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Continuum approach to the quadratic chain: Exact closed-form classification of extended states
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The quadratic chain is a 1D nonperiodic lattice with lattice sites at z j = j2d with j ∈ W and d the underlying
lattice constant. We treat the electronic structure of the quadratic chain in a continuum model. The electronic
extended-state spectrum is singular-continuous with bands at wavevectors k rational multiples of π

d with critical
states occurring at the transitions between extended and localized states as the potential parameter is varied for
fixed k. Our treatment results in the exact classification of extended states and provides closed-form expressions
to compute them. We further identify states at well-defined energy that are extended for small values of the
potential parameter, become localized at higher values, and at yet higher ranges of the parameter, are again
extended, dubbing such behavior reëntrant extended states.
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I. INTRODUCTION

Deterministic nonperiodic lattices exhibit properties dis-
tinct from those of periodic and random lattices [1–4]. The
quadratic chain (QC) is a 1D nonperiodic lattice with lattice
sites at z j = j2d with j ∈ W and d the underlying lattice
constant. Recently we showed that the structure factor is
singular-continuous and, in a nearest-neighbor tight-binding
model, that the spectrum of extended electronic states in the
QC exhibits a hierarchy of minibands and minigaps [5]. A
similar class of nonperiodic lattices has been studied recently
in Ref. [6], and a related photonic structure was studied nu-
merically in Ref. [7]. Here we treat the electronic structure
using a continuum approach based on a Kronig-Penney model
with δ-function potentials, and show that the hierarchy of
bands and gaps found based on numerics in the nearest-
neighbor tight-binding model just mentioned are preserved,
and, moreover, fully and analytically quantify the extended
states in the limit the QC length goes to infinity [cf. Eq. (10)].
The classification of extended states is parallel to the behavior
of the peaks in the structure factor [5]. While the tight-binding
model can be derived from a continuum approach [8], there
are subtle differences [9]. The classification of the extended
states has not yet been carried out for the tightbinding ap-
proach [5]. In addition, our results here elucidate effects in
the QC such as the existence of certain states that remain
extended at all values of the potential parameter λ, states
that are extended below a state-dependent critical value of
the potential parameter, as other states that are extended in
disjoint ranges of the potential parameter, calling these lat-
ter reëntrant extended states [10]. That many of the central
properties of QCs appear in both the nearest-neighbor tight-
binding model and the Kronig-Penney model is not surprising,
but also not a foregone conclusion. Certainly, the two ap-
proaches give different numerical predictions. Moreover, we
have been successful in exactly computing the states based
on the Kronig-Penney model, but not the nearest-neighbor
tight-binding model, although the tight-binding model has

yielded a number of analytic results [5]. We further note the
number-theoretic aspect of the QC in that we can classify
states according to their wavevector k between scattering sites,
viz., k that are extended states are rational multiples of π

d (but
not necessarily the converse).

II. THEORY

In this section we formulate the Kronig-Penney model
for the QC from which we derive the transfer matrix. The
effective-mass Hamiltonian for an electron is

H = − h̄2

2m∗
∂2

∂z2
+ h̄2

2m∗
λ

d

N∑
j=0

δ(z − z j )

(
1 − 1

2
δ j,0

)
(1)

with m∗ the effective mass and λ characterizing the potential
strength. Lattice site j = 0 is given half the weight so that
the Fourier transform of the potential is proportional to the
Jacobi theta function [5,11]. To simplify the notation, it will be
convenient to define the normalized Hamiltonian H̄ = 2m∗

h̄2 H
and solve the rescaled time-independent Schrödinger equation
H̄ψ = Ēψ where Ē is an eigenvalue of H̄ and ψ the corre-
sponding eigenfunction.

