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Ising analogs of quantum spin chains with multispin interactions
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A new family of free fermionic quantum spin chains with multispin interactions was recently introduced. Here
we show that it is possible to build standard quantum Ising chains—but with inhomogeneous couplings—which
have the same spectra as the novel spin chains with multispin interactions. The Ising models are obtained by
associating an antisymmetric tridiagonal matrix to the polynomials that characterize the quasienergies of the
system via a modified Euclidean algorithm. For the simplest nontrivial case, corresponding to the Fendley model,
the phase diagram of the inhomogeneous Ising model is investigated numerically. It is characterized by gapped
phases separated by critical lines with order-disorder transitions depending on the parity of the total number of
energy density operators in the Hamiltonian.
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I. INTRODUCTION

Some of the simplest models of quantum matter are
quantum spin chains which can be mapped onto Gaussian
fermionic models. They are amenable to exact solutions and
can provide insights into many-body phenomena. A quantum
system has a free fermionic spectrum if its Hamiltonian can be
expressed in a quadratic form in terms of (Dirac or Majorana)
fermionic operators. The most common framework to solve
free fermionic systems dates back to the seminal work of On-
sager [1], later simplified by Kaufman [2] and Lieb, Schultz,
and Mattis [3].

One example of a free-fermionic Hamiltonian is the in-
homogeneous quantum Ising chain in a transverse field with
open boundary conditions (OBC) [4],

H = −
L−1∑
�=1

w2�σ
z
� σ

z
�+1 −

L∑
�=1

w2�−1σ
x
� , (1)

where w� are nonnegative real coupling parameters and the
standard Pauli matrices σ x,z

i act on the ith site of the chain
with L sites. To uncover the free fermionic structure, one
maps the Pauli matrices either to complex fermionic operators
c� or to Majorana operators ψ� through the Jordan-Wigner
transformation,

σ x
� = 1 − 2c†

�c� = iψ2�−1ψ2�,

σ z
� = −

�−1∏
m=1

(1 − 2c†
mcm)(c� + c†

� )

=
�−1∏
m=1

iψ2m−1ψ2mψ2�−1, (2)
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leading to

H = −
L−1∑
�=1

w2�(c†
�c�+1 + c†

�c†
�+1 + H.c.)

−
L∑

�=1

w2�−1(1 − 2c†
�c�)

= i
2L−1∑
�=1

w�ψ�ψ�+1. (3)

The operators ψ� satisfy the Clifford algebra

{ψ�,ψ�′ } = 2δ��′ , (4)

whereas the operators c� fulfill the complex fermionic algebra

{c�, c�′ } = {c†
�, c†

�′ } = 0, {c†
�, c�′ } = δ��′ . (5)

The two representations are connected by

c� = 1
2 (ψ2�−1 − iψ2�), c†

� = 1
2 (ψ2�−1 + iψ2�). (6)

Note that Eq. (3) describes the case of the Kitaev chain
with, in general, inhomogeneous couplings but with the
fermion pairing and hopping terms being of equal strength
[5]. The model has time reversal, particle-hole, and chiral
symmetry and thus belongs into the BDI symmetry class in
the classification of symmetry protected topological order [6].
In its topological phase, the model has two Majorana zero
modes. This Hamiltonian with inhomogeneous couplings can
now be diagonalized, for example, by building raising and
lowering operators as a linear combination of the Majorana
modes ψ�, that is

�k =
L∑

�=1

αk,�ψ2�−1 + iβk,�ψ2�,

�
†
k =

L∑
�=1

αk,�ψ2�−1 − iβk,�ψ2�, (7)
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where k = 1, . . . , L and the wave functions αk,� and βk,� are
recalled in the Appendix. The raising and lowering operators
�

†
k and �k form again a complex fermionic algebra and the

Hamiltonian becomes diagonal in these eigenmodes,

H =
L∑

k=1

εk[�†
k , �k]. (8)

The quasienergies εk are the roots of the characteristic poly-
nomial of a certain antisymmetric tridiagonal matrix, as
emphasized in Ref. [5]. All the 2L eigenvalues of Eq. (3) are
given by

E = ±ε1 ± ε2 ± · · · ± εL. (9)

This spectral decomposition characterizes free-fermionic
models. We recall that the linear transformation (7) between
the physical modes ψ� and the eigenmodes �k and �

†
k is

essential to compute physical quantities. In fact, Wick’s the-
orem can be used to express expectation values of strings of
Majoranas in terms of two-point correlators [3].

Recently, an intriguing free fermionic model which does
not have the form (3) was introduced and solved [7]. Fendley’s
Hamiltonian contains three-spin interactions and is given by

HF = −
L−2∑
�=1

λ�σ
x
� σ z

�+1σ
z
�+2. (10)

Applying the Jordan-Wigner transformation (2), one obtains
the following 4-fermion Hamiltonian:

HF = −
L−2∑
�=1

λ�(1 − 2c†
�c�)(c†

�+1 − c�+1)(c†
�+2 + c�+2)

=
L−2∑
�=1

λ�ψ2�−1ψ2�ψ2�+2ψ2�+3. (11)

We see that, when written in terms of complex fermions, we
have again a nearest-neighbor hopping and pairing between
sites � + 1 and � + 2 as in the transverse Ising chain but now
the sign of these terms does depend on the occupation of site
�. Surprisingly, despite being composed of 4-fermion terms,
the spectrum of Eq. (10) has the same free fermionic form
(9), but with quasienergies given by the roots of a polynomial
generated by a third order recurrence relation [7]. We should
remark here that the Fendley model is different from the
three-spin extension of the transverse-field Ising model which
has been studied already earlier in a different context [8,9]. In
the latter case, the three-spin term has the form σ z

� σ
x
�+1σ

z
�+2 =

(c� − c†
� )(c�+2 + c†

�+2) = iψ2�ψ2�+3, i.e., it remains bilinear
in the fermionic operators. The beautiful solution of the model
(10) in Ref. [7] exploits the fact that the Hamiltonian is the
sum of local energy density operators that are generators of
an elementary algebra. This allows one to use integrability to
express (10) in the diagonal form

HF =
�L/3�∑
k=1

εk[F†
k ,Fk], (12)

where the operators Fk and F†
k form a complex fermionic

algebra as in Eq. (5) with �x� denoting the floor function of x.
The operators Fk and F†

k are given in terms of an appropriate
transfer matrix and an edge operator [7]. We stress here that
the Hamiltonian (10) has open boundary conditions; solving
the periodic chain remains an open problem. An important
aspect of Fendley’s model is that the physical modes cannot
be linearly expressed in terms of F†

k and Fk , in contrast to
Eq. (7). As a consequence, Wick’s theorem cannot be applied,
and correlations are difficult to compute. For a character-
ization of free fermionic models solvable by generator to
generator maps, see also Ref. [10].

The work [7] has motivated a number of further devel-
opments. In Refs. [11,12] a family of models generalizing
Eq. (10) to multispin interactions and also to free Z (N )
parafermionic degrees of freedom [13,14] was introduced and
its critical behavior was analyzed. It was further shown that
these models, in the fermionic case, belong to a class of
Hamiltonians with a certain frustration graph [15]. A pow-
erful method to analyze the spectral gap, including the cases
where the model includes quenched disorder, was proposed in
Ref. [16]. For the parafermionic case, a spectral correspon-
dence with XY quantum chains with multispin interactions
was argued in Ref. [17]. In Ref. [18], considering multispin
chains with periodic boundary conditions, connections with
the generalized Onsager algebra [19] and generalized Yang-
Baxter algebra [20] were established.

