hamiltonian, H =
HLL + HF + HB with real-valued J⊥F/zF and J⊥B/zB. Non-
Hermitian terms arise when the coupling to the bath is taken
into account via the Lindblad equation [1,3,41,42]. The effect
of this coupling is described by the jump operators Li, which
either add or remove two particles from the system: Li ∝
�↑,0 f↑, �↓,0 f↓, �↑,0 f↓ ± �↓,0 f↑ [18] (see Appendix A). The
jump operators enter into the effective Hamiltonian via the
anti-Hermitian term HAH = − i

2

∑
i L†

i Li, and yield the effec-
tive Hamiltonian Heff = H + HAH. Including HAH extends the
parameter space of the initially real Kondo couplings J⊥F/zF

and J⊥B/zB to complex numbers. This leaves us with eight
independent real interaction parameters describing the model.
There are also operators which describe the quantum-jump
process of the impurity but we project out such a process
to prevent loss of the impurity [3,8,9,18,43–45]. We note
that, although Heff technically includes a potential scattering
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TABLE I. A table of both the fixed points found in previous work, as well as our new results, to more easily contrast the two. For the
non-Hermitian case, “JB �= 0” means that the real backward scattering is nonzero for the first column, but both real and imaginary backward
scatterings are nonzero for the second column. The fixed points in the Hermitian Kondo and non-Hermitian Kondo cases, when they have
the same name, are the same fixed point, due to the imaginary part (in the non-Hermitian case) flowing to zero and leading to a Hermitian
fixed-point Hamiltonian. The fixed points in italics have nonzero imaginary values for the couplings. In particular, the difference between
the Ising fixed line and the Ising fixed plane (with strong backward-scattering Kondo coupling) is that the latter becomes a plane due to
the imaginary component of the JzF2 coupling. We emphasize that both the non-Hermitian backward scattering and the electron-electron
interactions are necessary to produce a complex fixed point. FPs, fixed points; SCL, strong coupling limit; FL, Fermi liquid; NFL, non-Fermi
liquid.

Cases FPs in Hermitian Kondo Properties FPs in non-Hermitian Kondo Properties

JB = 0
(isotropic)

Gaussian
Two-channel Kondo

Unstable
Stable

Gaussian
Two-channel Kondo

Unstable, reversion of RG flow
Stable

g2 = 0,

JB �= 0
(isotropic)

Gaussian
Two-channel Kondo
One-channel Kondo

Unstable
Unstable

Stable SCL (FL)

Gaussian
Two-channel Kondo
One-channel Kondo

Unstable, reversion of RG flow
Unstable

Stable SCL (FL)

g2 �= 0,

JB �= 0
(isotropic)

Gaussian
Two-channel Kondo

Isotropic strong coupling

Unstable
Unstable

Stable SCL (NFL)

Gaussian
Two-channel Kondo

Isotropic strong coupling
Complex fixed point

Unstable
Unstable

Stable SCL (NFL)
Stable; Spiral-like RG flow

g2 �= 0,

JB �= 0
(anisotropic)

Gaussian
Two-channel Kondo

Ising fixed line
Isotropic strong coupling

Unstable
Unstable

Stable
Stable SCL (NFL)

Gaussian
Two-channel Kondo

Ising fixed plane
Isotropic strong coupling

Complex fixed point

Unstable
Unstable

Stable
Stable SCL (NFL)

Unstable; Walking behavior

proportional to �
†
0σ 0�0, we ignore it because it does not

qualitatively change the results.

III. RG ANALYSIS

In this section, we will start by reviewing the results for the
Hermitian Kondo effect in a Luttinger liquid. Then, we will
explain how this changes when the Kondo interaction is up-
graded to its non-Hermitian analog. Finally, we will break the
SU(2) symmetry and discuss the anisotropic non-Hermitian
Kondo effect. The results in this section are valid to two-loop
order, and the details of the RG analysis are explained in Ap-
pendix B. A summary containing a review of previous results
as well as the new results we have obtained is in Table I.

A. Isotropic case

1. Hermitian Kondo effect in Luttinger liquid

Here, we review the isotropic SU(2) symmetric Hermi-
tian Kondo effect in a Luttinger liquid, J⊥F = JzF = JF and
J⊥B = JzB = JB in Eqs. (4) and (5) [21–23]. Before going fur-
ther, we redefine the coupling constants as J̃F/B ≡ JF/B/2πvF

and g̃2 ≡ g2/2πvF for convenience. The resulting RG flow
equations in terms of J̃F,B and g̃2 are given by [21]

dJ̃F

d

= (

J̃2
F + J̃2

B

) − J̃F
(
J̃2

F + J̃2
B

)
, (6)

dJ̃B

d

= g̃2(1 − g̃2)J̃B + 2J̃F J̃B − J̃B

(
J̃2

F + J̃2
B

)

≈ 1

2
(1 − Kc)J̃B + 2J̃F J̃B − J̃B

(
J̃2

F + J̃2
B

)
, (7)

where we use the fact that 1
2 (1 − Kc) ≈ g̃2(1 − g̃2), 
 =

ln(�/μ), μ is the cutoff being continuously lowered, and � is

the original cutoff. Note that g̃2 does not evolve under the RG
flow, dg̃2

d

= 0, so we consider Kc (or g̃2) as a control parameter.

