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Flat bands play a central role in the presence of correlated phases in moiré and other modulated two-
dimensional systems. In this paper, flat bands are shown to exist in uniaxially periodic strained graphene. Such
strain should be produced for example by a substrate. The model is thus mapped into a one-dimensional effective
Hamiltonian and this allows to find the conditions for having flat bands, i.e., a long-wavelength modulation only
on each one of the bipartite graphene sublattices, while having a tagged strain field between neighboring carbon
atoms. The origin of such flat bands is thus tracked down to the existence of topological localized wavefunctions
at domain walls separating different regions, each with a nonuniform Su-Schriffer-Hegger model (SSH) type
of coupling. Thereafter, the system is mapped into a continuum model allowing to explain the numerical
results in terms of the Jackiw-Rebbi model and of pseudo-Landau levels. Finally, the interplay between the
obtained flat bands and electron-electron interaction is explored through the Hubbard model. The numerical
results within the mean-field approximation indicate that the flat bands induce Néel antiferromagnetic and
ferromagnetic domains even for a very weak Hubbard interaction, while the repulsive Hubbard interaction results
in an effective electron-electron attraction. Thus this paper provides a simple, analytically solvable but realistic
model to understand the physical origin of flat bands, pseudo-Landau levels and their effects on the effective
electron-electron interaction.
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I. INTRODUCTION

The study of moiré superlattices has seen an explosion
due to the experimental confirmation of correlation-driven
electronic phases in twisted bilayer graphene (TBG), such as
correlated insulating states [1] and nonconventional supercon-
ductivity [2,3]. Further research showed that other correlated
phases can be found in twisted structures with more layers
(twisted multilayers) [4–6], or heterostructures with different
two-dimensional materials such as hexagonal boron nitride
(hBN) [7–9] or transition metal dichalcogenides (TMDs)
[10,11]. These twisted systems provide a platform for the
study of correlated physics as the twist angle can tune the ratio
between the strength of the interaction and the bandwidth. For
certain angles known as magic angles flat bands appear and
the effects arising due interactions are enhanced, making pos-
sible the plethora of correlated phases found [12–16]. Several
studies have been made within the continuum model [17–22],
but the underlying mechanism of the unconventional super-
conductivity in TBG flat bands is still under investigation.

Flat bands are not unique to moiré materials, some lattices
even have intrinsic flat bands as a result of the lattice ge-
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ometry producing destructive interference [23]. Another way
to obtain flat bands is through an external magnetic field
[24,25], as for strong enough fields it localizes the electrons
in Landau orbits with a spectrum composed of flat Landau
levels (LLs); however, this breaks time-reversal symmetry
and requires extremely high magnetic fields. An alternative
to this is strain [26–34], as it can induce pseudomagnetic
fields, which have opposite action on each valley, such that
time reversal is preserved and produce pseudo-Landau levels
(pLLs) corresponding to fields with magnitudes of hundreds
of Tesla. There are several experiments where the appearance
of pseudomagnetic fields have been observed [35–39], and
recently more techniques to obtain flat bands have been devel-
oped such as origami folding [40] or buckled graphene [41].
Recent studies have proposed models of periodically strained
graphene with flat bands that may reproduce some key aspects
of TBG physics [42–44]. Particularly the flat bands near the
magic angles in TBG can be seen as zeroth pLLs originated
from a pseudomagnetic field generated by the moiré pattern
[45]. However, in these studies the conditions and physical
reasons for having the flat band as well as its relationship
with localization are not completely clear as the strain profile
is either two-dimensional or inhomogeneous between layers.
Due to these reasons, here we present a realistic strain profile
that allows to analytically find the conditions for having flat
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FIG. 1. Graphene nanoribbon with a uniaxial strain space depen-
dent modulation, indicated here by a wavy gray line to the left along
the y axis with zigzag termination, and which is mapped effectively
into the 1D chain shown at the bottom. Sites that belong to sublattice
A and B are denoted by circles of black and gray respectively.
The effective tight-binding hopping parameters of the 1D model are
indicated with different line colors.

