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We design a neural network Ansatz for variationally finding the ground-state wave function of the homoge-
neous electron gas, a fundamental model in the physics of extended systems of interacting fermions. We study the
spin-polarized and paramagnetic phases with 7, 14, and 19 electrons over a broad range of densities from rs = 1
to rs = 100, obtaining similar or higher accuracy compared to a state-of-the-art iterative backflow baseline even
in the challenging regime of very strong correlation. Our work extends previous applications of neural network
Ansätze to molecular systems with methods for handling periodic boundary conditions, and makes two notable
changes to improve performance: splitting the pairwise streams by spin alignment and generating backflow
coordinates for the orbitals from the network. We illustrate the advantage of our high-quality wave functions in
computing the reduced single-particle density matrix. This contribution establishes neural network models as
flexible and high-precision Ansätze for periodic electronic systems, an important step towards applications to
crystalline solids.
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I. INTRODUCTION

Electronic structure theory forms the backbone of ab initio
calculations of systems in quantum chemistry and condensed
matter physics. Method development of approximate solu-
tions to the many-electron Schrödinger equation is a central
request of theory, pushed further with algorithmic improve-
ments and the continuing growth of computational resources
[1]. Approximate solutions to the electronic Schrödinger
equation together with advanced high-throughput, automated
methods have broad applications ranging from pharmaceuti-
cal design to new materials for clean energy technologies such
as batteries, and machine learning methods are promising to
address the various challenges involved.

In this paper, we develop a periodic neural network Ansatz,
dubbed wave function Ansatz (but periodic) (WAP)-net and
outlined in Fig. 1, to describe the ground state of the ho-
mogeneous electron gas (HEG) over a broad density regime.
The model is composed of permutation equivariant layers
[2], products of Hartree-Fock plane-wave orbitals appropriate
to a homogeneous system and prefactors [3], periodic input
features [4], and backflow coordinates [5]. Additionally, im-
provements are made to previous related networks by splitting
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pairwise interaction data by spin alignment and including
orbital backflow coordinates. We compare the obtained wave
function Ansatz (but periodic) (WAP)-net energies to those
from iterative backflow (IB) network wave functions [6] and
show that our method provides the most accurate explicit
wave functions in almost all cases and often competes with
the energies obtained from fixed-node diffusion Monte Carlo
(DMC) calculations [7] performed on the top of our best IB
wave function for the HEG.

The HEG, also known as jellium or the uniform electron
gas [8], is a simplified model allowing us to capture intricate
properties of solid systems such as the quantum nature of
delocalized electrons without requiring the introduction of a
specific atomic lattice [7,9–12]. It has played a prominent
role in the development of theoretical approaches such as
diagrammatic perturbation theory [7,13,14], quantum Monte
Carlo (QMC) [15,16], and, more recently, in the exportation
of quantum chemistry methods to extended systems [17–19].
In all of these approaches, the HEG has been used as a first
milestone on the way towards more accurate description of
electronic correlations in materials and is a natural first step to
developing novel neural network Ansätze for solids.

Methods involving neural networks have already demon-
strated state-of-the-art performance in problems spanning
fields including physics [20], chemistry [2], games [21],
and autonomous systems [22], driven by rapid evaluation
on GPUs, availability of data, and design innovations. First
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FIG. 1. Diagram showing key functions (green), variables (red), and operations (blue) in WAP-net. All functions and operations are
described in Sec. III (Ansatz). Roughly, system configurations (X ) are embedded by periodic functions [ps(·), p(·), ρk(·)], split into single
and pairwise streams, and passed through equivariant layers. The resulting variables are used to generate orbitals in Slater determinants that
compose the log-amplitude of the Ansatz. In the operations, || represents a concatenation, + the addition, and • the product. In an abuse of
notation the “&” symbol in the sums indicates the sums are taken over both ↑ and ↓ separately. The diagram is representative but not exact, it
does not contain all operations, for an exact description see Sec. III.

established as an Ansatz for quantum many-body systems in
2017 [23], subsequent methods introduced other ideas from
the rapidly developing field of neural networks. Recent at-
tempts have included physics-based structure into the Ansätze,
where more sophisticated techniques in network design and
optimization have even advanced this subfield to the state-of-
the-art performance on molecular systems [2–4,24–26].

Recent diagrammatic Monte Carlo calculations [27] have
benchmarked values of the renormalization factor, Z , char-
acterizing the Fermi liquid behavior of the HEG, against
previous quantum Monte Carlo results [28]. Here we use
WAP-net to calculate the reduced single-particle density ma-
trix and estimate the possible fixed-node bias in Ref. [28].

The remainder of this paper is organized as follows.
Section II highlights relevant literature and its relationship
to this research, Section III gives a complete theoretical de-
scription of the method, including hyperparameters and setup,
Section IV outlines the results, first on the ground-state energy
(Sec. IV A) needed to judge the performance of WAP-net
(Sec. IV B). Then we apply our wave functions to calculate the
reduced single-particle density matrix (Sec. IV C). Finally, the
paper is summarized and next steps are proposed in Sec. V.

Recently, multiple groups have made grand strides in the
application of neural networks to quantum Monte Carlo, in-
cluding self-attention networks [29] and extended systems
[30], further establishing the importance, flexibility, and po-
tential of these methods.