Interestingly, all these multispin models with free
fermionic spectra have a multicritical point where the gap
vanishes with dynamical critical exponent z = (p + 1)/2 for
positive integer p while the energy density operator of these
models typically acts on p + 1 lattice sites. The Hamiltonian
(10), for example, has p = 2 and therefore z = 3/2. We recall
that many known critical spin chains have conformal sym-
metry (z = 1) although ferromagnetic models with z = 2 and
spin chains such as the Fredkin and Motzkin models with
multiple dynamics corresponding to different z values are also
known [21]. We also note that it has been recently suggested
that the spin-1/2 Heisenberg chain shows superdiffusion with
z = 3/2 [22]. However, these models are typically very dif-
ficult to investigate analytically. Therefore, the multispin free
fermionic models might allow to consider dynamics in critical
chains beyond the CFT regime in more detail and rigour.
Unfortunately, despite the free fermion structure of the spec-
trum, the impossibility of using Wick’s theorem makes the
calculation of correlation functions a difficult task even in this
case. In addition, we should mention that numerical results are
also difficult to obtain because the latter models typically have
a spectrum with a global degeneracy that grows exponentially
with the lattice size (see Sec. II A for details).

In this context, a question that can be asked is whether
or not there are ‘standard’ free fermionic spin chains with
the same spectrum as the Fendley model [7] or its exten-
sions [11,12], except for the exponential degeneracy. If such
models can be constructed, then one can use Wick’s theorem
to analyze correlations and to perhaps grasp some universal
physical behavior of the multispin chains beyond the spectral
level.
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This question can also be put in the following way: is
there a tridiagonal antisymmetric matrix whose characteristic
polynomial yields the quasienergies εk of the generalized free
fermionic quantum chains? The answer to this question is
affirmative and, as a matter of fact, this problem has been
previously considered in the literature [23,24]. In reference
[24], an algorithm which provides the tridiagonal matrix as-
sociated with a given polynomial is given. Therefore, when
applied to the characteristic polynomial whose roots are the
quasienergies εk , we actually obtain a set of couplings forming
a standard free fermionic chain with the same spectrum as the
multispin models. In general though, the obtained couplings
are inhomogeneous.

The idea of reconstructing a tridiagonal matrix from the
spectral data has been used to construct quantum XY spin
chains with perfect state transfer; see Ref. [25] and references
therein. In this case, the obtained spin chains are also inhomo-
geneous. Here, instead of imposing perfect state transfer, we
require the spectrum to be that of the free-fermionic multispin
models. Furthermore, the entanglement entropy of inhomo-
geneous XY chains was recently studied in the framework
of orthogonal polynomials [26,27] while higher-dimensional
cases were considered in Ref. [28]. Yet another interesting ex-
ample of inhomogeneous chains is the so called rainbow chain
[29] which is also of the XY type. In addition of shedding light
on the multispin chains, the models we construct here also
contribute to the study of inhomogeneous models in general.
Let us finally mention that the eigenenergies of XY (or XX )
models are formed by the composition of two decoupled Ising
chains. We can therefore produce inhomogeneous XY toy
models using the same algorithm.

This paper is organized as follows: In Sec. II, we recall
some basic facts about the multispin free fermions, including
the underlying exchange algebra and the polynomials which
fix the quasienergies of the system. The quasienergies are
studied numerically and zero modes are found within certain
regimes of the coupling parameters. In Sec. III, inhomoge-
neous quantum Ising chains are constructed based on the
Schmeisser algorithm. In Sec. IV, we compute correlations
for the inhomogeneous models and uncover its phase diagram,
which is found to be dependent on certain integers related to
the number of energy density operators defining the Hamil-
tonian. We discuss the obtained results and perspectives in
Sec. V. In the Appendix, to make the paper self contained, we
briefly review some aspects of the solution of inhomogeneous
quantum Ising chains.

II. MULTI-SPIN FREE-FERMIONIC MODELS

In this section, we present some important properties of the
multispin free fermionic models [7,11,12].

A. Algebra and polynomial

The Hamiltonian is given by a sum of M energy density
operators h�,

−H = λ1h1 + λ2h2 + · · · + λMhM , (13)

that are the generators of the following algebra,

h�h�+1 = −h�+1h�,

h�h�+2 = −h�+2h�,

...

h�h�+p = −h�+ph�,

[h�, h�′ ] = 0 if |� − �′| > p,

h2
� = 1, (14)

with p a positive integer. We consider nonnegative real cou-
plings λ�. Using the method of Ref. [7], one can build a set of
conserved charges from products of the generators h�, and use
integrability to derive the spectrum of Eq. (13) independent of
the representation of the algebra, up to possible zero modes.
The Hamiltonian (13) has a free fermionic spectrum given by

E = ±ε1 ± ε2 ± · · · ± εM̄, (15)

where the quasienergies ε j are related to the the roots z j of the
polynomial,

PM (z) = PM−1(z) − zλ2
MPM−(p+1)(z) (16)

by

ε j = 1√
z j

with M =
⌊

M + p

p + 1

⌋
. (17)

The initial conditions are P�(z) = 1 if � � 0. Also, we assume
ε1 < ε2 < · · · < εM̄ . Explicitly, the polynomial is given by

PM (z) =
M∑

l=0

C(l )
M (−z)l , (18)

with coefficients

C(l )
M =

M∑
j1=1

M∑
j2= j1+p+1

· · ·
M∑

jl = jl−1+p+1

λ2
j1λ

2
j2 . . . λ2

jl . (19)

In passing, we want to mention that, remarkably, the polyno-
mials (16) in the homogeneous case λ� = 1 have appeared in
classical Rydberg blockade models [30] and in the enumer-
ation of open walks of fixed length and algebraic area on a
square lattice [31]. For the case p = 1, the algebra (14) was
used to construct an algebraic generalization of the Jordan-
Wigner transformation [32] and to make various connections
to the Onsager algebra [33].

One can consider different representations of the algebra
(14); see Ref. [12] for details. For example,

h� = σ x
� σ z

�+1 · · · σ z
�+p−1σ

z
�+p, (20)

is a representation in C⊗M+p. For this representation,
all energy states have the same exponential degeneracy
2�p(M+p+1)/(p+1)�. To our knowledge, representations of the
algebra (14) in C⊗M̄ for p > 1 are not known. The energy
density (20) usually contains multiple Majoranas. For exam-
ple, we have

h� = ψ2�−1ψ2�ψ2�+2ψ2�+3, for p = 2,

h� = −iψ2�−1ψ2�ψ2�+2ψ2�+3ψ2�+6ψ2�+7, for p = 4.

(21)
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For odd values of p, the representation (20) with the Jordan-
Wigner transformation (2) leads to energy densities with an
ever increasing number of Majoranas. This can be cured by
considering rotated versions of Eq. (2).