Our aim is to compute the extended-state spectrum of the
QC. We seek states with Ē connected with k =

√
Ē between

FIG. 1. Energies Ē of extended states in the QC for various λ

(a) <0, (b) >0 with N = 5
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FIG. 2. Energies Ē of extended states in the QC for various λ

(a) <0, (b) >0 with N = 10.

sites j and j + 1 propagating through the QC without atten-
uation. We adopt a transfer-matrix approach [8]. Focus on
the wavefunction near site z j for some j. For z j−1 < z < z j ,
write ψ (z) = Aje−ikz + Bjeikz with Aj and Bj coefficients to
be determined. Imposing continuity on ψ and then integrating
the Schrödinger equation from z j − ε to z j + ε in the limit
ε → 0, we obtain

Aj+1e−ikz j + Bj+1eikz j = Aje
−ikz j + Bje

ikz j , (2a)

Aj+1e−ikz j − Bj+1eikz j =
(

− λ

ikd
+ 1

)
Aje

−ikz j

+
(

− λ

ikd
− 1

)
Bje

ikz j . (2b)

Writing this in matrix form, we have[
Aj+1

Bj+1

]
= M

[
Aj

Bj

]
(3)

with

M =
[

1 + iγ iγ

−iγ 1 − iγ

]
, M0 =

[
1 + iγ /2 iγ /2

−iγ /2 1 − iγ /2

]
,

(4)

the transfer matrix across quadratic site j ∈ N and j =
0, respectively, with γ = λ

2kd . The transfer matrix between
quadratic sites z j and z j+1 is

Qj =
[

exp[−ik(z j+1 − z j )] 0

0 exp[ik(z j+1 − z j )]

]
. (5)

The transfer matrix for a QC with N quadratic sites is

T = MQN−1MQN−2M · · · MQ1MQ0M0. (6)

Note that the determinant of each transfer matrix 1. Thus, the
eigenvalues ξ± of T for a given Ē satisfy ξ+ξ− = 1. Extended
states then correspond to values of Ē such that |ξ+| = |ξ−| = 1,
or more conveniently, such that 1

2 |Tr T | � 1. Our strategy is

thus to find the values of Ē , and hence of k, such that the
eigenvalues of Q have unit modulus.

III. NUMERICAL RESULTS

In this section we compute numerically the extended-state
spectrum of chains based on Eq. (6). Going forward, with-
out loss of generality we take d = 1. Figure 1 shows Ē for
extended states with N = 5 for various (a) negative and (b)
positive λ. Note significant band and gap structures with the
bands narrowing and gaps opening with increasing |λ| giving
the observed structure known as stacks. Figure 2 plots Ē of
T for N = 10. Many of the remarks made above about the
case for N = 5 apply here as well, although the effects are
less marked. λ has a weaker effect on the bands and gaps
compared with what is observed in Fig. 1. Stack structures for
Fibonacci lattices and for a nonperiodic alloy can be found in
Refs. [12,13]. The stack at Ē = π2, however, is a character-
istic feature that persists to high |λ|; this stack corresponds
to k = π

d , as will be discussed below where from Eq. (10)
will be seen to be associated with an extended state that exists
for all values of λ. In Figs. 1 and 2(a) [2(b)] the low (high)
-energy side of this stack does not depend on λ. This we
shall see is a characteristic of bands in periodic lattices and
follows from well-known behavior of the bands found in the
Kronig-Penney model with Dirac δ-function potentials. Both
edges of the other stacks, however, do shift with λ.

Figure 3 shows the evolution of the bands and gaps for
(a) λ = −3 and (b) 3 for various N . We see the self-similar
structure. Bands at N appear to break up into two bands
separated by gaps at N + 1; new bands arise as well. For
example, in Fig. 3(a), the bands at N = 2 give rise to two
bands each at N = 3, but there are also new bands that appear
at N = 3, e.g., near Ē = 6, 18, 31, and 47. Some gaps persist
as N increases (stable gaps) while others close (transient gaps)
as an additional band appears, similar to what is observed in a
Fibonacci chain [14]. These features merit systematic study.

The QC modulation is now studied between its neighboring
cases z j = jd and z j = j3d . Figures 4(a) and 4(b) show Ē
for z j = jd with N = 10. Note that the horizontal scale is
different from that in Figs. 1 and 2. The observed behavior
is that of the well-known Kronig-Penney model with Dirac
δ-function potentials. Each stack corresponds to a band, and
the minigaps within each band are due to the finite chain
length N . The stack structure shows widening gaps between
bands as |λ| increases. On the other hand, in Figs. 5(a) and
5(b) are shown Ē for z j = j3d with N = 10. Here the stacks
are relatively poorly defined for the most part and for a given
λ the extended states are fall off quickly with |λ|. We return to
this point below.

