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Transport in a periodically driven tilted lattice via the extended reservoir approach:
Stability criterion for recovering the continuum limit
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Extended reservoirs provide a framework for capturing macroscopic, continuum environments, such as
metallic electrodes driving a current through a nanoscale contact, impurity, or material. We examine the
application of this approach to periodically driven systems, specifically in the context of quantum transport.
As with nonequilibrium steady states in time-independent scenarios, the current displays a Kramers’ turnover
including the formation of a plateau region that captures the physical, continuum limit response. We demonstrate
that a simple stability criteria identifies an appropriate relaxation rate to target this physical plateau. Using
this approach, we study quantum transport through a periodically driven tilted lattice coupled to two metallic
reservoirs held at a finite bias and temperature. We use this model to benchmark the extended reservoir approach
and assess the stability criteria. The approach recovers well-understood physical behavior in the limit of weak
system-reservoir coupling. Extended reservoirs enable addressing strong coupling and nonlinear response as
well, where we analyze how transport responds to the dynamics inside the driven lattice. These results set
the foundations for the use of extended reservoir approach for periodically driven, quantum systems, such as
many-body Floquet states.
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I. INTRODUCTION

Quantum transport plays a central role in spectroscopy
for many-body quantum systems, from superconducting and
hybrid interfaces [1–3] to quantum dot arrays [4–8] to cold
atoms [9,10]. Transport can also serve as a probe of time-
dependent states, such as time crystals within interacting,
driven, dissipative quantum systems [11,12]. Yet, transport
properties are challenging to compute and become even more
so for time-dependent driving.

We study the use of the extended reservoir approach
(ERA) (see Ref. [13] for an overview) in obtaining trans-
port characteristics for time-dependent transport. ERA is a
rapidly developing area of research that employs a finite
collection of reservoir modes to represent the continuum
environment, including environments of many-body sys-
tems [14–22]. To do so, ERA modes must be relaxed by
external, implicit environments. However, one of the most
useful flavors of ERA employs Markovian relaxation [23].
While being more computationally tractable, this relaxation
breaks the fluctuation-dissipation theorem [23–25], which is
only restored in an appropriate limit. The discreteness of the
reservoirs also introduces anomalous virtual tunneling [26].

*jakub.zakrzewski@uj.edu.pl
†mpz@nist.gov
‡marek.rams@uj.edu.pl

These make the accurate calculation of transport properties a
delicate limiting process, where one has to break (artificial)
symmetries of the discrete model, identify an appropriate (a
moderate) relaxation rate, and ensure the simulation is con-
verging in a manner consistent with physical principles and
continuum physics.

We demonstrate how this process plays out for time-
dependent systems. These systems can introduce artificial
resonances into the setup. As a model, we consider a peri-
odically driven tilted lattice, the closed version of which is
well studied in optical systems [27–29]. Without driving, such
a lattice exhibits Wannier-Stark localization for large enough
tilts [30–32] and transient Bloch oscillations [33]. Introducing
interactions may result in rectification, as recently discussed
for transport induced by Markovian reservoirs [34]. Driving
can lead to resonance-induced transport, or obstruct transport
in other scenarios, in well-studied limiting cases [35].

When simulating this model with a finite collection of
(relaxed) reservoir modes, i.e., the ERA approach, artificial
resonant states can form across the reservoir-system-reservoir
setup. These impart anomalous behavior to the current in
a way that is a priori more difficult to recognize than for
equivalent time-independent models. Avoiding this anomaly
requires a larger relaxation rate than typical approaches em-
ploy or an additional averaging procedure. We show how
a stability criteria identifies this rate and then use this ap-
proach to study the physical behavior of the driven, tilted
lattice.
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This paper is organized as follows: Section II outlines the
general transport framework, which can include both impurity
and extended systems. We also introduce the periodically
driven tilted lattice. Section III summarizes the extended
reservoir approach with Markovian relaxation, as well as
presents and assesses the stability criteria to target a physical
relaxation rate. Section IV applies the approach to driven
systems, as well as connects the results to closed systems for
weak coupling, presents other validation procedures, and goes
beyond linear response. We conclude in Sec. V.

II. TRANSPORT FRAMEWORK AND MODEL

While much of what we develop is applicable to open
quantum systems generally, such as those in the presence
of a dissipative bosonic environment, we focus on quantum
transport in this work and specifically on transport through
a periodically driven fermionic system. In this section, we
first introduce the transport framework and then the particular
model we study.

A. Quantum transport

The typical setup for transport has two macroscopic, i.e.,
continuum, reservoirs that connect to each side of a system.
For time-independent scenarios, a finite bias (or temperature
drop) across the reservoirs drives the system out of equilib-
rium and results in a current flow. Time-dependent systems
can have richer behavior, as a, e.g., periodic drive can pump
energy into the system and currents can flow even in the
absence of an external bias.

When the system (and system only in this work) can be
time dependent, the general Hamiltonian is

H (t ) = HS (t ) + HL + HR + HI . (1)

The system S’s Hamiltonian, HS (t ), is the region between the
two reservoirs L and R. In addition to having time depen-
dence, this region generally will have many-body interactions,
such as electron-electron or electron-vibration interactions. In
this work, we will have only a quadratic system Hamiltonian
in order to benchmark the ERA without additional complica-
tions. The method we present ultimately aims at interacting
models where the exact solution is not available. We can,
however, develop a good understanding of ERA based on fully
noninteracting models where exact reference solutions exist.
Since we address issues with the reservoir representation, we
expect our findings immediately generalize to many-body S
in contact with the same reservoirs.

Whether for many-body or noninteracting S , the two reser-
voirs are both continuum, noninteracting metallic reservoirs.
The Hamiltonians are

Hα =
∑
k∈α

ωkc†
kck (2)

for the α = L,R reservoirs, where ωk is the frequency of the
single-particle eigenstate k ∈ α. We note that all Hamiltonians
in this work are in terms of frequencies. The last contribution,
HI , is the interaction between S and LR, which we take to be

quadratic hopping only,

HI =
∑

k∈LR

∑
i∈S

(vkic
†
kci + vikc†

i ck ), (3)

with vki = v∗
ik . This HI is the typical paradigm whether S is

noninteracting or many body. The c†
m (cm) are the fermionic

creation (annihilation) operators for mode m. The index m
carries all necessary mode labels, such as frequency, spin, and
region (L, S , or R). We will use k’s (l’s) and i’s ( j’s) to
indicate single-particle eigenstates of LR and spatial modes
of S , respectively.