bands in monolayer graphene and the localization profile of
the associated modes. The trick consists in using uniaxial
strain such that the system is mapped into a one-dimensional
system [29,30,46] as shown in Fig. 1. Thus, our paper brings
flat-band physics into a simple but realistic effective one-
dimensional (1D) model. The key ingredient to obtain flat
bands in this model is an oscillating strain with a wavelength
slightly different from the distance between atoms of the same
sublattice, the mismatch results in a moiré wavelength several
times larger than the original, but additionally the effective
strain field has a phase difference between sublattices. This
results in regions with different type of SSH [47] coupling.
As we will see, between these inequivalent regions there is a
domain wall at which a zero-mode bound state, identified as a
soliton, appears [48,49]. Solitons are topologically protected
modes known for charge fractionalization and spin-charge
separation. These zero-energy soliton states are sublattice po-
larized flat bands. In the continuum limit our Hamiltonian
takes the form of the Jackiw-Rebbi model [50], a well-known
topological model that describes a 1D Dirac field coupled to
a soliton field. We find that the pseudomagnetic field due to
strain plays the role of an oscillating mass and the domain
walls correspond to mass inversions.

In contrast to other models of strain-induced flat bands,
the possibility of mapping our system to 1D aids us in the
calculations and to understand the effects generated due to
electron correlations. Thus, we also consider a Hubbard term
in our Hamiltonian and solve it within a mean-field approx-
imation. We find magnetic ordering within these flat bands,
such as Néel antiferromagnetic (AFM) and ferromagnetic
(FM) domains as well as an effective electron-electron at-
tractive interaction due to repulsion. This effect is akin to

the invoked Kohn-Luttinger mechanism to explain flat band
induced superconductivity in twisted bilayer graphene [51].

The layout of this paper is as follows. In Sec. II, we employ
the 1D mapping of uniaxially strained graphene for differ-
ent strain profiles, showing the appearance of flat bands for
oscillating strains with a wavelength slightly deviated from
the sublattice periodicity. In Sec. III, we derive a continuum
model for the flat-band states, for E = 0 we arrive to an analog
of the Jackiw-Rebbi model and compare it to our numerical
results. In Sec. IV, we derive a local Hamiltonian around the
localization centers and obtain its spectrum as pseudo-Landau
levels. In Sec. V, we introduce electron correlations through
the Hubbard model and solve numerically within a mean-field
approximation. Finally in Sec. VI, we discuss our results and
present our conclusions.

II. MODEL

We consider graphene with uniaxial strain along the y
direction, assuming a space dependent modulation u(y) for
a zigzag terminated nanoribbon, such that the atomic posi-
tions are changed as (x′, y′) = (x, y + u(y)). Considering the
translational symmetry along the x direction, the system can
be map into an effective 1D model as shown schematically
in Fig. 1, this results in an effective Hamiltonian with kx

dependent hopping elements [46],

H (kx ) = −t0
∑

n

[c(kx )znb†
nan + wna†

n+1bn] + H.c. (1)

where c(kx ) = 2cos(
√

3kxa/2), wn, and zn are the modula-
tions of the hopping integrals, which can be expressed in terms
of the displacement field,

wn = exp

[
−β

a

(
uA

n+1 − uB
n

)]
, (2a)

zn = exp

[
− β

2a

(
uB

n − uA
n

)]
, (2b)

here t0 ≈ 2.8 eV is the hopping integral for pristine graphene,
β ≈ 3 is the Gruneisen parameter and uA/B

n is the value of
the displacement at the nth site of sublattice A/B, thus un ≡
u(yn). We consider an oscillating strain such as

u(y) = μcos

(
2π

λ
(y − a/2) + φ

)
, (3)

where a ≈ 1.42 Å is the distance between carbon atoms in
pristine graphene, μ is the amplitude of the displacement, λ

is the wavelength of the oscillation, and φ is an additional
phase. For a wavelength greater than the lattice parameter λ �
a the displacement field changes smoothly along the atomic
positions as shown in Fig. 2(a). On the other hand if λ is equal
to the sublattice periodicity in the y direction λsl = 3a/2, each
site of the same sublattice will see an equal displacement, this
may result in a SSH Peierls distortion type of coupling along
the y direction, this is the case shown in Fig. 2(b). Particularly
if we consider a wavelength around λsl, such that