In the case p = 1, the algebra (14) admits an Ising repre-
sentation

h2�−1 = σ x
� for � = 1, . . . , L,

h2� = σ z
� σ

z
�+1 for � = 1, . . . , L − 1, (22)

with M = 2L − 1 generators. We can equivalently write
h2�−1 = iψ2�−1ψ2� and h2� = iψ2�ψ2�+1 using Eq. (2). As
recalled in the Appendix, one can associate a tridiagonal ma-
trix with this representation, see Eq. (A2) with w j → λ j , to
obtain the single-particle energies εk which yield the many-
body spectrum given by Eq. (9). The even M case is slightly
more subtle. We can eliminate one generator, say h1 = σ x

1 ,
producing an even number M = 2L − 2 of terms. In the spin
representation, Eq. (22), the Hamiltonian then commutes with
σ z

1 leading to a block structure of the Hamiltonian and a
double degeneracy of the entire many-body spectrum. In the
Majorana language, this is equivalent to removing one line
and one column of the tridiagonal matrix in Eq. (A2). As
a consequence, the tridiagonal matrix acquires an odd di-
mension and therefore a null eigenvalue ε1 = 0. This zero
eigenvalue in the single-particle spectrum is then responsible
for the double degeneracy in the many-body spectrum (9).
One could instead also redefine the generator h2 = σ z

1σ z
2 →

h2 = σ z
2 and the algebra (14) would still be satisfied. While

this would kill the extra degeneracy, it would introduce a
trilinear term σ z

2 = −iψ1ψ2ψ3 to the Hamiltonian and one
would no longer be able to associate a tridiagonal matrix
to it.

There is a natural splitting of the Hamiltonian (13) accord-
ing to the “parity,”

p� = � mod (p + 1), (23)

of the index � of the parameters λ� in Eq. (13). Although the
spectrum of this Hamiltonian can be computed for arbitrary
couplings λ�, one convenient way to analyze the phase dia-
gram is to consider the case where the couplings with the same
parity p� are the same. For p = 1, this means that we can write
(13) as

−H = λAHA + λBHB, (24)

with

HA =
�(M+1)/2�∑

�=1

h2�−1, HB =
�M/2�∑
�=1

h2�, (25)

while for p = 2 we have

−H = λAHA + λBHB + λCHC, (26)

with

HA =
�(M+2)/3�∑

�=1

h3�−2, HB =
�(M+1)/3�∑

�=1

h3�−1,

HC =
�M/3�∑
�=1

h3�, (27)

FIG. 1. Graphs illustrating the Hamiltonian (13) with local terms
(21) in the Majorana language. Each vertex contains a Majorana
while the edges with different colors represent the couplings split
according to their index parity. The case p = 2 with M = 7 is shown
on the top and the case p = 4 with M = 11 on the bottom.

and similarly for higher values of p. This splitting was first
proposed in Ref. [7] to analyze the phase diagram. Recently, it
was shown, furthermore, that in the case of periodic boundary
conditions the operators HA,B,... form a generalized Onsager
algebra [18] if pM = 0. As an illustration, we show in Fig. 1
graphs of the Hamiltonians (21) in the Majorana language
with split couplings for p = 2 and p = 4.

B. Quasienergies and zero modes

In this section, we numerically investigate the roots of the
polynomial (18) in the scenario of split couplings. The roots
of the polynomial (18) in general do not have a closed formula
for p > 1, except at the multicritical point λ j = 1 in the bulk
limit when pM = 0 [7,11,12].

The largest root zmax which gives the smallest quasienergy
ε1 = 1/

√
zmax is particularly important. Two scenarios do oc-

cur. First, ε1 may have a finite value in the thermodynamic
limit. Therefore, a gap, � = 2ε1 �= 0, between the many-body
ground state and the first excited state exists. Alternatively,
ε1 might be exponentially small with the system size, im-
plying that the many-body ground state is degenerate in the
thermodynamic limit. These exponentially small eigenvalues
and the associated degeneracy of the ground state in the ther-
modynamic limit are of topological nature. This emerging
degeneracy should not be confused with the global built-in
degeneracy that grows with the lattice size and that is in-
dependent of the couplings of the Hamiltonian. The global
degeneracy arises as a consequence of single particle eigen-
values which are exactly zero and associated with a given
representation of the algebra (14). These trivial, exactly zero,
eigenvalues are not considered in the following.

Interestingly, the behavior of the lowest quasienergy ε1

depends on the parity (23) of the number of generators pM .
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FIG. 2. Positive part of the symmetric spectrum εk as a function
of the transverse field λ = λA/λB for M = 50 and M = 51 using
Eq. (28) (solid lines). The points are the same in both pictures and
correspond to a numerical solution of the case M = 51 with a defect
δ = 10−3. For the quasienergy ε1 only, also an intermediate defect
strength δ = 10−1 is shown (black crosses).

Let us first recall the simplest case p = 1, for which the
quasienergies εk are analytically known in terms of the trans-
verse field λ ≡ λA/λB. They are given by

εk =
√

1 + λ2 + 2λ cos qk, k = 1, . . . , M̄, (28)

where for even M (pM = 0) we have [12],

qk = 2πk

M + 2
, (29)

while for odd M (pM = 1), qk is a solution of the transcenden-
tal equation [4]

λ sin

(
M + 3

2
qk

)
= − sin

(
M + 1

2
qk

)
. (30)

As an aside, we note here that quite similarly the quasienergies
of the SSH chain [34] can also be obtained without resorting
to a transcendental equation when the number of lattice sites
is odd.

In Fig. 2, we plot the positive quasienergies (28) for M =
50 and M = 51 obtained from the roots of the polynomial
(18). For odd M, we can observe the expected emergence of a
zero mode for λ < 1 (marked as ε1 in the right panel of Fig. 2).
However, for even M, there is no nontrivial zero mode arising
as a consequence of the transverse field λ.

We remark, however, that exact zero modes can always be
added to Eq. (28). We can, for example, consider the poly-
nomial for M even as being the limit of the odd M + 1 case
introducing a surface defect in the quantum Ising represen-
tation (22). More specifically, we set the coupling parameter
for the first site of the chain as λσ x

1 → λδσ x
1 where δ is the

defect parameter. Then, by varying δ, we move from the odd
M + 1 case (δ = 1) to the even M case (δ = 0). As shown
in Fig. 2, the defect in the limit δ → 0 indeed leads to a
trivial zero mode independent of λ. In the figure, we plot
the numerical result (points) together with the solutions of
Eq. (28) (continuous lines). While we are only interested in
the limits δ = 0 and δ = 1 here, we point out that a defect
with arbitrary δ leads to interesting boundary phenomena in
the quantum Ising chain; see, for example, Ref. [35].

We now move to the case p = 2, for which we need to
consider three different parities pM = 0, 1, 2 and analyze the

behavior of the energies εk as a function of λA,B,C . In Ref. [7],
the case pM = 0 was considered and it was argued that the
phase diagram as a function of λA/λC and λB/λC is divided
into three gapped phases (� = 2ε1 �= 0), separated by critical
lines (� ∼ 1/Mz) with dynamical exponent z = 1 which meet
at the multicritical point λA = λB = λC with z = 3/2.