For noninteracting reservoirs coupled linearly to the sys-
tem with the number-conserving interaction in Eq. (3), the
behavior of the setup is determined by the reservoirs’ spectral
functions

Jα (ω) = 2π
∑
k∈α

|vk〉〈vk|δ(ω − ωk ), (4)

for α = L,R. The Jα (ω) is a square matrix of size equal to
the number of sites in the system S . To keep the notation
compact, we use a coupling vector |vk〉 between mode k ∈ LR
and all sites i ∈ S , i.e., 〈i|vk〉 = vik . The general aim of ERA
is to recover the macroscopic limit via a finite number of
broadened reservoir modes within the reservoir bandwidth W .
These modes must capture all relevant features encoded in
the continuum Jα (ω), as well as how that spectral density is
populated according to the Fermi-Dirac distribution.

We are most interested in the particle current in a Floquet
state that has a periodic drive in the presence of a bias in the
reservoirs’ chemical potentials μL and μR. When taken at the
L and S interface, this current is

ILS (t ) = 2 Im
∑
k∈L

∑
j∈S

v jk〈c†
j ck〉t

, (5)

where 〈·〉t indicates the quantum mechanical average at time
t . The current has a similar form at the other interfaces, all
following from continuity equations. Since the Hamiltonian
in Eq. (1) conserves total particle number, the current follows
from considering time dependence of local occupations in-
duced by HI in Eq. (3). While the time dependence of the
current can be different for the various interfaces, we focus on
the mean current. For periodic driving, the average need only
be over a single oscillation period τ = 2π/ω,

I♦ = 1

τ

∫ τ

0
ILS (t )dt, (6)

in the Floquet state. This quantity is interface independent in
the physical limit of interest.

In all our examples, we consider a uniform, low temper-
ature of kBTL = kBTR = h̄ω0/40, where kB is Boltzmann’s
constant and h̄ the reduced Planck’s constant. A temper-
ature bias could also be present, but we do not consider
that case. We take a symmetrically applied potential μ,
i.e., μL = −μR = μ/2, and the hopping strength ω0 as a
reference frequency. For most examples, this is the actual
hopping in the reservoirs, which are uniform one-dimensional
lattices. We, however, treat these reservoirs numerically in
their single-particle eigenbasis, e.g., Eq. (2), and their spa-
tial dimensionality is not of central importance. We break
the correspondence between ω0 and the hopping only where
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FIG. 1. Quantum transport in the ERA. (a) A driven tilted lat-
tice S [red sites with total tilt WS and hopping vS (t )] between
two extended reservoirs L and R. The reservoirs are maintained
at chemical potentials μL and μR, represented by different filling
(blue shading), and at the same temperature for the cases we ex-
amine. Discretized modes in L and R are explicitly included in the
simulation. These modes are relaxed to their (isolated) equilibrium
occupancy by Markovian injection and depletion at rates γk+ and γk−,
respectively. (b) Periodically modulated hopping vS (t ) inside system
S versus time. (c) The induced particle current I (t ) versus time. The
blue line is the current from L to S and the green line between the
middle sites in S. The simulations are for a NS = 8 site system driven
at the resonant frequency ω = �S = ω0/(NS − 1), i.e., WS = ω0.
The other parameters are VS = v0 = ω0/10, μ = ω0/2 = 2μL =
−2μR, and kBTL = kBTR = h̄ω0/40. The relaxation rates are set via
the approach in Sec. III.

indicated in order to further validate the ERA via the fully
Markovian limit.

B. Periodically driven tilted lattice

We consider a one-dimensional tilted lattice with NS
sites and nearest-neighbor hopping, as schematically depicted
(within the ERA) in Fig. 1(a). The time-dependent Hamilto-
nian is

HS (t ) =
NS∑
i=1

ωi(t )c†
i ci +

NS−1∑
i=1

vS (t )(c†
i ci+1 + c†

i+1ci ). (7)

The tilt is linearly increasing with nearest-neighbor step
�S (t ) inside S , giving the onsite frequencies

ωi(t ) = �S (t )

(
i − NS + 1

2

)
, (8)

for i = 1, 2, . . . , NS . This tilt is symmetric around zero fre-
quency, following a similar choice for the reservoirs below. In
all our examples, apart from Sec. IV C, we consider a static
tilt �S (t ) = �S , with the total tilt

WS = �S (NS − 1), (9)

and a hopping that oscillates as

vS (t ) = VS cos(ωt ), (10)

with frequency ω and amplitude VS . Figure 1(b) shows the os-
cillation of vS (t ) along with the resulting oscillating currents
(across two interfaces) in Fig. 1(c).

As already indicated, we consider L and R to be uniform
one-dimensional (semi-infinite) lattices coupled, respectively,
to the first and last site of S with hopping v0 (i.e., vik �= 0
only for k ∈ L, i = 1 and k ∈ R, i = NS ). The Fermi level is
at zero. This gives the continuum limit spectral functions

[JL(ω)]11 = [JR(ω)]NSNS = 8v2
0

W2

√
W2 − 4ω2, (11)

and zero otherwise. In terms of the reference frequency ω0,
the bandwidth is W = 4ω0 unless otherwise indicated. Those
exceptions will be calculations to further validate the ERA
approach by showing how it converges to the fully Markovian
limit.

The driven tilted lattice model provides a benchmark ex-
ample for the ERA. It is well studied in the context of closed
systems, has nontrivial behavior versus the driving frequency,
and allows for extended systems S . Without driving, vS (t ) =
VS , the system is a standard tilted lattice leading to Wannier-
Stark localization [30–32]. In this limit, one expects efficient
transport for a small global tilt WS and suppression of trans-
port when the global tilt exceeds the width of the Bloch band

|WS | � 4|VS |. (12)

This condition becomes strict for large NS . At a nonzero driv-
ing frequency, the driven system allows for effective mapping
to a static setup when the coupling to the reservoirs is weak,
providing additional validation. The ERA, however, is not
limited to those special cases and can be employed, for in-
stance, also in the limit of strong or moderate system-reservoir
couplings.

Moreover, this model, including the coupling to reservoirs,
may be realized experimentally with a slight modifica-
tion of the approaches described in Ref. [36]. Recently,
similar tilted models (with interactions) gained significant
attention in the studies of many-body localization without
disorder [27,28,37–44]. Here, we consider the noninteracting
lattice, however, to validate the ERA and set the foundations
to simulating interacting cases with tensor networks [21].