The RG flow diagrams for Kc = 1 and Kc = 0.8 are shown in
Fig. 1.

The RG equations have three distinct fixed points. Two
of these can be found on the line J̃B = 0, which is where
we will focus first. On this line, the RG flow for an initially
ferromagnetic coupling (J̃F < 0) goes to the Gaussian fixed
point (blue line and purple dot in Fig. 1). However, in the
antiferromagnetic case (J̃F > 0), the RG flow goes to a two-
channel Kondo fixed point [46] at (J̃∗

F , J̃∗
B ) = (1, 0) (red line

and red dot in Fig. 1). The two-channel fixed point is stable in

FIG. 1. RG flow diagrams of the isotropic Hermitian Kondo
effect in a Luttinger liquid for (a) Kc = 1 and (b) Kc = 0.8. The
purple and red dots stand for the (unstable) Gaussian fixed point and
the two-channel fixed point which is unstable due to JB. The green
dots are stable, but their perturbative location in the figure should
be replaced by the corresponding strong-coupling limit. These dots
exhibit non-Fermi liquid behavior when Kc < 1, or Fermi liquid
behavior when Kc = 1.
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dimensions d > 1 because backward Kondo scattering events
are prohibited. In one dimension, however, we see that the
introduction of J̃B is important because J̃B is relevant for re-
pulsive electron-electron interactions (g2 > 0 or equivalently
Kc < 1) [21–23].

In the general case where J̃B �= 0, with ferromagnetic for-
ward Kondo coupling (J̃F < 0), the RG flow monotonically
decreases both |J̃F | and |J̃B|. J̃F decreases to 0 earlier than
J̃B and crosses over to the antiferromagnetic regime (J̃F > 0),
hence J̃B cannot change its sign. Thus, even if starting with
ferromagnetic forward Kondo coupling, it becomes antiferro-
magnetic under the RG flow. Now that we are in the J̃F > 0
regime, the RG flow goes to another fixed point at (J̃∗

F , J̃∗
B ) =

(1,±√
1 + (1 − Kc)/2) (green dots in Fig. 1). It appears to

be stable in the RG flow diagram, but it is known that the
corresponding strong-coupling limit (JF → ∞, JB → ±∞)
is actually stable [21]. At this fixed point, J̃B can be either
ferromagnetic (J̃B < 0) or antiferromagnetic (J̃B > 0). In the
noninteracting limit g2 = 0, this fixed point corresponds to
the single-channel Kondo fixed point which gives us Fermi
liquid behavior [21–23] because the two channels (left and
right movers) can be combined into a single fermion at the
fixed point [23]. In the interacting case g2 > 0, we can no
longer combine the left and right movers and the fixed point
shows non-Fermi liquid behavior; for example, the specific
heat C ∝ T 1/Kc−1 and conductance G ∝ T 1/Kc−1 [21–23]. This
behavior makes sense because the fixed-point Hamiltonian
can be interpreted as two semi-infinite Luttinger liquids and
a spin singlet [21].

2. Non-Hermitian Kondo effect in Luttinger liquid

Here, we complexify the coupling constants of the pre-
vious section, keeping in mind that this complexification
is due to dissipative processes from the Lindblad equation.
This yields the isotropic non-Hermitian Hamiltonian with
complex-valued Kondo couplings J̃F = J̃F1 + iJ̃F2 and J̃B =
J̃B1 + iJ̃B2 where J̃F1/F2 and J̃B1/B2 are real. The RG flow
equations for J̃F1, J̃F2, J̃B1, J̃B2 are given by

dJ̃F1

d

= (1 − J̃F1)

(
J̃2

F1 − J̃2
F2 + J̃2

B1 − J̃2
B2

)
+ 2J̃F2(J̃F1J̃F2 + J̃B1J̃B2), (8)

dJ̃F2

d

= 2(1 − J̃F1)(J̃F1J̃F2 + J̃B1J̃B2)

− J̃F2
(
J̃2

F1 − J̃2
F2 + J̃2

B1 − J̃2
B2

)
, (9)

dJ̃B1

d

= 1

2
(1 − Kc)J̃B1 + 2(J̃F1J̃B1 − J̃F2J̃B2)

− J̃B1
(
J̃2

F1 − J̃2
F2 + J̃2

B1 − J̃2
B2

)
+ 2J̃B2(J̃F1J̃F2 + J̃B1J̃B2), (10)

dJ̃B2

d

= 1

2
(1 − Kc)J̃B2 + 2(J̃F1J̃B2 + J̃F2J̃B1)

− 2J̃B1(J̃F1J̃F2 + J̃B1J̃B2)

− J̃B2
(
J̃2

F1 − J̃2
F2 + J̃2

B1 − J̃2
B2

)
. (11)

The RG flow diagrams are shown in Fig. 2.