II. RELATED WORK

Regarding fermionic systems, the accuracy of variational
QMC methods are, in general, ultimately limited by the un-
derlying form of the trial wave function (the Ansatz). In
standard implementations, antisymmetry is guaranteed by
one or several Slater determinants constructed from single-
particle orbitals that are correlated via an explicit pairwise
bosonic (permutation invariant) potential, frequently called
the Slater-Jastrow wave function. Backflow wave functions
further correlate the particle positions entering the orbitals
of the Slater determinants [31], or more general permutation
equivarant forms [5,32,33], from which IB networks [6,34]
currently provide the most accurate systematic improvement
in homogeneous systems [35].

Research into neural network Ansätze has covered
Boltzmann machines and feed-forward neural networks over
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a wide range of systems [23,36–38], including more recent
Slater determinant Ansätze [39,40]. Other more recent exam-
ples incorporate physics-based structure [3], or large and deep
networks [2,24,26] on molecular systems. Associated imple-
mentations such as the PESNet attempt to curtail the learning
process of a potential energy surface [25] and the neural
canonical transformation for the computation of the electron
effective mass [41]. Finally, there is work on incorporating
periodic functions to neural networks and/or applying these
methods to periodic data/systems [4,42,43] and equivariances
to periodic data [44,45].

In this paper, we focus on a QMC neural network Ansatz
method applied to the HEG model. Other recent work tack-
les the problem of designing a neural network Ansatz for
bosonic systems on a torus [4], resulting in some similarities
in function design such as the application of periodic embed-
ding functions to the electron coordinates. Quantum chemistry
benchmarks on the HEG [17–19] are limited to the high-
density region and small number of electrons. Since neural
networks are highly parameterizable and can model arbitrary
smooth functions [46], one can expect that this computational
model in conjugation with QMC techniques will be flexible
enough to approach high accuracy uniformly in density, sim-
ilar or better than IB Ansatz. Additionally, it may potentially
provide a more favorable scaling (for a given accuracy) with
electron number than other quantum chemistry methods.

III. METHODS

A. Hamiltonian

In the following we consider a system of Ne electrons
in three spatial dimensions and seek the ground-state wave
function ψ (X ) of the time-independent Schrödinger equation

Hψ (X ) = Eψ (X ), (1)

where X = (r1, . . . , rNe ) denotes a full configuration of the
electron coordinates ri = (ri,x, ri,y, ri,z ). In atomic units, the
Hamiltonian

H = − 1
2∇2

X + V (X ) (2)

contains the kinetic energy operator ∇2
X of each electron

where ∇X = (∇r1 , . . . ,∇rNe
) and

∇2
X =

Ne∑
i=1

(
∂2

∂r2
i,x

+ ∂2

∂r2
i,y

+ ∂2

∂r2
i,z

)
. (3)

The potential energy is V (X ), a function of pairwise interac-
tions v(r) depending on the distance between two particles
ri j = r j − ri,

V (X ) =
∑
i< j

v(ri j ). (4)

In order to describe the bulk of a extended systems of electron
density ρe = Ne/L3, with electrons in a cubic box of side
L, we want to impose periodic boundary conditions, e.g.,
ψ (. . . , ri,x + L, . . . ) = ψ (. . . , ri,x,...). Since the Coulomb in-
teraction is long ranged, some care is needed for proper setup
and computation of the interaction potential. Here, we use
the standard Ewald summation [1,47] in direct and reciprocal

space for its computation given charges qi and q j , for electrons
in atomic units qi = 1,

v(r) = qiq j

[ ∑
T

erfc[κ||r − T||]
||r − T|| − 1

κ2L3

+ 4π

L3

′∑
k

exp(−k2/(4κ2))

k2
exp(−ik · r)

]
, (5)

where the first summation is over all the lattice vectors to
image cells, T = (ix, iy, iz )L with integers iα , whereas the
second summation is over all reciprocal lattice vectors k =
2π (ix, iy, iz )/L, and the prime indicates the omission of k =
(0, 0, 0) term. The convergence of both summations is de-
termined by the hyperparameter κ , which should be set to
minimize the size of the sets required to make the sums
converge.

For convenience, we also add the interaction energy of each
electron with its own images, in our case for a system of Ne

electrons it is NevM , to the total interaction energy V (X ) where

vM = lim
ri j→0

[
v(ri j ) − qiq j

||ri j ||
]

(6)

is the Madelung constant, which is independent of the config-
uration X , and depends only on L. Although its contribution
to the total energy is negligible in the limit Ne → ∞, it is a
standard term, which is in general systematically included to
accelerate the extrapolation to the thermodynamic limit.

For the homogeneous electron gas, electron density is usu-
ally expressed in terms of the Wigner-Seitz parameter rs =
a/aB = (4πρea3

B/3)−1/3, the ratio between the Bohr radius
(aB = 1 in atomic units) and the mean interparticle distance
a = (4πρe/3)−1/3. Energies are given in Rydbergs. In the
high-density limit, rs → 0, kinetic energy dominates and the
system approaches the ideal Fermi gas whereas at low den-
sities kinetic energy quantum effects become less important
and the electrons will eventually form a Wigner crystal to
minimize the classical potential energy [12].

B. Variational Monte Carlo

Given that the Hamiltonian is a lower-bounded operator,
the variational principle states that upper-bound estimates of
the ground-state energy can be obtained by minimizing the
expectation value of the energy with respect to the parameters
θ of an Ansatz ψ (X ; θ ) [48]. The high-dimensional integral
required to compute the expectations can, in general, be per-
formed with Monte Carlo integration. In this work, M samples
are drawn from p(X ; θ ) ∝ |ψ (X ; θ )|2 in a Markov chain pro-
cess via the Metropolis Hastings algorithm [49]. For reviews
of QMC methods for solids see Refs. [10,50,51].

