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Many frustrated spin models on three-dimensional (3D) lattices are currently being investigated, both ex-
perimentally and theoretically, and develop new types of long-range orders in their respective phase diagrams.
They present finite-temperature phase transitions, most likely in the Heisenberg 3D universality class. However,
the combination between the 3D character and frustration makes them hard to study. We present here several
methods derived from high-temperature series expansions (HTSEs), which give exact coefficients directly in
the thermodynamic limit up to a certain order; for several 3D lattices, supplementary orders than in previous
literature are reported for the HTSEs. We introduce an interpolation method able to describe thermodynamic
quantities at T > Tc, which we use here to reconstruct the magnetic susceptibility and the specific heat and to
extract universal and nonuniversal quantities (for example, critical exponents, temperature, energy, entropy, and
other parameters related to the phase transition). While the susceptibility associated with the order parameter
is not usually known for more exotic long-range orders, the specific heat is indicative of a phase transition for
any kind of symmetry breaking. We present examples of applications on ferromagnetic and antiferromagnetic
models on various 3D lattices and benchmark our results whenever possible.
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I. INTRODUCTION

The quantum Heisenberg model was first introduced to
explain why certain compounds developed a spontaneous
magnetization when cooled below a given temperature (called
the critical temperature), even in the absence of an applied
magnetic field. Its success in explaining these so-called fer-
romagnets placed the model at a central spot in the study
of quantum magnetism. Since then, a wide variety of three-
dimensional (3D) compounds have been investigated, whose
interactions can be mostly described by ferro- or antifer-
romagnetic Heisenberg interactions. More often than not,
these systems present finite-temperature phase transition to
long-range magnetically ordered phases. Even in 2D systems,
where the Mermin-Wagner theorem [1] precludes the exis-
tence of magnetic order at finite temperatures, materials often
present finite-temperature phase transitions due to remaining
weak 3D correlations [2–5]. Many of these phase transitions
belong to the 3D Heisenberg universality class, defined by the
symmetry breaking SU (2) → U (1).

Phase transitions are characterized by the critical temper-
ature Tc and exponents of the singularities present in the
thermodynamic functions. Obtaining them is thus an impor-
tant task, and to do so many different methods have been
developed. In particular, in the ferromagnetic case, high-
temperature series expansions (HTSEs) methods such as the
Dlog Padé or ratio methods are known to obtain numeri-
cally accurate critical temperatures for simple lattices such

as the simple cubic (sc), body-centered cubic (bcc), and
face-centered cubic (fcc) [6–10]. More recently the list was
expanded with the pyrochlore [11], the diamond [10,12], and
the semi-simple cubic (ssc) [13] lattices. However, for the
critical exponents, the results are not so precise.

For example, the critical exponent γ of the magnetic
susceptibility χ (T ) has been calculated using field theory’s
renormalization group on the N-vector model (that is in the
same universality class for N = 3), yielding γ = 1.3895(50)
[14,15]. On the other hand, HTSEs calculations in the quan-
tum spin- 1

2 case show higher values, γ = 1.42(1) for the
ferro- and γ = 1.43(1) for antiferromagnetic cases [7–9].
Another example of a critical exponent is the less studied α

from the specific heat cv (T ). This exponent is negative, which
implies a nondivergent singularity. Instead, cv (T ) presents a
cusp-like behavior that reaches a maximum value with an infi-
nite slope. To the best of our knowledge, the standard HTSEs
Dlog Padé and ratio methods have never been used on cv in
the literature. However, indirect HTSEs calculations through
scaling relations give α between −0.125 and −0.200(15)
[6,10,16]. On the other hand, the field theory result is α =
−0.122(10) [15], showing a larger discrepancy than in the
case of γ . On the experimental side, there are empirical fits
on specific heat measurements that give negative values of α

down to −0.3, while most of them lie around the field theory
result [17,18].

Finally, it would be desirable to have reliable results not
only on the critical quantities (critical temperature Tc and
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exponents) but on the thermodynamic functions at all tem-
peratures [cv (T ), χ (T )]. In this sense, the quantum Monte
Carlo (QMC) calculations obtain reliable results, but only on
finite lattices, and only in the absence of frustration due to
the sign problem. Methods based on exact diagonalization and
tensor network algorithms can be used on frustrated systems,
but only in dimensions 1 and 2 [19–22]. Other methods work
directly in the thermodynamic limit like the rotationally in-
variant Green’s function method, which obtains qualitatively
good results in 3D [23,24]. The pseudo-Majorana functional
renormalization group provides quantitatively good results
down to moderate temperatures but becomes uncontrolled at
low temperatures [25–27]. Finally, the HTSEs are quasi-exact
at high temperatures but fail close to the transition tempera-
ture, even when using Padé approximants. An interpolation
scheme of HTSEs solving this was proposed in our previous
article in cases where cv presents a logarithmic divergence,
such as in the 2D-Ising or 2D-XXZ models [28], resulting
both in an evaluation of critical quantities and of cv (T ) for
temperatures from infinite down to Tc.

In this article, we first revisit the HTSEs Dlog Padé method
for Heisenberg ferromagnets on several 3D lattices such as
the fcc, bcc, sc, pyrochlore, and ssc lattices. For most, we
calculated higher orders in the HTSEs than in previous arti-
cles, using an optimized algorithm. Also, we extend the Dlog
Padé method to obtain quantities such as the critical energy
ec, the cv critical exponent α, and nonuniversal quantities A
and B [cv (β ) ∼ B − A(βc − β )−α]. Finally, we extend the pre-
viously mentioned interpolation method [28] to cases where
cv presents a cusp-like behavior with a negative exponent
α > −1 and to cases where χ presents a divergent singularity
with positive exponent γ > 0. For some 3D lattices, we can
extrapolate cv and χ at all temperatures down to Tc.

The remaining of the article is organized in the following
way. In Sec. II, we present the HTSEs methods to study
finite-temperature phase transitions, both the Dlog Padé and
our interpolation method. In Sec. III we show our results, first
for the Dlog Padé, and next for the interpolation methods.
Finally, conclusions and perspectives are given in Sec. IV.