FIG. 2. RG flow diagrams in the non-Hermitian case. (a) The
RG flow diagram with J̃B1 = J̃B2 = 0. The reversion of the RG flow
appears. This diagram remains qualitatively the same regardless of g̃2

(including g̃2 = 0). (b) The RG flow for Kc = 1 in terms of J̃F1 and
J̃B2 with J̃F2 = J̃B1 = 0. (c),(d) The RG flow for Kc = 0.8 in terms of
J̃F1 and J̃B2 with J̃F2 = J̃B1 = 0. The complex fixed points (blue dots)
bifurcate from the Gaussian fixed point (purple dot) by decreasing
Kc from unity, and the RG flow shows spiral-like behaviors near the
complex fixed points. The red dot stands for the two-channel Kondo
fixed point.

In the RG equations, when we set J̃B1 = J̃B2 = 0, regard-
less of the value of g̃2, we observe a reversion of the RG flow
similar to the non-Hermitian Kondo effect in higher dimen-
sions [18] [Fig. 2(a)]. Thus, even if the initial Kondo coupling
is antiferromagnetic (J̃F1 > 0), it is possible that the RG flow
approaches the non-Kondo phase which is represented by
the Gaussian fixed point; this type of flow violates the g
theorem [18,24]. However, when we turn on the backward
scatterings J̃B1/B2, the situation changes. In the noninteract-
ing limit (g2 = 0), we still see the reversion of the RG flow
[Fig. 2(b)], and the RG flow in the non-Kondo phase [blue
region in Fig. 2(b)] goes to the Gaussian fixed point. How-
ever, in the interacting (g2 > 0) case, we find a pair of stable
fixed points in the perturbative regime, whose fixed-point
values are (J̃∗

F1, J̃∗
F2, J̃∗

B1, J̃∗
B2) = ( − 1

4 (1 − Kc), 0, 0,± 1
4 (1 −

Kc)). For simplicity, we illustrate the flow to this fixed point
for the case J̃F2 = J̃B1 = 0. These new (complex) points bifur-
cate from the Gaussian fixed point into the complex parameter
plane as we decrease Kc from unity [see Figs. 2(c) and 2(d)].

These complex fixed points are not analogous to any multi-
channel problem because the backward scattering is nonzero,
and the forward scattering is ferromagnetic. This is unusual
because typically Kondo fixed points are typically antiferro-
magnetic. Furthermore, they are in the perturbative regime,
and therefore a strong-coupling analysis is unnecessary. The
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fact that the fixed-point values depend on Kc (or g̃2) conveys
that the complex fixed points arise from the interplay between
non-Hermitian Kondo interactions and electron-electron inter-
action. In addition, the complex fixed points have complex
scaling dimensions, � ≈ e±iπ/3

2 (1 − Kc). The spiral-like RG
flow near the complex fixed point is observed due to the imag-
inary part of the scaling dimension; accordingly, the complex
fixed point is of the stable-focus type [25–30]. The real part
of the scaling dimension determines how fast the RG flow
approaches the fixed point, while the imaginary part deter-
mines the period of the cycle for the spiral-like behaviors. The
stabilities of other fixed points from the Hermitian case re-
main unchanged, so the Gaussian fixed point and two-channel
Kondo fixed point are still unstable but the isotropic (real)
strong-coupling limit fixed point is stable as before. Note
that the results make sense within the context of fewer loops
as well, because often a divergence of a coupling at lower
orders in perturbation theory will produce a finite fixed point
at higher orders. For example, at tree level, J̃B1/B2 diverges
in the presence of nonzero g̃2, but J̃F1/F2 are marginal. At
one-loop order, we find the complex fixed points arising from
the competition between the relevant bare scaling dimension
of the imaginary backward Kondo coupling J̃B2 (depending
on the electron-electron interaction g̃2), and the one-loop con-
tribution. However, one-loop order is not enough to find the
Hermitian Kondo fixed points; for example, the two-channel
Kondo fixed point does not exist because the forward Kondo
couplings diverge at this order. At two-loop order, the complex
fixed points survive and have the same fixed-point values
and scaling dimension in terms of Kc, but we also get the
(Hermitian) two-channel Kondo fixed point. Thus, two-loop
order is required to observe both the complex fixed points
and Hermitian Kondo fixed points. Another remark is that,
due to the presence of the imaginary Kondo couplings, our
model explicitly breaks PT symmetry. The imaginary Kondo
interactions are even under parity, but odd under time reversal.
This can be compared with the PT -symmetric case with-
out electron-electron interactions, in which one finds spiral
behavior of the RG flow only when the PT symmetry is spon-
taneously broken and the energy eigenvalues subsequently
become complex [24]. The presence of a qualitatively similar
spiral RG flow can likely be attributed to the breaking of PT
symmetry, whether it occurs spontaneously or explicitly.