The estimate of the energy is computed

EX∼p(X ;θ )[EL(X ; θ )] ≈ 1

M

M∑
i=1

EL(Xi; θ ), (7)

where the expectation is taken over the distribution p(X ; θ )
and this explicit notation is dropped from now on. EL(X ; θ ),
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the local energy, is

EL(X ; θ ) = − 1
2

[∇2
X log ψ (X ; θ )

+(∇X log ψ (X ; θ ))2
] + V (X ). (8)

The derivatives of the expectation of the energy with respect
to the Ansatz parameters θ can be framed as the vector of
derivatives ∇θ of a loss function L(θ ) and are computed as

∇θL(θ ) = EX [(EL(X ; θ ) − EX [EL(X ; θ )])∇θ log ψ (X ; θ )].

(9)

C. Iterative backflow Ansatz

For fermions, the trial wave function, ψ (X ; θ ) =
D(X ; θ )e−U (X ;θ ), is conveniently split into a generalized
Jastrow factor, U (X ; θ ), symmetric with respect to any
permutation in the particle labels i, and a manifestly
antisymmetric from, D(X ; θ ), usually a Slater determinant
composed of Ne orbitals, ψk (·), a set of plane waves for
homogeneous systems, ψk(r) = exp(ik · r).

For a spin-independent Hamiltonian, we can further la-
bel the orbitals according to the spin polarization, ↑/↓,
such that the Slater determinant factorizes, e.g., D(X ) =
[deti j ψk j (r

↑
i )] × [deti j ψk j (r

↓
i )]. Typically, the wave vectors

used in the respective Slater determinant correspond to those
of the ground-state wave function of the ideal Fermi gas.

A standard two-body Jastrow function writes U0(X ) =∑
i< j u0

θ (ri j ), and backflow wave functions are obtained by
the use of backflow coordinates Q0(X ) = (q0

1, . . . , q0
Ne

) with
q0

i = ri + ∑
j �=i ri jη

0
θ (ri j ) as arguments in the orbitals of the

Slater determinant

[
det

i j
ψk j

(
q0↑

i

)] × [
det

i j
ψk j

(
q0↓

i

)]
exp

[
−

∑
i< j

u0
θ (ri j )

]
.

(10)

Higher-order many-body correlations can then be system-
atically constructed by an iterative procedure Un(Qn−1) =∑

i< j un
θ (qn−1

i j ), and, analogously, new sets of backflow

coordinates, Qn(X ), from qn
i = qn−1

i + ∑
j �=i qn−1

i j ηn
θ (qn−1

i j )
yielding the general form of IB wave functions [6]

[
det

i j
ψk j

(
qn↑

i

)] × [
det

i j
ψk j

(
qn↓

i

)]
exp

[
−

∑
n′�n

Un′ (Qn−1)

]
.

(11)

This structure not only captures many-body correlations in a
compact way, but also allows for an efficient calculation of
the wave function, its gradient and local energy, of order N3

e
independent of the number n of iterations.

Each iteration defines a new permutation equivariant struc-
ture, introducing a new set of parameters θ in the respective
functions, un

θ (·) and ηn
θ (·), possibly separated into spinlike and

spin-unlike parts, by use of a basis set expansion. Details of
the implementation used here are given in Ref. [35].

D. WAP-net Ansatz

The Ansatz developed here, dubbed WAP-net and repre-
sented in Fig. 1, is a progression on other implementations

[2,3,24] designed for molecular systems and is related to
other periodic networks developed for bosonic systems [4].
Key differences with previous work for molecular systems are
embedding coordinates with periodic functions as in Ref. [4],
and other changes to the Ansatz include splitting pairwise fea-
tures by spin alignment and feeding backflow coordinates to
the plane wave Hartree-Fock orbitals. In our implementation
of the WAP-net we rescale the lengths so that the box side
becomes L = 1. The complete model is described below.

The Ansatz comprises linear layers, second-order differen-
tiable nonlinear activations, and Slater determinants. Before
the Slater determinant, nonlinear layers of functions operate
on the electron coordinates (r j) and their displacements (ri j =
r j − ri), to maintain indexes of intermediate variables such
that they correspond to a coordinate or displacement from the
inputs. Intermediate variables corresponding to coordinates
and displacements flow through parts of the network called
the single and pairwise streams, respectively. The permutation
equivariance of these functions ensures that exchange of same
spin electron coordinates results in the same permutation of
the intermediate variables, resulting in the exchange of rows
(or columns) of the Slater determinant, and flipping the ampli-
tude sign, fulfilling the antisymmetry required for fermionic
systems.

