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Bounds on phonon-mediated hydrodynamic transport in a type-I Weyl semimetal
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We analyze from a microscopic point of view the thermoelectric transport properties of a type-I Weyl
semimetal driven by electron-electron interactions mediated by virtual phonons, particularly the feasibility of
entering a hydrodynamic regime. Considering also the effects of impurities and the absorption/emission of
real phonons, electric and thermal conductivities are obtained. At temperatures T above the Bloch-Grüneisen
temperature TBG, virtual phonons behave similarly to real phonons, but the Lorenz ratio is modified by a constant
prefactor dependent on the Fermi surface geometry. For temperatures below TBG, virtual phonons induce a T 2

dependence in the resistivities, opening a window where momentum-conserving interactions could dominate
transport signatures. We find that the onset of such a hydrodynamic regime requires impurity scattering whose
inverse relaxation time is one or two orders of magnitude smaller than realistic values, depending on the
electron-phonon coupling strength.
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I. INTRODUCTION

Despite having been originally postulated decades ago
[1,2], electron hydrodynamics has become of interest in recent
years in light of experimental observations hinting such a
behavior. In contrast to the conventional diffusive dynam-
ics of electrons in a Drude-like regime, the hydrodynamic
regime in an electron system is characterized qualitatively by
momentum-conserving electron-electron interactions provid-
ing the shortest scattering time.

Recent experiments [3–8] have focused in part on mea-
suring the thermoelectric transport signatures within this
hydrodynamic regime, particularly the electric conductivity σ

and the thermal conductivity κ , where in principle each one
can be proportional to different relaxation times, τσ and τκ ,
respectively. In systems where electric and thermal conductiv-
ities have the same characteristic scattering time, the Lorenz
ratio L ≡ κ/(T σ ) acquires a constant value L0 independent
of the temperature T (and any particular characteristic scale in
the system). This is known as the Wiedemann-Franz (WF) law
and is the prevalent case for most metals. For systems where
τσ and τκ are different, the Lorenz ratio L ∝ τκ/τσ no longer
satisfies the WF law. Electronic systems in the hydrodynamic
regime fall into the latter category as τσ,e−e �= τκ,e−e since the
local electric current is relaxed only by processes that do not
conserve the flow of the quasiparticles.

The violation the WF law observed in several materials,
particularly some type-II Weyl semimetals (WSM) such as
WP2 [4,5] and Co2MnAl [9], has been suggested as a sig-
nature of such hydrodynamic regime, with phonon-mediated
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electron-electron interactions being proposed as the culprit
for such behavior. This suggestion is supported by several
studies from first-principles calculations [7,8,10,11] in several
type-II WSMs that appear to show regions where the smallest
relaxation time is the one associated to phonon-mediated scat-
tering. Anisotropy of the Fermi surface in these type-II WSMs
has been suggested [10] as the driving factor enhancing this
mechanism. It is of note that in these works, Coulomb scatter-
ing is seen to be the least effective scattering processes for the
studied materials.

Regarding the WF law, it is imperative to bear in mind
that momentum-relaxing interactions between electrons and
(real) phonons by themselves might lead to its violation
without entering in a hydrodynamic regime. For instance,
in three dimensional Fermi liquids where phonon absorp-
tion and emission by electrons are the dominant scattering
processes at low temperatures, one expects τσ,e−e ∝ T −5,
whereas τκ,e−e ∝ T −3, leading to a clearly nonconstant L ∝
T 2, but no hydrodynamic regime, as phonon absorption
and emission processes fail to conserve electron momentum
[12]. Similar results can be expected in the bulk of a Weyl
semimetal, with some deviations due to surface effects [13].
Nevertheless, most of the theoretical approaches to the prob-
lem still consider absorption and emission of real phonons as
the primary scattering mechanism for electrons, but with the
phonon gas slightly out of equilibrium and thus conserving
the total momentum of the electron-phonon fluid in absence of
umklapp scattering [14,15]. Experiments in WP2 show how-
ever that the violation of the WF law is stronger than expected
by electron-phonon scattering alone [4], with the contribution
of electron-electron scattering being noticeably different from
that of other metals [5].

In the present work, we consider the role of electron-
electron interactions in thermoelectric transport with virtual
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phonons playing the role of mediators instead of the conven-
tional Coulomb interaction in type-I Weyl semimetals (SMs).
These are clearly different systems to the type-II SMs where
potential signatures of hydrodynamics have been observed
exclusively thus far. Evidence of hydrodynamics has also been
reported in PdCoO2, which is not a WSM [3]). Neverthe-
less, there has been extensive theoretical work based on the
premise that a particular instance of a type-I SM may indeed
harbor (relativistic) hydrodynamic behavior [16–25]. It is thus
of interest to ask whether a system where processes derived
from electron-phonon interactions dominate over Coulomb
scattering. In the process, we elucidate the general behavior
of these scattering processes, whose microscopic treatment is
seemingly absent in the literature, and how it entangles with
the features of a type-I Weyl SM, finding their imprint on
thermoelectric transport and in particual, the WF law.

Let us summarize our results. First of all, there is a charac-
teristic temperature scale, the Bloch-Grüneisen temperature,
TBG, delimiting two temperature regimes. Such temperature
scale also appears in models that only consider phonon emis-
sion/absorption [12,15]. In this work we assume that the
Debye temperature TD > TBG, as is the case for metals with
small Fermi momenta p f .

Above TBG, virtual phonon effects are non-neglible when
the phonon linewidth � is dominated by the effects of
the phonon-electron interaction. In this regime, electronic
scattering times are equal to those of phonon emission and ab-
sorption as the virtual phonons act like on-shell real phonons,
with quantum interference effects becoming negligible, but
the Lorenz ratio acquires a constant value different from L0.
When there are stronger decay channels for phonons than
those provided by the interaction with electrons, then the
effects of electron scattering in this temperature regime are
suppressed and L = L0.

For temperatures below TBG, phonons no longer act on-
shell as they are not thermally activated, and the quantum
fermionic inteference between different scattering channels
becomes non-neglible. For a simple quadratic band model,
this would lead to the effects of electron scattering by virtual
phonons being suppressed with respect to the phonon emis-
sion/absorption and scattering off impurities. Fundamentally,
the wavefunction overlaps associated with the scattering of
the Weyl quasiparticles make the contribution of phonon-
mediated electron scattering non-negligible. This results in
τe−e ∝ T −2 relaxation times, opening up a parameter window
for which electron scattering can dominate over scattering
with real phonons for small enough temperatures. Neverthe-
less, we predict that the onset of a hydrodynamic regime is
foiled for realistic electron-phonon coupling strengths and
impurity scattering, the latter of which is expected to start
dominating at higher temperatures of the order T ∼ 0.1TBG.