3. Critical properties of complex fixed point

The scaling dimension of the local impurity correlation
function determines the critical properties of the complex
fixed points. In non-Hermitian quantum theory, the right and
left eigenstates 〈nL| and |nR〉 which satisfy HNH |nR〉 = En |nR〉
and H†

NH |nL〉 = E∗
n |nL〉 are not orthogonal but biorthogonal,

〈nL|mR〉 ∝ δnm and 〈nL|mL〉 , 〈nR|mR〉 �= δnm [47]. Thus, we
can compute two types of correlation functions: the biorthog-
onal correlation function 〈O〉LR ≡ 〈0L|O|0R〉 / 〈0L|0R〉 ob-
tained by path integrals [45,48], and the right-state correlation
function 〈O〉RR ≡ 〈0R|O|0R〉 / 〈0R|0R〉 obtained by the wave-
functional approach [43,48,49]. Here, 〈0L| and |0R〉 are the
left and right ground states, where the real part of the
eigenenergy is the lowest. Since our RG analysis is based on
the path-integral approach, the impurity correlation function

obtained here is the biorthogonal correlation function
χLR(τ ) = 〈S(τ )S(0)〉LR. The correlation function near the
complex fixed points will behave as χLR(τ ) ∝ |τ |−2�LR with
�LR = e±iπ/3

2 (1 − Kc). Since the scaling dimension of the
complex fixed point is complex valued, the correlation
function will simultaneously show two types of behavior:
oscillatory behavior as a function of log τ , whose periodicity
is determined by the imaginary part of the scaling dimension,
and also power-law scaling, which is determined by the real
part of the scaling dimension [27–30,33,50]. Note that since
we are working in an open system, the inverse temperature
in the partition function Z ∝ ∑

n e−βEn = ∑
n 〈nL|e−βHeff |nR〉

can only be interpreted as a parameter, not a physical tem-
perature. Thus we consider τ simply as a parameter to define
scaling behaviors of the physical quantities, and the limit of
infinite β to define the ground states (defined as those states
whose eigenvalues have the lowest real part) [43,45,48].

B. Anisotropic case

We now introduce anisotropy into the system by allowing
the Kondo couplings for the x and y spin components to differ
from that of the z component. Let us review the anisotropic
Hermitian case first, the RG flow equations for which are
given by Eqs. (B16)–(B20). Introducing the anisotropy has
different effects depending on whether or not there is back-
ward scattering. If there is no backward scattering, there
is a new (stable) Ising fixed line, where J∗

⊥F = 0 and
J∗

zF < 0. The RG flow either goes toward this line or toward
the isotropic two-channel fixed point depending on whether
JzF < −|J⊥F | or JzF > −|J⊥F |, respectively. However, if there
is also the backward Kondo scattering, then introducing the
anisotropy destabilizes the Ising fixed line along J⊥B = JzB =
0 but creates a different stable Ising fixed line. This time
it is at strong coupling with infinite backward Ising cou-
pling, at J∗

zF < 0 and J∗
zB → ∞ with J∗

⊥F = J∗
⊥B = 0. Only

in the region JzF < 0 may the flow approach this strong-
coupling fixed line, and all other flows will tend toward the
isotropic strong-coupling fixed point, (J̃∗

⊥F , J̃∗
zF , J̃∗

⊥B, J̃∗
zB) =

(ab, 1, a
√

1 + 1
2 (1 − Kc), b

√
1 + 1

2 (1 − Kc)) with a, b = ±1.
In all of these cases, the anisotropy is irrelevant when JzF > 0,
but (at least initially) relevant when JzF < 0 [51,52], although
the flow may eventually reach an isotropic point.