Coordinates are first embedded by periodic functions to
satisfy the periodicity of the system, including continuity of
the function and derivatives across the boundary,

p(r) = [cos(2πr), sin(2πr), . . . ,

. . . , cos(2npπr), sin(2npπr)], (12)

where np is the number of functions and the functions are
applied elementwise. In the case of the pairwise streams a
distancelike feature, ||ps(ri j )||, is computed and concatenated

ps(ri j ) = 1
2

[
sin

(
πrx

i j

)
, sin

(
πry

i j

)
, sin

(
πrz

i j

)]
. (13)

For the single streams, these periodic input features are con-
catenated with density fluctuations

ρk =
(∑

j

cos(k · r j, ),
∑

j

sin(k · r j )

)
(14)

given a set K of nk reciprocal lattice vectors k. Overall, the
variables in the zeroth layer are

h0α
i = [{ρk : k ∈ K}, p(ri )], (15)

h0αβ
i j = [p(ri j ), ||ps(ri j )||], (16)

Permutation equivariant functions then operate on data from
both streams to compute single-stream variables

f lα
i =

(
hlα,

1

n↑

∑
j if β �=↓

hlαβ
i j ,

1

n↓

∑
j if β �=↑

hlαβ
i j

)
(17)

gl =
(

1

n↑

∑
i if α �=↓

hlα
i ,

1

n↓

∑
i if α �=↑

hlα
i

)
. (18)

Updates on the single and pairwise streams at layer l are
computed as

h(l+1)α
i = cos

(
Wl f lα

i + Zlgl + bl
) + hlα

i , (19)
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FIG. 2. Comparison of different activation functions in the back-
flow layer, Eq. (23), for rs = 1 and N = 14. Discussion on SILU can
be found in Ref. [52]. Mean and error bars represent the statistics
over a small ensemble of models trained with different seeds.

h(l+1)α=β
i j = cos

(
Vlh

lα=β
i j + cl

) + hlα=β
i j , (20)

h(l+1)α �=β
i j = cos

(
Qlh

lα �=β
i j + ul

) + hlα �=β
i j , (21)

for weights Wl , Zl , Vl , and Ql , and biases bl , cl , ul . Resid-
ual connections are added to all layers where dim(hl ) =
dim(h(l−1)). This implementation differs from previous simi-
lar works [2,24,26] as the pairwise stream layers are split into
two spin-alignment-dependent blocks: α = β and α �= β cor-
responding to when the displacements are computed between
electrons of the same and different spins, respectively. This
method is motivated as correlations change depending on spin
alignment.

There are nl of these nonlinear parameterised layers. The
last layer is half the size of the previous layer and the outputs
fLα
i and gL are concatenated

hLα
i = fLα

i ‖ gL, (22)

then split into spin-dependent data blocks. These variables are
first used to construct backflow coordinates as inputs to the
Hartree-Fock orbitals

r′α
j = rα

j + tanh
(
Wdα

L hLα
j + bdα

y

)
, (23)

where d indexes the Slater determinant where the backflow
coordinates will be used, and a tanh activation was used to
limit the outputs between −1 and 1. This gives good perfor-
mance. Other activations were tested but the results showed
no improvement and in the case of no activation function, the
computed energies had higher variance and final energy, see
Fig. 2. Second, hLα

j are mapped to scalar orbital prefactors
via a linear transformation wdα

i (·) giving Slater determinant
orbitals

φdα
i j (X ) = wdα

i

(
hLα

j

)
ψH

i

(
r′α

j

)
, (24)

where ψH
i (r j ) are the Hartree-Fock plane wave orbitals

ψH
i (r j ) =

{
sin(kir j ) if i is even,

cos(kir j ) if i is odd,
(25)

TABLE I. Hyperparameters used to define the model.

Symbol Description Value

N/A Single stream hidden units 128
N/A Pairwise stream hidden units 32
nl Number of layers 3
np Number of periodic functions 5
nd Number of determinants {1, 8}
nk Number of k-points used in the input 19

where the set of k are ordered such that ki+1 is opposite to
ki, i.e., −ki+1 = ki, for even i and k1 = (0, 0, 0). We take the
shortest Nα k points to form the Hartree-Fock orbitals for the
Nα electrons of spin α.

The Slater determinant of a spin becomes

det[�dα] =

∣∣∣∣∣∣∣
φdα

11 (X ) . . . φdα
Nα1(X )

...
...

φdα
1Nα

(X ) . . . φdα
NαNα

(X )

∣∣∣∣∣∣∣. (26)

for d defining the index.
The full wave function is written

log |ψ (X )| = log

∣∣∣∣∣
∑

d

det[�d↑] det[�d↓]

∣∣∣∣∣. (27)

We have taken the log-absolute value of the amplitude in
the implementation. While in general one can write log ψ =
log |ψ | + iφ, with the periodic boundary conditions adopted
in this work the wave function is real. Therefore we can ignore
the phase φ, which is a constant wherever the modulus |ψ | is
nonzero.

The complete set of Ansatz hyperparameters is given in
Table I; these hyperparameters were chosen based on intuition
from previous research [2,24,26] and sweeps over options
(including for example alternate activations and hidden layer
size). We tested different models and found best performance
with the design outlined in this work, Figure 3 portrays
how the different features (splitting the pairwise stream by
spin alignment and backflow coordinates) affected perfor-
mance for a small demonstration example. Some early design
choices behaved better than others, notably, the inclusion of
a Jastrow factor U (X ) did not systematically improve the
performance, similar to atomic and molecular systems [2].
This suggests that the model is able to efficiently describe the
electron-electron cusp conditions [10] at low rs and the strong
curvature of the correlation hole [10] at large rs. The model
and algorithm were implemented in JAX [53] and run on RTX
3090 GPUs.