II. MODEL AND METHODS

The Heisenberg model is defined as

H = J
∑
〈i j〉

Si · S j, (1)

where J is the exchange interaction, the sum 〈i j〉 runs over
nearest neighbors on a 3D lattice, and Si are the quantum
spin- 1

2 operators. The classical approximation consists in re-
placing the operators Si by 3D vectors. In the ferromagnetic
case (J < 0), the quantum ground-state energy per site e0 is
exactly the same as the classical one, namely,

e0 = −Z

2
S2 (2)

where Z is the coordination number of the lattice. Even though
e0 does not change when taking into account quantum fluctu-
ations, the critical temperature Tc does [8]. On the other hand,
in the antiferromagnetic case (J > 0) on a bipartite lattice, e0

and Tc are the same as in the ferromagnetic case at the classical

limit, but they both change in the quantum model and e0 is no
longer known exactly.

To study these kinds of finite temperature phase transitions
we use HTSEs. HTSEs allow to perform a series expansion
of certain thermodynamic functions around β = 0, where β is
the inverse temperature (β = 1/T ). Two important functions
are the free energy per site f and the ferromagnetic zero-field
susceptibility per site χ [7]. Their HTSEs are written as

β f = − ln 2 − 1

nu

n∑
i=1

ai

4ii!
Ki + O(Kn+1), (3a)

χ = T χ = 1

4
+ 1

2nu

m∑
i=1

bi

4ii!
Ki + O(Km+1), (3b)

where ai and bi are integers, K = βJ , and nu is the number
of spins in the unit cell. These HTSEs are typically known up
to orders 13 to 15 for 3D lattices (see Table I for the order
depending on the lattice).

The thermodynamic functions present singularities at the
critical temperature. However, several methods can be used
to extract information about the critical point from the first
coefficients of the series. We present in Sec. II A the most
commonly used: the Dlog Padé method, and pursue in
Sec. II B with the description of a new interpolation method.

A. Dlog Padé method

We assume a thermodynamic function f (x) that has a
power-law singularity at xc, of type

f s(x) = A(xc − x)−θ , (4)

such that f (x) − f s(x) is analytic from x = 0 to some x > xc.
xc is the critical point and θ is the critical exponent. Then,
the critical point and exponent can be obtained from the Dlog
Padé method: the logarithmic derivative

D ln f s(x) = f s′(x)

f s(x)
= θ

xc − x
(5)

has a simple pole given by xc, whose residue is the critical
exponent θ . In practice, the critical point and exponent are
determined from the poles and residues of the Padé approxi-
mants of the HTSE of D ln f (x).

This method has been used with f (x) = χ (β ) to obtain
results for βc and the critical exponent γ on most of the typical
3D lattices [7,8,10]. The Dlog Padé method presents a fast
convergence of βc with the HTSE order, giving several signif-
icant digits. Notably, to the best of our knowledge, this method
has never been used with other thermodynamic functions such
as cv to determine α, or to obtain the critical values of the
energy ec and of the entropy sc, what is now done in Secs. III B
and III C.

B. Interpolation method for cusp singularities

Now we propose an alternative method to extract infor-
mation on the critical point, using the specific heat. This
is an extension from our previously introduced interpolation
method for the case of logarithmic singularities [28]. In the
present case (3D Heisenberg universality class), the singular
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behavior of the specific heat is expressed as

cs
v (β ) = −A(βc − β )−α (6)

where A is positive. Also, −1 < α < 0 so that there is no
divergence at the critical point. Instead, cv reaches a maximum
value B with an infinite slope (from higher temperatures).
Other confluent terms, leading to more accurate results in the
classical case [16], are less important in the quantum case [7].

We build a regular function R(β ) by removing the singular
behavior from the specific heat. We explore two different ways
of doing this. The first one, called the interpolation method 1
(IM1), is analogous to that of Ref. [28],

R(β ) = cv (β ) − cs
v (β ). (7)

With this definition, the value B of cv at the singularity is
R(βc). The cv-HTSE coefficients are calculated for a specific
model up to an order n, and the series of cs

v are known at
all orders supposing that βc, A, and α are known. Thus, the
R-HTSE are obtained at order n, whose coefficients depend
on βc, A, and α. Compared to the case with a logarithmic
divergency [28], the parameter space has one more dimension.

The other alternative to build the regular function R, called
interpolation method 2 (IM2) is

R(β ) = 1

A

cs
v (β )

cv (β ) − B
. (8)

Again, the R-HTSE can be obtained up to order n and this
time, it depends on βc, B (instead of A), and α. Defined this
way, R(βc) = 1/A. It is worth mentioning that other similar
methods could be developed with other regular functions R.
But the two proposed here are sufficiently different so if
both methods give similar results, we consider the results as
trustworthy.

The idea behind these kinds of methods is that the param-
eters to obtain R(β ) have to be well chosen for R to be a truly
regular function. This means that the singularity has to be
canceled exactly. When this is done, the Padé approximants
of R(β ) will coincide down to the critical temperature (and a
little further below). The quality of a given set of parameters
{βc, A, α} (for IM1) or {βc, B, α} (for IM2) is measured by the
quality function already introduced in Ref. [28],

Q2 = 2

(n − 1)n

NP∑
i=1

i−1∑
j=1

Mε

(Pi(βm) − P j (βm)

F (βc)

)
(9)

where NP is the number of Padé approximants Pi without
singularities in the range [0, βm], βm is chosen larger that
βc to check the regular character of R beyond the critical
point. We take βm = (1 + δ)βc with δ = 0.05. Mε (x) is a
smooth function whose value is � 1 when x � ε, and �0
when x � ε. We use Mε (x) = 1/[1 + (x/ε)8] with ε = 0.005.
Finally, F (βc) = 1

2 [Pi(βc) + P j (βc)] is the average of the two
Padé approximants at βc. This Q function represents roughly
the proportion of coinciding Padé approximants down to the
critical temperature. Parameters with Q > 0.5 are considered
as good.