1

λ
= 1

λsl
+ 1

λeff
(4)
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FIG. 2. Displacement field u(y) (black solid line). The values of
the displacement field at the sites of sublattice A (B) correspond
to the red (blue) dots. The cases are (a) λ = 36a corresponding
to a long-wavelength case, (b) λ = λsl corresponding to a tagged
strain field and (c) λ−1 = λ−1

sl + (36a)−1 corresponding to a detuned
tagged strain field, i.e., made from out of phase long-wavelength
modulations but in different sublattices. This strain field leads to
flat bands where electrons are localized around sites where the blue
and red displacements coincide, corresponding to a change of sign
in the effective mass of the continuum model. Here μ = 0.15a and
φ = 5π/6.

and substitute the positions of the atoms for each sublattice
yA

n = nλsl and yB
n = nλsl + a/2 in Eq. (3) we can get the

effective displacement field for each sublattice,

uA(y) = μcos

(
2π

λeff
(y − a/2) − 2π

3
+ φ

)
, (5a)

uB(y) = μcos

(
2π

λeff
(y − a/2) + φ

)
, (5b)

the mismatch between the wavelength of the strain field os-
cillation and the sublattice periodicity produces an effective
oscillation with a longer effective wavelength λeff , but with a
phase difference of 2π/3 between both sublattices as shown in
Fig. 2(c). In Fig. 3 we show the spectrum for different types
of oscillations within the model, Fig. 3(a) shows the disper-
sion for graphene without any strain, where the usual Dirac
cones can be seen, in Fig. 3(b) we consider an oscillation
with λ = λsl, which opens a gap and in Fig. 3(c) we consider
λ−1 = λ−1

sl + (240 a)−1, which results in the appearance of
flat bands at E = 0. This strain produces regions where one
type of bond becomes shorter and the other longer and contin-
uously change until their roles invert, the flat bands arise due
to soliton states at domain walls that separate this different
regions, to see this consider the Schrödinger equation for the
nth atom of sublattice B,

EψB
n = −t0

[
c(kx )znψ

A
n + wnψ

A
n+1

]
, (6)

FIG. 3. (Left) Band structure for (a) pristine graphene.
(b) Graphene under a strain field with λ = λsl and μ = 0.15a
resulting in the opening of a gap. (c) Graphene under a strain field
with λeff = 240 a and μ = 0.15a, notice the clear appearance of flat
bands at E = 0. (Right) The corresponding density of states.

for zero-energy modes the wavefunction becomes decoupled
between sublattices as both have to satisfy the Schrödinger
equation independently, thus we can obtain a recursion rela-
tion between neighboring atoms of the same sublattice,

ψA
n+1 = −c(kx )

zn

wn
ψA

n , (7)

which can be rewritten as

ψA
n+1 = −c(kx )e

β

a (uA
n+1+ 1

2 uA
n − 3

2 uB
n )ψA

n , (8a)

and similarly for sublattice B,

ψB
n+1 = − 1

c(kx)
e

β

a (uB
n + 1

2 uB
n+1− 3

2 uA
n+1 )ψB

n , (8b)

by applying these equations iteratively we can obtain the value
of the wavefunction at any site given any initial value ψ

A/B
0 .

Furthermore, since the displacement field changes slowly
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within the same sublattice we can consider uA/B
n+1 ≈ uA/B

n ,
which allows us to obtain a simpler expression,

ψA/B
n = [−c(kx )]±nexp

⎡
⎣±3β

2a

n∑
j=0

�u j

⎤
⎦ψ

A/B
0 , (9)

where �u j = uA
j − uB

j . In the regions where �u j is positive
(negative) the wavefunction grows (decays) for sublattice A,
while the opposite happens for sublattice B. Thus the wave-
function for sublattice A is localized at the domain walls
where �u j = 0 going from positive to negative and for sub-
lattice B where �u j = 0 going from negative to positive.