II. THE MODEL

A. Particles

We consider the electron dynamics in a WSM described by
the following two-band Hamiltonian [26,27]

H0 =
∫

p
ψ†

p[σ · d(p)]ψp, (1)

where ψp is a two-component spinor, and
∫

p ≡ ∫ d3 p
(2π )3 . A

simple diagonalization of the Hamiltonian shows that there
are positive and negative energy eigenstates whose energies
are given by ε±,p = ±d (p) ≡

√
|d(p)|2. In particular, we set

d(p) = v0
(
px, py,

1
2b

(
b2 − p2

z

))
, (2)

so that the Hamiltonian has two isotropic Weyl nodes (valleys)
around b± = (0, 0,±b). For small momenta around these
nodes, δp± ≡ p − b±, one obtains the low energy Hamilto-
nians, one for each chirality (± ≡ L/R),

HL,R(δp±) = δp±,xσx + δp±,yσy ± δp±,zσz, (3)

where we have set the Fermi velocity v0 ≡ 1, as is also done
throughout the rest of this work. The nodes are thus separated
by a distance 2b. Importantly, we assume that the chemical
potential is the same for both valleys, and much larger than
the temperature T . Without loss of generality, we assume that
the chemical potential is positive, meaning that the occupied
valence band has no impact in the transport properties and can
be neglected. In addition we also assume that p f < b ≡ |b| as
well in order to have a well defined chirality for each valley.

Longitudinal acoustic phonons have on-shell isotropic en-
ergies ωq = c|q| ≡ cq, where c is the (dimensionless) speed
of sound measured in units of v0. For realistic WSM, it makes
sense to assume c ∼ 10−2 � 1 [13,15,28,29]. In the present
work, phonons interact with electrons through a deformation
potential term [12] (neglecting umklapp processes):

He−ph =
∫

p,q
gq

p+q,p(aq + a†
q)ψ†

p+qψp. (4)

The operator aq (a†
q) destroy (create) a phonon with momen-

tum q, and the electron-phonon coupling is given by

gq
p′,p =

√
U

2ωq
(p′ − p) · q̂, (5)

where U is some constant regulating the strength of the
electron-phonon interaction that has dimension of energy−2

after setting h̄ = v0 = 1 and q̂ = q/|q|.
When projecting the Hamiltonian term (4) onto the con-

duction band states of (2), the effective coupling (5) reads

geff q
p′,p = gq

p′,p〈+p′| + p〉, (6)

where the state |+p〉 is the positive energy eigenstate of the
Hamiltonian (see Appendix A). Note that because of overlap
term 〈+p′| + p〉 the effective fermion-phonon coupling is now
sensitive to chirality flips in the scattering processes involving
different valleys, as can be checked by expressing p′ and p
in terms of δp±′ and δp±. In the rest of this work, the label
p will be used instead of δp± to refer to the momenta with
respect to the Weyl nodes. For chirality-violating processes
where confusion could arise, the momentum around the right-
handed node will simply be altered as p → p + 2b, setting it
to the reference frame of the left-handed node.

The phonon propagator is given by

D(q, ω) = 2ωq

ω2 − ω2
q + iωq�q

. (7)
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FIG. 1. Intravalley and intervalley contributions to the phonon
linewidth from the electron-phonon interaction. The bubble diagram
with two R fermions provides the same contribution as the first
diagram.

We have included the effects of interactions through a small
but nonvanishing phonon linewidth �q � ωq. Here we focus
on the electron-phonon interaction (4) as the dominant source
of this phonon linewidth, represented to lowest order in per-
turbation theory by the diagrams in Fig. 1, i.e., �q = �

e−ph
q . In

general, other effects like phonon-impurity scattering or an-
harmonic effects might enhance �q, so we expect for realistic
WSMs,

�q � �e−ph
q . (8)

In particular, one expects for anharmonic interactions to dom-
inate at sufficiently large temperatures. Conversely, for small
enough temperatures, particularly in a region close to TBG,
anharmonic effects may be suppressed with respect to the
absorption/emission of phonons. Hence our assumption of
�q = �

e−ph
q may be sensible below and also for a limited

temperature range above TBG.

B. Boltzmann equation

The evolution of the distribution function fλ(p, x) for the
fermionic quasiparticles with chirality λ = L, R is governed
by the quantum Boltzmann equation

∂t fλ + F · ∇p fλ + vλ · ∇x fλ = −I[ fλ], (9)

where F is the external force acting on the particles and
vλ ≡ ∇pεp = p̂ is the group velocity for linearly dispersive
WSMs. Note that the λ dependence of the group velocity is
implicitly encoded in the reference point for the momentum p.
We point out that we are not considering the contribution from
the Berry curvature to the velocity, that might lead to anoma-
lous Hall currents, as we are interested in transport responses
linear in external applied fields [20,23,30,31]. The collision
integral [right-hand side of (9)] contains terms arising from
the scattering of electrons by impurities, absortion/emission
of real phonons and electron-electron interactions:

I[ fλ] ≡ Iimp[ fλ] + Ie−ph[ fλ] + Ie−e[ fλ]. (10)

Electron-electron interactions are the only processes that con-
serve electron momentum. We do not consider here screened
Coulomb interactions, and assume that virtual phonon ex-
change is the only source of electron-electron interactions.

We also assume that phonons are at thermal equilibrium,
following Bose-Einstein distribution:

b0(ω) = 1

eβω − 1
. (11)

The electric (JE) and heat (JT) currents can be obtained from
the solution fλ of (9):

JE,T ≡
∑

λ

∫
p

qλ
E,Tvλ fλ, (12)

where qλ
E ≡ qE ≡ e and qλ

T ≡ qT ≡ (p − p f ) are the chirality-
independent charges associated to each current, and p ≡ |p|.

In thermal equilibrium, fermions follow the Fermi-Dirac
distribution:

f0 ≡ f0(p) = 1

eβ(p−p f ) + 1
, (13)

for which the collision integral (10) and the currents (12)
identically vanish. We thus analyze the nonequilibrium pertur-
bative response to small electric fields and thermal gradients.
As usual, the nonlinear Boltzmann equation (9) can be lin-
earized by writing fλ = f0 + δ fλ and keeping only the terms
δ fλ that depend linearly with the external fields. Equation (9)
then becomes

p̂·[eE−β(p−pF )∇T ]β f0[1− f0] = −I[ f0 + δ fλ], (14)

where E ≡ E + 1
e ∇μ is the electrochemical force and ∇T the

temperature gradient. We also assume that the system size is
much larger than any other scale in the problem. In absence
of external magnetic fields that trigger anomaly-related phe-
nomena, we expect that δ fL = δ fR ≡ δ f in Eq. (14) so in
practice one only needs to study the Boltzmann equation for
a single chirality, even when chirality-flipping processes are
taken into account. Due to the form of the left-hand side
(LHS) of Eq. (14), it is convenient to parametrize δ f as

δ f = β2 f0[1 − f0][X E(p) · eE − X T(p) · ∇T ], (15)

where X E,T are dimensionless vector perturbations. Substi-
tuting this expression into (14) and separating the electric and
thermal contributions, one formally obtains a vector equation

