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Lattice model for the quantum anomalous Hall effect in moiré graphene

Ahmed Khalifa,1 Ganpathy Murthy,1 and Ribhu K. Kaul2
1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 16 January 2023; revised 1 May 2023; accepted 31 May 2023; published 21 June 2023)

Inspired by experiments on magic angle-twisted bilayer graphene, we present a lattice mean-field model for
the quantum anomalous Hall effect in a moiré setting. Our hopping Hamiltonian provides a simple route to a
moiré Chern insulator in commensurately twisted systems. We study our model in the ribbon geometry and
demonstrate the presence of thick chiral edge states that have a transverse localization that scales with the moiré
lattice spacing. We also study the electronic structure of a domain wall between opposite Chern insulators. Our
model and results are relevant to experiments that will image or manipulate the moiré quantum anomalous Hall
edge states.
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I. INTRODUCTION

In a remarkable burst of experimental progress, magic
angle-twisted bilayer graphene has been found to host a wide
range of novel quantum phenomena from band topology to
superconductivity [1–7]. Notable among the states of matter
discovered is the quantum anomalous Hall effect (QAHE),
in which time-reversal symmetry is spontaneously broken
resulting in a quantized Hall conductance [4,5,7,8]. This
phenomenon, which will be the focus of this paper, brings
together in a new setting the two pillars of the contempo-
rary study of quantum materials: strong correlations and band
topology, all in a structure made simply of carbon.

The iconic lattice description for the QAHE is Haldane’s
honeycomb model [9]. Although the Hamiltonian explicitly
breaks time-reversal symmetry, it may be viewed as a use-
ful mean-field description of the result of the spontaneous
breaking of time-reversal symmetry by strong interactions.
One starts with spinless electrons hopping on the honeycomb
lattice, which results in a linear dispersion at half-filling and
at low energies. This is graphene’s celebrated realization of
the Dirac equation in which the masslessness is protected by
a combination of C2T symmetry where C2 denotes rotation by
π around the z axis, and T denotes time reversal. Haldane’s
perturbation consists of an imaginary second-neighbor hop-
ping chosen specifically to break T but preserve C2. Such a
perturbation can be shown to guarantee a nonzero Chern num-
ber, giving rise to the QAHE. Although the k-space picture is
convenient to establish bulk topology, the chiral edge states of
the Chern insulator are best studied in the real-space ribbon
geometry. These edge modes have a transverse localization
length on the scale of spacing a of the underlying honeycomb
lattice. Our goal in this paper is to construct a mean-field
model for the QAHE in moiré graphene, formulated on a
real-space lattice analogous to Haldane’s model. Such a model
would allow studies of the electronic structure, including the
chiral models, of the QAHE state with inhomogeneity in real
space, such as that arising from the presence of edges, internal
domain walls, electrostatic potentials due to external gates,

density gradients, and disorder all of which play an important
role in experiments on moiré graphene.

We first review a popular physical picture for the QAHE in
moiré graphene [10–25]. The starting point is the continuum
model [26,27] in which moiré reconstructions of the band
structure at the K and K ′ valleys are treated independently.
Close to the magic angle, the band structure consists of two
almost flat bands in each valley that touch at the corners
of the moiré Brillouin zone (BZ), a touching protected by
C2T . Upon applying sublattice masses on the two layers (via
the alignment with a hexagonal boron nitride (h-BN) sub-
strate [28–34]), C2 is broken, the two bands in each valley
are gapped, and carry ±1 Chern numbers [12,13]. By time
reversal, the opposite valley has exactly the same band struc-
ture but with opposite Chern numbers ∓1. The QAHE occurs
when the band structure has just enough electrons to fill up
one of these four bands with electron-electron interactions
spontaneously breaking time-reversal symmetry, resulting in
a valley-polarized Chern insulator. In a mean-field [Hartree-
Fock (HF)] picture of the continuum model, we may posit
that the energy for the electrons in one valley is raised with
respect to the other valley resulting in valley polarization. We
note here that it is widely believed that the QAHE state in
moiré graphene is spin polarized (in addition to the valley
polarization just discussed). Since it also does not play a
crucial role for the physics we are looking at, in our paper
we will, henceforth, ignore the electron spin and focus on the
orbital route to magnetism.