III. CONTINUUM MODEL

As the effective wavelength λeff is greater than the sublat-
tice periodicity λsl, it is feasible to consider a continuum limit
where we use y as a continuous variable. Thus we can consider
our Hamiltonian as a 2 × 2 y-dependent matrix with zn and wn

replaced by continuous functions,

H (y) =
(

0 HAB(y)
H∗

AB(y) 0

)
, (10a)

HAB(y) = −t0[w(y)eik·δ1 + z(y)(eik·δ2 + eik·δ3 )], (10b)

where δ j are the vectors connecting a site in the B sublattice
to its three nearest neighbors in sublattice A, i.e., δ1 = a(1, 0),
δ2 = a(−√

3/2,−1/2) and δ3 = a(
√

3/2,−1/2). Now we
expand around the Dirac point K ′ = 4π

3
√

3a
(−1, 0) of pristine

graphene,

HAB(y) = Ax(y) − vx(y)px + ivy(y)py + O(p2), (10c)

where

Ax(y) = t0[z(y) − w(y)] (11a)

is a pseudomagnetic potential arising due to the difference of
the hopping amplitudes,

vx(y) = v f z(y), (11b)

and

vy(y) = v f
(

2
3w(y) + 1

3 z(y)
)
, (11c)

are position dependent Fermi velocities, where v f is the usual
Fermi velocity for pristine graphene defined as

v f = 3t0a

2h̄
. (11d)

Thus we can write our low-energy Hamiltonian as

H (y) = (Ax(y) − vx(y)px )σx − vy(y)pyσy (12)

where σ are Pauli matrices acting on the sublattice pseu-
dospin. Now we solve for the zero-energy eigenstates 
0 =
(ψA

0 , ψB
0 )T ,

[(Ax(y) − vx(y)px )σx − vy(y)pyσy]
0 = 0. (13)

Since we have periodicity in the x direction we consider it a
good quantum number and substitute px = h̄qx, where qx is

measured around the Dirac point. We then obtain the follow-
ing Dirac equation for zero modes,

[∂yσ0 − m(y, qx )σz]ψ0 = 0 (14)

where we defined

m(y, qx ) = Ax(y) − h̄vx(y)qx

h̄vy(y)
. (15)

We arrive to a continuum version of Eq. (9),

ψ
A/B
0 (y, qx ) = Nexp

[
±

∫
y

m(y′, qx )dy′
]
, (16)

where N is a normalization constant.
We can see m(y, qx ) as a mass due to the pseudomagnetic

field. Moreover, our system becomes analog of the Jackiw-
Rebbi model, where a topological protected mode arises in
the boundary between two regions with masses of different
signs [50]. In our case the mass oscillates along the y direction
resulting in the localization of the wave function around the
zeros of m(y, qx ). However, the mass is seen with opposite
sign between the two sublattices, thus in correspondence with
the discrete case, the wavefunction of one sublattice is lo-
calized at the domain wall that changes sign from positive
to negative and for the other sublattice in the opposite case.
In Fig. 4 we show the probability density for each sublattice,
the solid lines show the solution obtained in Eq. (16) and the
dots the solutions from direct diagonalization of the discrete
system; notice the good agreement between both. The dashed
black line shows m, due to its linear dependence on qx differ-
ent values of qx will change the zeros of m, thus moving the
localization centers.

As in the continuum limit our Hamiltonian takes exactly
the form of the Jackiw-Rebbi model and Eq. (16) has the
same form of a soliton solution [50], it turns out that the
topological charge of such modes is ±1 as expected for flat
bands [52]. The topological invariants are given by the general
Atiyah-Singer theorem [52–54]. A recent proposal is to use
the Fubini-Study metric to further characterize such kind of
band topology [55].