Once a high-quality set of parameters is found, cv (β ) can
be reconstructed by replacing the regular function with any of

TABLE I. The order n of the HTSEs used for β f and χ in this ar-
ticle (we use the same order for both quantities), compared to orders
from other articles. The lattices are fcc (face-centered cubic), bcc
(bond-centered cubic), sc (simple cubic), ssc (semi-simple cubic),
and the pyrochlore lattice. sc-ssc is a model interpolating between
sc and ssc, defined in the main text. The new orders are provided in
Appendix.

Lattice This article nβ f nχ

fcc 13 12 [7] 14 [10]
bcc 15 14 [7] 14 [7]
sc 17 14 [7] 14 [7]
ssc 20 14 [13]
pyrochlore 16 13 [30] 12 [30]
sc-ssc, Eq. (18) 13

its coinciding Padé approximants Pi,

cv (β ) = Pi(β ) − A(βc − β )−α for IM1, (10a)

cv (β ) = B − (βc − β )−α

Pi(β )
for IM2. (10b)

C. Interpolation method for divergent singularities

The two methods presented in the previous subsection can
be extended to quantities with divergent singularities, such as
the magnetic susceptibility, whose singular part writes

χ s(β ) = C(βc − β )−γ (11)

where C and γ are positive. From this point, the two methods
IM1 and IM2 can be applied as in the previous subsection with
the simplification that no constant term has to be taken into
account (the term B of the previous section can be discarded
as the divergency dominates it). This leads to an important dif-
ference between the extensions of IM1 and IM2 to divergent
singularities. For IM1, C has to be taken into account and the
parameter space consists in {βc,C, γ }. But for IM2,

R(β ) = 1

C

χ s(β )

χ (β )
= (βc − β )−γ

χ (β )
, (12)

the parameter space is reduced to {βc, γ }. Thus, we will only
use IM2 to interpolate χ in the following. From this regular
function, the rest of the method is the same as described in
the previous subsection, and the susceptibility can be recon-
structed from any of its coinciding Padé approximants,

χ (β ) = β
(βc − β )−γ

Pi(β )
. (13)

III. RESULTS

We have numerically but exactly calculated the HTSEs of
β f (β ) and χ (β ) for several 3D lattices: the fcc, bcc, sc, ssc,
and pyrochlore lattices. The maximum order n depends on
the lattice according to Table I, where we get the same order
for both β f (β ) and χ (β ). Using an improved algorithm [29],
we are able to calculate several orders more than previous
studies for different lattices [7,10,13,30]. The new terms in
the HTSEs are provided in Appendix.
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FIG. 1. Density of poles as defined in Eq. (14) from the Dlog
Padé method on χ (β ) for the ferromagnetic cases on the fcc, bcc, sc,
ssc, and pyrochlore lattices as a function of β − βc. For each curve,
the poles from the four highest orders are taken.

In what follows, we study mostly the ferromagnetic
Heisenberg model [J = −1 in Eq. (1)] on said lattices. How-
ever, all the methods dependent on β f (β ) can be directly
applied to the antiferromagnetic models by transforming J
accordingly. This means that no new HTSEs need to be calcu-
lated. We show this at the end of Sec. III E for the bcc and sc
lattice. On the other hand, in the antiferromagnetic case, χ (β )
only presents a weak singularity if there is a finite-temperature
phase transition. Because of this, it is usually better to use
the HTSEs of the susceptibility associated with the magnetic
order, which has to be calculated for each lattice. Except for
the fcc and pyrochlore lattices, all the lattices mentioned above
are bipartite, and thus the corresponding susceptibility is the
susceptibility associated to a staggered magnetic field [8].
For the fcc and pyrochlore lattices, or any other nonbipartite
lattice, the existence and nature of a phase transition in the an-
tiferromagnetic case is not trivial [31–35]; and, therefore, the
definition of the susceptibility related to the order parameter
is more complicated. It should also be mentioned that only
χ (β ) associated to an uniform magnetic field is accessible
experimentally.

A. Dlog Padé method applied to χ(β)

We use first the Dlog Padé method on χ (β ), which is the
standard method to obtain the values of Tc and the critical
exponent γ from HTSEs [7,9]. The results are shown in Fig. 1
for the ferromagnetic Heisenberg model on the fcc, bcc, sc,
pyrochlore, and ssc lattices. Taking into account all the poles
βi of the Padé approximants of the logarithmic derivative of
χ (β ), we define the density of poles as a sum of Gaussian
distributions,

N (β ) =
∑

i

e− 1
2

(
βi−β

σ

)2

(14)

where σ = 0.0002 for the first three lattices and σ = 0.005
for the latter. For each lattice, we use the poles from the four
highest orders in the corresponding HTSE.

The fcc lattice has the highest coordination number Z = 12,
and the highest critical temperature (smallest βc) of all lattices

1.39 1.41 1.43 1.45 1.47 1.49
γ

0

9

18

27

36

N

γ = 1.428(10) RG
total
fcc
bcc
sc
pyrochlore
ssc

FIG. 2. Density of residues (γ ) from the Dlog Padé method on
χ (β ) for the ferromagnetic case on the fcc, bcc, sc, ssc, and py-
rochlore lattices as a function of γ . For each lattice, we use the four
highest orders. The dashed line indicates the result from field theory
renormalization group [14,15].

studied. As a consequence, the HTSE exploitation leads to
high-quality results, even though the large Z limits the highest
order n that can be reached. We can see from Fig. 1 that the
values of βc are concentrated around a well-defined value,
βc = 0.4982(2), in agreement with the previous calculations
with the same method [7,10]. For the bcc lattice (Z = 8) we
get βc = 0.7937(2), and for the sc lattice βc = 1.1926(2),
both of which agree with previous results [7]. For the py-
rochlore lattice we obtain βc = 1.39(1). This last value is
larger than in the sc lattice even though they both have the
same coordination number. It has been argued that this is
caused by the contribution of antiferromagnetic states to the
partition function, which is more important in the pyrochlore
than in the sc lattice [11,36]. Due to frustration, the energy
difference between ferro- and antiferromagnetic states in the
pyrochlore lattice is less than in the sc lattice. Finally, for the
ssc lattice, the poles are too scarce and scattered to extract
accurate values of βc (lower peaks in Fig. 1 while using a
higher σ ). This is not surprising in the case of the ssc, even at
orders as high as 20: because of the low coordination number
Z = 3, βc is large and the system is close to the limit Z = 2
(where the system can be mapped into a 1D chain, with no
singularity at finite temperatures).