SE,T = CX E,T, (16)

where the source term is defined as SE,T ≡ q̂E,T p̂. The
quantities q̂E ≡ 1 and q̂T ≡ β(p − p f ) are the dimensionless
charges for the sources, and the operator C on the RHS is the
vectorized version of the collision integral acting on the vector
functions X E,T. Although isotropy is technically broken in
our model through the internodal vector b, we assume that
the solution is isotropic and hence postulate that X E,T(p) =
XE,T(εp)v = XE,T(p) p̂. For isotropic systems, the currents
(12) are related to the external fields through the Onsager
transport coefficients(

JE

JT

)
=

(
LEE LET

LTE LTT

)(
eE
∇T

)
, (17)

which for our model read

LAB = 4β2

3(2π )2

∫
d p p2 f0[1 − f0]qA(p)XB(p). (18)

Note that an extra factor of 2 has been introduced to account
for the effect of both valleys/chiralities. The electric conduc-
tivity as well as the open-circuit and closed-circuit thermal

235141-3



JOAN BERNABEU AND ALBERTO CORTIJO PHYSICAL REVIEW B 107, 235141 (2023)

conductivities are respectively defined as

σ ≡ e2LEE, κ̄ ≡ LTT,

κ ≡ LTT − LTELET

LEE
. (19)

The thermopower is given by α ≡ eLTE = eβ−1LET, and the
latter equality is due to Onsager reciprocity [32].

C. Variational approach

To solve Eqs. (16), we make use of the standard variational
approach [33–35]. Introducing the inner product

(F ,G) ≡
∫

d3 p

(2π )3
β f0(p)[1 − f0(p)]F (p) · G(p), (20)

the following functional is defined:

QE,T[χE,T] ≡ (X E,T,SE,T) − 1
2 (X E,T,CX E,T). (21)

Equations (16) are then obtained by applying the variational
principle on this functional δQE ,T /δX E,T = 0. The issue of
solving the Boltzmann equation (14) can hence be converted
into an N-dimensional algebraic problem by expanding X E,T

into an arbitrary functional basis {F n}N−1
n=0 , i.e., XE,T(p) =

xE,T · F(p). Now the Boltzmann equation (16) becomes a
linear equation for the vector of unknown coefficients xE,T,

SE,T = C xE,T, (22)

where the components of the source vector are Sn
E,T ≡

(F n p̂,SE,T) and the collision matrix components are given
by Cnm ≡ (F n p̂, C[F m p̂]). The matrix C is not to be confused
with the eletron-phonon coupling C (5). If C is an invertible
operator, Eq. (22) has a unique solution and the transport
coefficients will read LAB ∝ SAC−1SB. For the conductivities
it implies

σ = 2e2β

3
S†

EC−1SE, κ̄ = 2

3
S†

TC−1ST,

α = 2eβ

3
S†

EC−1ST = 2eβ

3
S†

TC−1SE. (23)

Again, the latter equality in (23) is just the well-known On-
sager reciprocity. In the case at hand, it easily proven using
(22) and the hermiticity of C.

The expressions in (23) are meaningful if the collision
matrix is invertible as it happens when momentum-relaxing
processes are considered. However, in the presence of exclu-
sively momentum-conserving processes (that also conserve
chirality, as we will see later) C would have a zero-mode
associated with momentum conservation and given by the
function F 0(p) = βp. In such a scenario the conductivities
(23) would be infinite with the electric field/thermal gradi-
ent accelerating electrons indefinitely, preventing any steady
state. This is indeed the case for the electric conductivity
σ , where a net movement of the electron fluid is needed to
carry charge between electrodes, but not necessarily for the
thermal conductivity κ , measured in short-circuit conditions.
In this short-circuit scenario, heat can be transferred among
electronic degrees of freedom without the need of a net fluid

movement, so it is expected to be finite even for a purely
momentum-conserving system.

Since Ce−e is hermitian, it can be diagonalized through
an orthogonal basis {F n}N−1

n=0 , where F 0(p) = βp is the
zero-mode described above. If a small momentum-relaxing
perturbation to the total collision matrix of the form τ−1

mr 1 is
introduced so that C = τ−1

mr 1 + Ce−e, then its inverse is given
by

C−1 =

⎛
⎜⎜⎝

τmr 0 . . .

0
(
τ−1

mr + τ−1
1

)−1
. . .

...
...

. . .

⎞
⎟⎟⎠, (24)

where τ−1
n is the eigenvalue corresponding to the basis func-

tion F n. Plugging this into the equation for the electric
conductivity (23) and taking the momentum conserving limit
τmr � τn (which is relevant for studying hydrodynamic ef-
fects), one obtains

σ ∝ τmr
(
S0

E

)2
, (25)

which in the τmr → ∞ limit is infinite, as expected. In our
case where p f � T , one can go further by noticing that at
leading order, the zero-mode in the functional basis is related
to the source term p ≈ p f SE. Since the zero-mode F 0(p) is
orthogonal to all other basis vectors, 0=Pn≈Sn

E for all n>0.
Plugging this into Eq. (19), the expression in Eq. (25) is
automatically recovered, independently of the hierarchy of τmr

with respect to τn.
In the case of κ , one can plug in Eq. (23) into the defi-

nition given in Eq. (19) and find that κ ∝ σ−1Tr[(�C−1)2],
where �i j ≡ Si

ES j
T − Si

TS j
E. Since � is antisymmetric, the only

possibly nonconvergent term in the large τmr limit, which
is proportional [C−1,00]2 = τ 2

mr, vanishes. In fact, only terms
in the trace proportional to τmr survive in the momentum-
conserving limit since the electrical conductivity σ ∝ τmr in
the denominator renders their contribution finite. The result-
ing expression for κ in the momentum-conserving limit is

κ ∝
N−1∑
n=1

τn

(
Sn

T − S0
T

S0
E

Sn
E

)2

. (26)

In our model, ST = p − p f SE, where p is the zero-mode.
Using again that Pn = 0 for n > 0, the thermal conductivity
can be expressed as

κ = 2

3

(
P0

S0
E

)2

S̄†
EC̄−1S̄E, (27)

where the S̄E and C̄ are the respective projections of SE and
C into the subspace orthogonal to the zero mode, where C̄ is
invertible. Equation (27) is independent of the basis chosen
for the subspace orthogonal to the zero mode. Physically
speaking, momentum-conserving effects are projected out as
they are irrelevant for the short-circuited system where κ is
measured. The expression for the thermal conductivity (27) is
valid for any system described by a Dirac Hamiltonian such
as graphene. A similarly simple expression can be derived for
systems with a quadratic dispersion relation, where SE ∝ p.

The discussion in the preceding paragraphs is generic and
qualitative. To derive quantitative results for the thermoelec-
tric conductivities, it is necessary to adopt a concrete set
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FIG. 2. Intranode Feynman diagrams, with the t channel corre-
sponding to At (left) and the u channel corresponding to Au (right).

of basis functions. For our purposes, it is enough to choose
{F n}1

n=0 with

F 0(p) = βp, F 1(p) = 1. (28)

As just argued, F 0(p) is useful to distinguish momentum-
relaxing and momentum-conserving effects in the
momentum-conserving limit. In our model, we consider just
one further basis function F 1, from which the perpendicular
subspace to F 0 needed to calculate κ (27) can be extracted
trough the Gram-Schmidt method. In the Fermi liquid
regime p f � T , other functions are not needed, as they
only contribute with subleading terms in the Sommerfeld
expansion with the small parameter (βp f )−1. This implies
that the result (27) is in fact exact at leading order in T/p f

using only the basis (28).