II. LATTICE MODEL

A straightforward calculation of the Hartree-Fock mean-
field states on the moiré lattice is computationally prohibitive
due to the huge size of the moiré unit cell. Rather than start
with an interacting Hamiltonian and decouple it to obtain
a mean-field description, our goal is to write a simple phe-
nomenological one-body Hamiltonian that shows the QAH
phase in the moiré system at 1/4 and 3/4 fillings (ignoring
spin). Although such a model may not be faithful with respect
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FIG. 1. The λmh perturbation of Eq. (1) on a single sheet of
graphene. (a) The pattern of imaginary second-neighbor hoppings
of the λmh term that breaks C2 and T individually but preserves their
combination. This is a modification of the Haldane model in which
the two sublattices have the imaginary hopping in the same sense;
in this “modified Haldane” model they are in the opposite sense.
Since λmh preserves C2T , it does not act as a mass term. (b) The
resulting dispersion of Hmh in a section of the graphene Brillouin
zone showing that the perturbation preserves the masslessness of the
Dirac equation in each valley but raises the energy of one Dirac point
with respect to the other.

to the energetics, it is adiabatically connected to the QAH
state obtained from the standard HF approach and is expected
to capture many of the broad features of the QAH phase
especially the topological features, such as edge states. It is
not obvious a priori how to write a mean-field lattice model
that leads to the QAHE with the same mechanism as in the
continuum mean-field picture. Nonetheless, inspired by the
continuum picture, we seek a perturbation to the monolayer
graphene Hamiltonian that raises the energy in one valley
with respect to the other but maintains the masslessness of
the Dirac points in each valley. The perturbation must break
both T and C2 so that the band structures in the two valleys
can be different but must preserve C2T so that the Dirac
equation is left massless. Such a term can be constructed by
modifying the honeycomb Haldane model, arranging for the
sense of the imaginary hopping on the A and B sublattices to
run oppositely (in the Haldane model, they run in the same
direction). This is shown pictorially in Fig. 1,

Hmh = −t
∑

〈i, j〉
c†

i c j + λmh

∑

〈〈i, j〉〉
iνi jc

†
i c j, (1)

where ci denotes the electron’s annihilation operator at honey-
comb site i and νi j = ±1. The A-a hopping and B-B hopping
change sign under both C2 and T but are left invariant under
the C2T . The band structure of monolayer graphene perturbed
with λmh, shown in the right panel of Fig. 1, displays the
expected behavior, two massless Dirac cones at K and K ′
but with touching points that are displaced in energy. This
model has been introduced previously and was dubbed the
modified Haldane model in the context of studying antichi-
ral edge states in two-dimensional fermion systems [35,36].
Althoughthe λmh term does not lead to a Chern insulator in
monolayer graphene, we now show that when added to twisted
moiré graphene, it results in the QAHE.

We now incorporate this perturbation into a lattice model of
twisted bilayer graphene. In order to work on a moiré system
on the lattice, we use commensurate twist angles with large
moiré triangular lattice vectors A1 and A2 (AM ≡ |A1| = |A2|)

FIG. 2. The band structure of the commensurately twisted lattice
model HTBG, Eq. (2) in the moiré BZ computed with periodic bound-
ary conditions (without edges). (a) Without the perturbation term,
λmh = 0, T is preserved, and a Chern insulator is not possible. The
two isolated flat bands in the middle are doubly degenerate, which
can be understood from the continuum model as arising due to the
valley degeneracy. The remote bands in gray do not play an important
role in our paper. (b) Turning on λmh breaks T and allows the moiré
system to have bands that have well-defined Chern numbers, the
arrows point to the value of the Chern number of the bands. Chern
numbers are computed by the standard lattice method [47]. This
spinless moiré system would be a Chern insulator at 1/4 and 3/4
fillings of the flat-band system. We used θ ≈ 1.08◦, t = 2.7 eV, tv =
0.686 eV, κ = 0.0, η = 0.3a, mt = mb = 10, and λmh = 8 meV.