From the residues, we can calculate the value of the crit-
ical exponent γ . Since all five lattices belong to the same
universality class, γ is the same and thus we gather all the
results in Fig. 2. In this case, we use Eq. (14) with βi → γi

and σ = 0.004. As can be seen in the figure, the residues
from the pyrochlore and ssc lattices do not contribute signif-
icantly to the final result. In total we get γ = 1.428(10), in
agreement with previous results [7,10]. This is different from
the renormalization group value, γ = 1.3895(50) [14,15], see
dashed line in Fig. 2. It was proposed that this discrepancy
comes from the low order of the HTSE and that higher orders
might bring the numbers closer together, as it happens for
the Ising model [7,9,37]. However, the present inclusion of
higher orders does not seem to point in that direction. This is
indicating that a lot more orders would be needed to see an
appreciable shift toward the renormalization group value.
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FIG. 3. Poles and residues from the Dlog Padé method on χ (β )
for the ferromagnetic case on the fcc, bcc, sc, ssc, and pyrochlore
lattices as a function of (β − βc )/βc. The inset shows the poles and
residues for the pyrochlore lattice.

So far, βc and γ have been obtained from standard meth-
ods, albeit with more orders. Alternatively, we can use our
knowledge of γ to get βc (see Fig. 3). In the Dlog Padé
method, each Padé approximant provides a singularity at a
given β, and its residue gives the value of the critical expo-
nent. In practice, these couples of β and γ are not randomly
scattered and, instead, fall over a monotonic increasing func-
tion. Larger values of β are accompanied by larger values
of γ . In the end, for all lattices, the residues from Fig. 1
plotted versus their poles β from Fig. 2 can be plotted, and the
intersection with γ 	 1.4 gives an approximation of βc. Thus,
with a correct choice of βc, the residues versus (β − βc)/βc

should collapse on lines crossing at the universal γ for all lat-
tices. Surprisingly, the lines of the fcc, bcc, sc, and pyrochlore
lattices present similar slopes, whereas it is smaller for ssc.
The ssc line gives residues at γ for βc = 4.20(5) (see Fig. 3).
The behavior of these lines could help to determine critical
values when the points do not accumulate near a single point
(βc, γ ), as in the ssc lattice.

Another alternative is to use the diagonal Dlog Padé
method as presented in Ref. [13]. In this method, the Padé
approximants of the inverse logarithmic derivative of χ are
calculated, and only those with the same order in the de-
nominator and numerator (the diagonal ones) are taken into
account. Estimates of βc are then obtained from the least
positive root of the numerator (unless it is also a root of
the denominator). These values converge when the order n
increases, as illustrated for the pyrochlore and ssc lattices in
Table II. In the case of the pyrochlore, we obtain βc = 1.39(1)
in agreement with our previous results. However, for the ssc
lattice we get a more precise estimate βc = 4.20(1).

TABLE II. Diagonal Dlog Padé results for βc for the ferromag-
netic case on the ssc and pyrochlore lattices.

n 8 10 12 14 16 18 20

pyrochlore 1.314 1.408 1.380 1.394 1.394
ssc 5.043 4.343 4.359 4.351 4.206 4.209 4.202

B. Dlog Padé method applied to cv (β)

So far, βc and the critical exponent γ have been determined
using the ferromagnetic susceptibility, which presents a strong
singularity. The problem with relying on χ is that it depends
on the order parameter, which is not generally known. Even
in cases where it is known, like for antiferromagnetic models
(J > 0) presenting a phase transition (bipartite lattices), new
HTSEs for the antiferromagnetic staggered susceptibility χAF

have to be calculated in order to see a strong singularity [8],
which is computationally expensive. On the other hand, other
thermodynamic functions such as the specific heat cv (β ) and
the entropy s(β ) are always indicative of a phase transition,
and ferro- and antiferromagnetic models are connected by
the transformation β → −β. So the advantage is that no new
HTSEs have to be calculated. However, there is also a disad-
vantage. In these functions, the ferro- and antiferromagnetic
singularities coexist on the HTSE and are always present on
the positive and negative β axis. Keeping this in mind, we
now try to characterize a phase transition in the universality
class of the Heisenberg 3D model, but without knowing the
order parameter (i.e., χ ): for this, we now focus on the cv (β )
function.

Since cv behaves as B − A(βc − β )−α with −1 < α < 0
close to βc, the Dlog Padé method cannot be used directly
(the logarithmic derivative of cv does not have a simple pole
at βc). However, the Dlog Padé method can be used on cv − B.
Doing so provides a good number of poles near the accepted
βc. As B is a priori unknown, we can select its value such
that we get the highest quality of results and then deduce α.
The issue is that there is a wide range of B values that give
high-quality results. However, this method allows us to obtain
a well-defined dependency between the height of the peak B
and the critical exponent α. The resulting B(α) is displayed in
Figs. 6 and 7 below, together with our interpolation method
results.

C. Dlog Padé method applied to χ(e)

Finally, we can also study the singularity in χ (e), where e
is the energy per site. To determine the type of singularity of
this function at the transition, occurring at the critical energy
ec, we start from the singularity in cv , which can be rewritten
as

cs
v (β ) = B − Ã
T −α, (15)

where Ã = A/T −2α
c and 
T = T − Tc. By integration, we get

that close to the critical point


e = B
T + Ã

1 − α

T 1−α + o(
T 1−α ), (16)

where 
e = e − ec. To get information on the singularity in
χ (e) we need the inverse 
T (
e). Since α is negative, the
leading order is in 
T . Then


T = 
e

B
− Ã

(1 − α)B2−α

e1−α + o(
e1−α ). (17)

Keeping only the leading order and knowing that χ s(T ) ∝

T −γ leads to the simple result that χ s(e) ∝ 
e−γ , and the
Dlog Padé method should give ec as pole and γ as residue.
However, taking into account that α is between −0.1 and
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FIG. 4. Density of poles from the Dlog Padé method on χ (e) for
the ferromagnetic model. Results are shown as a function of e − ec,
where ec is the value at which there is a peak. For each lattice, poles
from HTSEs at orders from n − 3 to n are used, where n is given in
Table I.