IV. PSEUDO-LANDAU LEVELS

As the wave function is localized around the points where
Ax(y) − vx(y)h̄qx = 0, for a given qx we can calculate this
positions as

ym
0 (qx ) = a

2
+ λeff

2π

[
mπ + π

3
− φ + (−1)m+1

× arcsin

(
2a

3
√

3μβ
log

(
1 − 3qxa

2

))]
, (17)

the wavefunction is localized at the positions with odd m
for sublattice A and even m for sublattice B. Furthermore,
Ax(y) is linear around ym

0 as shown in Fig. 5(a) and the term
h̄vx(y)qx just produces a shift for small qx. This allows us to
expand up to first order in y, but for simplicity we expand only
to zeroth order in vy(y). We then obtain the following local
Hamiltonian:

h(y, qx ) = ω(qx )
(
y − ym

0 (qx )
)
σx + iν(qx )∂yσy, (18a)
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FIG. 4. Probability density of the zero-energy modes for (a) qx =
−0.15a−1, (b) qx = 0, and (c) qx = 0.15a−1 with λeff = 96a and
μ = 0.15a, shown in red (blue) for sublattice A (B). The solid lines
show the results obtained from the continuum limit in Eq. (16) while
dots correspond to the results obtained through direct diagonalization
of the system. The dashed black line shows m(y, qx ), depending on
whether it is positive or negative the density for one sublattice grows
or decays. The localization centers are at the zeros of m, which are
indicated by the thin vertical lines for each sublattice.

where

ω(qx ) = ∂y[Ax(y) − h̄vx(y)qx]|y=ym
0 (qx ), (18b)

ν(qx ) = h̄vy
(
ym

0 (qx )
)
, (18c)

from here onward we leave implicit the dependence of
qx. Now depending on whether the expansion is around a ym

0
with an even or odd m the slope of Ax(y) changes in sign as
shown in Fig. 5(a), resulting in two different local Hamilto-
nians h±. We define the characteristic length as l = √

ν/ω

and the dimensionless variable χ = (y − y0)/l , such that our
Hamiltonians take the following form:

h±(χ ) = √
νω

[
0 ±χ + ∂χ

±χ − ∂χ 0

]
. (19)

With the help of the annihilation a = 1√
2
(χ + ∂χ ) and creation

a† = 1√
2
(χ − ∂χ ) operators of the harmonic oscillator we can

compactly write our Hamiltonians as

h+ = ε

[
0 a

a† 0

]
, h− = −ε

[
0 a†

a 0

]
, (20)

where ε = √
2νω. The spectrum is degenerate between both

Hamiltonians and it is composed of pLLs,

En(qx ) = ±ε(qx )
√

n, (21a)

and the corresponding eigenstates for n > 0 are given by


+
n (χ ) = eiqxx

√
2

[
±ψn−1(χ )

ψn(χ )

]
, (21b)


−
n (χ ) = eiqxx

√
2

[
ψn(χ )

∓ψn−1(χ )

]
, (21c)

while for n = 0,


+
0 (χ ) = eiqxx

[
0

ψ0(χ )

]
, 
−

0 (χ ) = eiqxx

[
ψ0(χ )

0

]
, (21d)

where ψn are the eigenstates of the harmonic oscillator,

ψn(χ ) =
(

1

π22n(n!)2

) 1
4

e−χ2/2Hn(χ ), (21e)

here Hn are the Hermite polynomials. In Fig. 5(b) we show the
spectrum of the pseudo-Landau levels obtained in Eq. (21a)
compared to the numerical band structure; they show an ex-
cellent agreement around kx = ±1. The additional structure
around kx = 0 at higher energies comes from the hybridiza-
tion between pseudo-Landau levels at opposite domain walls
as they come closer for smaller values of kx. At the borders of
the Brillouin zone we have c(kx ) = 0, thus dimer states appear
with different hopping values along the y direction, break-
ing the degeneracy, such that the spectrum is En = ±t0wn

in contrast to pristine graphene where it is simply E = ±t0.
The numerical probability densities are shown in Fig. 5(c) for
the first four states at qx = 0; here the structure composed
of harmonic oscillator states with quantum number n in one
sublattice and n − 1 in the other can be clearly seen. There is
a slight asymmetry in the wavefunctions, which is not present
in our analytic results due to the approximations made, but the
essential behavior is captured.