III. EXTENDED RESERVOIR APPROACH

The exact solution for the transport problem of Sec. II A
is in the macroscopic limit, where the reservoirs are a con-
tinuum and have an infinite-dimensional Hilbert space. To
make the problem tractable, we employ the extended reservoir
approach (ERA) [13,23]. In ERA, the reservoirs are approxi-
mated by a finite collection of explicit modes, which, in turn,
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are coupled to implicit reservoirs. The latter relax the explicit
modes to an (isolated) equilibrium state to maintain set tem-
peratures and chemical potentials. There is a long lineage
of relaxation-based approaches, starting from early work of
Kohn and Luttinger [45] to open-system approaches for semi-
conductors [46–48] to approximate master equations [49,50].
The presence of implicit relaxation supports a stationary state
and, within ERA, provides a limiting process to capture the
influence of continuum reservoirs on transport [13,23]. In
this section, we explain the concept in detail, including both
the discretization of the reservoirs and the relaxation, and
introduce a stability criterion to set the main parameter of the
computational approach.

A. Discretization

A standard strategy to capture the influence of the reser-
voirs on the system is to include them directly in the
many-body calculation. For numerical simulation, this re-
quires discretization of the continuum, approximating it by a
finite collection of NW modes. In principle, any microscopic
discretization that limits to the desired macroscopic spectral
function as NW → ∞ works. This leaves considerable free-
dom. For instance, one can employ a lattice mapping [51,52]
or an inhomogeneous placement of modes, such as linear-
logarithmic (evenly distributed inside the bias window and
logarithmically outside) [53] or influence-based (leading to
mode density vanishing as inverse frequency squared out-
side of the bias window) [54,55] distributions. At finite bias,
inhomogeneous distributions will, at best, give a prefactor im-
provement in the number of NW required, as the bias window
requires a uniform distribution of modes (at most, one could
exploit spectral function structure in the bias window). For
tensor networks, where the entanglement in the setup dictates
the numerical cost rather than the bare number of modes, they
may give no speedup at all [55].

We work with semi-infinite, uniform one-dimensional
reservoirs. To obtain the discretized lattice for numerical sim-
ulation, we truncate this reservoir to a lattice of NW sites. All
simulations here employ these modes in the single-particle
eigenbasis given by a sine transform

ωk = W
2

cos

(
kπ

NW + 1

)
+ δα, (13)

where k = 1, . . . , NW and δα is a small perturbation of the
discretization which globally shifts the energies in reservoir
α = L,R to which k belongs. Since reservoirs are attached to
terminal sites of the system S , vk1 = vk for k ∈ L and vkNS =
vk for k ∈ R, with

vk = v0

√
2

NW + 1
sin

(
kπ

NW + 1

)
(14)

and the other vk j in Eq. (3) are equal to zero.
There is an additional class of parameters in Eq. (13)

above, a set of small frequency shifts δL and δR. As described
in the subsequent sections, we will use them as control param-
eters to probe the stability of the results and guide the selection
of simulation parameters. The shifts are of the order of the

level spacing

�F 
 πW
2NW

(15)

in the discretized reservoir at the Fermi level.
Now, one may initialize the setup in the desired initial state,

generate a particle imbalance between reservoirs, and run the
Hamiltonian evolution. However, such an approach can only
support a quasisteady state at intermediate times limited by
the size of the finite reservoirs. That can make some protocols
or parameter regimes hard to access. Among others, even in
the time-independent setup, the Gibbs phenomena related to
the finite reservoir bandwidth can result in oscillating currents
in the quasi-steady state [56]. For periodic driving, the latter
could interfere with the driving frequency, making the contin-
uum limit even harder to extract.

B. Open-system approach

To address such challenges, a growing number of meth-
ods augment the explicit reservoirs with a relaxation process.
These go beyond closed-system approaches, such as the mi-
crocanonical approach [57–61], and explicitly relax reservoir
modes to their equilibrium distributions at the desired tem-
peratures and chemical potentials. Most approaches to date
employ continuous relaxation within a Markovian master
equation. This has been done for classical thermal trans-
port [62–66], for noninteracting electrons [13,49,50,53,67–
75], including for time-dependent driving [76–79], but also
for interacting systems utilizing tensor network techniques in
the simulations [14–22]. This builds on the original concept of
pseudomodes [80–83], where external Markovian relaxation
broadens the modes into Lorentzian peaks and turns a discrete
reservoir into an effective continuum. Different relaxation
schemes can also be used, such as the recently introduced peri-
odic refresh [84], which stroboscopically resets the reservoirs
to their (isolated) thermal equilibrium, or a generalization that
interpolates between periodic and continuous relaxations via
the accumulative reservoir construction [85].

The stroboscopic refresh processes have advantages, po-
tentially allowing for algebraically faster convergence versus
NW of physical quantities to the continuum limit [85]. How-
ever, in this work, we focus on a continuous Markovian
treatment where the density matrix of LSR follows a Lind-
blad master equation

ρ̇ = −ı[H, ρ] + D[ρ], (16)

where the dissipative term is

D[ρ] =
∑

k∈LR
γ +

k

(
c†

kρck − 1

2
{ckc†

k , ρ}
)

+
∑

k∈LR
γ −

k

(
ckρc†

k − 1

2
{c†

kckρ}
)

. (17)

The {·, ρ} gives the anticommutator with the density matrix
ρ. The injection rates γ +

k = γ f αk (ωk ) and depletion rates
γ −

k = γ [1 − f αk (ωk )], with free parameter γ , are such that the
reservoirs in isolation relax to the thermal equilibrium defined
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by the Fermi-Dirac distribution

f α (ω) = 1

1 + eβα (ω−μα )
, (18)

with the thermal relaxation time βα = h̄/kBTα . The relaxation
rate γ is the central control parameter and needs to be tuned
to best mimic the continuum reservoirs. We elaborate on this
in the next section.

For noninteracting systems, Eq. (16) is efficiently solv-
able for a Floquet state utilizing standard correlation matrix
techniques (see Appendix A). The Lindblad form of the mas-
ter equation (16), in principle, allows direct treatment of a
general, interacting system, where the density matrix can be
conveniently approximated as a matrix product state [86,87].
However, turning matrix product states into a useful approach
to tackle quantum transport requires careful selection of the
computational basis and its ordering [21,88] to avoid ex-
ponential entanglement barrier precluding successful matrix
product state simulations. We focus on noninteracting sys-
tems, leaving the determination of the optimal structure of
matrix product state simulations for time-dependent situations
to future studies.