In the non-Hermitian case, the spirit of the anisotropy
remains the same: anisotropy is irrelevant when JzF1 > 0,
but (at least initially) relevant when JzF1 < 0. Similar to the
anisotropic Hermitian case, the anisotropy introduces a sta-
ble Ising fixed plane with strong backward-scattering Kondo
coupling, at J∗

zF1 < 0, J∗
zF2 ∈ R, and |JzB1|, |JzB2| → ∞ with

J̃⊥F1 = J̃⊥F2 = J̃⊥B1 = J̃⊥B2 = 0; this fixed plane, however,
also contains strong imaginary-valued backward Kondo cou-
plings in contrast to the Hermitian case. The more interesting
case is the fate of the complex fixed point under anisotropy.
Due to the ferromagnetic nature of the complex fixed point,
this suggests that the anisotropy will destabilize it. This is
indeed the case, and it is destabilized. Now, the RG flow
approaches the complex fixed point and exhibits walking
behavior in its vicinity [31–35], but eventually flows to the
isotropic strong-coupling limit or Ising fixed plane with strong
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FIG. 3. RG flow of the isotropic and anisotropic non-Hermitian cases for initial values J̃⊥F1 = J̃zF1 = J̃⊥B1 = J̃⊥B1 = 0.05 and J̃⊥F2 =
J̃zF2 = J̃⊥B2 = J̃⊥B2 = 0.025 with Kc = 0.8. (a) The RG flow under the isotropic RG equations goes to the complex fixed point,
(J̃F1, J̃F2, J̃B1, J̃B2) = (−0.05, 0, 0, 0.05). (b),(c) The RG flow under the anisotropic RG equations. In the blue-shaded region (100 � 
 � 300),
the RG flow stays near the complex fixed point but in the red-shaded region (300 � 
), it eventually goes to the isotropic strong-coupling
limit, −J̃∗

⊥F1 = J̃∗
zF1 = 1, −J̃∗

⊥B1 = J̃zB1 = 1.0488, and J̃∗
⊥F2 = J̃∗

zF2 = J̃∗
⊥B2 = J̃∗

zB2 = 0. The gray dashed, dotted, and dot-dashed lines stand for
values of ±0.05, ±1, and ±1.0488, respectively.

backward-scattering Kondo coupling. To exemplify the walk-
ing behavior around the (now unstable) complex fixed point,
for the initial values J̃⊥F1 = J̃zF1 = J̃⊥B1 = J̃⊥B1 = 0.05 and
J̃⊥F2 = J̃zF2 = J̃⊥B2 = J̃⊥B2 = 0.025 with Kc = 0.8, the RG
flow under the isotropic RG flow equations goes to the
complex fixed point [Fig. 3(a)]. The RG flow under the
anisotropic RG flow equations goes to the complex fixed
point around about 
 ≈ 100 and stays between 100 � 
 �
300 [blue-shaded region in Figs. 3(b) and 3(c)], but after about

 ≈ 300, the RG flow goes to the isotropic strong-coupling
limit fixed point [red-shaded region in Figs. 3(b) and 3(c)].

A summary of all the results in isotropic and anisotropic
cases is listed in Table I.

IV. DISCUSSION

In this work, we studied the non-Hermitian Kondo effect
in a Luttinger liquid. By considering non-Hermitian for-
ward and backward Kondo interactions with weak repulsive
electron-electron interactions, we find a pair of novel com-
plex fixed points with complex scaling dimensions which are
stable in the isotropic limit. These fixed points arise from
the interplay between the electron-electron interactions and
the non-Hermitian Kondo interactions. In contrast to usual
fixed points with the real-valued scaling dimension, near the
complex fixed points, due to the complex-valued scaling di-
mension, the RG flow shows spiral-like behaviors; in addition,
the biorthogonal impurity correlation function would exhibit
oscillatory behaviors as well as power-law behaviors. In the
generic anisotropic case, the RG flow approaches very close
to the complex fixed point and stays for a while (walking
behavior), but eventually goes to the isotropic strong-coupling
limit or Ising fixed plane with strong backward-scattering
Kondo coupling.

Such complex fixed points and surrounding spiral-like
RG flow are also observed in the complexified Potts model
with N > 4 and deconfined pseudocriticality [32–35]. The
complex fixed point in such cases is introduced to explain
the origin of the weakly first-order phase transition in the

corresponding Hermitian model, and the transition is charac-
terized by an extremely long correlation length compared to
the lattice constant. However, in our work, the non-Hermitian
interaction is explicitly introduced by the Lindblad equa-
tion due to interaction with the environment. Accordingly, the
complex fixed point in our study may actually be accessible
experimentally.

The properties of this complex fixed point can be experi-
mentally investigated in the realm of cold atoms. By imposing
spin-space isotropy, this provides a platform to observe a
system right at a complex fixed point. Upon breaking the
isotropy, it would be possible to observe walking behavior,
as the system approaches and then leaves the complex fixed
point, as the energy scale of the system is lowered. This allows
measurement of the critical properties of the complex fixed
point.

Future work for this model would mainly consist of an
exact solution of the scaling dimension at the complex field
point. In the case of the Hermitian Kondo model, its exact
solution can be obtained through boundary conformal field
theory (CFT). A similar CFT solution also exists for the
Hermitian Kondo effect in a Luttinger liquid, in which case
the scaling dimension of the leading irrelevant operator is
1 + � = 1

2 (K−1
c + 1) [21–23]. Thus, to obtain the exact scal-

ing dimension, we will need to apply boundary CFT analysis
[22,23,46,53,54] or the Bethe-ansatz approach [18,55–60] for
the complex fixed point.