V. ELECTRON-ELECTRON INTERACTIONS

As we are dealing with localized electrons with low kinetic
energy, the contributions from electron-electron interactions
become more relevant. Here we study these effects through
the Hubbard model [56–59], written in real space as

H =
∑

<i, j>,σ

ti j ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ (22)

where 〈i, j〉 denotes nearest-neighbor sites, ĉ†
iσ (ĉiσ ) refers

to the creation (annihilation) operator for an electron at site
i with spin σ , n̂iσ = ĉ†

iσ ĉiσ is the corresponding number op-
erator, and ti j = t ji is the nearest-neighbor hopping integrals
between the ith and the jth sites. In this paper, the parameter
U is positive due to it is a direct Coulomb integral. Despite the
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FIG. 5. (a) Pseudomagnetic potential as function of y (black solid line), for qx = 0 the positions at where the wavefunction is localized
yA/B

0 are shown by the vertical solid lines in red (blue) for sublattice A (B), around this points we perform an expansion to first order in y as
shown by the dashed lines. (b) Pseudo-Landau levels (black dashed lines) and the band structure obtained from direct diagonalization (solid
red lines). Notice the excellent agreement around kx = ±1. The localized states move closer between them as kx goes to zero, this results in
the hybridization of pseudo-Landau levels localized at the two domain walls at higher energy states. At the boundaries of the Brillouin zone
we have the dimer states with energies En = ±t0wn. (c) The numerical probability density as function of y for n = 0, 1, 2, 3 and qx = 0, these
values are shown as black circles in (b).

simplicity of the model, the second term in Eq. (22) is not triv-
ial from the computational point of view. This model can be
solved exactly only for small systems since the Hilbert space
increases very rapidly with the number of sites. In this paper,
the Hubbard model is solved in the mean-field approximation.
Thus, the second term in Eq. (22) is decoupled as

U
∑

i

(ni↑〈n̂i↓〉 + ni↓〈n̂i↑〉 − 〈n̂i↑〉〈n̂i↓〉) (23)

where 〈niσ 〉 is the average electron occupation number with
spin σ at site i. A self-consistent solution is found iteratively
by diagonalizing the Hamiltonian matrix over a uniform grid
of k points within the first Brillouin zone. The iteration proce-
dure is stopped when the changes of charge densities are less
than 10−6. The Fermi level is calculated from the integration
of the total density of states (DOS). Then, 〈n̂i,↑〉 and 〈n̂i,↓〉
are obtained from the integration local DOS. The magnetic
moment μi at the site i is calculated as

mi = 〈n̂i↑〉 − 〈n̂i↓〉
2

. (24)

The total magnetization is give by M = ∑
i mi. The electronic

charge qi at the site i is given by

qi = 〈n̂i↑〉 + 〈n̂i↓〉. (25)

Thus, the total charge is given by Q = ∑
i qi. In the half-

filled band, Q = N (N is the number of atoms). Figure 6
shows the spin-resolved band structure and density of states

(DOS) for pristine and strained graphene considering U =
6 eV. Band splitting, gap opening, and bandwidth narrow
behavior are clearly promoted by the Coulomb repulsion. For
pristine graphene, the band splitting occurs in all bands. The
valence band maximum (VBM) and conduction band mini-
mum (CBM) occur just in the Dirac point with a bandgap of
1.85 eV, see Fig. 6(a). An inspection of the spin-resolved elec-
tronic charge in each site revealed that an antiferromagnetic
ordering is developed for U = 6 as shown later. Figure 6(b)
displays results for the strained graphene with λ = λsl. Even
though the structure did not change the bandgap (3.45 eV)
when compared with U = 0, a narrow-band behavior was
observed. This fact is related to the dimerization occurrence
for λ = λsl, similar to the SSH Peierls distortion. As shown
above, the λ = λsl case creates dimers with equal bond length
and homogeneously distributed along the y direction. The
large and short bond lengths, resulting from the dimerization
process, lead to charge confinement due to the kinetic-energy
reduction in large bond lengths. This phenomenon occurs even
in absence of the Coulomb repulsion as shown above. When
the Coulomb repulsion is turned on (U > �, where � is
the bandgap) in the dimerized system, the charge confined
within the dimer is polarized and the energy is stabilized
adopting an antiferromagnetic ordering, similar to a singlet
state. Interesting electronic properties were also obtained for
λeff = 96a, see Fig. 6(c). Here the dimerization occurs, but in
a nonhomogeneous way along the y direction, also a variation
of the bond lengths exhibited changes, more details on it can
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FIG. 6. Unrestricted Hartree-Fock calculations of the band struc-
ture and total density of states (DOS) for U = 6 eV. (a) pristine
graphene (first row panels), (b) strained graphene with λ = λsl (sec-
ond row panels), and (c) strained graphene with λeff = 96a (third
row panels). The calculations correspond to N = 128 atoms with one
electron per atom (half-filled band).