C. Stability criterion and the relaxation rate

Green’s function techniques permit a formal proof [23]
(for time-independent, noninteracting, and interacting sys-
tems) that the steady state of Eq. (16) converges to the
continuum limit with the current given by the Meir-Wingreen
formula [89,90] (e.g., for noninteracting systems, it converges
to the Landauer formula). For time-dependent noninteract-
ing models, one can find the solution using time-dependent
nonequilibrium Green’s functions [91–93], which are exact up
to the truncation of the frequency expansion. We recover this
limit for ERA by first taking NW → ∞ and then γ → 0. In
practical simulations, one simultaneously increases NW while
decreasing γ , but still at quite modest NW .

A standard choice is to set γ proportional, and typically
equal, to the level spacing �F in Eq. (15), which should allow
a sum of the discrete Lorentzians to approximately reproduce
a desired spectral function (see, e.g., Refs. [22,53,76,78,79]).
As well, one can approximate γ from the self-energies of
explicit reservoir modes in contact with the implicit infinite
environment [74], which for the reservoirs here would give
γ ≈ 1.7�F . Such reasoning, however, considers the reservoir
in isolation from the rest of the setup, which we will show
here can be poorly behaved (although even for static models,
virtual resonances can dominate the current depending on
transmission properties of the system [26]). We will use

γ = �F (19)

as a reference relaxation rate and demonstrate that this choice
can lead to systematic errors due to the presence of S , and
thus always requires further validation. We also note that one
often makes γ mode dependent, but this would have marginal
influence on our results. We employ a homogeneous γ here
for simplicity.

It is illustrative to treat γ as a free parameter and con-
sider its influence on the steady state. For a fixed NW , three
basic regimes appear for the steady-state current, forming a

10−4 10−3 10−2 10−1 100 101

γ (ω0)

10−4

10−3

I ♦
(ω

0
/
2
π
)

injection-limited physical overdamped

γ = ΔF

γ̌

FIG. 2. Stability and discreteness. We plot Kramers’ turnover
for I♦(γ ), indicating the approximate division into injection-limited,
physical, and overdamped regimes. The solid lines are different
combinations of small discretization shifts in Eq. (20), sr, sm ∈
{0, 1

3 , 2
3 , 1}. The red line singles out a standard choice of sm = sr =

0, i.e., no shift. For small enough γ , resonances between discrete
modes artificially modify the current. The black circle shows the
transition relaxation rate γ̌ that marks the end of the stable regime,
i.e., the physical plateau, for a given reservoir size NW = 512. The
dashed line marks the standard choice of γ = �F , where the cur-
rent noticeably varies with the shift. The data are for NS = 2, a
weak reservoir-system coupling v0 = ω0/100, �S = ω = ω0π/16,
VS = ω0/20, W = 4ω0, and bias μ → ∞.

so-called Kramers’ turnover [64]. The main regime of interest
is a physical regime at intermediate γ where the current is
independent of γ to leading order. The current is thus only
weakly distorted by the reservoir approximation and it ap-
proaches the physical value of interest. This plateau regime is
flanked by large-γ and small-γ regimes. In those overdamped
and injection-limited regimes, respectively, the steady-state
current is dominated by the relaxation rate and vanishes al-
gebraically with that rate. This behavior is clearly visible in
Fig. 2 for the periodically driven system. Such a dependence
of the current on the relaxation rate mimics Kramers’ turnover
for chemical reaction rates [94].

A more detailed analysis reveals additional anomalous
regimes that may appear at both ends of the physical regime,
shifting its precise boundaries. In particular, on the low-γ
end of the physical plateau, a resonance between the discrete
reservoir modes in L and R can result in virtual transitions,
artificially enhancing the current and masking the physical
result [26]. Other conditions may also put constraints on the
parameter ranges sufficient to recover physically relevant re-
sults. For instance, the γ -related broadening should be much
smaller than thermal broadening, i.e., γ � kBT/h̄ [13], at the
same time this provides a lower bound to the required NW .

The above considerations have been extensively studied
within time-independent setups, but should naturally gener-
alize to time-dependent S since they are properties of the
reservoirs (albeit, the system can impact whether anomalous
features are visible in the Kramers’ turnover). Time depen-
dence of S only adds to the richness of phenomena. This
motivates the data-driven approach here for estimating the
relaxation rate that best reproduces the physical characteristics
of transport.

We probe the stability of the current (or other properties)
to small perturbations of the reservoir-mode placement. While

235148-5



BITAN DE et al. PHYSICAL REVIEW B 107, 235148 (2023)

10−4 10−3 10−2 10−1 100 101

γ (ω0)

10−5

10−4

10−3

10−2

10−1

100
σ

(I
♦

)/
|I ♦

|
γ

γ̌
NW
32
64
128
256
512

FIG. 3. Stable and unstable relaxation. We show the maximal
deviation of the current from the median current, normalized by
the median, calculated from a combination of small discretization
shifts in Eq. (20): sr, sm ∈ {0, 1

3 , 2
3 , 1} (i.e., all lines in Fig. 2). The

circles indicate γ̌ , which marks the transition between a stable
regime with deviation proportional to the shift, and an unstable
one for smaller γ ’s. The squares represent a standard choice of
γ = �F , where the relative precision (the sensitivity to a small
discretization shift) does not improve with NW . The results are for
NW = 32, 64, 128, 256, 512 and other parameters as in Fig. 2.

other options are possible, we employ small frequency shifts
in Eq. (13),

δL = (sm/2 + sr/4)�F ,
(20)

δR = (sm/2 − sr/4)�F ,

where the parameter sr ∈ [0, 1] controls the relative shift be-
tween ωk’s in L and R, and �F , Eq. (15), is the mode spacing
at the Fermi level. The sr influence artifacts coming from
resonances between discrete L and R modes. A mutual shift

of both reservoirs with respect to S is controlled by sm ∈
[0, 1].

For given discretization and relaxation rate, our stability
test scans over a set of (sm, sr ) values to determine the robust-
ness of the results against the shifts. For larger γ (see Fig. 2),
small shifts do not affect the current since discrete modes are
strongly broadened by coupling to implicit reservoirs. With
decreasing γ , the Lorentzian broadening of ωk gets smaller,
eventually revealing discrete nature of the reservoirs as seen
by the system. In this case, the overlap of the broadened levels
(in both the reservoirs and system) becomes sensitive to small
shifts, leading to potential artificial features in the current.