−0.2, the second leading term has similar order compared to
the leading term. The quotient between both terms depends on

e−α . This corresponds to a cusp-like singularity that reaches
0 only at the critical energy 
e = 0. For example, using
typical values of A, B, and Tc on the fcc lattice, this quotient
is about 1 when 
e = 1 and about 0.25 when 
e = 0.0001.
In conclusion, only singularities at 
e = e − ec = 0 exist, but
the simple pole assumption is valid only infinitesimally close
to the critical point and therefore the HTSEs are not able to
represent it accurately. Thus, the Dlog Padé method can be
used to obtain values for ec from the poles, but the residues
cannot capture the values of γ or α.

From the HTSEs of β f (β ) and of χ (β ) at order n, we
obtain the series of χ (e) at order n − 1 [because the series
of e(β ) are of order n − 1]. Then we use the Dlog Padé
method on χ (e) and obtain the critical energies for all lat-
tices in the ferromagnetic case (see Fig. 4). We use Eq. (14)
with e (instead of β) and σ = 0.01 for the fcc, bcc, sc, and
pyrochlore lattices, and σ = 0.001 for the ssc lattice. We find
ec = −0.87(1) for the fcc (∼58% of the ground-state energy),
ec = −0.61(1) for the bcc (∼62%), ec = −0.52(1) for the
sc (∼70%), ec = −0.57(1) for the pyrochlore (∼76%), and
ec = −0.302(1) for the ssc (∼81%). Contrary to the χ (β )
case, the method on χ (e) works notably better for the ssc
lattice than for the rest. The pyrochlore lattice has a noticeably
lesser amount of poles around ec. The reason is again that this
lattice is not bipartite, and the antiferromagnetic solutions on
the positive e axis are frustrated. This leads to a large number
of poles appearing in the positive e axis at values e∗ < |ec|.
Finally, the residues are different for all lattices, indicating a
dependency on nonuniversal quantities such as A, B, and Tc.
As was expected from our previous analysis, α or γ cannot be
extracted.

D. Z = 2 limit

We summarize our results obtained with the Dlog Padé
method for fcc, bcc, sc, pyrochlore, and ssc lattices in Fig. 5.
We plot the critical temperature Tc extracted from χ (β ),
together with the difference between the critical energy ec

0

1

2

T
c

fcc

bcc
sc

pyrochloressc

0 2 4 6 8 10 12
Z

−1.0

−0.6

−0.2

e 0
−

e c sc

pyrochlore

FIG. 5. Critical temperature Tc (top panel) and the difference
between the ground-state and critical energies e0 − ec (bottom panel)
as a function of the coordination number Z for the ferromagnetic
model on the fcc, bcc, sc, ssc, and pyrochlore lattices obtained from
the Dlog Padé method on χ . We also show the interpolation between
the sc and ssc lattices by using an effective Z (see main text).

extracted from χ (e) and the ground-state energy e0 (known
exactly for the ferromagnetic case), as a function of the coor-
dination number Z . Both Tc and ec show a linear behavior with
respect to Z , and Z = 2 is a critical point for the finite temper-
ature transitions in 3D ferromagnets [13], corresponding to a
one-dimensional chain, characterized by Tc = 0 and ec = e0.
To get more points, we define the sc-ssc model, interpolating
between sc and ssc lattices (for which we have the HTSEs up
to order n = 13), with two types of links on the cubic lattice

H = J1

∑
〈i j〉

Si · S j + J ′
1

∑
〈i j〉′

Si · S j (18)

in such a way that when J1 = J ′
1 = 1 we have the sc lattice.

When J1 = 1 and J ′
1 = 0 (or vice versa), the Hamiltonian

becomes that of the ssc lattice. We also know that the co-
ordination number goes from Z = 3 at J ′

1 = 0 to Z = 6 at
J ′

1 = 1, so we can define an effective coordination number
Zeff(J ′

1) = 3(J1 + J ′
1) such that e0 is proportional to Zeff. The

discrepancies between pentagons and circles of Fig. 5 at Z =
3 and 6 (more visible for the energies) are due to different
HTSE orders (13 for the sc-ssc lattice, and 17 and 20 for the
sc and ssc, respectively). In addition, we also continued our
calculations for the frustrated case J ′

1/J1 < 0 and found that
Tc vanishes for (J ′

1)c = −0.15(3)J1.

E. Interpolation methods for cv (β)

The interpolation methods IM1 and IM2 presented in
Sec. II B for cv (β ) have a three dimensional parameter space:
(βc, A, α) and (βc, B, α) for IM1 and IM2, respectively. It
is one more than the similar method used for logarithmic
divergencies [28], which does not have to determine a critical
exponent. Exploring the whole parameter space is thus time
consuming, so it is convenient to rely on other methods to
narrow down some of the dimensions. In this sense, the Dlog
Padé method on χ studied in Sec. III A provides accurate
values for the inverse critical temperature βc. Thus, we leave
this parameter fixed. Regarding the value of α, we know that
the renormalization group value is −0.122(10) [15], while
indirect estimations from HTSEs throw out values up to
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FIG. 6. Top panel: Values of the singularity parameters A and
B as a function of α for the ferromagnetic case on the fcc lattice
obtained from the two interpolation methods IM1 and IM2. We show
the results for the three highest orders of the HTSE of cv . The
pink dots are the results obtained with the Dlog Padé method on
cv (β ) − B. Bottom panel: The quality Q [see Eq. (9)].