E. Optimization

Before parameters are optimized via variational Monte
Carlo (VMC), the Ansatz is first pretrained on Hartree-Fock
orbitals using methods described in other Refs. [2,24]. At a
high level, Ansatz orbitals in the Slater determinants are fit to
Hartree-Fock orbitals in a supervised way: A loss is computed
as the squared difference between them. This helps the Ansatz
to start closer to the ground state, to avoid being stranded in
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1.13950

E
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FIG. 3. Plot showing the change in performance for a small
model on a paramagnetic (Ne = 14) system over 3 × 104 training it-
erations. psplit indicates the method of splitting the pairwise streams
by spin alignment [Eqs. (20)–(21)] and backflow the adjustment
to the Hartree-Fock orbital inputs [Eq. (23)]. The error bars (only
visible for base+psplit) are average over the two runs for the standard
error on the mean of the energy calculation, computed with 1000
batches of 512 walkers.

local minima, and not to diverge during early training due to
large gradients.

Additionally, during VMC optimization, parameter gradi-
ents computed from Eq. (9) are transformed to approximate
natural gradients, using a Kronecker factored approximate
curvature (KFAC) [54–56] approximation to the Fisher infor-
mation matrix,

δl = Eal

[
al aT

l

]∇θL(θ )Esl

[
slsT

l

]
, (28)

where a and s are the activations and sensitivities [55], re-
spectively, and l is the layer index. Though correct, this
equation ignores a complete description of the algorithm
used to compute the approximate natural gradients, which
requires damping, constraining of the norm of the transformed
gradients, and smoothing approximations to the covariance
matrices. Particularly, damping and the covariance matrices
are computed via methods developed for convolutional layers
[54]. Norm constraint and other details of the method are
described in the Appendix of Ref. [24], more background
on these optimization routines can be found in Refs. [54,55],
and a list of optimization hyperparameters can be found in
Table II.

Finally, similar to stochastic reconfiguration [57], the op-
timal step size in a natural gradient descent scales roughly

TABLE II. Table of KFAC hyperparameters.

Description Value Decay Floor

Learning rate 1 × 10−3 1 × 10−4 1 × 10−4

Damping 1 × 10−4 1 × 10−2 1 × 10−6

Norm constraint 1 × 10−4 1 × 10−4 1 × 10−6

Number of walkers 2048 N/A N/A
Number of iterations 1 × 105 N/A N/A

with the inverse of the energy. In order to capture variations
between rs = 1 and rs = 100, the gradients are heuristi-
cally scaled depending on the density parameter of the
system

δ′
l = r1+rs/100

s δl . (29)

This helps to amplify the gradients when the variance of the
energy is small, particularly for systems with large rs. This
heuristic is essential to achieving state-of-the-art accuracy for
these systems for both spin-polarized (N↑ = Ne) and param-
agnetic (N↑ = N↓ = Ne/2) systems.

IV. RESULTS

A. Ground-state energy

In order to illustrate the accuracy of WAP-net, we have
computed VMC and fixed-node DMC energies based on
the iterative backflow (IB) network wave function. Our
IB results of Table III outperform the corresponding best
single-determinant BF-VMC and BF-DMC values previously
published (N = 19, rs = 1: Table 5 in the Supplemental
Material of Ref. [19], N = 14, rs = {1, 2, 5, 10, 20, 50}
in Ref. [58]). Comparing to extrapolated transcorrelated
FCIQMC [58] available for N = 14 at high densities, rs �
5, we estimate the residual fixed-node error to be around
0.7 mRy or below in this region, becoming more accu-
rate with decreasing density. For the spin-polarized system,
IB-DMC values are expected to be in general closer to the
exact ground-state values, e.g. around 0.2 mRy for N = 19,
rs = 1 [19]. Therefore, our baseline IB results provide a chal-
lenging benchmark for WAP-net over the full density region
of rs = 1 to rs = 100 for the spin-polarized and paramagnetic
system.

During the design phase of WAP-net many different
model features and implementations were tested. Represen-
tative results we include here from those tests are shown in
Fig. 3 highlighting the hierarchy of performance observed
while developing the model. Base defines a model with
periodic input features and permutation equivariant layers.
Psplit adds split pairwise layers [Eqs. (20) and (21)], and
backflow indicates channeling backflow coordinates from the
permutation equivariant layers output to the Hartree-Fock or-
bitals in a backflowlike way, showing in this small example
a clear improvement in performance as these features are
added.

The following results refer to the WAP-net with model and
KFAC hyperparameters stated in Tables I and II, respectively,
for example the number of training iterations was 1 × 105

for each experiment. For the comparative methods (WAP-net
with nd = 1 and the IB baseline, which was run with a single
Slater determinant, second and fourth column in Table III,
respectively, counting the density parameter rs as the first
column), we find that our approach improves upon previ-
ous VMC results in all cases rs ∈ {1, 2, 5, 10, 20, 50, 100}
for systems Ne ∈ {7, 14}, and most rs ∈ {1, 2, 5, 10, 20} for
the spin-polarized Ne = 19 case. Additionally, in all cases,
other than rs = 2, for the spin-polarized Ne = 7 systems,
WAP-net improved upon the IB wave function with DMC. In
some cases, rs ∈ {1, 2} for Ne = 14 and rs = 1 for Ne = 19,
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TABLE III. Results obtained by the simulations described in this paper. The reported values are the energies per particle in Rydbergs
and the titles spin-polarised (N↑ = Ne) and paramagnetic (N↑ = N↓ = Ne/2) describe the systems. Errors are the standard error on the mean
represented as bracketed numbers with the same precision as the last digit, for example 2.13(2) is equivalent to 2.13 ± 0.02, where 0.02 is the
standard error on the mean of 2.13. For WAP-net, the energies and errors are computed from 1000 batches of 2048 walkers.