A systematic scan for a range of NW ’s is in Fig. 3, where
we plot the normalized maximal deviation from the median
current, calculated over a set of (sm, sr ) values. It exhibits a
clear transition between a stable regime for larger γ , where
the small influence is proportional to the amplitude of the
shift �F , and a nonlinear regime for smaller γ . The relaxation
rate γ̌ is at the transition between these regimes, marked with
circles in Fig. 3. Still, in practical simulations, one may choose
a smaller γ , provided the precision given by the stability test
is satisfactory. In Fig. 3, the standard choice of γ fails the
stability test, giving a systematic error that does not decrease
with increasing NW . Figure 4 shows an additional example
of such a failure where systematic errors distort the scan over
system S’s coupling parameter persisting for increasing NW .
The current is represented more accurately by the median cur-
rent at γ and by the current at higher γ where the instabilities
are sufficiently removed.

The stability test can be used while scanning different val-
ues of γ to help identify the range corresponding to the phys-
ical plateau (for better corroboration of a proper convergence
to the continuum limit). It can also be used without a full scan
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FIG. 4. Failure of the standard relaxation choice. Setup is the same as in Fig. 2, but we scan the coupling amplitude VS in S. Top
row represents time-dependent simulations, and the bottom row shows the results within RWA. In the first three columns, the red line is
a result of an often used γ = �F (without the shift, sm = sr = 0), with blue lines showing deviation on small discretization perturbation
with sm, sr ∈ {0, 1

3 , 2
3 , 1} for the same γ , calculated for growing number of reservoir modes NW . In the last column, we show the median

current over those shifts (green lines), and a current at a stable γ = 2�F (orange lines). Those two results closely overlap each other. The
proper convergence is further corroborated in RWA by comparing with the thermodynamic limit results (Landauer formula; black line). The
instability of the results for standard γ without shifts is of a similar order to actual physical features in the sufficiently converged I♦(VS ) in
the last column, and does not appreciably decrease with growing NW .

235148-6



TRANSPORT IN A PERIODICALLY DRIVEN TILTED … PHYSICAL REVIEW B 107, 235148 (2023)

of I♦(γ ) to estimate the precision at a particular γ choice.
The criterion is both intuitively appealing and mathematically
necessary: So long as the reservoirs limit to the same contin-
uum spectral function, they describe the same model. Thus,
if they are providing different results (diverging curves in
Fig. 2), then they do not represent continuum reservoirs.

The stability criterion naturally generalizes the procedure
of Refs. [26,55], which addressed virtual transitions between
discretized reservoirs’ modes as the source of instability. In
that procedure, we considered two turnovers (sr = 0, 1 with
sm = 0) and estimated the appropriate relaxation as the cross-
ing point between them (i.e., the smallest deviation). The
extension proposed here is numerically more comprehensive,
recognizing artificial effects from all possible resonances.
Those might be particularly hard to identify prior to the cal-
culation for time-dependent models, as well as in interacting
or otherwise complicated systems.

IV. RESULTS

We now implement this framework to study the period-
ically driven tilted lattice in Sec. II B. We benchmark our
results in the parameter limits where reference solutions are
available and also cover cases where the simplifying approxi-
mations are no longer valid.

A. Markovian limit

In general, the evolution of S is inherently non-Markovian
when coupled to reservoirs. However, it can become Marko-
vian in some limits. One such case is the limit of infinite
bandwidth and infinite bias, i.e., W → ∞ with L fully occu-
pied and R empty [13], where the evolution of S is governed
by the Markovian master equation

ρ̇S = −ı[HS , ρS ] + DS [ρS ] (21)

with the dissipative term

DS [ρS ] = γ +
L

(
c†

1ρSc1 − 1
2 {c1c†

1, ρS})
+ γ −

R
(
cNS

ρSc†
NS

− 1
2 {c†

NS
cNS

, ρS}), (22)

which describes particle injection at the first system site and
depletion from the last site [95].

We use it to approximate a setup with finite-bandwidth
reservoirs, characterized by the spectral functions in Eq. (11),
and bias μ → ∞. In that case, the injection and depletion
rates are

γ +
L = γ −

R = 8v2
0/W, (23)

which follows from Born-Markov approximation for weak
coupling v0. Finite W will give corrections to the Markovian
approximation, which, for W much larger than other energy
scales, vanish with an extra factor of W−1 (see Appendix B
for the derivation).

In Fig. 5, we compare the results of the Markovian ap-
proximation in Eq. (21) to the outcome of the ERA. First,
in Fig. 5(a), we show the transition γ̌ for a series of NW
and bandwidths. While it is proportional to the reservoir level
spacing �F to a good approximation, the proportionality co-
efficient takes a value 3.5 ± 1.0 in this example. In Fig. 5(b),
we compare the resulting currents. The ERA results at γ̌

10−2

10−1

100

γ̌
(ω

0
)

(a)

W = 4ω0

W = 8ω0

W = 16ω0

10−2 10−1 100

ΔF (ω0)

10−3

10−2

10−1

|I ♦
−

I
M ♦
|/|

I
M ♦
|

(b)

I♦(γ̌) I♦(γ ) I♦(γ )

FIG. 5. Convergence to the infinite-bandwidth limit. (a) The γ̌

from the stability criterion, Sec. III C, versus �F ∝ W/NW , Eq. (15),
for NW = 32, 128, . . . , 1024. Each γ̌ comes from the stability of
Kramers’ turnover to small perturbation of reservoir discretization,
as in Fig. 3. For small enough �F , γ̌ 
 A�F (dashed line). The
fit proportionality coefficient is A = 3.5 ± 1.0, where the error in-
dicates the maximal uncertainty range demarcated by the dotted
lines. (b) The relative deviation from the Markovian result (infinite
bandwidth and infinite bias) versus �F . Circles show the current at
γ̌ , where ERA systematically converges to the infinite-bandwidth
result. Crosses show the results at γ (with no shift in the dis-
cretization), which gives rise to systematic errors with increasing
NW . Finally, with pluses, we indicate a median over various shifts
calculated at γ , where the systematic errors are removed, and the
results systematically converge. For clarity of the plot, we only
show W = 4ω0 (blue) and W = 16ω0 (red), with W = 8ω0 giving
qualitatively the same results. Other parameters are as in Fig. 3.

systematically converge with increasing NW , approaching the
expected Markovian limit with growing W . The results calcu-
lated at γ (with no shifts) are systematically shifted from the
expected value, which results in the error saturating as NW
grows. We can, however, converge to the true current at γ

by taking a median over various shifts (note that this is not
inconsistent with Fig. 3, which shows a maximal perturbation-
related error). The convergence is less regular than at γ̌ but has
a similar overall rate. Yet, the error is smaller overall for the
median estimate at a given NW , which is due to the fact that
the corrections to the current from the Markovian anomaly
are smaller at γ since it is a weaker relaxation (i.e., there
is less distortion of the broadened modes but still a sufficient
relaxation to look continuum like).