−0.200(15) [10]. So, for this parameter, we will search in the
range [−0.05,−0.30] at 0.01 intervals. For each value of α

we search for the best value of A or B (for IM1 or IM2) in a
range from 0.1 to 9, at 0.002 intervals. This step must be small
since the peaks in Q(A) for a given α and βc tend to be very
narrow.

Figure 6 shows the A and B values depending on the
choice of α, obtained through IM1 and IM2, for the fcc lat-
tice, together with the Dlog Padé method results on cv − B,
discussed in Sec. III B. The results for A and B show a good
convergence with the HTSE order (especially at higher values
of α). Furthermore, there is a good agreement between all
three methods. Let us recall that IM1 and IM2 remove the
singularity by subtracting and dividing, respectively, such that
for IM1, A is a fitting parameter and B is a byproduct. For IM2
it is the other way around. The quality Q takes high values
throughout all the α range: over 80% of Padé approximants
coincide past βc [up to (1 + δ)βc]. Even though there is a
tendency to higher Q values for α closer to 0, it is not possible
to pick one good value for α, even choosing more restricting
values for the Q parameters, δ, and ε.

For the bcc lattice, Q is between 0.7 to 0.9, whereas on
the sc lattice, goes from 0.5 to 0.7 as α gets closer to zero.
However, having half of the Padé approximants down to Tc

is still a very good solution, since none of them are the same
at that point when taking the raw HTSE. Also, these lattices
show a convergence of the A and B values with the HTSE
order n that is similar to the fcc lattice, using IM1 and IM2. A
and B values for the highest HSE order are given in Fig. 7 for
the fcc, bcc, and sc lattices. For all lattices, IM1 and IM2 give
similar results, especially in the case of B. Differences only
show up for A at values of α far from 0. We obtained higher
values for A and B than those in the literature using HTSEs
[6,7]. However, the latter were calculated by fitting the Padé
approximants of the raw cv-HTSEs with the critical behavior
from Eq. (6) in a small range β < 0.96 βc.

α
1

2

3

4

A

IM1 fcc
IM2 fcc

IM1 bcc
IM2 bcc

IM1 sc
IM2 sc

−0.30 −0.25 −0.20 −0.15 −0.10 −0.05
α

1

2

3

B

Dlog fcc Dlog bcc Dlog sc

FIG. 7. Values of the nonuniversal parameters A and B as a func-
tion of α for the ferromagnetic model on the fcc, bcc, and sc lattices;
using only the highest order in the HTSEs. Results obtained with
IM1 and IM2 are shown with full and dashed lines, while symbols
correspond to the Dlog Padé method on cv (β ) − B.

Another interesting feature is that the values of B (the
peak height) are very similar for the three lattices, while the
values of A seem to change slowly as the coordination number
Z changes. A similar thing happens with the parameters of
the singularities on Ising models on 2D, where the values
are very similar but not universal in different lattices [28].
For the pyrochlore lattice, Q takes lower values, between 0.3
and 0.4. However, we can still extract values of A and B.
They are smaller than in the sc lattice, even though both have
the same coordination number Z . Taking these four lattices,
A and B decrease as Tc decreases. When Z = 2 there is no
finite-temperature phase transition, so it might be interesting
to see how this limit is reached in terms of A and B. Finally,
for the ssc lattice, no clear peak can be determined.

Even though it is not possible to determine the critical
exponent α with these methods, we obtain well-defined func-
tions for A(α) and B(α). Thus, we can reconstruct cv above
Tc for a supposed value of α. Using the reconstructed cv to
calculate the critical energy ec by integration, which depends
on the parameters, one could attempt to determine α by com-
paring with the Dlog Padé results. For the fcc lattice, the
values of ec go from −0.860(−0.857) to −0.867 (−0.867) for
IM1 (IM2) as α changes from −0.3 to −0.05. Again, higher
values of α show a better agreement between methods. These
values, summed up as ec = −0.862(5), are in agreement with
the Dlog Padé estimation from the previous section [ec =
−0.87(1)]. Unluckily, the Dlog Padé method does not offer
sufficiently precise values of the energy and the function ec(α)
obtained by integration changes very little. So that in the end,
it is not possible to use this extra information to determine
the value of α, which remains elusive. The same happens
for all the remaining lattices. For the bcc lattice we get
ec = −0.607(3), in agreement with our Dlog Padé result ec =
−0.61(1). For the sc lattice ec = −0.511(2), in agreement
with ec = −0.52(1) from the Dlog Padé method. Finally, for
the pyrochlore we get ec = −0.578(3), in agreement with
ec = −0.57(2) obtained from the Dlog Padé method.
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FIG. 8. Reconstructed cv from the two interpolation methods for
the ferromagnetic case on the fcc, bcc, sc, and pyrochlore lattices.
We show the results for two different values of α. The inset shows a
zoom for the fcc lattice close to the critical temperature.

The critical entropy can also be obtained by integration. Let
us start with the sc lattice, for which we obtain sc = 0.402(1),
where sc = 0.401 for α = −0.1 and sc = 0.403 for α = −0.2
with both interpolation methods. In this case, it is possible
to benchmark with QMC results, which give sc = 0.401(5)
[38]. All of our sc values are in agreement with QMC while
showing a slightly better precision. Also, it is not possible
to decide on α from this calculation. For the bcc lattice, all
of our results are within sc = 0.435(1). For the fcc lattice
we get sc = 0.443(1). Finally, for the pyrochlore, we obtain
sc = 0.353(2). All in all, we can see that the critical entropy
decreases with the coordination number, as does the critical
temperature. However, contrary to the results shown in Fig. 5
for the critical temperature and e0 − ec, the critical entropy sc

does not show a linear behavior towards 0 at Z = 2.
We show in Fig. 8 the reconstructed cv for the four lat-

tices (fcc, bcc, sc, and pyrochlore) using the best values of
A and B at the accepted βc for two limiting values of α,
−0.2 and −0.1. Both methods give the same curves, and the
differences between the two values of α can only be seen
very close to the corresponding critical points (see inset for
fcc) through a very different value of the peak height B, as
can be seen in the previous figures of B(α). However, this
issue only exists at exactly the critical temperature, so it does
not affect the comparison with experimental results since the
sharp theoretical peaks with divergent slopes at the critical
point cannot be captured by experiments in real compounds
[18,39–42]. To sum up, we have a good precision for every
temperature above the critical temperature Tc obtained from
finite high-temperature series expansions. Thus, this method
extrapolates the specific heat from HTSE down to almost
the critical temperature for the phase transitions of several
ferromagnetic Heisenberg models.