D. Impurities and thermal phonons

Returning to our model, electrons can interact with im-
purities in the material, real phonons through emission and
absorption, and other electrons through virtual phonons (10).
Impurities are considered though a relaxation time approxi-
mation (RTA),

Iimp[ f ] ≡ − δ f

τimp
, (29)

i.e., the strength of impurity scattering is accounted for by
the parameter τimp. In the matrix form for the Boltzmann
equation given in (22), this is equivalent to Cimp = τ−1

imp1.
This shows that impurities relax all modes equally, implying
that, for impurity-collision dominated systems, τσ = τκ and
nonviolation of the WF law.

On the other hand, phonon emission and absorption by
electrons is a well-known mechanism [12,33] leading to τσ �=
τκ and an explicit violation of the WF law at small tempera-
tures. At large temperatures however, the WF law is restored.
Details on the derivation of these conclusions are given in
Ref. [36]. We also show that, at temperatures above the Bloch-
Grüneisen temperature TBG,

τ−1
σ/κ,e−ph = β−1

2
(
U p2

f

)
3(2π )c2

·
{

5
2 if T � TBG,W,

1 if T � TBG,W,
(30)

where the difference in temperature regimes comes from the
fact that for T � TBG,W ≡ 2cb, chirality-breaking phonon ab-
sorption/emission is suppressed as real/thermal phonons do
not have enough energy to make the jump between valleys
Here we have defined a second Bloch-Grüneisen temperature
TBG,W associated to the distance between the two fermion val-
leys [13]. At temperatures T � TBG chirality-breaking pro-
cesses are of course still suppressed but chirality-conserving
ones lead to

τ−1
σ,e−ph = β−5 12g5U

(2π )c6 p2
f

= (βp f )−2

c2c2
· τ−1

κ,e−ph. (31)

and the WF law is violated when these relaxation times dom-
inate, L/L0 = τκ/τσ �= 1. In (31), c2 and g5 are numerical
constants of order unity, see Appendix D.

III. ELECTRON-ELECTRON COLLISIONS

In this section, we consider the effects of normal
(momentum-conserving) electron-electron interactions medi-
ated by virtual phonons in transport, the primary focus of
this work. We first study the collision integral for intravalley
processes L, L → L, L, and then extend it to the full system
which also includes the R node. For intravalley processes, the
collision integral in the action functional (21) is given by

(X , Ce−eX )intra = 1

2
· 1

4
β2

∫
p

∫
k

∫
p′

∫
k′

∣∣MLL
LL (p, k; p′, k′)

∣∣2
f0(p) f0(k)[1 − f0(p′)][1 − f0(k′)]

× (2π )4δ(p + k − p′ − k′)δ(3)(p + k − p′ − k′)|�X |2, (32)

where |�X |2 ≡ [X (p) p̂ + X (k)k̂ − X (p′) p̂′ − X (k′)k̂
′
]2 and

|MLL
LL (p, k; p′, k′)|2 is the square of the scattering amplitude

for two left-handed fermions with momenta p and k to scatter
to two final electron states with momenta p′ and k′ of the same
chirality. To see how the action functional collision integral
(32) is derived from the collision integral Ie−e[ fλ] appearing
in the Boltzmann equation (10), see Sec. B of Ref. [36]. The
scattering can occur on two different channels, depending on
how the initial states are connected to the final states, as rep-
resented via Feynman diagrams in Fig. 2. We call the channel
where p is connected to p′ the t channel, and the one where p
is connected to k′ the u channel, following the convention in
Quantum Electrodynamics. The scattering amplitude for the t

channel is given by

At = −C
q2

ω2 − ω2
q + iωq�q

〈+p′| + p〉〈+k′| + k〉. (33)

Note that since we are considering left chiral states, tech-
nically | + p〉 represents |+,−b + δp〉. Here q ≡ p′ − p =
k − k′ is the virtual phonon momentum and ω ≡ p′ − p =
k − k′ is its energy. The u channel amplitude is obtained by
interchanging p′ ↔ k′. The total scattering amplitude is then
given by MLL

LL ≡ At − Au, where the minus sign is due to the
fermion exchange from the t to the u diagrams. After some
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manipulations, one finds that

(X , Ce−eX )intra = β2

4(2π )6

∫ qD

0
dq

∫ q

−q
dω

∫ ∞

q−ω

2

d p pp′

×
∫ ∞

q+ω

2

dk kk′
∫ 2π

0
dϕq,pk

∣∣MLL
LL

∣∣2
(βω)2b0(ω)[1 + b0(ω)] f0(p)[1 − f0(p)] f0(k)

× [1 − f0(k)]|�X |2, (34)

where now p′ and k′ should be understood as shorthands for
p′ ≡ p + ω and k′ ≡ k − ω. A Debye cutoff qD to the phonon
momentum has been introduced, although it will not have any
effect due to the assumption that TBG < TD, which effectively
restricts q to values under 2p f < qD. To proceed further an-
alytically, it is necessary to study this integral in asymptotic
high and low temperature regimes, T � TBG and T � TBG,
respectively.

A. High temperatures

The full square of the scattering amplitude equates to
|MLL

LL |2 = |At |2 + |Au|2 − 2Re[A∗
t Au]. The |At |2 and |Au|2 give

identical contributions to the collision integral as can be seen
by relabeling p′ ↔ k′ in the original integral (32). These in-
duce term of the form

Iω ≡
∫ 1

−1

f (x)[
(x − c)2 + �2

q

4q2

][
(x + c)2 + �2

q

4q2

]dx, (35)

inside the q integral, where x ≡ ω/q is a dimensionless form
of the virtual phonon energy and f (x) is some function. The
residue theorem can be used to perform the integral, with the
enclosing curve being far enough from the poles appearing
in the denominator of (35). If f (x) contains no further poles
within this contour, then expanding f (x) in a Taylor series
around x = 0 and performing the integral evaluates to

Iω = πq

�q

[
1

c2
f (0) + 1

2
f ′′(0)

]
+ O(1), (36)

where the O(1) refers to terms that are proportional to a power
of 0 or more of the small parameters c and �q/(2q). A similar
procedure can be carried out for the interference term that
depends on 2Re[A∗

t Au] (see Sec. B1a of Ref. [36]). However,
in that case, the results are of a higher order in the expansion
parameters than the noninterference contribution (36), and can
thus be neglected.