This shows that one should back up a typical choice of γ

with further tests, such as assessing stability and/or scanning
γ to identify the extent of a physical plateau in a particular
model. These tests can be local or semilocal (stability at a
fixed value of γ or varying γ in the vicinity of γ ) and still
provide an estimate of precision.

B. Rotating-wave approximation

The fully Markovian approach in Eq. (21) is quite simple
to implement and is thus frequently used in the literature.
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However, it cannot describe finite potential or a temperature
bias, nor can it capture nontrivial reservoir features and their
interplay with system dynamics. In this section, we contrast
ERA results with those from a different common approxima-
tion.

Let us revisit our system S , a tilted lattice given by Eq. (7).
Recall first the time-independent system with vS (t ) = VS .
With a tilt, a single-particle problem can yield Stark local-
ization. Coupling the system to reservoirs with a reasonably
weak coupling does not affect it, leading to an inhibition of
transport for strong enough total tilt WS [see Eq. (12)].

Periodically driven tunneling vS (t ) destroys localization
when the driving frequency ω is close to the frequency dif-
ference �S . This can be seen from Eq. (7) in an interaction
picture. One can use new operators

a j ≡ eıw̄ j t c j , (24)

that are a unitary rotation exp(ıt
∑

k∈LSR w̄kc†
kck ) of the old.

In the rotating frame, the original Hamiltonian with the oscil-
lating coupling vS (t ) in Eq. (10) becomes

HS (t ) =
NS∑
j=1

(w j − w̄ j )a
†
j a j

+ VS
2

NS−1∑
j=1

[a†
j a j+1(1 + e−2ıωt ) + H.c.], (25)

when w̄ j = ω[ j − (NS + 1)/2] for j ∈ S , compare with
Eq. (8). The gap between system sites becomes �̄S = �S −
ω, which vanishes when �S = ω (i.e., in resonance). In the
rotating-wave approximation (RWA), one neglects the fast
rotating terms e±2ıωt in the above Hamiltonian, making the
approximate model time independent.

One also needs to rotate the reservoirs to keep the S and
LR coupling time independent. By the coupling of L to
leftmost site of S the L’s modes accumulate a shift ωk →
ωk + ω(NS − 1)/2. Similarly, the R reservoir’s modes shift
to ωk → ωk − ω(NS − 1)/2. This effectively moves the L
and R bandwidths out of alignment, and the chemical poten-
tials follow as μL → μL + ω(NS − 1)/2 and μR → μR −
ω(NS − 1)/2. Consequently, in the rotated frame, the bias
appears as

μ̄ = μ + ωWS/�S , (26)

i.e., there is an effective bias due to the drive.
In Fig. 6, we compare the time-averaged ERA solution with

the time-independent RWA predictions. The latter permits
using the Landauer formula, valid for noninteracting time-
independent setups, to obtain results directly in the limit of
continuum reservoirs (see Appendix C). We also present ERA
results applied to RWA Hamiltonian for further corroboration.

The RWA is expected to hold near resonance for driving
that is much faster than other scales in the system, in partic-
ular for weak VS and v0. In Fig. 6(a), we show the results
for a weak coupling to reservoirs, v0 = 0.01ω0, where we
can expect RWA to work extremely well. We observe a full
agreement between the two approaches. We may use RWA
to estimate the width of the resonance in Fig. 6. Combining
the localization condition in Eq. (12) and RWA Hamilto-

0

2

4

6

I ♦
(1

0
−

4
ω

0
/
2
π
)

(a) NS = 2
NS = 4
NS = 8

0.7 0.8 0.9 1.0 1.1 1.2 1.3

ω/Δ

0

2

4

6

8

I ♦
(1

0
−

3
ω

0
/
2
π
)

(b) NS = 2
NS = 4
NS = 8
NS = 16

FIG. 6. Resonant current through a tilted lattice. (a) Current
versus driving frequency showing the resonance for weak coupling to
the reservoirs, v0 = ω0/100. Time-dependent ERA results for NS =
2, 4, 8 (solid lines) and time-independent RWA results (dashed lines
for thermodynamic limit and symbols for ERA) follow each other
closely. The resonance width is consistent with Eq. (27), reflected by
the observed collapse of curves for various NS . (b) Current versus
driving for strong coupling, v0 = ω0, where the RWA provides a less
accurate approximation of the time-dependent results. The RWA cap-
tures the behavior of the resonance width (for larger NS ) but poorly
quantifies the current amplitude. In both panels, the intersite tun-
neling VS = ω0/20 is weak and smaller than the driving frequency
(the latter follows from the amplitude of the total tilt, WS = ω0).
Typically, one expects RWA to be a reasonable approximation of S
in this limit. We keep the bias at zero μ = 0, and the ERA results
are obtained for NW = 512 and γ = 2�F . We checked all points for
shift-related stability, with maximal relative deviation below 0.004
(apart from time-dependent simulations for v0 = ω0 and NS = 4,
where it is below 0.02). A small deviation between RWA results
in the continuum limit and ERA, visible at the resonance in (a), is
dominated by finite-NW error and can be reduced by increasing NW .

nian following from Eq. (25), the resonance peak width �ω

should satisfy �ω(NS − 1) ∼ VS . Using Eq. (9), i.e., that
WS = �S (NS − 1), this translates to

�ω

�S
∼ 4VS

WS
. (27)

Indeed, the data collapse in Fig. 6(a) for all NS since all curves
have the same VS/WS , and we plot the current as a function
of ω/�S . One expects RWA to hold around the peak of the
resonance, where ω/�S = 1.

In Fig. 6(b), we show the data for strong coupling to
the reservoirs v0 = ω0. Here, the RWA approximation is no
longer valid as the strong coupling to the reservoirs leads to
a fast transport through the system and, at such short times,
the averaging of the counter-rotating exp(±2ıωt ) terms is less
effective.