Ne = 7 (spin-polarized)

rs
WAP-Net
(nd = 1)

WAP-Net
(nd = 8)

E IB
VMC E IB

DMC

1.0 2.240785(7) 2.240715(7) 2.24084(2) 2.24080(1)
2.0 0.221766(5) 0.221700(2) 0.221803(3) 0.221758(4)
5.0 −0.132825(2) −0.132845(1) −0.132773(1) −0.132811(1)
10.0 −0.1062797(5) −0.1062872(5) −0.1062376(6) −0.106276(1)
20.0 −0.0645378(2) −0.0645379(3) −0.0644823(3) −0.064533(4)
50.0 −0.02932178(3) −0.02932161(4) −0.0292957(1) −0.0293208(2)
100.0 −0.01549309(2) −0.01549304(1) −0.01547628(7) −0.0154925(1)

Ne = 14 (paramagnetic)

rs
WAP-Net
(nd = 1)

WAP-Net
(nd = 8)

E IB
VMC E IB

DMC

1.0 1.137912(9) 1.13793(1) 1.13832(1) 1.13795(1)
2.0 −0.016666(5) −0.016662(5) −0.016408(5) −0.01665(1)
5.0 −0.159669(1) −0.159672(1) −0.159524(1) −0.159684(3)
10.0 −0.1104049(6) −0.1104076(6) −0.1103229(7) −0.110436(1)
20.0 −0.0648883(3) −0.0648868(2) −0.0648444(2) −0.0649157(5)
50.0 −0.02924445(6) −0.02924422(7) −0.02922920(2) −0.0292573(2)
100.0 −0.01546048(3) −0.01545996(3) −0.01545525(6) −0.01546859(5)

Ne = 19 (spin-polarized)

rs
WAP-Net
(nd = 1)

WAP-Net
(nd = 8)

E IB
VMC E IB

DMC

1.0 2.092495(5) 2.092483(5) 2.092544(7) 2.092450(1)
2.0 0.192608(1) 0.192606(2) 0.192637(3) 0.192605(3)
5.0 −0.1345001(7) −0.1345021(5) −0.134480(1) −0.134508(1)
10.0 −0.1057197(2) −0.1057207(2) −0.1057090(6) −0.1057304(6)
20.0 −0.0640219(1) −0.0640164(2) −0.0640200(2) −0.0640333(2)
50.0 −0.02912995(5) −0.02913142(4) −0.02913147(5) −0.02913839(8)
100.0 −0.01543521(2) −0.01542724(3) −0.01543798(2) −0.01544285(2)

respectively, WAP-net improved upon the IB wave function
with DMC.

We additionally ran networks with nd = 8 and found no
consistent improvement over the single determinant case. The
results were marginally improved in the cases Ne = 7 rs ∈
{1, 2, 5, 10, 20}, Ne = 14 rs ∈ {5, 10}, and Ne = 19 rs ∈
{1, 2, 5, 10, 50}.

In order to understand the scaling of WAP-net with respect
to system size we computed the average time taken for one
iteration of each of the subroutines (sampling, local energy,
and KFAC), as seen in Fig. 4. Each set of timing data was
taken with one, four, and eight GPUs. Polynomials of form
f (Ne) = aN p

e + c were fit to the data where a and c were
adjustable parameters and p ∈ {2, 3, 4}. Lines were fit to each
of the data sets and the best fit (as measured by the minimum
squared residual) was chosen. The cost of the subroutines
scales as expected: O(N3

e ) for sampling, which is dominated
by the determinant computation [known to scale as O(N3

e )];
O(N4

e ) for the local energy computation [which in some cases
was close to O(N3

e )], and can be understood in terms of
the scaling as Ne evaluations of the determinant; and finally
O(N2

e ) in the case of KFAC. There is a small discontinuity in

the local energy data around Ne = 32 for four and eight GPUs.
This might be explained by reaching some threshold of data
in the GPUs, for example if operations need to be queued as
the number of variables increase.

B. Discussion of performance

Whereas our network achieved an overall excellent accu-
racy compared to the IB baseline, the quality deteriorates for
larger rs and larger systems. This trend might be somewhat
expected. The network hyperparameters are kept the same
across all systems meaning the setup chosen would need to be
extended: Adding more or larger hidden layers, more walkers
(to approximate the natural gradients better), or training for
more iterations to tackle more complex systems to the same
relative performance as the less complex systems (fewer elec-
trons and smaller rs).

Having that in mind, the energy gain with respect to
IB-VMC calculations is comparable to those from IB-DMC
for N = 7 and N = 19 providing a rough demonstration of
size consistency of the WAP-net Ansatz. However, further
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FIG. 4. Plots containing timing data for subroutines (Sampling, left, Local energy, middle, and KFAC, right) for spin-polarized systems
as a function of the number of electrons Ne. Each point represents the average of 1000 executions of the subroutine and each plot contains
three lines representing the subroutines run with one (blue), four (orange), and eight (green) GPUs. Fit lines are the best fit (the smallest mean
squared residual) from a selection of three polynomials of the form f (Ne) = aN p

e + c, where a and c are parameters and p ∈ {2, 3, 4}. In most
cases, the Sampling routine scales as O(N3

e ), the Local energy as O(N4
e ), and KFAC as O(N2

e ). The only cases where this did not hold were for
the local energy subroutine in the spin-polarized system with one GPU, finding a cubic fit, however, the difference between the mean residuals
of the fit between the cubic and quartic cases was small (within 2% mean residual).

tests on larger systems are needed to fully confirm size con-
sistency in practice.