The next-to leading order term proportional to f ′′(0) is
considered because the contribution from the leading term
proportional to f (0) is actually vanishing at the leading order
in the Sommerfeld expansion, where p = k = p′ = k′ = p f

and the |�X |2 term in (32) is easily seen to vanish be-
cause of momentum conservation. This is not the case for
the f ′′(0) term, which is nonvanishing at the leading order
in the Sommerfeld expansion. This implies that the ratio
between the contributions of f (0) and f ′′(0) is of order
(T/cp f )2 ∼ (T/TBG)2. Therefore, for temperatures above the
Bloch-Grüneisen temperature, the f (0) term dominates over

the one proportional to f ′′(0) so, in practice, only the f (0)
term is relevant in this subsection.

The assumption that f (x) has no other poles inside the
contour only applies for T � TBG as the Fermi-Dirac distribu-
tion functions contained in f (x) also have imaginary poles at
the Matsubara frequencies, being the lowest of order β−1=T .
Therefore, when T �TBG, we can integrate along contours not
containing Matsubara poles. This is not the case if T�TBG,
to be considered in the next subsection. The relevance of the
Bloch-Grüneisen temperature will become clear shortly.

Assuming that the dominant contribution to the phonon
linewidth comes from electron-phonon interactions, that is,
Eq. (8) is an (approximate) equality, one finds that

(X , Ce−eX )intra = 4c2
(
U p2

f

)
β−2

3(2π )3c2
[X ′(pF )p f ]2. (37)

where X (p) ≡ X (p)/p and c2 is a numeric constant presented
previously in (31) and defined in (D1). Expanding X (p) as
a linear combination of the basis functions (28) to extract
the matrix components of Ce−e, only the C11

e−e component
is nonzero, as expected from the fact that that F 0(p) is a
zero-mode. For this reason, this collision integral does not
contribute to the electric conductivity, again as expected from
Eq. (25). On the other hand, it contributes to the thermal
conductivity as much as the interaction with real phonons
(30),

τ−1
κ, e−e = τ−1

κ, e−ph. (38)

In physical terms, this can be understood from the fact that at
T > TBG, the dominant contribution to the electron-electron
collision integral is from virtual phonons satisfying the on-
shell condition ω = cq stemming from the poles in Eq. (35). It
is natural to expect that the processes in Fig. 2 share the same
time scale as the emission and absorption of real phonons,
τ−1

e−e = τ−1
emission + τ−1

absorption ≡ τ−1
e−ph.

If impurity scattering is negligible (which is natural
to expect at sufficiently high temperatures), and ignoring
chirality-violating e-e processes, then one sees that

L = L0

2
, (39)

as the thermal conductivity would now have half the re-
laxation time of the electric conductivity, oblivious to
electron-electron interactions. This equality is only valid
when the inequality in Eq. (8) saturates. For any larger phonon
linewidth, electron-electron scattering mediated by phonons
would be suppressed at T > TBG. Physically this corresponds
to the scenario where the on-shell virtual phonons, acting
like real phonons, have decay channels stronger than those
of emission and absorption by electrons, thus suppressing
the emission and absorption-dependent processes depicted
in Fig. 2. In this limit, L → L0, independently on whether
chirality-violating processes are considered or not.

B. Low temperatures

At temperatures below TBG the Matsubara poles start to
play a role and the approximation in Eq. (36) is no longer
valid. Instead of attempting to calculate the contribution of
these new poles, we make the observation that, in this regime,
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the Bose-Einstein distribution in Eq. (34) can no longer be
approximated by its βω → 0 limit. We expect then that,
for T � TBG, the equilibrium Bose-Einstein distribution will
be the dominating contribution, fixing ω ∼ β−1 instead of
the on-shell condition ω ∼ cq. This observation, together with
the defining condition for this temperature regime, implies
that ω � ωq and hence the ω dependence of the propagator in
Eq. (7) can be dropped. Consequently the scattering amplitude
for the t channel becomes

At = U
q2

ω2
q
〈+p′| + p〉〈+k′| + k〉

� U

c2
〈+p′| + p〉〈+k′| + k〉, (40)

where we have dropped the phonon linewidth � � ωq as it is
no longer necessary to make the integral convergent.

In the T � TBG regime, we argued that the interference
term in the square of the scattering amplitude could be
dropped as it was subleading in the c and �/(2q) expan-
sion stemming from Eq. (36). That statement is no longer
valid, as the low temperature approximation for the amplitude
Eq. (40) obviously has no poles, and we need to consider
the interference contribution from −2Re[A∗

t Au]. The phys-
ical intuition for this is that for temperatures above TBG,
phonons behave classically and quantum interference effect
is negligible. For temperatures below TBG, phonons regain
their quantum behavior and interference terms are no longer
subleading. Nevertheless, the simple form of the amplitudes
in Eq. (40) makes calculations simple. For instance, one can
show that, in the low temperature limit,

∣∣MLL
LL

∣∣2 = U 2

4c4
(1 − cos θpk )2, (41)

where θpk is the angle between p and k. It is important to note
that the equivalent intraband square of the scattering ampli-
tude would vanish in a model diagonal in the electron basis of
the Hamiltonian, as then the wavefunction overlaps would be
trivial and At = Au in Eq. (40). This would mean that higher
order terms in ω would be required for the scattering ampli-
tude, which would suppress the contribution of the collision
integral by a power of the small parameter T/p f and hence
the contribution of electron-electron scattering mediated by
phonons to transport effects.

After some intermediate calculations, the collision integral
reduces to

(X , Ce−eX )intra = 24U 2 p7
f β

−3

35(2π )5c4

[
4c2

2 + 2b4
]
X ′(pF )2, (42)

where c2 and b4 are O(1) numeric constants defined in (D1)
and (D2). The inverse relaxation time τ−1

κ,e−e will now scale
with temperature as T 2, just like in the case of Coulomb
scattering, and with the electron-phonon coupling strength as
U 2. This is to be expected as, in the case of Quantum Electro-
dynamics, virtual photons are always in the T � cq regime
where the ω2 in the denominator of the photon propagator is
negligible, as in the case Coulomb interaction. The prefactors
however are obviously different in the case of Coulomb and
virtual phonons.

C. Chirality-violating processes

Until now we have studied processes within an single Weyl
node, valid when interactions do not induce changes in the
chirality. In Weyl systems, nodal points come in pairs, as
is the case for our starting model Eq. (1), one for left (L)
and another for right-handed (R) Weyl fermions. Therefore,
besides the intraband (L, L) → (L, L) scattering processes
we had been considering up until now, we should consider
(L, L) → (R, R), (L, R) → (L, L), (L, R) → (L, R) etc. Out
of all these possibilities, only the process (L, R) → (L, R)
conserves chirality. While the associated collision integral is
more complicated due to the anisotropic wave-function over-
laps in the square of the scattering amplitude (Eq. (B48) in
Ref. [36]), the integral is essentially solved in similar fashion
to the chirality-conserving situation.

Chirality-violating processes however, are a different story.
In the reference frame of one of the nodes and for processes
that violate chirality once, such as (L, R) → (L, L), Dirac
deltas associated to momentum conservation in the collision
integrals take the form

δ(3)(p + k − p′ − k′ ± 2b). (43)

For processes that violate chirality twice, such as (L, L) →
(R, R), we have δ(3)(p + k − p′ − k′ ± 4b). These Dirac
deltas are similar to the ones appearing in umklapp processes
with a lattice vector 2b separating two copies of the same
Fermi surface. Note however that momentum here is strictly
conserved, as can be seen if the momenta are put back into the
original reference frame of Eq. (1).