and a smaller moiré Brillouin zone [26,37,38]. To demonstrate
that λmh indeed results in the QAHE in the moiré graphene,
we construct a tight-binding model on the commensurate lat-
tice [39–42] for the twisted bilayer graphene (TBG) system,

HTBG =
∑

μ

Hμ,mh +
∑

μ,i

mμσzc
†
μ,icμ,i +

∑

i, j

t⊥
i j c†

t,icb, j, (2)

where cμ,i is the annihilation operator for an electron in layer
μ = t, b and at lattice position i. The first “intralayer” term,
defined in Eq. (1), consists of the usual graphene hopping
as well as the λmh perturbation term. The second term corre-
sponds to the effect of the h-BN substrate, which is a staggered
mass on each layer with σz denoting the sublattice degree of
freedom. The last term corresponds to the interlayer hopping.
We take a simple interlayer hopping model that is a function
of the in-plane distance between two atoms in different lay-
ers and falls off exponentially with increasing distance. This
gives the following form for the interlayer hopping, t⊥(r) =
tv exp(−r/η), where r is the in-plane distance between the two
atoms, η controls the range of the hopping and tv is the hop-
ping amplitude. Lattice relaxations reduce the A-A hopping
between the layers in contrast to A-B hopping [43–46], which
we include in the model by the parameter κ , which defines the
ratio between the two.

In Fig. 2, we show the band structure of the model first with
λmh = 0 and then with λmh 
= 0. For λmh = 0, there are two
flat bands that are each doubly degenerate. The degeneracy
can be understand in the continuum model as arising from
the two valleys. Since T is preserved, no Chern insulator is
possible. For λmh 
= 0, we observe that the flat bands split
into four isolated bands (one pair moves up, and the other
pair moves down in energy). As we would expect from the
continuum model picture since the λmh perturbation raises
the energy of one valley’s Dirac touching with respect to the
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other in monolayer graphene, the two flat bands in one valley
move up, whereas, those in the other move down. The Chern
numbers of the pair that move up are ±1, whereas, those of
the pair that move down have ∓1, consistent with the fact
that they arose from two valleys connected by time-reversal
symmetry when λmh = 0. Evidently, if we fill the flat-band
manifold with only enough electrons to fill one band (or three
bands), we obtain a Chern insulator. This demonstrates that
the λmh perturbation can turn the moiré system into a quan-
tum anomalous Hall insulator. We note here for completeness
that for a single sheet of graphene, Hmh supplemented with
a sublattice mass term breaks T but, nonetheless, gives rise
only to a trivial insulator; the Chern insulator that we find here
for the twisted case essentially requires the subtle moiré band
reconstructions.

III. EDGE STATES

Having established that the λmh perturbation creates a QAH
state from the bulk k-space topology, we now study the model
in a ribbon geometry to access the edge states. We construct a
ribbon by taking the system to be infinite along the “longitu-
dinal” A2 direction (with the momentum parallel to A2 being
a good quantum number) and finite along the “transverse”
A1 direction, which defines the width of the ribbon. Due to
the large number of atoms in the unit cell (up to 105 in our
paper), we use the Lanczos algorithm to obtain the bands
near charge neutrality where the Chern bands and, hence, the
edge states reside. Figure 3(a) shows the band structure of
the Hamiltonian in Eq. (2) of a ribbon with a width of 20
moiré unit cells. We see the projection of the four bulk bands
near charge neutrality, but most importantly, we see two pairs
of gap crossing modes that are localized on the upper and
lower edges of the ribbon that correspond to the edge states
of the Chern insulator. The location of the support of the wave
functions in the transverse direction is determined by comput-
ing the position expectation value of the wave function along
the width of the ribbon [48]. Note that there are also edge
states that lie at energies above and below the four flat bands,
which are reminiscent of the “moiré edge states” that exist
before adding the Hmh perturbation [42,48–53]. These states
are counterpropagating along each edge, which makes them
susceptible to backscattering in contrast with the robust edge
states of the Chern insulator discussed here. Furthermore, they
do not cross the band gap between the flat bands and the
remote bands.