Considering all possible parities, we find numerically that
two nontrivial zero modes can be present for the parities
pM = 1, 2; see Fig. 3. Here the smallest positive quasienergy
ε1 (the spectrum is symmetric) is shown for M = 99 (pM = 0),
M = 100 (pM = 1), and M = 101 (pM = 2) as a function of
the split coupling parameters. We used a grid 0.1 � λ j � 2 for
every split coupling λ j and a step size δλ j = 0.1. For M = 99,
no zero modes exist. In this case, previously considered in
Ref. [7], the quasienergy ε1 �= 0 leads to a finite gap � = 2ε1

between the many-body ground state and the first excited
state in the three regions separated by the critical lines. For
M = 100, we observe two regions with zero modes, while
for M = 101 only one region has zero modes. In these cases,
similarly to the ordered phase of the p = 1 case, the gap in the
thermodynamic limit between the degenerate ground state and
first excited state is given by the second smallest quasienergy
ε2, that is, � = 2ε2 �= 0.

We note that the bulk modes εk �=1 are expected to be in-
dependent of the parity of the number of generators in the
thermodynamic limit consistent with our numerical findings.
Some representative cuts obtained by fixing one of the ratios
of the coupling parameters are show in Fig. 4. In Fig. 4(a), we
fix a λA/λC = 0.02 and compute εk as a function of λB/λC .
In this limit, we observe, as expected, a similar behavior as in
the p = 1 case. The dashed black line is an ansatz based on
Eq. (28), namely,

εk =
√

1 + (λB/λC )2 + 2(λB/λC ) cos

(
πk

M̄ + 1

)
, (31)

for k = 1 and k = M̄, and we observe an excellent agreement.
As we move away from λA/λC ≈ 0, see Figs. 4(b) and 4(c),
the profile of the quasienergies clearly changes.

We remark that the presence of zero modes indicates that
the system has nontrivial topological order. However, defining
and computing any type of order parameter for p > 1 is a
hard task, since it is not known how to compute correlations
directly for the Hamiltonian (20). In Ref. [7], it is mentioned
that the expectation values 〈HA,B,C〉 can be used as indicators
of order. It is, however, important to keep in mind that these
expectation values are not proper order parameters since they
are never zero in the thermodynamic limit except when the as-
sociated coupling is set to zero. This is similar to the Ising case
where 〈HA〉 = 〈∑L

�=1 σ x
� 〉 and 〈HB〉 = 〈∑L−1

�=1 σ z
� σ

z
�+1〉 are also

not proper order parameters.
We end this section with a few remarks: (i) For values of

p > 2, the phase diagram is characterized by gapped phases
separated by critical hyperplanes meeting at a multicritical
point with z = (p + 1)/2 [11,12]; see also Ref. [15]. We
expect that depending on the number of generators, regions
with nontrivial zero modes will also be present for p > 2. We
leave such an analysis for future studies. (ii) We have checked
that the zero modes are robust against quenched disorder
confirming their topological character. (iii) Finally, we have
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FIG. 3. Smallest positive quasienergy ε1 for M = 99, 100, 101 (corresponding, respectively, to the parities pM = 0, 1, 2), as a function
of ratios of the coupling parameters (λA, λB, λC ). The values in the dark regions are nonzero but extremely small and go to zero in the
thermodynamic limit.

verified that the so called Laguerre bound [16], which can
be efficiently computed, gives a good approximation for the
smallest quasienergy ε1 in the zero mode regions.

III. INHOMOGENEOUS ISING CHAIN

In this section, we argue that it is always possible to
construct a quantum Ising chain (1), with in general inhomo-
geneous couplings w�, which has the same spectrum as the
multispin chain (13) for arbitrary p and couplings λ�. This is
achieved by identifying the characteristic polynomial associ-
ated with the quantum Ising chain with a rescaled version of
the polynomials PM (z) (18) of the multispin chain.

While the two chains will then, by construction, have the
same spectrum and therefore the same partition function, their
eigenstates will in general be different. Therefore, correlation
functions for the two chains will also be different. We find,
however, that the inhomogeneous Ising chains constructed in

this way have a bulk region in which the couplings tend to
become homogeneous. We might then expect that inside these
bulk regions at least some of the physical properties are the
same as in the multispin chain. We are, in particular, interested
in investigating possible multicritical points in these inho-
mogeneous spin chains to see whether or not the dynamical
critical exponents z > 1 are realized. If they are, then these
models could be useful to better understand dynamical critical
behavior when z > 1 because the Ising chains are bilinear in
the Majorana operators and Wick’s theorem therefore applies.

A. Characteristic polynomial

As we briefly review in the Appendix, the solution of the
Hamiltonian (3) can be reduced to the block diagonalization of
the antisymmetric tridiagonal matrix Tm with an odd number
of couplings w� (� = 1, . . . , 2L − 1). The case with an even
number of couplings can be obtained by removing one row
and one column.
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FIG. 4. Representative profiles of the quasienergies for p = 2. The dashed lines in panel (a) correspond to Eq. (31). The bottom panels
show the energy dependence of what will become the zero mode in the thermodynamic limit on the coupling parameters. Note that for the
configuration in panel (c) the zero mode is only present for λA/λC < 1.

We define this hopping matrix Tm with dimension (m+1)×
(m+1) by its elements

(Tm)i j = wiδ j,i+1 − wi−1δi, j+1, (32)

where i, j = 1, . . . , m + 1 and wi are the m coupling param-
eters. In particular, the quasienergies εk entering the energy
expression (9) are the roots of the characteristic polynomial

Wm(x) = det
m+1

(Tm − x), (33)

that is, Wm(iεk ) = 0. Thanks to the tridiagonal form of Tm, the
characteristic polynomial satisfies the following recurrence
relation

Wm(x) = −xWm−1(x) + w2
mWm−2(x), (34)

with the initial conditions W0(x) = −x, W−1(x) = 1. When m
is even, x = 0 is a root of Wm(x) and the many-body spectrum
has a twofold degeneracy.

Note that the recurrence relation (34) is similar to the
recurrence (16) for p = 1. This motivates us to introduce the
polynomials

QM (x) = xd (M )PM (−1/x2), (35)

where

d (M ) = 2M = 2

⌊
M + p

p + 1

⌋
(36)

is the degree of the polynomial QM (x). The polynomials
QM (x) have roots iε j = i/

√
z j which are purely imaginary,

since the roots z j are positive real numbers.1 With this def-

1This claim has been proved in the homogeneous case [30] and
checked numerically in the inhomogeneous case.

inition, the polynomial QM (x) has the same form as Wm(x)
up to the zero mode x = 0 when M is even. Therefore, this
definition does not include the built-in zero mode associated
with the even M case, as discussed in Sec. II B. For other
values of p, we found that a possible definition of the Q
polynomial which would include zero modes when pM �= 1
is

Q̃M (x) = (−x)d̃ (M )PM (−1/x2), (37)

where

d̃ (M ) = 2

⌊
M + p

p + 1

⌋
+
⌈

M − 1

p + 1

⌉
−
⌊

M − 1

p + 1

⌋
, (38)

with �x� denoting the ceiling function of x. We have

d̃ (M ) − d (M ) =
⌈

M − 1

p + 1

⌉
−
⌊

M − 1

p + 1

⌋
=
{

0, if pM = 1
1, if pM �= 1 . (39)

For concreteness, we consider in the following mainly the
polynomial QM (x) (35), although Q̃M (x) (37) may appear as a
limiting case of Eq. (35).