At large temperatures, T � TBG,W, the only relevant poles
in the ω integral are those provided by the phonon propagator
in Eq. (7) so that the expansion in Eq. (36) still holds, making
the phonons effectively on-shell. In the limit where the in-
equality Eq. (8) is saturated, one recovers the result in Eq. (38)
and an analogously similar result,

(X 0, Ce−eX 0)h.t. = β4(4b)2

2

∫
q

�inter
e−ph(q)

(βωq)2
, (44)

where �inter
e−ph is the contribution to the phonon linewidth from

a L − R fermion bubble. This shows how τ−1
σ,e−e is directly re-

lated to the linewidth associated to interband processes, which
are the only electron scattering processes that can relax the
electric current in the system. The contribution to the electric
conductivity (44), quadratically dependent on the internodal
distance, leads to a Lorenz ratio of the form,

L = 1

2

(
1 + 16b2

10p2
f

)
L0. (45)

For temperatures below TBG,W but still above TBG, electron-
electron scattering processes that violate chirality no longer
contribute and the Lorenz ratio satisfies the equality in
Eq. (39). As in the case of intravalley scattering, this is only
valid where the dominant phonon decay channel is associated
to scattering with electrons. Otherwise, L → L0.

At low temperatures, virtual phonons cannot be con-
sidered on-shell. Scattering amplitudes for processes that
include more than one chirality involve more complicated
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wavefunction overlaps but otherwise share the relatively sim-
ilar simple form of Eq. (41) (see Appendix A). The integral
for the chirality conserving process (L, R) → (L, R) is anal-
ogous to the one performed for (L, L) → (L, L) in Eq. (42),
whereas the one for chirality-violating processes now includes
the momentum conservation delta shown in Eq. (43). This
delta, along with the restriction that all electron momenta lie
on the Fermi sphere, restricts the available phase space as is
the case with umklapp scattering [33,37]. For 2b � 4p f , these
processes are not kinematically allowed. The only interesting
parameter space for us to consider is then the relation 2p f <

2b < 4p f , as our model relies on the assumption that 2p f <

b, where chiralities are well defined. While these integrals
can be performed analytically, the end result are somewhat
complicated expressions of b, and are written in Sec. B4
of Ref. [36] for reference. In the end one finds that they
also lead to a U 2T 2 scaling for the inverse relaxation times
just like the chirality-conserving processes (42). Conversely
to that result however, they also contibute to the relaxation
of the electric current because of the Umklapp-like nature
of (43).

IV. DISCUSSION

We have shown how the nontrivial structure of the Weyl
Hamiltonian in Eq. (1) had the important consequence of
allowing phonon-mediated T 2 inverse relaxation times at low
temperatures due to the nontrivial wave-function overlaps
〈+k′| + k〉. It was the key point also in allowing relaxation
of electric current through chirality-violating intervalley scat-
tering, having important properties both at T > TBG with a
nontrivial Lorenz ratio [Eq. (45)] as well as low temperatures,
as we will discuss further below. Nevertheless, more unique
topological properties of the material fail to make an impact,
at least in the absence of a quantum anomaly-inducing mag-
netic field. Its inclusion is left for future work.

Having discussed already the high-temperature behavior
in the previous section, we focus here on the properties at
temperatures T � TBG, relevant for experimentally observ-
ing hydrodynamic signatures. When studying thermoelectric
transport in experiments, it is useful to consider the elec-
tric and thermal resistivities, which can be conveniently
parametrized respectively as

ρ ≡ σ−1 = A0 + A2T 2 + A5T 5, (46)

W T ≡ T L0/κ = B0 + B2T 2 + B3T 3, (47)

following the scaling of the resistivities given in Ref. [5] for
WP2. While WP2 is a semimetal with a Fermi surface more
complex than the one studied here, similar features in the
thermoelectric transport are seen to arise. The resistivities
are plotted in Figs. 3(a) and 3(b) in the absence of impurity
scattering. The full Lorenz ratio is plotted in Fig. 3(c).

As is clear from our model at low temperatures, A0 and
B0 are the coefficients associated with impurity scattering,
A2 and B2 with electron scattering (42), and A5 and B3 with
thermal phonon emission/absorption by electrons (31). In a
system that is at some point dominated by electron-electron
interactions, one then expects the Lorenz ratio to level out at
the constant value L/L0 = ρ/W T = τ−1

σ,e−e/τ
−1
κ,e−e = A2/B2.

For our model, A2 is nonvanishing only for 2b < 4p f as oth-
erwise electric current-relaxing intervalley electron-electron
interactions are absent. This leads to the curve plotted in
Fig. 3(d), where the ratio A2/B2 is plotted as a function
of 2b/p f . It is important to note that this quantity is com-
pletely independent of the electron-phonon coupling U and
the phonon velocity c, and therefore only depends on the
geometric factor 2b/p f . The ratio is expectedly small as in-
tervalley electron-electron scattering contributes much less
than the intravalley counterpart present in thermal conduction.
However, one would expect that such a ratio could increase
for systems with different geometries or carriers [38,39].
For example, in a compensated (inversion-breaking) Weyl
semimetal with an electron band and a hole band (instead of
the two electron bands), chirality-conserving (L, R) → (L, R)
processes would be able to relax the electron current owing to
the fact that the fermions of each valley have group velocities
with the opposite sign. Following the procedure of Ref. [40]
one can deduce that the ratio A2/B2 in such a system takes the
form,

A2

B2
= 10α2(4305 + 441α2 − 1980α4 + 700α6)

3(27090 + 3885α2 + 63α4 + 900α6)
, (48)

where α = min[TD/TBG, 1]. In a system with a sufficiently
small Fermi surface so that TBG < TD, this would lead to a
value of A2/B2 ∼ 0.36, which is of the same order of the ob-
served values in several materials, see Ref. [5]. In the opposite
limit, where TBG > TD, then one has A2/B2 ∼ 0.53α2, i.e., the
Lorenz ratio can become arbitrarily small. This is a similar
conclusion to one reached in Ref. [40], although a screened
Coulomb potential is behind that result, whereas Coulomb
interactions are expected to be subdominant with respect to
electron-phonon interactions in realistic semimetals [7,8,10].
Here, by contrast, this result is reached for a constant potential
(modulo structure factors) provided by the low temperature
phonon-mediated electron-electron processes (41). As in the
original model, mixed-chirality processes are essential for a
T 2 electric conductivity.