In contrast to previous networks on atomic and molecular
systems [2,3], we do not observe a consistent improvement
increasing the number of Slater determinants in the wave
function. This may simply be a consequence of the trans-
lational symmetry when considering extended systems and
working with closed shell situations, as multideterminant
wave functions do not considerably improve the ground-state
energies of noble gas atoms, e.g., Ne [2,59].

Our results indicate quadratic scaling of the KFAC subrou-
tine. We expected linear scaling in the number of electrons
as adding additional electrons only increases the number of
layers for which a KFAC step is performed (computation of
the covariances and their inversion). It is possible to see this
trend in the one-GPU case and observe that adding addi-
tional GPUs adds overhead for moving data between them,
potentially explaining the difference between expected and
observed scaling. Nevertheless, this subroutine is relatively
negligible (in terms of the absolute time) for a complete it-
eration of training.

In testing and in other works [2,24,26], KFAC shows clear
advantages in optimization over more standard techniques
such as Adam [3,60]. However, the algorithm requires careful
balancing of the hyperparameters (learning rate, damping,
and norm constraint) to achieve optimal performance, which
consumes time in development and tweaking of model design.
Alternate methods such as conjugate gradient, which approxi-
mate the Fisher information matrix directly [61] and has been
demonstrated in other works [25,62], may improve results or
require less heuristics.

C. Single-particle density matrix

So far, our discussion was naturally focused on the calcu-
lation of the energy expectation value, intrinsically connected
to all variational approaches. Parametrizations of the HEG
correlation energy from QMC calculations, provide the in-
put of practically all Kohn-Sham density functionals (DFT)

based on the local density approximation (LDA). Although
our WAP-net and IB results provide the basis to reduce the
fixed-node error of previous calculations based on Slater-
Jastrow or simple backflow wave function, current DFT
functionals are more likely affected by corrections to LDA
than by these comparably small changes in the HEG energies.
On the other hand, improvements of the underlying wave
function may be more relevant to correlation functions, which
encode direct physical insight.

One of the physical observables where electron-electron
interactions are directly visible is the electronic momentum
distribution. Whereas electrons only occupy momentum states
up to the Fermi surface in an ideal Fermi gas, electronic
correlations also involve the occupation of states above the
Fermi surface. This leads to a reduction of the size of the jump
of the momentum distribution at the Fermi surface, the so-
called renormalization factor Z . Values of Z for the HEG are
relevant both qualitatively, as the defining feature of the Fermi
liquid paradigm, and quantitatively, to explain experimental
measurements of the momentum distribution in solid Na [63]
and Li [64], corrected by band structure [65] and core electron
effects [66].

In the following we will focus on the reduced single-
particle density matrix

g1(r) = EX∼p(X )

[
ψ (r1 + r, r2, . . . rN )

ψ (r1, r2, . . . rN )

]
, (30)

where p(X ) is proportional to |ψ (X )|2. From g1(r) the
momentum distribution can then be obtained by Fourier trans-
form.

Having an explicitly parameterized wave function ψ (X ), it
is straightforward to compute g1(r) within VMC [67]. The
DMC calculation, instead, is more involved. Within DMC
the trial wave function, ψ (X ), is stochastically projected to
its fixed-node ground state, ψ0(X ), resulting in lower en-
ergy values. However, the configurations X are now sampled
according to the weight pDMC ∼ |ψ0(X )ψ (X )|. For a gen-
eral operator A, for which ψ0 is not an eigenfunction, the
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calculation of the expectation value 〈ψ0|A|ψ0〉 based on the
mixed distribution pDMC typically introduces a large variance
[68]. Alternatively, the mixed estimator bias can be avoided
by reptation Monte Carlo (RMC) methods [69]; however, the
application of RMC to off-diagonal properties such as g1(r)
is rather elaborated [28]. Instead, we follow here the common
DMC practice to assume ψ sufficiently close to ψ0, so that

〈ψ0|A|ψ0〉 ≈ 〈ψ |A|ψ〉 + [〈ψ0| − 〈ψ |]A|ψ〉
+ 〈ψ |A[|ψ0〉 − |ψ〉], (31)

leading to the so-called extrapolated estimator [70]

Aext ≡ 2EX∼pDMC(X )[A] − EX∼p(X )[A]. (32)

Although the extrapolated estimator can reduce the bias and
eventually recover the exact expectation value of local opera-
tors (see Ref. [71] for an application to long-range properties
of the pair correlation function), this is not guaranteed for
nonlocal observables such as g1(r): key physical properties
such as the presence of a condensate for Bose systems [72] or
a finite Z for Fermi systems [73] are hard coded in the analytic
form of standard wave functions, and they cannot be modified
by either the mixed or the extrapolated DMC estimators. In
practice, the Fermi liquid nature of the HEG is guessed in
advance and maintained through the IB optimization and sub-
sequent DMC projection, and the study of competing phases
typically requires generalizations of the wave function spe-
cific to the targeted state of the system.

The WAP-net Ansatz, on the contrary, is essentially agnos-
tic, because it addresses individually each of the N2

α orbitals
of Eq. (24) through the many-body prefactors wdα

i (hLα
j ). This

has the potential to alter the Fermi liquid nature expressed by
filling the Na lowest-energy plane waves ψH

i (r′α
j ).