As we mentioned earlier, the advantage of using cv instead
of χ resides in the possibility of studying both ferro- and
antiferromagnetic models with the same HTSE. In Fig. 9 we
show results obtained for the antiferromagnetic sc and bcc
lattices. For these calculations, since one wants to avoid using

2
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4
5
6
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1.0

Q

sc

bcc IM1

bcc

0.8 0.9 1.0 1.1
Tc
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4
5
6

B

sc IM2

1.2 1.3 1.4 1.5
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bcc IM2
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0.2
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0.6

0.8

1.0

Q

FIG. 9. Interpolation method results for cv (β ) for the antiferro-
magnetic model on the sc (left) and bcc (right) lattices. The quality
of results Q is shown in color scale in a region of the parameter space
defined by Tc and A or B. The critical exponent α is set to −0.12. The
quality Q as a function of Tc is shown in the top panels, in blue and
orange for IM1 and IM2, respectively. Dashed black lines indicate
QMC results [43,44].

data for χ (β ), we calculated Tc by fixing α = −0.12, close
to the field theory result. However, the critical temperature
is not very sensitive to this constraint, at least within the
range of values reported in the literature. In the top panels
of Fig. 9 we show the values of Q as a function of Tc obtained
from the color plots. For both lattices, there is a well-defined
region of parameters with high Q, meaning that almost all
Padé approximants coincide down to the critical temperature.
Also, these regions of high Q agree well with QMC results,
indicated by the dashed black lines [43,44]. For the sc lat-
tice we get Tc = 0.93(2), in agreement with the QMC result
Tc = 0.946(1) [43]. For the bcc lattice we get 1.38(4), in
agreement with the QMC result Tc = 1.377(2) [44]. We can
also take the best values from each interpolation method to
reconstruct cv for the antiferromagnetic cases and calculate
the critical energies and entropies. For the sc lattice, we get
ec = −0.66(1) and sc = 0.331(5). The latter is slightly lower
than the QMC result, sc = 0.341(5) [38], but still fairly close.
For the bcc lattice we get ec = −0.73(1) and sc = 0.393(5).

F. Interpolation method for χ(β)

Finally, we apply the interpolation method IM2 to the
ferromagnetic χ (β ) (as explained in Sec. II C for diver-
gent singularities). The parameter space is two-dimensional
{βc, γ }, and the region of high-quality values is narrow so both
parameters have to be calculated using a fine mesh.

Figure 10 shows the quality Q as a function of βc and γ

for the fcc, bcc, sc, and pyrochlore lattices. We also show in
white circles the results from the poles and residues obtained
from the Dlog Padé method. For all lattices, the poles and
residues are concentrated around the large Q region from IM2,
and reciprocally, the higher Q values are obtained close to
the line of poles and residues from the Dlog Padé method.
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FIG. 10. Interpolation method IM2 results for χ (β ) for the ferro-
magnetic case on the fcc, bcc, sc, and pyrochlore lattices. The quality
of results Q is shown in color scale in a region of the parameter space
{βc, γ } close to the best values. White circles indicate the poles and
residues from the Dlog Padé method.

This illustrates a close connection between both methods.
Specifically, the fcc lattice presents Q = 1.00 around βc =
0.4981(2) and γ = 1.422(2), the bcc lattice presents Q =
0.93 for βc = 0.7938(2) and γ = 1.420(3), the sc lattice
presents Q = 0.64 for βc = 1.1935(10) and γ = 1.44(1). All
of these are in agreement with the Dlog Padé results. For the
pyrochlore and ssc (not shown) lattices, the results are not
so clear. The pyrochlore lattice has a large cloud of values
Q = 0.41(1) along a well-defined line around βc = 1.382(5)
and γ = 1.36(3). However, the diagonal Dlog Padé results lie
closer to the endpoint of this cloud. For the ssc lattice, there
are just a few points around Q = 0.23(2) with βc = 4.20(2)
and γ = 1.35(2), but the quality is too low to consider them
reliable.

IV. CONCLUSIONS AND PERSPECTIVES

We have studied the finite-temperature phase transition that
occurs in ferromagnetic quantum Heisenberg models on 3D
lattices by using several methods derived from the HTSEs.
We used the standard Dlog Padé method and estimated βc and
γ of the fcc, bcc, sc, pyrochlore, and ssc lattices. For some
of them, results are given for larger orders of HTSEs than in
the previous papers. However, the discrepancy in γ between
field theory’s renormalization group for the classical case and
the HTSEs results for the quantum case is still present. Also,
no convergence towards the classical values is observed, and
this remains an open question. We have also explored possi-
ble extensions of these methods. While standard calculations
involve χ (β ), we have obtained the critical energy ec using
χ (e). We also used the Dlog Padé method on cv (β ) − B [with
B = cv (βc)] to obtain B(α).

Then we presented interpolation methods to obtain cv (T )
and χ (T ) for T > Tc. These methods are efficient for the fcc,

TABLE III. Summary of results for βc, ec, and sc obtained in this
article for the ferromagnetic Heisenberg model on the fcc, bcc, sc,
pyrochlore (pyro), and ssc lattices. DLP stands for Dlog Padé method
and IM for the interpolation method.