To achieve electron hydrodynamic behavior, electric
current-conserving interactions need to dominate over those
that relax it. The latter correspond to the relaxation times
pertaining to the electric conductivity, i.e., impurities τimp,
phonon absorption/emission τσ,e−ph and intervalley (Baber)
scattering τσ,ee. The former correspond to the electron-
electron collisions that conserve flow, i.e., intravalley scat-
tering (32), that dominate the electron-electron component of
the thermal conductivity, τκ,ee, as the collision operator for
thermal conduction does not filter out these contributions.
This can easily be seen from Fig. 3(d); if intervalley scat-
tering dominated the electron-electron contribution to κ as
it does for σ , then one would have A2/B2 ∼ 1. Figure 3(d)
clearly indicates this is not the case. Hence, to search for a
window for electron hydrodynamic behavior, it is sensible to
compare τκ,e−e with the electric current-relaxing timescales
[5]. The relaxation time associated to the viscosity and stem-
ming from electron-electron interactions should be of this
same order, as flow-conserving collisions are not associated
to any zero-mode of the collision integral (9) for perturbations
from thermal equilibrium proportional to spatial gradients of
the flow velocity. With this in mind, the logarithm of the
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(b))(a

(d)(c)

FIG. 3. [(a) and (b)] Electric (a) and thermal (b) conductivities for T � TBG for different electron-phonon interaction strengths C p2
f .

Points indicate temperature below which electron-electron scattering is stronger than electron-phonon scattering. In the case of the thermal
conductivity (b) for the smallest electron-phonon coupling, the point is below the represented temperature scale because the T 3 scaling from
absorption/emission of phonons does not decrease as fast as the T 5 scaling from the same source for the electric resistivity. The constant
contributions from impurity scattering, i.e., A0 and B0 terms in (46) and (47) have been ommitted to show the onset of the T 2 scaling behavior.
(c) Lorenz ratio at small temperatures T � TBG for different coupling strengths. Points indicate where current-conserving interactions start
dominating over current-relaxing ones (see Fig. 4) for temperatures below the point. (d) Quotient between the A2 and B2 terms in (46) and (47)
which corresponds to the Lorenz ratio of the electron-electron contributions to the resistivities. Plots (a)–(c) are drawn for pf = 0.2 eV and
c = 0.02v f with an internodal separation is set to 2b = 3pf . Plot d is independent of these parameters.

ratio between τ−1
κ,e−e and the electric current inverse relaxation

time, τ−1
σ,e−e + τ−1

σ,e−ph + τ−1
imp is plotted in Fig. 4. Hydrody-

namic behavior is favored for larger electron-phonon coupling
strengths and for a limited temperature window where impu-
rities do not yet dominate. For a typical value of τimp,0 = 6.15
ps (corresponding to a mean scattering time of 1.9 μm [7]
and a Fermi velocity of 3.09×105 ms−1 as in WTe2 [41]),
it is shown in the leftmost plot of Fig. 4 that a hydrody-
namic regime is basically inaccessible for the represented
parameter ranges. Considering impurity scattering times 10
and 100 times stronger, such a window opens for U p2

f �
0.007 and U p2

f � 0.003, respectively, as is shown in the
center and right plots of Fig. 4. Realistic electron phonon-
coupling constants in the range λ ∼ 0.1 − 1 translate to a
range U p2

f ∼ 0.0005–0.005 C, which clearly shows that the
impurity scattering time needs to be of one or two orders

of magnitude larger than the value of τ−1
imp,0 considered for

momentum-conserving scattering to be relevant. For example,
for the Weyl SM TaAs, the coupling constant for acoustic
phonons is λ ∼ 0.34 [42], which would need impurity relax-
ation times two orders of magnitude larger than τ−1

imp,0. It is
worth noting that while impurity scattering is a fundamental
aspect in predicting electron hydrodynamics, its nature (i.e.,
short vs long range Coulomb impurities) is not relevant as the
possible differences are subleading in the regime T/p f � 1
considered here [43].

As a conclusion, we have described how the Bloch-
Grüneisen temperature TBG divides the behavior of phonon-
mediated electron-electron collisions into two regions as it
does for absorption and emission of real phonons. In the case
where the phonon interactions are stronger than anharmonic
effects, we have seen how at T > TBG the Lorenz ratio is
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FIG. 4. Plot of ln(
τ−1
κ,e−e

τ−1
σ,e−e+τ−1

σ,e−ph+τ−1
imp

) as a function of temperature and electron-phonon coupling strength, plotted from left to right for

three different impurity relaxation times, τimp,0 = 6.15 ps, 10τimp,0 and 100τimp,0. The red region indicates where electric current-conserving
interactions dominate, whereas the blue region indicates where current-relaxing interactions with virtual and real phonons, as well as impurities
dominate. The latter is labeled “Diffusive,” as transport in this region can never be dominated by electric current-conserving collisions, whereas
the former is labeled “Hydro” as this is where these collisions might dominate, depending on impurity scattering.

modified to a multiple of the Lorenz number [Eqs. (39) and
(44)]. If phonon decay is driven by other interactions, then the
Lorenz ratio in this regime is unaltered. At small temperatures,
we have obtained that the electric and thermal resistivities
scale as (46) and (47). We concluded that in the simple
type-I Weyl SM model studied here with isotropic fermion
pockets and electron-phonon interactions a hydrodynamic
regime would necessitate highly-pure samples. We speculate
then that the anisotropy of the Fermi surface may magnify
the effect of electron-electron interactions by an order of
magnitude so as to lead to the observable hydrodynamic be-
havior in real materials, as has been suggested elsewhere [10].
Nevertheless, our analytical results seem to align qualitatively
well with the first principles estimations of the relaxation
times. In those, it is seen that for high temperatures electron-
electron collisions mediated by phonons contribute as much as
absorption/emission of phonons, whereas at low temperatures
the electron-electron relaxation times decay similarly to T 2

[7,10,11].
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APPENDIX A: HAMILTONIAN AND SCATTERING
AMPLITUDES

As mentioned in the main text, a two-band Hamiltonian
matrix of the form

H0(p) = d(p) · σ, (A1)

where d = (d1, d2, d3)T has positive and negative
energy ε±,p = ±d (p) ≡ ±

√
d2(p) eigenstates, which are

respectively given by (c ↔ +, v ↔ −)

|+p〉 ≡ 1√
2d (d + d3)

(
d + d3

d1 + id2

)
, (A2)

|−p〉 ≡ 1√
2d (d + d3)

(
d1 − id2

−d − d3

)
, (A3)

where c stands for conduction band (+d (p)) and v for valence
band (−d (p)). The particle fermion operators are related to
the original fermion operators by the unitary transformation
ψp = Upcp, where Up ≡ (|+p〉, |−p〉). In the particle-hole ba-
sis, the electron-phonon interaction given by the deformation
potential (4) becomes

He−ph =
∫

p′,p,q
gq

p′,p(aq + a†
q)c†

p′U
†
p′Upcp δ(3)(p′ − p − q),

(A4)

For μ � T , the effects of the negative energy band are ex-
ponentially suppressed, so we ignore its effects from now on.
For the fermion-phonon interaction, it implies that we only
consider care about the term proportional to c†