be seen below. We observed a bandgap of 1.16 eV with an
extended flat-band behavior for VBM and CBM and a few
neighboring bands around the � point. These flat bands can be
also appreciated as Van Hove singularities in the DOS. Notice
that the flat bands were also obtained for U = 0 (twofold
degeneracy), but without the presence of a gap. The VBM has
a twofold degeneracy. The breaking of the twofold degener-
acy due to the Coulomb repulsion creates antiferromagnetic
domains along the y direction as we will show later. Different
trends were observed in the bandgap as U increased. In Fig. 7,

FIG. 7. Bandgaps for pristine and strained graphene as a function
of the on-site coulomb repulsion U . The systems contain N = 128
atoms with one electron per atom (half-filled band).

FIG. 8. Magnetic ordering for (a) pristine graphene and
(b) strained graphene with λeff = 96a for different values of on-site
coulomb repulsion U . For pristine case, long-range Néel antiferro-
magnetic (AFM) order is developed for U � 5 eV as is indicated
by the alternated blue and red circle symbols along the y coordinate.
More intense color bar means an increment of the magnetic moments
magnitude. For strained graphene (b), Néel AFM and FM domains
are obtained. The calculations correspond to N = 128 atoms with
one electron per atom (half-filled band). Note that positive and
negative magnetic moments are localized at sublattices A and B,
respectively.

we show the Coulomb repulsion dependence of the bandgap
for pristine and strained graphene structures. We observed two
linear behaviors separated by a critical Coulomb repulsion
(Uc), which can be extracted from the inflection point of each
curve. The pristine graphene showed Uc ∼ 4, while strained
graphene structures exhibited Uc ∼ 9.25 and 6.5 for λ = λsl

and λeff = 96a, respectively. The case of pristine graphene
is in agreement with previous calculations, which estimated
Uc ∼ 4 using a series expansion [60]. A subsequent study in-
dicated a more refined valued [61] Uc ∼ 3.869. Interestingly,
in the strained graphene with λ = λsl, the bandgap remains
unchanged for U < 9.2. Furthermore, strained graphene with
λeff = 96a exhibited a greater bandgap for U < 4.4 than the
pristine graphene. Figure 8 shows the magnetic ordering
evolution with U along the y direction. Results for pris-
tine graphene clearly show two regions as U increase, see
Fig. 8(a). We observed paramagnetism for U < 5, and long-
range AFM ordering for U > 5. The most intense colors (blue
and red) refer to a strong localization regimen where local
magnetic moments are close to 1/2 (Heisenberg limit). More
changes in the magnetic ordering along the y direction can
be seen for strained graphene with λeff = 96a, as shown in
Fig. 8(b). We observed different crossovers combining AFM,
PM, and FM zones along the y direction. For U < 3, the
system exhibited FM domains identified as separated zones
with the same color. For U > 3 separated AFM domains are
obtained with a strong dependence on the local magnetic mo-
ments with the atom position along the y direction. Figure 9
displays the electron population in the VBM wave function at
K = 2π/3

√
3 for the strained graphene with λeff = 96a. The

blue (red) color means the null (maximal) probability of elec-
tron localization. The incorporation of the Coulomb repulsion
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FIG. 9. Electron localization |
n(K, y)|2 along the y-coordinate
as a function of U for strained graphene (λeff = 96a), where n cor-
responds to the valence band maximum (VBM) and K = 2π/3

√
3.