The relation (16) implies the following recurrence relation
for the Q polynomials

QM (x) = x2−2
(⌈

M−1
p+1

⌉
−
⌊

M−1
p+1

⌋)
QM−1(x) + λ2

MQM−(p+1)(x),

(40)

with the initial conditions Qj (x) = 1 if j � 0.
The central idea of this paper is that with a fine tuned set

of couplings {w1, . . . ,wm} we can take the polynomial QM (x)
(35) as the characteristic polynomial of the hopping matrix
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Tm. Namely, we impose

Wm(x; {w1, . . . ,wm}) = QM (x; {λ1, . . . , λM}), (41)

which implies a set of equations relating the w-couplings with
the λ-couplings. Fixing the degrees of the polynomials implies

m = d (M ) − 1 = 2M − 1, (42)

which means that the number of w-couplings is less than
M—the number of λ-couplings—except for p = 1 and odd M
when d (M ) = M + 1 and thus m = M. Solutions to (41) are
not unique as can be easily checked for small values of M. For
p = 1, there is the obvious solution w j = λ j for all couplings.

Interestingly, we found in the literature an algorithm that
constructs a symmetric tridiagonal matrix out of a given
characteristic polynomial [24] as a solution to a problem
previously proposed in Ref. [23]. We can easily adapt it
to construct an antisymmetric tridiagonal matrix. As a re-
sult, the algorithm iteratively finds the w-couplings satisfying
equation (41). It can therefore be used to construct an inho-
mogeneous quantum Ising chain which has the same spectrum
as a multispin chain with a given p. We briefly describe this
algorithm next.

B. Schmeisser algorithm

We reproduce here the algorithm by Schmeisser [24] for an
arbitrary monic polynomial u(x) of degree n. For a polynomial
g(x) of degree k denote the coefficient of xk by c(g) = ak .

Algorithm. (Modified Euclidean Algorithm [24]) For

u(x) = xn + an−1xn−1 + · · · + a0, aν ∈ R

with ν = 0, 1, . . . , n − 1, define

f1(x) := u(x), f2(x) = 1

n
u′(x) (43)

and proceed recurrently as follows: If fν+1(x) �= 1, then by
dividing fν by fν+1 with remainder −rν , we obtain

fν (x) = qν (x) fν+1(x) − rν (x). (44)

Now we define
(i) cν := c(rν ), fν+2(x) := rν (x)

cν
, if rν (x) �≡ 0,

(ii) cν := 0, fν+2(x) := f ′
ν+1(x)

c( f ′
ν+1 ) , if rν (x) ≡ 0.

If fν+1(x) ≡ 1, we terminate the algorithm, defining
qν (x) := fν (x).

According to Ref. [24], the algorithm establishes the fol-
lowing connection

u(x) = (−1)n det
n

(A − x), (45)

where A is an n × n tridiagonal matrix with elements

Ai j = √
ciδ j,i+1 + √

ci−1δi, j+1 − qi(0)δi, j . (46)

We observe that the matrix A is symmetric. In the cases where
qi(0) = 0—which is the case for the Q polynomials because
they are polynomials in x2—we can construct an analog anti-
symmetric matrix by

A(as)
i j = √

ciδ j,i+1 − √
ci−1δi, j+1, (47)

which has eigenvalues iεk with real εk .

TABLE I. Results of the Schmeisser algorithm for the couplings
in the inhomogeneous Ising chain w� = √

c� for various M and p
values. Also shown is the form of the Q polynomial (35).

p M QM (x) {w�}

1 3 1 + 3x2 + x4 {
√

3
2 ,

√
5
6 ,

√
2
3 }

1 4 3 + 4x2 + x4 {√2, 1√
2
,

√
3
2 }

2 4 1 + 4x2 + x4 {√2,

√
3
2 , 1√

2
}

2 5 3 + 5x2 + x4 {
√

5
2 ,

√
13
10 ,

√
6
5 }

2 6 6 + 6x2 + x4 {√3, 1,
√

2}
3 5 1 + 5x2 + x4 {

√
5
2 ,

√
21
10 ,

√
2
5 }

3 6 3 + 6x2 + x4 {√3,
√

2, 1}
3 7 6 + 7x2 + x4 {

√
7
2 , 5√

14
, 2
√

3
7 }

3 8 10 + 8x2 + x4 {2,

√
3
2 ,

√
5
2 }

C. Application to the Q polynomials

We now apply the Schmeisser algorithm to the Q poly-
nomials (35). As described in Sec. II, these polynomials are
characterized by the set of couplings {λ1, . . . , λM} which are
arbitrary in general. Here we will restrict ourselves again to
the case where the couplings with the same parity are the
same; see Eqs. (24) and (26).

We are mostly interested in the behavior of these spin
chains in the thermodynamic limit. The Schmeisser algorithm
can be implemented efficiently, and we can run it for large
values of M, p, and any couplings {λ�}, followed by fix-
ing w� = √

c�. However, before doing so it is beneficial to
first consider the simplest case of homogeneous couplings
λA,B,C,... = 1 and small values of M for various p; see Table I.
For example, the first line in Table I means that

H inhom
Ising = −

√
3

2
σ x

1 −
√

5

6
σ z

1σ z
2 −

√
2

3
σ x

2 (48)

and the Hamiltonian (20)

H (M=3)
XZ ({λ� = 1}) = −σ x

1 σ z
2 − σ x

2 σ z
3 − σ x

3 σ z
4 , (49)

have the same spectrum up to degeneracies. For the p = 1
considered here, we have also the homogeneous Ising chain

Hhomogeneous
Ising = −σ x

1 − σ z
1σ z

2 − σ x
2 , (50)

with the same spectrum as Eqs. (48) and (49). As another
example, the (p = 2, M = 6) line in Table I means that

Hhom
Ising = −

√
3σ x

1 − σ z
1σ z

2 −
√

2σ x
2 , (51)

and the Hamiltonian (20),

H (M=6)
XZZ = −σ x

1 σ z
2σ z

3 − σ x
2 σ z

3σ z
4 − σ x

3 σ z
4σ z

5

− σ x
4 σ z

5σ z
6 − σ x

5 σ z
6σ z

7 − σ x
6 σ z

7σ z
8 , (52)

have the same spectrum up to degeneracies.
For larger values of M, we observe an interesting pattern of

the w couplings associated with λA,B,C,... = 1 for all values of
p; see Fig. 5. The couplings become homogeneous in the bulk.
Although not shown, we verified that the behavior observed
in Fig. 5 persists also for larger values of d (M ) ∼ 103. We
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FIG. 5. Coefficients w� obtained from the Schmeisser algorithm
for p = 1, 2, 3 at the multicritical point λA,B,C,D = 1. The values of
M on the top and bottom panels are chosen such that pM = 0 and
pM = 1, respectively.

also note that for the case p = 1 the behavior near the edges
is qualitatively different for odd and even M values while

there is no such qualitative difference for p > 1. Furthermore,
we want to remind the reader that the case p = 1, for which
one of solutions of (41) is w� = λ� ≡ 1, is mapped to an
inhomogeneous quantum Ising chain w� �= 1 if we use the
Schmeisser algorithm.