What is the transverse localization length of the edge
states? Given the microscopic form of the mean-field pertur-
bation in Eq. (1) [illustrated in Fig. 1(a)], one may naively
assume that the edge states are localized on the scale of a
graphene lattice spacing. On the other hand, in the continuum
model, the moiré lattice spacing AM is the only length scale
that appears, and, hence, we might expect that the edge state
wave function to be localized on this larger scale. We plot
the edge state wave function squared amplitude in Fig. 3(b).
We see that the edge mode wave functions extend up to ap-
proximately one moiré unit-cell length AM , in agreement with
the expectation from the continuum model. The fundamental
graphene lattice constant a is about 50 times smaller than AM .
Furthermore, we have checked that the edge state localization

FIG. 3. Band structure and wave functions of HTBG in a ribbon
geometry (with edges) with the same parameters as in Fig. 2 and
with a transverse width of 20 moiré unit cells and infinite longitudinal
direction. (a) Shows the bands in a window of energy that includes
the four flat bands of Fig. 2(b). The color of the eigenstates represents
the expectation value of the transverse coordinate of the ribbon in
accordance with the shown color bar. The bulk bands appear green
since their average transverse coordinate is in the middle. Likewise,
edge states localized on the upper (lower) edge appear blue (red). We
observe that chiral midgap states show up between the first and the
second and between the third and the fourth flat bands, corresponding
to the edge states of a Chern insulator at 1/4 and 3/4 fillings.
In addition, counterpropagating edge states not associated with the
QAHE appear below the first band and above the fourth band. A
possible Fermi level for a Chern insulator at bulk filling of 1/4 is
shown as a dashed line. (b) Shows the details of |	|2 for the two
edge states’ wave functions at the Fermi level marked in (a). The
system diagonalized had a transverse width of 20 moiré unit cells
but for clarity most of the bulk has been omitted as represented by
the broken y axis. For visual clarity, we have shown three repeats of
the unit cell along the longitudinal direction. Black arrows indicate
the chirality of the edge modes inferred from their group velocities
in (a).

length depends linearly on AM demonstrating that it is tied to
this larger length scale (see the Supplemental Material [54]).

IV. DOMAIN WALLS

The QAHE phase in moiré graphene has been argued to be
an orbital ferromagnet, which breaks time-reversal symme-
try spontaneously [10–25]. This discrete symmetry breaking
results in two ground states corresponding to clockwise or
anticlockwise chiral edge states (C = ±1) connected by time-
reversal symmetry, which can be accessed in our model by
choosing the mean-field term λmh either positive or negative.
Experiments on twisted bilayer graphene aligned with h-BN
have reported the coexistence of ferromagnetic domains in
the system [4,5,7,8,55] with a possible mesoscale pattern of
opposite domains separated by domain walls. The domain
walls themselves are fascinating objects that provide an ex-
perimentally tunable realization of the zero modes trapped by
defects in topological band systems, a fundamental problem
in physics [56,57]. Our model allows us to explicitly compute
the wave functions of the chiral modes localized at the domain
walls. To set up a domain wall, we study a configuration where
the order parameter λmh varies smoothly across the width of
the ribbon between two regions of opposite Chern number.
We use λmh = λmh0 tanh (y/ξ ) with ξ a characteristic length
scale of the domain wall. In Fig. 4(a), we show the resulting
band structure. Focusing at a Fermi level corresponding to 1/4
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FIG. 4. Electronic structure of a QAHE domain wall in the rib-
bon geometry. (a) Shows the band structure in the presence of a
C = ±1 domain wall (see the text), colored with the same color bar
as in Fig. 3. At the Fermi level (dashed line) for 1/4 bulk filling, there
are now four chiral edge states: two of these are quasidegenerate and
localized in the middle (and, hence, appear green) at the domain wall,
and the other two are at the upper and lower edge of the ribbon.
(b) Density for the localized mode wave functions at the 1/4 Fermi
level, showing the chiralities inferred from the group velocities of
the band structure. For clarity, we show only one of the two modes
trapped on the domain wall since they have similar support. We have
shown five repeats along the longitudinal direction. The profile of
the domain wall used (ξ = 0.9AM ) is shown on the right. All other
parameters are same as in Fig. 2.