In Fig. 7, we focus on the resonance ω = �S and show
the current as a function of the potential bias μ. In this case,
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FIG. 7. Current versus bias at resonance. We consider various combinations of the system-reservoir coupling and hopping amplitude in S:
In (a), v0 = ω0/100 and VS = ω0/20; in (b), v0 = ω0 and VS = ω0/20; in (c), v0 = ω0/100 and VS = ω0. We compare the ERA results with
both RWA and Markovian approximation results of Eq. (21). The latter captures the current relatively well in the limit of large biases. It is,
however, unable to witness the zero crossing when the influence of periodic driving compensates for applied bias. Approximate results for the
RWA are directly in the continuum limit (CL) (dashed lines) and using ERA simulations (symbols). They closely match the time-dependent
simulations allowed by ERA (solid lines) in (a), with zero crossing for μ = −WS = −ω0. For strong v0, in (b), RWA provides a rudimentary
picture where the actual current, captured by ERA, has a different amplitude and shifted position of the zero crossing. Increasing VS in (c), the
increased level spacing in finite S leads to current quantization within time-independent RWA, which, unlike in (a) and (b), is not washed out
here by a small but finite reservoir temperature TL = TR = h̄ω0/40kB. Such steps get smoothed out in the actual periodically driven setup. Data
for a system of NS = 8 sites, total tilt WS = ω0, and the bandwidth W = 4ω0. The ERA results are obtained for NW = 1024 and γ = 0.01
that we checked for stability.

the effective bias in the rotated frame is μ̄ = μ + WS . Conse-
quently, RWA predicts that periodic driving of vS (t ) leads to
a nonzero current even when the applied bias is zero, μ = 0,
and that the direction of the current changes, crossing zero for
μ = −WS . Figure 7(a) shows the case of weak coupling to the
reservoirs when the system dynamics is dominant. The ERA
approach is able to correctly recover the Fermi level in the
reservoirs, and the threshold of the current precisely matches
the RWA prediction. For a stronger coupling v0, presented
in Fig. 7(b), this simple picture breaks down for the reasons
explained already. The precise position of the zero crossing
gets noticeably shifted from RWA prediction of μ = −WS .
Also, the amplitude of the current gets underestimated by
RWA. The Markovian approximation of Eq. (21) is better at
recovering the current amplitude in the limit of large (negative
or positive) bias. However, by its very nature, it is unable
to describe the effective compensation of a finite bias by
periodically driving.

Finally, in Fig. 7(c), we keep the coupling to reser-
voirs weak and increase VS . This allows witnessing the
presence of discrete energy levels in a finite system S .
In the RWA, S forms a finite lattice without a tilt, trans-
lating to eigenfrequencies VS cos[lπ/(NS + 1))] with l =
1, 2, . . . , NS [analogously to Eq. (13)]. Effectively, each level
contributes to transport when it lies within the bias window
controlled by μ̄. This results in visible steps in the current for
the RWA, Fig. 7(c), as changing μ includes successive system
eigenenergies in the bias window. Such steps are smoothed out
for weak VS in Figs. 7(a) and 7(b) due to thermal broadening
(note that we fix TL = TR = h̄ω0/40kB). Similarly, this ex-
plains the saturation of currents in Fig. 7 for sufficiently large
bias when all transition channels in S participate in transport.
As discussed above, the RWA is less accurate for strong VS
and, consequently, the simulations of the actual periodically
driven system in Fig. 7(c) have a partially smoothed out step
structure in I♦(μ).

C. Periodic driving of the lattice tilt

Let us consider a second example of a periodically driven
system that is well known from cold-atom physics [96]. We
consider a lattice with the tilt as in Eq. (7), but now we
have time-independent hopping vS (t ) = VS and a periodi-
cally driven tilt �S (t ) = �S cos(ωt ) in Eq. (8). As shown
in Ref. [96], for sufficiently large ω, the system behaves as
an effective time-independent model with no tilt, and the
effective tunneling amplitude between sites equals

veff
S = VSJ0(�S/ω), (28)

where J0(·) is a Bessel function of the first kind and order
zero. The relation holds for bosons [96] and for fermions. In
effect, the tunneling is suppressed close to the zeros of the
Bessel function of the first kind. For interacting bosons in
an optical lattice, it has been experimentally verified that a
transition occurs from the superfluid state in the absence of
driving to a Mott insulator when tunnelings are effectively
eliminated [97]. Similar models for transport with NS = 2
have been considered in Refs. [76,78,79,98].

Here, we shall consider a one-dimensional lattice with
NS = 8 coupled to reservoirs. When the driving frequency
is the largest scale, in Fig. 8(a), we can indeed see that the
time-independent system approximation with hopping in the
system given by Eq. (28) faithfully captures the behavior of
the current. We observe, however, a correlation between the
amplitude of the total tilt and the bias μ, i.e., an interplay
between system dynamics and properties of the reservoirs.
Our ERA simulations of the periodically driven system, in
Figs. 8(b) and 8(c), illustrate that the approximation remains
quantitatively valid when the amplitude of WS fits into the bias
window set by μ. With increasing �S (that translates to WS ,
which starts extending beyond the bias window), the current in
a periodically driven system gets suppressed compared to the
approximate time-independent prediction. Notwithstanding,
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FIG. 8. Periodically modulated tilt. The current is shown ver-
sus the tilt. We fix the driving frequency ω = ω0/20 to be much
larger than the hopping VS = ω0/200, allowing one to approximate a
time-dependent setup with a time-independent one with the hopping
modulated by a Bessel formula according to Eq. (28). The result of
the latter is plotted directly in the continuum limit (dashed lines)
and using ERA simulations (symbols). The approximation works ex-
ceptionally well for large enough bias and bandwidth (also captured
by the Markovian limit, dotted lines). Reducing the bias μ, which
becomes comparable with the amplitude of oscillating tilt for large
enough �S , leads to the qualitative breaking of the approximation for
large tilts. The data are for NS = 8, v0 = ω0/20, and the bandwidth
W = 4.0ω0. ERA simulations are for NW = 512 and γ = 2�F , and
checked for stability.

the zeros of the current coincide well with the zeros of the
Bessel function in Eq. (28) also in that limit.

V. CONCLUSIONS

We benchmarked the application of ERA to simulate
transport through a periodically driven system coupled to
macroscopic reservoirs. We focused on a tilted fermionic
lattice with periodic driving. Standard time-independent
approximations of that model allow us to test proper con-
vergence of the method in the corresponding limits. We also
study the properties of the setup in the parameter limits when
the approximations can no longer be faithfully applied.