βc ec sc

Lattice DLP IM DLP IM IM

fcc 0.4982(2) 0.4981(2) –0.87(1) –0.862(5) 0.443(1)
bcc 0.7937(2) 0.7938(2) –0.61(1) –0.607(3) 0.435(1)
sc 1.1926(2) 1.1935(10) –0.52(1) –0.511(2) 0.402(1)
pyro 1.39(1) 1.382(5) –0.57(2) –0.578(3) 0.353(2)
ssc 4.20(1) 4.20(2) –0.302(1)

bcc, and sc lattices, but less for the pyrochlore and ssc lattices.
For cv (T ), we are not able to get a precise value of the critical
exponent α, but the methods provide accurate relationships
between the three important parameters at the singularity, A,
B, and α. Thus, if any of them is known, the other two can be
deduced. We have also shown that the interpolated cv (T ) has
a very small dependence on α as soon as T is slightly above
Tc, the main difference being in the value of the peak at Tc.
This allowed us to obtain accurate results of the critical energy
ec and critical entropy sc for most lattices studied. The main
advantage of the method is that it can be directly applied to
antiferromagnetic cases without the need of calculating a new
HTSE. To show this, we applied both interpolation methods
to the bcc and sc lattices, and obtained results in agreement
with QMC for Tc and sc. Finally, we applied the interpolation
method to obtain χ (T ) above Tc, obtaining reliable values of
Tc and γ .

In conclusion, we have probed several different methods
based on HTSEs to study finite-temperature phase transitions.
These methods allowed us to obtain accurately several quan-
tities related to the critical points, such as critical exponents,
critical temperatures, and parameters related to the singulari-
ties. As a summary, we present the main numerical results in
Tables III and IV, where DLP stands for the Dlog Padé results
and IM stands for the interpolation method. The results shown
for A are obtained with IM, while the ones for B cover both
IM and Dlog Padé results. It is important to note that even
if we have approached only the ferro- and antiferromagnetic
Heisenberg models on the most common lattices without frus-
tration, these methods are suitable for studying any kind of
system with the same type of phase transitions.

TABLE IV. Summary of results for γ , A, and B obtained in this
article for the ferromagnetic Heisenberg model on the fcc, bcc, sc,
pyrochlore (pyro), and ssc lattices. DLP stands for Dlog Padé method
and IM for the interpolation method.

γ α = −0.1 α = −0.2

Lattice DLP IM A B A B

fcc 1.426(2) 1.422(2) 3.25(5) 2.90(5) 2.41(5) 1.74(3)
bcc 1.419(2) 1.420(3) 3.10(5) 2.85(5) 2.17(6) 1.71(2)
sc 1.433(3) 1.44(1) 2.71(3) 2.62(5) 1.80(3) 1.56(3)
pyro 1.36(3) 2.15(15) 2.1(1) 1.33(3) 1.22(3)
ssc 1.35(2)
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APPENDIX: HTSEs FOR THE S = 1/2 MODELS

In Tables V–VIII we present the complete list of coefficients for the HTSEs of β f and χ , where the new ones are in bold
numbers. These are written in terms of Eq. (3) where nu = 1 for the fcc, bcc, and sc lattices; nu = 4 for the ssc and pyrochlore
lattices.

TABLE V. Coefficients an corresponding to β f as defined in Eq. (3) for the fcc, bcc, and sc lattices.

an fcc bcc sc

1 0 0 0
2 18 12 9
3 −108 24 18
4 180 168 −162
5 5040 −1440 −2520
6 162000 24480 33192
7 −14565600 297024 1019088
8 563253408 28017216 −7804944
9 −17544639744 533681664 −723961728
10 750412309248 41156316672 2596523904
11 −56646776913408 503287538688 856142090496
12 4973976625190400 53001415916544 6383648984832
13 −421817449494804480 1839416689004544 −1356696930401280
14 246102905022713856 −27667884260938752
15 9001661201883684864 2908030732698175488
16 122264703581556307968
17 −7238339805811283361792

TABLE VI. Coefficients bn corresponding to χ as defined in Eq. (3) for the fcc, bcc, and sc lattices.

bn fcc bcc sc

1 −6 −4 −3
2 120 48 24
3 −3312 −832 −264
4 117360 18400 3960
5 −5104416 −504384 −74928
6 263405088 16313280 1584624
7 −15717292800 −610699520 −38523264
8 1063892512512 25867292160 1115604864
9 −80532234584064 −1229543182336 −35969253888
10 6741740335372800 64541249655808 1223162767104
11 −618536855295817728 −3716345369001984 −46443134693376
12 61718837768472705024 232442811396567040 1997899947119616
13 −6654017125619285385216 −15728092831910068224 −90256082576916480
14 1142407619109235630080 4221503453720782848
15 −88805626440393148956672 −220236945885669801984
16 12562562473105938481152
17 −722105535259151290073088
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TABLE VII. Coefficients an corresponding to β f as defined in Eq. (3) for the pyrochlore and ssc lattices.

an pyrochlore ssc

1 0 0
2 36 18
3 −72 36
4 −1656 −324
5 18720 −3600
6 340704 20592
7 −11342016 788256
8 −99460800 −267552
9 11144157696 −292582656
10 −43247015424 −2338428672
11 −15542133488640 158857763328
12 359762974166016 3398565523968
13 26719647518453760 −111431579830272
14 −1532961802218000384 −5116416515020800
15 −44591351194841260032 83476825611595776
16 6653104879154138357760 9038092645962510336
17 −8491904138175731859456 −20724045060052942848
18 −18839898190998133604352
19 −253691725481243238334464
20 45155117370822689756676096

TABLE VIII. Coefficients bn corresponding to χ as defined in Eq. (3) for the pyrochlore and ssc lattices.

bn pyrochlore ssc

1 −12 −6
2 96 12
3 −816 12
4 8160 240
5 −148992 −5136
6 3879744 −40224
7 −81019776 778464
8 990764544 22859520
9 −15165570048 −183876864
10 1661765784576 −15637820928
11 −97979429505024 −30648860160
12 1761563239919616 14373541840896
13 85410304429842432 215523347675136
14 −1996581576629084160 −16345519886733312
15 −507546664875986436096 −572943639086174208
16 35052604281755859025920 20821759189681766400
17 1524898473896350777344
18 −22745675831893506785280
19 −4446640583932914089459712
20 −17616386456676250248806400
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