Another direction for future work would be numerical
analysis. As mentioned before, in non-Hermitian quantum
theory, both biorthogonal correlation functions and right-state
correlation functions are important. The scaling behaviors
of the biorthogonal and right-state correlation functions are
generically different [43,48,61] but there is no known direct
way to obtain one from the other. In our case, we were able
to extract the scaling behavior of the biorthogonal correlation
function, not the right-state correlation function. To study the
scaling behavior of the right-state correlation function, numer-
ical computation will be needed, such as exact diagonalization
or density matrix renormalization group methods [48]. By
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computing and comparing the dynamic impurity correlation
functions from the biorthogonal and right-state correlation
functions, we may find a relation between them. Furthermore,
since the right-state correlation function is more closely re-
lated to the physical observables [48], its structure would be
helpful in understanding the critical properties of the complex
fixed point.

In conclusion, our work reveals that complex fixed points
can arise in open quantum systems through electron-electron
interactions, offering a new example of the interplay between
non-Hermitian physics and electron-electron interactions.
These findings open the door to exciting possibilities for mak-
ing connections between complex conformal field theory and
cold-atom experiments.
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APPENDIX A: NON-HERMITIAN HAMILTONIAN
FROM LINDBLAD EQUATION

From the Lindblad equation, the non-Hermitian part of the
effective Hamiltonian is given by

HAH = − i

2

∑
i

L†
i Li, (A1)

where Li’s are jump operators, and i = +,−,↑,↓. In this
work, we consider the jump operators Li for the two-body
losses [18],

L± = γ±√
2

(�↑,0 f↓ ± �↓,0 f↑), (A2)

L↑ = γ0�↑,0 f↑, (A3)

L↓ = γ0�↓,0 f↓, (A4)

where �0 is a two-component conduction electron spinor
located at the origin, and f is a pseudofermion representation
of the localized impurity (also located at the origin) which
is defined by �S = ∑

α,β=↑,↓( f †
α

�σαβ

2 fβ ) with
∑

α=↑,↓ f †
α fα = 1.

Then, the HAH is

HAH = − i

2

∑
j

L†
j L j = i

∑
j

v j

(
�

†
0

τ j

2
�0

)(
f † σ j

2
f

)
,

(A5)

where vx = vy = 1
2 (γ 2

− − γ 2
+), vz = 1

2 (γ 2
− + γ 2

+ − 2γ 2
0 ), and

v0 = − 1
2 (γ 2

− + γ 2
+ + 2γ 2

0 ). By using �0 ≈ ψL,0 + ψR,0 and
the definition of the pseudofermion, we can get the imaginary
forward- and backward-scattering Kondo interactions. Note
that this also generates a potential scattering v0, but we ignore

it in the main text because it does not qualitatively change the
results.

APPENDIX B: DETAILS OF RG ANALYSIS

In this section, we give the details of our RG analy-
sis. We use the dimensional regularization with the minimal
subtraction scheme [39]. For the field-theoretical calcula-
tion, we introduce the Abrikosov pseudofermion for the
impurity spin, �S = ∑

α,β=↑,↓( f †
α

�σαβ

2 fβ ), and the imaginary
chemical potential λ�α=↑,↓ f †

α fα to satisfy the physical con-
straint

∑
α=↑,↓ f †

α fα = 1. At the end of the calculation, we
will take the limit λ → ∞ to recover the physical impurity
Hilbert space.

The propagators are given by

G(L,R),i j (ω, Ep) = δi j

ω ± Ep
, (B1)

G f ,i j (ω) = δi j

ω − λ
, (B2)

and the density of state of the left- and right-moving fermions
is given by

∑
p δ(ω − Ep) = N0|ω|−ε′

with N0 = 1/(2πvF ),
where we introduce ε′ to perform the dimensional regulariza-
tion. At the end of the calculation, we will take ε′ → 0. The
bare coupling constants are

JB
i = JiZ

−1
f Z−1

c ZJiμ
ε′
, (B3)

gB
2 = g2Z−2

c Zg2μ
ε′
, (B4)

where the superscript B stands for the bare values, Zg2

and ZJi are the renormalization constants for g2 and Ji

(i = ⊥F, zF,⊥B, zB), respectively, and Zc and Z f are the
renormalization constants for the left-/right-moving fermion
and pseudofermion fields, respectively.