filling (shown as a dashed line), we find four localized states:
two states at the center of the sample (trapped by the domain
wall), and one each on the upper and lower edges. The two
parallel chiral states in the domain wall are consistent with
the behavior of a domain wall separating regions with C = ±1
Chern numbers. The corresponding wave function for one of
the domain-wall states is shown in Fig. 4(b) exhibiting a state
that is localized in the middle of the ribbon with a localization
length controlled by AM , the moiré length scale. Also shown
in this figure is the upper and lower chiral edge states.

V. ENERGETICS

We have demonstrated that the λmh perturbation of Eq. (1)
does indeed create a mean-field QAH state in moiré graphene,
and the chiral edge modes appropriate for both a hard edge
and a domain wall. Our mean-field ansatz is also conceptually
attractive because it has only two “moving parts:” The sub-
lattice masses to gap the flat bands and give them nontrivial
Chern numbers in each valley, and λmh to raise one valley with
respect to the other, which we have made simply arguments
has to result in a Chern insulator. However, it is interesting to
step back and ask whether this mean-field ansatz is unique or
favored in some sense. From a symmetry point of view, the
only necessary (but not sufficient) requirement to get a Chern
insulator is the perturbation break T . Clearly many imaginary
hopping patterns, such as Haldane’s perturbation, or those
involving further neighbor hopping and modulation of the
hopping with the moiré periodicity, can achieve this. However,
unlike our simple ansatz, it is a priori unclear which of these
will result in a Chern insulator. A full Hartree-Fock calcula-
tion on the lattice, including all the bands, will by definition
lead to the best mean-field Hamiltonian. However, this is

computationally prohibitive. To gain further physics insight
into the issue in a limited parameter space, we have con-
structed a mean-field model, which has the sublattice masses,
the modified Haldane term with a coefficient λmh, and a Hal-
dane term with coefficient λh. Note that the Haldane term by
itself also leads to a Chern insulator for TBG at quarter fill-
ing. We variationally compute the total energy, including the
Coulomb interaction screened by gates [10–18] as a function
of λmh, λh for a fixed set of sublattice masses. As shown in
the SM [54], we find that the minimum occurs when λh =
0, λmh 
= 0. Thus, at least, in this limited set of variational
parameters, the modified Haldane term is preferred.

VI. CONCLUSION

To summarize, we have introduced a lattice mean-field
model for the quantum anomalous Hall effect in twisted bi-
layer graphene. The mechanism that gives rise to the Chern
insulator is physically appealing: The sublattice masses on the
two layers break C2, gap out the flat bands in each valley, and
give them nontrivial Chern numbers, whereas the modified
Haldane term breaks T and raises the states in one valley
with respect to the other. Our mean-field model’s conceptual
simplicity, its computational tractability, and its good ener-
getics (albeit in a limited parameter space) make it attractive
for study. By solving our lattice model in a ribbon geometry,
we find that the chiral edge modes of the QAH state have a
transverse localization length that scales with the moiré lattice
spacing. We have also used our model to study the domain
walls occurring between regions where the order parameter
changes sign.

A number of interesting open questions involving spatially
inhomogeneous systems can be studied using our lattice ap-
proach. The control of the electronic structure of the chiral
modes by the shape of the domain wall, a study of networks of
domain walls, and the effect of impurities are some examples.
We hope to study these and other questions in the near future.

Note added. Recently, while our paper was being finalized
for submission, an experimental work using scanning tunnel
microscopes on domain walls in twisted monolayer-bilayer
graphene has appeared in which the QAHE edge states have
been imaged for the first time [58]. Although closely related
to the system under study here, it is different in detail. The
main idea of our theory can be adapted straightforwardly to
this paper.
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