FIG. 3. Energies Ē of extended states in the QC for various N for (a) λ = −3, (b) 3 with d = 1.
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FIG. 4. Energies Ē of extended states in the periodic lattice with
z j = jd for various λ (a) <0, (b) >0 with N = 10.

IV. EXACT CLASSIFICATION OF EXTENDED STATES

As we show in this section, the extended states can be fully
classified in the N → ∞ limit in closed form. That is, we will
derive in Eq. (10) polynomial inequalities that will yield the
ranges of λ for which the states are extended for a given k.
Let us consider states with kd = π r

s with r, s ∈ N coprime.
In discussing the extended states in the QC, the termination of
the chain at z0 should not affect the nature of the states. Thus,
instead of T , consider the transfer matrix

R = mq2N mq2(N−1)mq2(N−2) · · · q8mq6mq4mq2m (7)

where q is a diagonal matrix with respective diagonal ele-
ments e∓ikd and m = q1/2Mq1/2. Note that T = RqM0. There
are N matrices m in the product in Eq. (7). Consider the factors
q2 j . It is easy to show q2( j+s) = q2 j , so that for kd = π r

s , R is
made up of periodic repetitions of the matrix product

v = mq2(s−1)mq2(s−2)m · · · mq4mq2m (8)

where we assume that N � s. Thus, for a given r and s, the
state will be extended provided 1

2 |Tr v| � 1 inasmuch as m
and q are unimodular. Now, the trace is preserved by cyclic
permutations of the matrix product. Thus, 1

2 |Tr v| = 1
2 |Tr v′|

where

v′ = qs−1mq2(s−2)m · · · mq4mq2mmqs−1. (9)

We can simplify v′ via the following decimation scheme in
the spirit of a real-space renormalization-group approach. Let
m(0) = m and m̃(0) = m. Then repeated application of m( j) =
qm( j−1)q and m̃( j) = qm( j−1)m̃( j−1)q results in v′ = m̃(s−1)

with initial conditions m(0) = m and m̃(0) = m. The following
cases are exhaustive and classify the extended states: s odd, s

2

FIG. 5. Energies Ē of extended states in the nonperiodic lattice
with z j = j3d for various λ (a) <0, (b) >0 with N = 10.

FIG. 6. kd =
√

Ē of extended states in the QC for various λ

(a) <0, (b) >0 with N = 10. The data are identical with those for
Fig. 2 but rescaling the horizontal axis. Vertical orange dashed lines
indicate as a guide to the eye kd integer multiples of π

4 .

even, and s
2 odd. We evaluate 1

2 |Tr v′| symbolically to give

1

2
|Tr v′| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∑(s−1)/2
h=0 (−1)h

( s
2h

)
γ 2h

∣∣, s odd,∣∣1 + 2γ 2
[∑s/4

h=1(−1)h
(s/2

2h

)
γ 2h−2

]
× [

2 + ∑s/4
h=1(−1)h

(s/2
2h

)
γ 2h

]∣∣, s
2 even,∣∣∣1− 2γ 2

[∑( s
2 −1)/2

h=0 (−1)h
( s/2

2h+1

)
γ 2h

]2∣∣∣, s
2 odd.

(10)
Equation (10) is a central result of this paper.

Extended states correspond to solutions for which
1
2 |Tr v′| < 1 [15]. The expressions in the absolute-value signs
are polynomials in γ of degree s − 1, s, and s. The first few
cases give extended states for s = 1, all λ; s = 2, γ 2 � 1;
s = 3, γ 2 � 2

3 ; s = 4, γ 2 � 2. Thus, apart from the special
case s = 1 for which all k = π

d
r
s with r, s ∈ N coprime are

extended for all λ, extended states exist only for well-defined
ranges of |λ| with an r and s-dependent maximum value
of |λ| beyond which states are localized. But other interest-
ing effects are observed. Consider, for example, s = 5. In
this case, the values of |λ| for which extended states exist
is γ 2 ∈ [0, 1 −

√
15
5 ] ∪ [1 −

√
15
5 , 2]. This means, surprisingly,

that converting to ranges of |λ| for which extended states
exist, there are two disjoint ranges. In other words, for a small
range of |λ|/(2kd ) from 0 up to and including (1 −

√
15
5 )1/2

extended states exist, between (1 −
√

15
5 )1/2 and (1 +

√
15
5 )1/2

the states are localized, for |λ|
2kd from 2 to (1 +

√
15
5 )1/2 the

states are again extended, while for |λ|
2kd > 2 the states are all

localized. This type of effect also exists for s � 5. We call
this phenomenon reëntrant extended states. Reëntrance has
been observed in Refs. [12] and [13] for different types of
nonperiodic chains at fixed Ē , but not for an entire stack. We
illustrate this effect below in Fig. 7.