We can also analyze the behavior of the coefficients w�

when we move away from criticality. In this case, the parity
of the number of generators M plays an important role. To
start, we consider the case p = 1 (24) and set λ ≡ λA/λB

as the transverse field. For each value of λ we generate the
Q polynomial (35) and apply the Schmeisser algorithm. The
coefficients w� do depend on λ and there is a qualitative
change as we move away from the critical value λ = 1; see
Figs. 6 and 7. For odd M, we have weven ≈ 1 and wodd ≈ λ

in the bulk. Recall that the Ising chain (odd M) is ordered for
λ < 1 and disordered for λ > 1. We then expect the inhomo-
geneous model to be ordered if weven > wodd and disordered
otherwise. For even M, the algorithm gives weven < wodd ≈ 1
if λ < 1 and 1 ≈ weven < wodd for λ > 1; see Fig. 7. This
result suggests disorder over all λ �= 1 [16], a fact which is
consistent with the definition (35) which excludes the exact
zero mode. Indeed, if one considers instead the polynomial
(37) for even M, then the algorithm returns weven > wodd for
all λ �= 1, that is, in this case we expect ordered phases for
both λ < 1 and λ > 1. This is consistent with the presence of
an exact zero mode over all couplings λ; see Fig. 2. In short,
the coefficients given by the Schmeisser algorithm directly
reflect the quantum phases and the quantum phase transition
at λ = 1.

In the case p = 2, the profile of the coefficients of the
inhomogeneous Ising chain depends on the parity pM . It is
consistent with the limiting case p = 1 as well as the zero
mode regions in Fig. 3 for the corresponding multispin chain.
Wherever there is a zero mode, we expect an ordered phase

FIG. 6. Coefficients w� for p = 1 and M = 49 for various values of the transverse field λ ≡ λA/λB with different symbols for odd and even
couplings.
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0.9

FIG. 7. Coefficients w� for p = 1 and M = 50 for various values of the transverse field λ ≡ λA/λB with different symbols for odd and even
couplings.

characterized by weven > wodd. For the case pM = 0, see the
first row of Fig. 3, all three gapped regions are expected to
be disordered, and the algorithm indeed gives weven < wodd

for the corresponding inhomogeneous Ising chain in all three
regions. As an example, the point λC/λA = 0.1 and λB/λA =
0.1 is shown in the left panel of Fig. 8. If pM = 1, see the
second row of Fig. 3, two of the three regions are expected
to be ordered, while for pM = 2, see the third row of Fig. 3,
only one region is expected to be ordered. One can check
that the algorithm returns the expected coefficient profiles in
each of these cases. Along the critical lines, the profile of the
coefficients are similar to those shown in Fig. 5 for the p = 1
case. Some representative cases for pM = 1 and pM = 2 are
also shown in Fig. 8.

IV. CORRELATIONS

To confirm the picture suggested by the ordering of the
even and odd couplings described in the previous section,

we now turn to a study of the spin-spin correlations of the
effective inhomogeneous Ising chains. The computation of
correlation functions for quadratic Hamiltonians is possible
at least numerically. The building block is the two Majorana
correlator 〈ψaψb〉. As we recall in the Appendix, this correla-
tor for the ground state is given in terms of eigenvectors �r, �s
of the tridiagonal matrix (32), with eigenvalues iεk and −iεk ,
respectively,

〈ψaψb〉 = 2
m̄∑

k=1

1

N2
k

rk,ask,b. (53)

This is valid for arbitrary couplings w�. For the inhomoge-
neous models we have m̄ = d (M )/2 = M̄.

In this paper, we focus on the longitudinal spin-spin corre-
lation, given by [3,4]

Cz
a,b ≡ 〈σ z

aσ z
b

〉 = (−1)b−a det
a�k′�b−1
a+1�k′′�b

(i〈ψ2k′′−1ψ2k′ 〉), (54)

FIG. 8. Coefficients w� for p = 2 and different parities of M and different couplings λA,B,C .
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FIG. 9. Nearest-neighbor correlations at the critical point
λA,B,C,D = 1 for p = 1, 2, 3 and M = 299, 448, 597, respectively.
The standard homogeneous Ising chain at λ = 1 is also shown.

for any a < b. We first recall that for the standard homo-
geneous quantum Ising chain with transverse field λ, the
correlation (54) can be analytically evaluated in some cases.
For example, the nearest-neighbor correlation Cz

�,�+1 for the
open chain was computed explicitly [36]. To investigate long-
range correlations, we can set a = � and b = � + R and then
Eq. (54) can be exactly evaluated for the homogeneous case
in the thermodynamic limit [4]. This quantity is an order
parameter for R → ∞ and given by〈

σ z
� σ

z
�+R

〉 = {(1 − λ2)1/4, λ � 1,

0, λ > 1.
(55)

For the inhomogeneous models constructed in Sec. III, ob-
taining analytical results for the correlations (54) in the
thermodynamic limit is an open problem. In the following,
we present a numerical analysis.

A. Site dependence

We consider finite spin chains with open boundaries. Thus,
the expression (54) is site dependent and boundary effects
occur [37]. Since we are interested in the bulk behavior, we
will mostly consider two-point correlation functions for sites
which are far away from the boundaries.

Let us first though consider the nearest-neighbor cor-
relation Cz

�,�+1 as a function of the site index � for the
inhomogeneous models at the multicritical point λA,B,C,D = 1
for p = 1, 2, 3 with M = 299, 449, 599 for p = 1, 2, 3, re-
spectively. For these values of M we have pM = 1 and the
number of sites is M̄ = 150. As shown in Fig. 9, we do
observe a reasonable uniformity around the center of the spin
chain. Let us point out in particular, that the results for the
inhomogeneous case p = 1 are very similar to those for the
standard homogeneous Ising chain. We verified that the form
of the correlations in Fig. 9 is qualitatively similar for different
parities of M, except for the case p = 1 with even M. This is
expected since the pattern of the couplings is different for this
case as we see in Fig. 5. Similarly, we can consider long-range
correlations; see Fig. 10 for a distance between the spins given
by R = �M̄/8� = 18. For this type of correlation we observe
stronger boundary effects for p = 2, 3 as compared to p = 1
due to the decay of the amplitude of the coefficients on the
right side of the chain; see Fig. 5.

FIG. 10. Long-range correlations at λA,B,C,D = 1 for p = 1, 2, 3
and M = 299, 448, 597 with R = �M̄/8� = 18. The standard homo-
geneous Ising chain at λ = 1 is also shown.

We now also briefly consider the site dependence of the
correlations (54) away from the multicritical point. For p = 1,
the long-range correlation Cz

�,�+R with R = 12 for various
values of the transverse field λ ≡ λA/λB is shown in Fig. 11,
along with the correlations computed for the standard homo-
geneous Ising chain. We note that the two results agree well
inside the bulk except close to the critical point. Here we note
that we keep the distance R fixed while the correlation length
in the inhomogeneous chain will change as a function of the
site index �. We note, in particular, that the inhomogeneous
chain does not have a reflection symmetry; see Fig. 6. The
results are consistent with a transition from an ordered to a
disordered phase.