+,pc+,p, hence
the effective fermion coupling to the relevant fermion sector
is given by the expression given in (6), i.e.,

geff q
p′,p ≡ gq

p′,p〈+p| + p′〉, (A5)

where for simplicity of notation we have used the label up ≡
u+,p, and will continue to do so henceforth. The scattering
amplitude for fermion collisions with incoming momenta p, k
and outgoing momenta p′, k′ mediated by virtual phonons is
given by the interference of the t and u channels, M = At − Au

At = −gq
p′,pgq

k,k′D(q, ω)〈+p′| + p〉〈−k′| − k〉, (A6)
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where q = p′ − p and ω = d (p′) − d (p). The amplitude for the u channel Au is obtained by exchanging p′ ↔ k′ in the expression
for At . The square of the amplitude relevant for the Boltzmann equation can be shown then to be

|M|2(p, k, p′, k′) = |At |2 + |Au|2 − 2Re[A∗
t Au]

= {|D|2(qt , ωt )
∣∣gqt

p′,pgqt

k,k′
∣∣2 − Re[D∗(qt , ωt )D(qu, ωu)]gqt

p′,pgqt

k,k′g
qu

k′,p
gqu

k,p′
}

×[1 + d̂(p) · d̂(p′)][1 + d̂(k) · d̂(k′)] + {|D|2(qu, ωu)
∣∣gqu

k′,p
gqu

k,p′
∣∣2

− Re[D∗(qt , ωt )D(qu, ωu)]gqt
p′,pgqt

k,k′g
qu

k′,p
gqu

k,p′
}
[1 + d̂(p) · d̂(k′)][1 + d̂(k) · d̂(p′)]

+ Re[D∗(qt , ωt )D(qu, ωu)]gqt
p′,pgqt

k,k′g
qu

k′,p
gqu

k,p′[1 − d̂(p) · d̂(k)][1 − d̂(p′) · d̂(k′)]. (A7)

Following the discussion of the main text, a distinction between the behavior at high and low temperatures can be made so as to
simplify (A7). At high temperatures T � TBG, the interference terms can be dropped. In addition, since the collision integral is
symmetric with the exchange p′ ↔ k′, inside the collision integral one effectively has that |At |2 = |Au|2.

At low temperatures T � TBG, the ω dependence of the phonon propagators can be dropped at the lowest order in ω/ωq

expansion. The small linewidth can be dropped as well, leading to the cancellation of the first two terms in (A7). All in all, these
considerations lead to the square scattering amplitudes

|M|2h.t.(p, k, p′, k′) = 2U 2

4

∣∣∣∣∣ q2

ω2 − ω2
q + iωq�q

∣∣∣∣∣
2

[1 + d̂(p) · d̂(p′)][1 + d̂(k) · d̂(k′)], (A8)

|M|2l.t.(p, k, p′, k′) = U 2

4c4
[1 − d̂(p) · d̂(k)][1 − d̂(p′) · d̂(k′)], (A9)

where the labels “h.t.” and “l.t.” stand are for high temperatures and low temperatures, respectively. The explicit forms of the
electron-phonon coupling (5) and the phonon propagator (7) have been used.

APPENDIX B: PHONON LINEWIDTH

Considering only intravalley interactions, the phonon linewidth is calculated from the first diagram in Fig. 1 of the main text.
To do so, one calculates the self-energy,

�(q, iωn) = β−1
∫

p

∑
iνm

(
igeff q

p′,p

)(
igeff q∗

p′,p

)
G0(k, iνm)G0(k + q, iνm + iωn) (B1)

= −β−1
∫

p

∑
iνm

(
gq

p′,p

)2 |〈+p| + p′〉|2
[iνm + p f − p][iνm + iωn + p f − p′]

=
∫

p

(
gq

p′,p

)2|〈+p| + p′〉|2 f0(p) − f0(p′)
iωn + p − p′ . (B2)

where p′ = p + q and the Matsubara sum has been performed in the last equality. After analytically continuing to real frequencies
iωn → ω − iδ, the phonon linewidth can be obtained

�e−ph
q ≡ 2Im

{
�(q, ωq − iδ)

} = (2π )
∫

p

(
gq

p′,p

)2|〈+p| + p′〉|2[ f0(p) − f0(p′)]δ(p′ − p − ωq), (B3)

where we have used the Cauchy-Dirac relation 1
x−a−iδ = P 1

x−a + iπδ(x − a). Note that the structure factor is given by

|〈+p| + p′〉|2 = 1 + d̂(p) · d̂(p′)
2

. (B4)

We will also use the approximation where

f0(p) − f0(p′) ≈ ωq[− f ′
0(p)] ≈ ωqδ(p − p f ), (B5)

where the first equality comes from p, p′ ∼ p f � cq and the latter is the lowest order in the Sommerfeld approximation. The
intranode contribution is given by the loop with fermions of the same chirality. After a simple calculation, it can be shown that

�intra
e−ph(q) =

{
2 · U

4π
qp2

f

(
1 − q2

4p2
f

)
, if q � 2p f ,

0, if q > 2p f .
(B6)

The leading factor of 2 comes from considering both L intraband and R intraband contributions, which are identical. The
interband contribution on the other hand can be shown to be

�inter
e−ph(q) =

{
U
4π

q2

|q−2b| p2
f

[
1 − |q−2b|2

4p2
f

+ |q−2b|2
2p2

f
cos2 θb,q−2b − (

1 − |q−2b|2
4p2

f

) sin2 θb,q−2b

2

]
, if |q − 2b| � 2p f ,

0, if |q − 2b| > 2p f .
(B7)
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The calculation of these linewdiths is similar to the calcula-
tion of the collision matrix terms for phonon absorption and
emission by fermions provided in the next section, so we refer
the reader to it for more detail. The full linewidth is simply
given by

�e−ph
q = �intra

e−ph(q) + �inter
e−ph(q). (B8)

APPENDIX C: ELECTRON-PHONON COUPLING

The electron-phonon coupling strength is usually parame-
terized [44] in terms of the dimensionless

λ = 1

π
∫

p δ(εp − μ)

∫
q

�
e−ph
q

ω2
q

. (C1)

The integral can be evaluated using the phonon linewidths for
intraband (B6) and interband scattering (B7) using (B8). This
in turn gives

λ = 5U p2
f

6π2c2
⇒ U p2

f = 6π2

5
λc2 ∼ 12λc2. (C2)

APPENDIX D: NUMERIC INTEGRALS

Several numeric integrals appear often in the calculations
and are related to the integrals of momenta that include the
Fermi-Dirac distribution and the Bose Einstein distribution.
We list them here for convenience:

c2 =
∫ ∞

−∞
x2 ex

(1 + ex )2 = 1

2

∫ ∞

−∞
x2 ex

(1 − ex )2 = π2

3
, (D1)

b4 =
∫ ∞

−∞
x4 ex

(1 − ex )2 = 4π4

15
, (D2)

gn =
∫ ∞

−∞
dx

ex

(ex + 1)2
[ζ (n) − Lin(−e−x )], (D3)

where g4 ≈ 4.3, g5 ≈ 5.2, and g6 ≈ 6.1.
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