We now present our results for g1(r) obtained with SJ and
IB wave functions, and then discuss the insight we gain using
the WAP-net Ansatz. Here, SJ denotes a wave function based
on a Slater determinant and Jastrow function using only bare
electron coordinates.

Figure 5 illustrates the reduced single-particle density
matrix and the resulting momentum distribution for the un-
polarized N = 14 electron system at three different densities,
rs = 1, 5, and 100 using the extrapolated estimator with IB
wave functions. Increasing rs (decreasing density), g1(r) pro-
gressively departs from the ideal gas curve. In the momentum
distribution, shown in the inset, these deviations correspond
to a reduction of the jump, Z , at the Fermi wave vector.

Differences between g1(r) obtained from optimized SJ, IB,
and WAP-net wave functions relative to those of extrapolated
IB-DMC are shown in Fig. 6. Under the plausible assumption
that the IB-DMC values are more accurate, the SJ-VMC and
SJ-DMC results indicate that the DMC extrapolated estimates
are not uniformly better than VMC across the range of den-
sity and distance explored. This may cast doubt on the full
reliability of the correction from the IB-VMC to the IB-DMC
results.

The WAP-net Ansatz offers a completely independent route
to the calculation of g1(r). Figure 6 shows that the WAP-net
values of g1(r) are much closer to IB-VMC than IB-DMC.
While this may seem disappointing at first, there are good
reasons to prefer the WAP-net to the IB-DMC results. The
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FIG. 5. The reduced single-particle density matrix g1(r) of the
paramagnetic HEG. The colored lines are extrapolated estimates
calculated with IB wave functions for rS = 1, 5, and 100 at Ne = 14.
The black line is the analytic result for the noninteracting Fermi
gas at the same system size. The inset shows the corresponding
momentum distributions (dotted lines are a guide to the eye).

energies listed in Table III imply that the WAP-net wave func-
tion ψ is nearly as good or better, depending on rs, than the
fixed-node IB-DMC projected eigenstate ψ0. The WAP-net
estimate of g1(r) is better than IB-DMC because it uses an
approximation to the true ground state of similar quality and
it does not make the further assumption of Eq. (32).

Having better control on g1(r), we will now conclude on
assessing the accuracy of existing QMC of Z for the HEG
[28], addressing possible sources of discrepancy with exper-
iment [63,64], as well as with recent diagrammatic Monte
Carlo calculations [27]. The momentum distribution as well as
the single-particle density matrix shown in Fig. 5 suffer from
strong finite-size effects, and thermodynamic limit extrapola-
tion is beyond the scope of the present article. Nevertheless,
noting that leading-order finite-size corrections are linear in
g1(r) [28], we can study the systematic error due to quality of
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FIG. 6. The difference between various calculations of g1(r) and
the IB extrapolated estimate IB-DMC of Fig. 5. The shaded area
indicates the statistical uncertainty of IB-DMC. The WAP-net result
is very close to the IB variational estimate IB-VMC.
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the wave function, which roughly decouples from that of the
system size.

From Fig. 6 we see that IB-VMC agrees well with
WAP-net at all three densities whereas changes between
SJ-VMC and WAP-net increase with increasing rs. The cor-
responding variations in the momentum distribution would
indicate a lowering of Z compared to optimized SJ-VMC of
∼0.03 for rs = 5 and ∼0.04 for rs = 100, whereas at rs = 1
differences are below our resolution. Calculations done in
Ref. [28] are based on analytical Slater-Jastrow and (nonit-
erated) backflow wave functions. The quality of BF-RMC in
Ref. [28] is therefore expected to lie between our optimized
SJ-VMC and IB-VMC/WAP-net ones. Thus, the systematic
error due to the quality of the wave function used in Ref. [28]
is less than the error quoted, whereas Z may lower by at most
3% at rs = 5. Although small, such a shift may be relevant for
improving comparison with experiments [63,64], but would
also place them slightly below those of diagrammatic Monte
Carlo calculations [27].

V. CONCLUSION

In this work we have presented a neural network Ansatz,
WAP-net, for approximating the many-electron ground state
of the homogeneous electron gas, extending previous work
on atoms and molecules to periodic electronic systems. Using
the WAP-net Ansatz with variational Monte Carlo methods,
we have obtained accuracies comparable to or beyond our
best diffusion Monte Carlo calculations based on iterative
backflow wave functions for spin-polarized and paramagnetic
systems over a broad density region. The comparison of re-
sults for polarized systems from Ne = 7 to Ne = 19 shows that
the Ansatz is size consistent (at least in the single determinant
case, nd = 1). Larger systems are within reach, such that
thermodynamic limit values can be properly addressed based

on finite-size extrapolations [71]. This method can be ex-
tended to complex wave functions with more general twisted
boundary conditions [74] to accelerate the thermodynamic
limit extrapolation.

Applying the WAP-net Ansatz to the homogeneous elec-
tron gas, we focused on the description of intrinsic electron
correlations, not captured by independent particle approaches,
e.g., the reduced single-particle density matrix where we
discussed possible bias of previous calculations. In order to
describe the electronic structure of real materials, the periodic
lattice potential due to the ionic crystal must be further in-
cluded in the Hamiltonian. We expect WAP-net to still provide
an accurate description to describe the electronic structure in
materials, a detailed study to benchmark its performance for
solids will be addressed in a future work.

Note added. Recently, two related papers studying the elec-
tron gas with similar a neural network approach appeared,
[75] focusing on the transition from the Fermi liquid to the
Wigner crystal, and [30] towards more realistic systems.
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