By computing the loop corrections up to two-loop order,
we can get the renormalization constants. More details includ-
ing the Feynman diagrams are presented in Refs. [39,40]. The
renormalization constants are given by

(Z⊥F − 1) = −N0

ε′ (JzF + J⊥BJzB/J⊥F )

+ N2
0

8ε′
(
J2

zF + J2
zB − 4g2

2

)

−2N2
0

ε′2
(
J2
⊥F + J2

zF + J2
⊥B + J2

zB

)

−2
(
N2

0 J⊥B/J⊥F
)

ε′2 (2J⊥F J⊥B + 2JzF JzB + g2JzB),

(B5)

(ZzF − 1) = −N0

ε′
(
J2
⊥F + J2

⊥B

)
/JzF

+ N2
0

8ε′
(
2J2

⊥F + 2J2
⊥B − J2

zF − J2
zB − 4g2

2

)

−3N2
0

ε′2
(
J2
⊥B + J2

⊥F

) − 2N2
0 (J⊥B/JzF )

ε′2

× (3J⊥F JzB + g2J⊥B), (B6)
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(Z⊥B − 1) = −N0

ε′ (g2 + JzF + J⊥F JzB/J⊥B)

+ N2
0

8ε′
(
J2

zF + J2
zB

) − N2
0

ε′2 [(J⊥F + J⊥B)2

+(JzF + JzB)2 + g2(g2 + 2JzF )]

−
(
N2

0 J⊥F /J⊥B
)

ε′2 [(J⊥F + J⊥B)2

+(JzF + JzB)2 + 2g2JzB], (B7)

(ZzB − 1) = −N0

ε′ (g2JzB + 2J⊥F J⊥B)/JzB

+ N2
0

8ε′
(
2J2

⊥F + 2J2
⊥B − J2

zF − J2
zB

)

−N2
0

ε′2
[
g2

2 + 2
(
J2
⊥F + J⊥F J⊥B + J2

⊥B

)]

−N2
0

ε′2
[
(JzF /JzB)

(
J2
⊥F + 4J⊥F J⊥B + J2

⊥B

)
+4g2J⊥F J⊥B/JzB

]
, (B8)

(Zg2 − 1) = −N2
0 g2

2

ε′ , (B9)

(Z f − 1) = − N2
0

8ε′
(
2J2

⊥F + 2J2
⊥B + J2

zF + J2
zB

)
, (B10)

(Zc − 1) = −N2
0 g2

2

2ε′ . (B11)

The RG flow equations are obtained by using the renormal-
ization constants,

dJi

d

= − Ji

[∑
j

J j∂Jj G
(1)
Ji

+ g2∂g2 G(1)
Ji

]
, (B12)

dg2

d

= − g2

[∑
j

J j∂Jj G
(1)
g2

+ g2∂g2 G(1)
g2

]
, (B13)

where we expand GJj = Z−1
f Z−1

c ZJj and Gg2 = Z−2
c Zg2 in or-

der to get G(1)
Jj

and G(1)
g2

as follows:

GJj = Z−1
f Z−1

c ZJj =
∞∑

m=0

G(m)
Jj

({Jk, g2})

ε′m , (B14)

Gg2 = Z−2
c Zg2 =

∞∑
m=0

G(m)
g2

({Jk, g2})

ε′m , (B15)

and the first terms G(0)
Jj

= G(0)
g2

= 1 and i, j, k =
⊥F, zF,⊥B, zB. After redefining the parameters, J̃i ≡ N0Ji

and g̃2 ≡ N0g2, the RG flow equations are

dJ̃⊥F

d

= (J̃⊥F J̃zF + J̃⊥BJ̃zB)

− J̃⊥F
(
J̃2
⊥F + J̃2

zF + J̃2
⊥B + J̃2

zB

)
/2, (B16)

dJ̃zF

d

= (

J̃2
⊥F + J̃2

⊥B

) − J̃zF
(
J̃2
⊥F + J̃2

⊥B

)
, (B17)

dJ̃⊥B

d

= g̃2(1 − g̃2)J̃⊥B + (J̃⊥F J̃zB + J̃⊥BJ̃zF )

− J̃⊥B
(
J̃2
⊥F + J̃2

zF + J̃2
⊥B + J̃2

zB

)
/2, (B18)

dJ̃zB

d

= g̃2(1 − g̃2)J̃zB + 2J̃⊥F J̃⊥B − J̃zB

(
J̃2
⊥F + J̃2

⊥B

)
,

(B19)

dg̃2

d

= 0. (B20)