Figure 6 replots the data from Fig. 2 on an extended hor-
izontal scale, converting Ē to kd by kd =

√
Ē . Included in

the plot are vertical dotted bars showing values of kd that
are integer multiples of π

4 . For kd = π , 2π , and 3π (s = 1),
we see particularly well defined stacks, i.e., that the extended
states persist up to high values of |λ| as predicted above.
Figure 6 is in broad agreement with the predictions above;
however, unfortunately the numerics are not sufficiently stable
in Fig. 6 to clearly see the behavior at all fixed kd as a function
of λ. Note, moreover, that these numerical results are for
finite N .
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FIG. 7. Extended states as a function of λ for selected values of
kd � π . Curves in panels (labeled from bottom to top in each panel)
(a) s = 1: kd = π , 2π , 3π ; (b) s = 2: kd = π

2 , 3π

2 , 5π

2 ; (c) s = 3:
kd = π

3 , 2π

3 , 4π

3 , 5π

3 ; (d) s = 4: kd = π

4 , 3π

4 , 5π

4 , 7π

4 , 9π

4 , 11π

4 ; (e) s =
5: kd = π

5 , 2π

5 , 3π

5 , 4π

5 , 6π

5 , 7π

5 , 8π

5 , 9π

5 , 11π

5 , 12π

5 , 13π

5 , 14π

5 ; (f) s = 6:

kd = π

6 , 5π

6 , 7π

6 , 11π

6 , 13π

6 , 17π

6 .

The ranges of λ over which a given k state is extended
are better shown using Eq. (10). Figure 7 shows the range of
λ for extended states corresponding to various kd � 3π for

several values of s. In Fig. 7(a) for kd an integer multiple
of π , we see extended states for all λ as noted above. In
all other cases, there is a maximum |λ| beyond which the k
state is localized. Interestingly, for s � 5, as expected we see
reëntrant regions of extended states following an intermediate
regime of localized states. This is a general feature of s � 5.

What about z j = j3d? For z j = jnd with n ∈ N, an anal-
ysis like that here can be carried out. As n increases, the
polynomial equations governing the λ cutoffs are of increas-
ingly high degree, and the extended-state regions thus will be
expected to be increasingly fragmented with more complex
reëntrant behavior occurring at lower s than for n = 2. (Nu-
merically, we find reëntrant behavior for s � 3.) In addition,
to approximate the N → ∞ limit, much longer QCs are re-
quired. It is possible that a classification of extended states is
possible based on cubic (or higher-order) Gauss sums [16];
however, there are few results available [17].

V. CONCLUSIONS

In conclusion, we present results for extended states in
QCs and classify these states in the limit of long chains.
A key result of this paper, therefore, is Eq. (10). Extended
states exist below a state-dependent cutoff in |λ| for s > 1
and these states are characterized by wavevector k between
scattering sites where kd = π r

s with r, s ∈ N coprime. For
s = 1, states are extended for all |λ|; for s � 5 we find reën-
trant extended states, i.e., disjoint intervals of |λ| in which the
states are extended separated by intervals where the states are
localized. From a Landauer conductance point of view, if one
could isolate individual states, one might be able to observe
reëntrant behavior. The importance of reëntrance when many
states contribute to the transport, such as might be connected
to reëntrant phase transitions [18], quantum diffusion, or the
resistivity of a metallic QC, remains to be studied. From
a broader perspective, chains with z j = jnd are of number-
theoretic interest [5]. The extended-state wavevectors k are
given by rational multiples of π

d , the structure factor can be
expressed in terms of Gauss sums [16], and for n = 2 the
structure factor is simply related to the Jacobi theta function
[19]. Thus, QCs may enable one type of physical realization
of structures directly related to these number-theoretic topics.
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