Our results exemplify potential traps in simulating trans-
port properties using ERA-like approaches, in particular for
time-dependent setups. First, RWA mapping and the result-
ing effective shifts of the reservoir bands and bias window
illustrate that discretization techniques promoting the bias
window, like linear-logarithmic strategy, should be applied
only with care. A discretization strategy that distributes modes
more evenly inside the whole reservoir band, like the one
we use in this paper, is less prone to misrepresentation of
the reservoirs. Second, we introduce a stability criterion to
properly tune the simulation parameters (the relaxation rates

of the extended reservoirs). It provides a model-agnostic tool
to systematically avoid anomalous effects within ERA due to
the interplay of the discretization of the continuum reservoirs
and insufficient mode broadening. Our results pave the way
for faithful simulation of transport in many-body, periodically
driven quantum systems with tensor network and other tech-
niques.
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APPENDIX A: CORRELATION MATRIX

For a noninteracting Hamiltonian HS , the evolution gen-
erated by Eq. (16) preserves the Gaussianity of the density
matrix. For a particle-number conserving H (t ), the latter is
fully characterized by the correlation matrix

Cmn = tr[c†
ncmρ], (A1)

with m, n ∈ LSR. The correlation matrix of a state evolved
with Eq. (16) follows a dynamic equation

Ċ(t ) = −ı[H̄ (t ),C(t )] + D[C(t )], (A2)

that can be efficiently integrated numerically. Above, a single-
particle Hamiltonian

H (t ) =
∑

m,n∈LSR
[H̄ (t )]mnc†

mcn, (A3)

and the dissipator in Eq. (17) translates to [13]

D[C(t )] = Z − C(t )G − GC(t ), (A4)

with matrices Z = ∑
k∈LR γ +

k |k〉〈k| and G =
γ

2

∑
k∈LR |k〉〈k|. Here, we use notation where |k〉 is a

column vector with value one for mode k and zero for all
other modes in LSR.

As we are interested in a Floquet state, we consider the
correlation matrix evolution over a single cycle with period
τ = 2π/ω, which gives a map of the form

C(t0 + τ ) = M(τ )C(t0)M†(τ ) + P (τ ). (A5)

In a steady state, C(t0 + τ ) = C(t0), Eq. (A5) is a discrete
Lyapunov equation [85,95,99] that allows finding the Floquet
steady state numerically efficiently. The same strategy was
very recently taken in Ref. [79]. Additionally, the steady state
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is unique if all eigenvalues of M(τ ) have a magnitude smaller
than one. This condition is satisfied in all our examples. How-
ever, analyzing the map in Eq. (A5) has an extra advantage,
compared with a direct time evolution of some initial state,
as it allows to directly probe for phenomena such as time
crystals, which would require degenerate Floquet states [100].

The equations of motion for the propagator M(τ ) and the
source term P (τ ) follow directly from Eq. (A2),

Ṗ (t ) = −ı[H̄ (t0 + t ),P (t )] + D[P (t )],

Ṁ(t ) = [−ıH̄ (t0 + t ) + G]M(t ). (A6)

They can be efficiently numerically integrated over time τ

with the two initial conditions, M(0) as an identity matrix
and P (0) as a zero matrix. We note that P (t ) and M(t )
also depend on the initial time t0 that marks a conventional
beginning of a single periodic cycle. We suppress it in the
notation for simplicity.

APPENDIX B: MARKOVIAN LIMIT

The Markovian approximation in Eq. (21) for the infinite
bandwidth and infinite-bias limit follows from the normal
Born-Markov master equation. One considers a single system
mode of frequency ωi connected to a fully occupied reservoir
(see Ref. [13] for extended discussion). The time correlation
function of the reservoir with spectral function in Eq. (11)
reads as

J+(t ′) = 1

2π

∫ W/2

−W/2

8v2
0

W2

√
W2 − 4ω2eıωt ′

dω

= 4v2
0J1(t ′W/2)

t ′W , (B1)

where J1(·) is the Bessel function of the first kind and order
one. The effective relaxation is

γ +
L =

∫ ∞

0
2J+(t ′)e−iωit ′

dt ′

= 8v2
0

W
(√

1 − 4ω2
i /W2 + ıωi/W

)
(B2)

for system mode inside the bandwidth, 2|ωi| < W . Expanding
to the leading order in the system frequency ωi gives Eq. (23)
up to corrections of order ωi/W . Note that, in reality, the
system may have many frequencies but these all influence the
relevant parameters in higher orders. The effective depletion
rate γ −

R follows similarly.

APPENDIX C: LANDAUER FORMULA

For a time-independent, noninteracting model, we can
calculate the current flowing though the system directly
in the continuum limit using nonequilibrium Green’s func-
tions [89,90]. We employ it for our approximate time-
independent reference models, further corroborating proper
convergence of ERA results to the continuum limit. We collect
the relevant equations here.

The retarded (advanced) Green’s function for S is

Gr(a)(ω) = 1

ω − H̄S − �
r(a)
L (ω) − �

r(a)
R (ω)

, (C1)

where the single-particle system Hamiltonian is

HS =
∑
i, j∈S

[H̄S ]i jc
†
i c j . (C2)

The retarded (advanced) self-energies follow as

�r(a)
α (ω) =

∫
dω′

2π

Jα (ω′)
ω − ω′ ± ıη

, (C3)

where Jα (ω) is the spectral function defining reservoir α

and the limit of η → 0+ is taken at the end of the calcu-
lation. These quantities give the spectral densities �α (ω) =
ı[�r

α (ω) − �a
α (ω)] = −2 Im �r

α (ω) (note that these are the
spectral functions, but we retain both sets of terminology to
correspond to other literature). With this, the current is given
by the Landauer formula,

I =
∫

dω

2π
[ f L(ω) − f R(ω)]tr[�LGr�RGa], (C4)

where f α (ω) is the Fermi-Dirac distribution in Eq. (18).
Note that, in the RWA we employ in Sec. IV B, the reser-

voir spectral functions in Eq. (11) get shifted, and the single
nonzero element of Eq. (11) now reads as

Jα (ω) = 8v2
0

W2

√
W2 − 4(ω − ω̄α )2, (C5)

with ω̄α = ±ωWS/2�S for α = L(R), respectively. The self-
energies follow from Eq. (C3) as


r(a)
α (ω) = 2

ω − ω̄α ± ıJα (ω)
, (C6)

where again we only write the nonzero matrix element. The
integration interval in Eq. (C4) is reduced to overlapping parts
of shifted reservoir bandwidths where |ω − ω̄α| < W/2.
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