Next, we consider the case p = 2. For simplicity, let us
consider M such that pM = 1, and analyze lines in the plane
(λA/λC, λB/λC ). First, we fix λB/λC < 1 and vary λA/λC . In
this case we are moving from a region with zero mode to a
region without zero mode; see first panel in the second row
of Fig. 3. For a small value of λB/λC , we find that the system
behaves similarly to the case p = 1 with odd M. As λB/λC

FIG. 11. Long-range correlations as a function of the site posi-
tion �, for M = 199 (M̄ = 100 sites), p = 1, and R = �M̄/8� = 12.
The lines are the results for the standard homogeneous Ising chain.
For better visualization, we show only half of the points for the
inhomogeneous case.
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FIG. 12. Long-range correlations as a function of the site posi-
tion �, for M = 298 (M̄ = 100), p = 2, R = �M̄/8� = 12 and fixed
λB/λC = 0.5. The lines are the results for the standard homogeneous
Ising chain with M = 199. For better visualization, we show only
half of the points for the inhomogeneous case.

increases, the correlations start to deviate from the p = 1
result; see Fig. 12. The results are again consistent with the
expected transition from an ordered to a disordered phase. As
a second example for p = 2, let us now fix λA/λC and vary
λB/λC for the parity pM = 1. In this case, as we vary λB/λC ,
we are moving between two regions with zero modes (see
first panel in the second row of Fig. 3). Therefore, we expect
the system to remain ordered which is consistent with the
numerical results; see Fig. 13. The results in this subsection
confirm that: (i) despite the inhomogeneity of the couplings,
the correlations are reasonably uniform around the center the

FIG. 13. Long-range correlations as a function of the site posi-
tion �, for M = 298 (M̄ = 100), p = 2, R = �M̄/8� = 12 and fixed
λA/λC = 0.1. For better visualization, we show only half of the
points.

FIG. 14. The order parameter Cz
�,�+R for the case p = 1 for both

the homogeneous (h) and the inhomogeneous model. The values of
M correspond to lengths M̄ = (M + 1)/2. We set � = �M̄/2� and
R = �M̄/8�.

chain, and (ii) that the presence or absence of zero modes and
the ordering of the coefficients w� are indeed indicative on
whether the system is ordered or disordered.

B. Order parameter

In this section, we focus on the correlation (54) deep inside
the chain. That is, we take a = �M̄/2� and b = �M̄/2� + R
with R = �M̄/8� and then analyze the dependence of this cor-
relation on the coupling parameters. Note that this correlation
will become an order parameter in the limit M̄ → ∞.

We again start with the simplest case p = 1 and set λ ≡
λA/λB. We consider M odd because for M even (with the
exact zero mode excluded) the system is disordered for all
λ �= 1. Also, the odd M case can be directly compared with
the standard homogeneous Ising case for which the behavior
of the order parameter in the thermodynamic limit is known;
see Eq. (55). In Fig. 14, left panel, we plot the long-range
correlation Cz

�,�+R for various M as a function of λ for both
the inhomogeneous model and the standard homogeneous
Ising chain. The correlations for the two systems become less
and less distinguishable with increasing M and approach the
thermodynamic limit result (55) shown as a dashed black line
in Fig. 14. On the right panel, we show a scaling collapse of
all the data for the homogeneous and inhomogenous models
and various system lengths confirming the expected critical
exponent 2β = 1/4 of the quantum Ising chain.

We consider next the case p = 2. First, we compute Cz
�,�+R

as a function of the coupling parameters {λA, λB, λC} along
different cuts; see Fig. 15. As before, we consider the cases
M = 99, 100, 101 (length M̄ = 33, 34, 34) which cover the
three possible parities allowed in this case. The phase diagram
in Fig. 15 is in agreement with the zero mode pattern shown in
Fig. 3. We used a grid with δλ j = 0.1 to produce the density
plots. For pM = 0, the system is disordered for all coupling
parameters, except along the critical transition lines. For the
cases with pM �= 0 we observe standard order-disorder transi-
tions as in the homogeneous Ising chain but also order-order
and disorder-disorder transitions.

We now analyze some cuts in the coupling parameter space
{λA, λB, λC} for large values of M. As already discussed ear-
lier, we can consider limiting cases where one of the split
couplings is small to understand the phase transitions. For
instance, let us consider the case where pM = 2, and let us
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FIG. 15. Long-range correlator Cz
�,�+R for p = 2 and M = 99, 100, 101 (corresponding to the parities pM = 0, 1, 2, respectively) as a

function of ratios of the coupling parameters {λA, λB, λC}. We set � = �M̄/2� and R = �M̄/8� = 4.

fix λA/λC while varying λB/λC ; see the left panel in the last
row of Fig. 15. As λA/λC → 0, the system behaves similarly
to the case p = 1 with odd M, that is, similarly to the quan-
tum Ising chain depicted in Fig. 14. As λA/λC increases, the
correlation is deformed. Remarkably, in the ordered region
λA/λC < 1, λB/λC < 1 but away from the critical line, the
correlation is well described by〈

σ z
� σ

z
�+R

〉 = f (λA/λC, λB/λC ), (56)

with

f (λA/λC, λB/λC ) =
(

1 − λ2
A

λ2
C

)1/4(
1 − λ2

B

λ2
C

)1/4

. (57)

As an example, the point λA/λC = 0.5 is shown in upper left
panel of Fig. 16. However, the order parameter profile deforms
as the critical region λA/λC ∼ 1 is approached; see the point
λA/λC = 0.9 in the bottom left panel of Fig. 16. Nevertheless,
the curves in both cases show a scaling collapse with the same
exponent 2β = 1/4. Therefore the more complicated profile

close to the multicritical point does not indicate a change
in the critical exponent but rather a scaling function which
becomes more complex than Eq. (57).

Now, let us consider pM = 1 and fix λA/λB while varying
λC/λB; see the central panel in the middle row of Fig. 15.
For small λA/λB, we have a transition described by p = 1 and
even M, including a zero mode over all λC/λB. In other words,
one has a transition of ordered-ordered type. This is related to
the fact that the polynomial QM (x) (35) for p = 2 reduces to
the polynomial Q̃M (x) (37) for p = 1 in the limit λA/λB → 0.
As λA/λB increases, the order parameter changes, as shown
in Fig. 17. The following ansatz appears to describe the order
parameter well close to the axis λA/λB → 0,〈

σ z
� σ

z
�+R

〉 = { f (λC/λB, λA/λB), λC/λB < 1,

g(λC/λB, λA/λB), λC/λB > 1,
(58)

where

g(λC/λB, λA/λB) =
(

1 − λ2
A

λ2
B

)1/4(
1 − λ2

B

λ2
C

)1/4

, (59)
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FIG. 16. Cz
�,�+R as a function of {λA, λB, λC} for p = 2 and var-

ious values of M corresponding to M̄ = 34. We set � = �M̄/2� and
R = �M̄/8�.

and the function f is given by Eq. (57). In all cases we find a
scaling collapse with the Ising critical exponent 2β = 1/4.

A closed formula for the long-range correlation close to
the critical lines and to the multicritical point is highly de-
sirable but is challenging to obtain. We can say, however,
that a scaling collapse happens in all cases with the same
exponent 2β = 1/4. We have confirmed this scaling further

FIG. 17. Cz
�,�+R as a function of {λA, λB, λC} for p = 2 and var-

ious values of M corresponding to M̄ = 34. We set � = �M̄/2� and
R = �M̄/8�.

by analyzing the decay of Cz
�,�+R as a function of M at the

multicritical point λA = λB = λC = 1. For pM = 1, 2, we find
that Cz

�,�+R ∼ 1/M1/4. The case pM = 0 is more challenging
to analyze because the multicritical point is surrounded by
disordered phases in this case. Our numerical analysis indicate
values of the exponents which deviate by about 10% from the
expected. We believe that this is just a finite-size effect and the
exponent 2β = 1/4 would be again obtained if larger chain
lengths would be considered.