The system corresponds to N = 128 atoms with one electron per
atom (half-filled band). Results for spin-up (a) and spin-down (b).
Electrons with spin up and down are localized at sublattice A and B,
respectively. A comparison with Fig. 4 shows that for U < 4.5 eV
electrons are mainly localized at topological domain walls of the
one electron model as expected, while as the repulsive interaction U
increases, an effective pairing attraction appears between electrons.
The pairing is explained by the kinetic energy increase near the center
as seen in the effective mass model Fig. 10.

makes that electrons with spin up and down live in two sep-
arate zones along the y direction and different sublattices.
Electrons with spin up and down live in A and B sublattices,
respectively. For instance, in Fig. 9(a), for spin-up electron lo-
calization around y = 24, the colored vertical lines (sublattice
A) are accompanied on the right side by a blue vertical line
(sublattice B). This situation is reversed for spin-down elec-
tron localization around y = 72, as shown in Fig. 9(b). Both
electrons with spin up and down exhibited maximal localiza-
tion for U < 4.5, indicated by the red color. Note that the
separation between spin-up and spin-down localization zones
is reduced as U increases; in other words, an effective attrac-
tion appears as the originally repulsive interaction increases.
This effect seems to be somewhat similar to the invoked
Kohn-Luttinger mechanism for flat band superconductivity in
twisted bilayer graphene [51]. The explanation of this effect
is as follows. Wave functions shown in Fig. 6 correspond to
λeff = 96a, where short bond lengths are dominant at and
around the ribbon’s center (see the strained structure in Fig. 6,
right-hand side for λeff ). This is confirmed in Fig. 10, where
we plot the effective bonds using the continuous model. Next
we observe that short bond lengths increase the kinetic energy.
Therefore, the central zone of the ribbon exhibits large kinetic
energy. In Fig. 9, the Coulomb repulsion as U → ∞ produces
confinement of electrons toward zones with maximal kinetic
energy to avoid energy-expensive double occupation sites. We
end this section by making some comments concerning the
topological properties of the model including the Hubbard
term. For correlated many-body systems, the Berry phase was
first introduced to measure polarization [62,63]. The study of

FIG. 10. Hopping integral magnitudes as a function of y for the
two types of bonds as obtained from the effective mass model. The
maximum kinetic energy is found at the center and thus, as seen
in Fig. 9, leads to a focusing, pairing effect of the electrons as U
increases.

many-body effects in topological states has been done mostly
in one-dimensional systems [64,65]. Although there are stud-
ies on the Hubbard model for unstrained graphene [60,61,66–
69], still there are controversies on its physics and topological
properties as is also the case for the iconic square lattice model
[69]. Therefore, here we do not pretend to establish the topo-
logical properties of the many-body model including strain
and edges. Instead, we observe that our model, in the limit
t << U , is close to the recently studied Hubbard-SSH model
in which it has been seen that the electron repulsion may
move the localization centers of the topological wavefunctions
[65] as observed here. However, there is also a fundamental
difference as our full Hubbard system is two-dimensional and
thus requires a separate, further study.

VI. CONCLUSIONS

In this paper we studied a 1D model mapping of uniax-
ially strained graphene [46] and found the condition for the
appearance of flat bands as an effective displacement field
that is out of phase between sublattices. These flat bands can
be described by solitons at domain walls and we provided
analytical solutions in both discrete and continuum cases.
In the continuum we obtained a connection to the Jackiw-
Rebbi model and derived the pseudo-Landau levels within
a local approximation, the former corresponding to the ze-
roth pseudo-Landau level. Electron-electron interactions were
introduced by using a Hubbard Hamiltonian. The numerical
results within a mean-field approximation indicate that flat
bands induce Néel antiferromagnetic and ferromagnetic do-
mains. Also, the flat band leads to electron spin polarization
at different bipartite sublattices. The bandgap depends upon
the long wavelength effective component of the strain, a fact
that can be understood as a result of the electron-electron
interaction effect in the charge confined within SSH dimers,
where the energy is reduced by adopting an antiferromagnetic
ordering.

Finally, it was found an effective electron-electron pairing
as the Hubbard repulsion term is increased. This suggests that
the presented model shares some similarities with the invoked
Kohn-Luttinger mechanism for flat band superconductivity in
twisted bilayer graphene [51].
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