The fixed points of above RG flow equations are explained in
the main text. In the non-Hermitian case, the Kondo couplings
are written as J̃ab = J̃ab1 + iJ̃ab2 where J̃ab1/ab2 are real valued.
The RG flow equations are

dJ̃⊥F1

d

= (J̃⊥F1J̃zF1 − J̃⊥F2J̃zF2 + J̃⊥B1J̃zB1 − J̃⊥B2J̃zB2) − J̃⊥F1

(
J̃2
⊥F1 + J̃2

zF1 + J̃2
⊥B1 + J̃2

zB1 − J̃2
⊥F2 − J̃2

zF2 − J̃2
⊥B2 − J̃2

zB2

)
/2

+ J̃⊥F2(J̃⊥F1J̃⊥F2 + J̃zF1J̃zF2 + J̃⊥B1J̃⊥B2 + J̃zB1J̃zB2), (B21)

dJ̃⊥F2

d

= (J̃⊥F2J̃zF1 + J̃⊥F1J̃zF2 + J̃⊥B2J̃zB1 + J̃⊥B1J̃zB2) − J̃⊥F2

(
J̃2
⊥F1 + J̃2

zF1 + J̃2
⊥B1 + J̃2

zB1 − J̃2
⊥F2 − J̃2

zF2 − J̃2
⊥B2 − J̃2

zB2

)
/2

− J̃⊥F1(J̃⊥F1J̃⊥F2 + J̃zF1J̃zF2 + J̃⊥B1J̃⊥B2 + J̃zB1J̃zB2), (B22)

dJ̃zF1

d

= (

J̃2
⊥F1 − J̃2

⊥F2 + J̃2
⊥B1 − J̃2

⊥B2

) − J̃zF1
(
J̃2
⊥F1 + J̃2

⊥B1 − J̃2
⊥F2 − J̃2

⊥B2

) + 2J̃zF2(J̃⊥F1J̃⊥F2 + J̃⊥B1J̃⊥B2), (B23)

dJ̃zF2

d

= 2(J̃⊥F1J̃⊥F2 + J̃⊥B1J̃⊥B2) − J̃zF2

(
J̃2
⊥F1 + J̃2

⊥B1 − J̃2
⊥F2 − J̃2

⊥B2

) − 2J̃zF1(J̃⊥F1J̃⊥F2 + J̃⊥B1J̃⊥B2), (B24)

dJ̃⊥B1

d

= g̃2(1 − g̃2)J̃⊥B1 + (J̃⊥F1J̃zB1 − J̃⊥F2J̃zB2 + J̃⊥B1J̃zF1 − J̃⊥B2J̃zF2)

− J̃⊥B1
(
J̃2
⊥F1 + J̃2

zF1 + J̃2
⊥B1 + J̃2

zB1 − J̃2
⊥F2 − J̃2

zF2 − J̃2
⊥B2 − J̃2

zB2

)
/2

+ J̃⊥B2(J̃⊥F1J̃⊥F2 + J̃zF1J̃zF2 + J̃⊥B1J̃⊥B2 + J̃zB1J̃zB2), (B25)
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dJ̃⊥B2

d

= g̃2(1 − g̃2)J̃⊥B2 + (J̃⊥F2J̃zB1 + J̃⊥F1J̃zB2 + J̃⊥B2J̃zF1 + J̃⊥B1J̃zF2)

− J̃⊥B2
(
J̃2
⊥F1 + J̃2

zF1 + J̃2
⊥B1 + J̃2

zB1 − J̃2
⊥F2 − J̃2

zF2 − J̃2
⊥B2 − J̃2

zB2

)
/2

− J̃⊥B1(J̃⊥F1J̃⊥F2 + J̃zF1J̃zF2 + J̃⊥B1J̃⊥B2 + J̃zB1J̃zB2), (B26)

dJ̃zB1

d

= g̃2(1 − g̃2)J̃zB1 + 2(J̃⊥F1J̃⊥B1 − J̃⊥F2J̃⊥B2) − J̃zB1

(
J̃2
⊥F1 + J̃2

⊥B1 − J̃2
⊥F2 − J̃2

⊥B2

) + 2J̃zB2(J̃⊥F1J̃⊥F2 + J̃⊥B1J̃⊥B2),

(B27)

dJ̃zB2

d

= g̃2(1 − g̃2)J̃zB2 + 2(J̃⊥F1J̃⊥B2 + J̃⊥F2J̃⊥B1) − J̃zB2

(
J̃2
⊥F1 + J̃2

⊥B1 − J̃2
⊥F2 − J̃2

⊥B2

) − 2J̃zB1(J̃⊥F1J̃⊥F2 + J̃⊥B1J̃⊥B2).

(B28)

At the isotropic SU(2) limit, J̃⊥F = J̃zF = J̃F and J̃⊥B = J̃zB = J̃B, Eqs. (B16)–(B20) can be reduced by

dJ̃F

d

= (

J̃2
F + J̃2

B

) − J̃F
(
J̃2

F + J̃2
B

)
, (B29)

dJ̃B

d

= g̃2(1 − g̃2)J̃B + 2J̃F J̃B − J̃B

(
J̃2

F + J̃2
B

)
, (B30)

where we omit dg̃2/d
 because it is zero.
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