V. CONCLUSION

The motivation of the present paper is the understanding
of the physics of general multispin free-fermionic systems
that cannot be mapped onto bilinear fermionic models. Such
systems might allow to obtain analytical results, or at least
highly accurate numerical results for long chains, for phases
and phase transitions which are otherwise difficult to study.
They can show, in particular, multicritical points with dynam-
ical critical exponents z > 1, thus putting them outside the
realm of conformal field theories. However, while efficient
methods to calculate the spectrum are known, the eigenstates
have so far remained elusive, although a formula in terms of
the transfer matrix is known [7]. Numerical evaluations are
also challenging due to the large global degeneracy of the
spectrum, which is in general hard to lift. Furthermore, Wick’s
theorem cannot be applied. The calculation of form factors
and correlation functions thus remains a major challenge.

Here we have argued that one way to make progress is
to construct inhomogeneous Ising chain analogues of these
chains with multispin interactions. The inhomogeneous Ising
chains can be constructed in such way that they have exactly
the same spectrum as the multispin chains, with the advantage
of avoiding the high degeneracy. However, the eigenstates
will be different in general. By studying the zero modes
and long-range correlation functions in these inhomogeneous
chains we have shown—mostly for the p = 2 case (Fendley
model)—that they have the same phase diagram including
a multicritical point and thus indeed offer new insights into
the physics of the multichain spin chains. In particular, the
calculation of two-point spin correlation functions revealed
that the transitions between the different phases, ordered
and disordered, are all of Ising type with critical exponent
2β = 1/4.

For the future, it would be interesting to investigate dy-
namical correlation functions, in particular at the multicritical
points with z > 1, and to extend these considerations to the
case of free parafermionic chains.
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APPENDIX: INHOMOGENEOUS MAJORANA CHAINS

In this Appendix, we recall the solution of the quantum
Ising chain in terms of Majoranas, as outlined in Ref. [5]; see
also Ref. [38]. The quantum Ising chain can be written as (3)

H = i
m∑

�=1

w�ψ�+1ψ�, (A1)

with m = 2L − 1. In this Appendix, for generality, we keep m
as an arbitrary number. In this way, we can also consider the
case of the Hamiltonian with an even number of generators.
The Hamiltonian (A1) can be written as

H = − i

2
�ψT Tm �ψ, (A2)

where �ψT = (ψ1 ψ2 · · · ψm+1) and the (m + 1) × (m + 1)
matrix Tm is the tridiagonal hopping matrix given by Eq. (32),
(Tm)i j = wiδ j,i+1 − wi−1δi, j+1.

Since Tm is a real antisymmetric matrix, it can be block
diagonalized by an orthogonal matrix O, namely,

Tm = OT

⎡⎣ m+1
2⊕

i=1

(
0 −εi

εi 0

)⎤⎦O (A3)

if m is odd and

Tm = OT

⎡⎣0

m
2⊕

i=1

(
0 −εi

εi 0

)⎤⎦O (A4)

if m is even. The quasienergies iεk are the roots of the
characteristic polynomial of the hopping matrix Tm, Wm(x) =
detm+1(Tm − x), that is, Wm(iεk ) = Wm(−iεk ) = 0. We con-
sider the ordering ε1 < ε2 < · · · < εm̄. To build O, let us
suppose that �rk = (rk,1 rk,2 · · · rk,m+1)T is an eigenvector
of Tm with eigenvalue iεk while �sk = (sk,1 sk,2 · · · sk,m+1)T

is an eigenvector of Tm with eigenvalue −iεk . Then, we obtain
the following difference equations:

wnrk,n+1 − wn−1rk,n−1 = iεrk,n,

wnsk,n+1 − wn−1sk,n−1 = −iεsk,n. (A5)

The difference equations are solved by

rk, j = (−1) j

⎛⎝ m∏
a= j

wa

⎞⎠Wj−2(iεk ),

sk, j = (−1) j

⎛⎝ m∏
a= j

wa

⎞⎠Wj−2(−iεk ), (A6)

for j = 1, . . . , m + 1. Let �Rk = �rk/Nk and �Sk = �sk/Nk be the
normalized vectors with

N2
k =

m+1∑
j=1

⎛⎝ m∏
a= j

wa

⎞⎠2

Wj−2(iεk )Wj−2(−iεk ). (A7)

Now, let

�o2k−1 = 1√
2

( �Rk + �Sk ), �o2k = i√
2

( �Rk − �Sk ), (A8)

for k = 1, . . . , m + 1. For odd m, the matrix O is the
matrix with rows �oT

j with j = 1, . . . , m + 1. For even m,

we have ε1 = 0 and �R1 = �S1, such that �o1 = 2 �R1/
√

2 and
�o2 = 0. Excluding the null row and renormalizing �o1 →
�o1 = �R1 the matrix O for even m is the matrix with rows
{�oT

1 , �oT
3 , �oT

4 , . . . , �oT
m+2}.

Using O, we define new Majorana operators

�φ = O �ψ, (A9)

such that the Hamiltonian (A1) is rewritten in decoupled
modes,

H = i

m+1
2∑

k=1

εkφ2k−1φ2k, (A10)

for odd m and

H = i

m
2 +1∑
k=2

εkφ2k−2φ2k−1, (A11)

for even m.
Let us fix now, for simplicity, m̄ = m+1

2 for odd m. In terms
of complex fermions,

φ2k−1 = �
†
k + �k φ2k = i(�†

k − �k ), (A12)

we have, for odd m,

H =
m̄∑

k=1

εk[�†
k , �k]. (A13)

Note that

[H, �k] = 2εk�k . (A14)

The ground state is given by

�k|0〉 = 〈0|�†
k = 0. (A15)

Let us express the physical modes in terms of {�k, �
†
k }.

Equation (A9) can be written as

ψk =
2m̄∑

k′=1

Ok′,kφk′ =
m̄∑

k′=1

Ok′,k�
†
k′ + O∗

k′,k�k′

=
m̄∑

k′=1

(O2k′−1,k + iO2k′,k )�†
k′

+ (O2k′−1,k − iO2k′,k )�k′ . (A16)

In terms of rk, j and sk, j , we have

O2k′−1,k = 1√
2Nk′

(rk′,k + sk′,k ),

O2k′,k = i√
2Nk′

(rk′,k − sk′,k ), (A17)
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leading to

ψk =
√

2
m̄∑

k′=1

sk′,k

Nk′
�

†
k′ + rk′,k

Nk′
�k′ . (A18)

We can then compute, from Eqs. (A15) and (5),

〈ψaψb〉 = 2
m̄∑

k=1

1

N2
k

rk,ask,b, (A19)

and define the correlation matrix with elements,

Gab = 〈ψaψb〉 − δa,b, (A20)

where a, b = 1, . . . , 2L.

Finally, we can also express {�k, �
†
k } in terms of ψ�. Using

again Eq. (A9), we obtain

�k =
m̄∑

�=1

αk,�ψ2�−1 + iβk,�ψ2�,

�
†
k =

m̄∑
�=1

αk,�ψ2�−1 − iβk,�ψ2�, (A21)

where

αk,� = 1√
2Nk

(rk,2�−1 + sk,2�−1),

βk,� = i√
2Nk

(rk,2� − sk,2�). (A22)
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