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To obtain a local description with a small basis size from density functional theory codes often a transformation
to a local orthonormal Wannier function basis is desirable. In order to do so while enforcing the constraints of the
space group symmetry the symmetry conserving maximally projected Wannier functions (SCMPWF) approach
has been implemented in the full potential-local orbital code, FPLO. SCMPWFs are obtained from the initial
step of the maximally localized Wannier function algorithm, projecting a subset of wave functions onto a set of
suitably chosen local trial functions with prescribed symmetry properties with subsequent orthonormalization.
The particular nature of the local orbitals in FPLO makes them an ideal set of projectors since they are
constructed to be a small basis adapted to the occupied sector and the lowest-lying unoccupied states. While
in many cases projection onto the FPLO basis orbitals is sufficient, the option is there to choose particular
local linear combinations as projectors, in order to treat cases of bond centered Wannier functions. This choice
turns out to lead to very localized Wannier functions, which obey the space group symmetry of the crystal by
construction. Furthermore we discuss the interplay of the Berry connection and position operator and especially
its possible approximation, symmetries, and the optimal choice of Bloch sum phase gauge in cases where
the basis is not explicitly known. We also introduce various features, which are accessible via the FPLO
implementation of SCMPWFs, discuss and compare performance and provide example applications.
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I. INTRODUCTION

A. Wannier functions and FPLO

Convenient basis states for the treatment of extended sys-
tems are extended states which carry a pseudo-momentum
quantum number. On the other hand, chemistry is more intu-
itively described by local basis states, which resemble atomic
orbitals, while extended model Hamiltonians are often built
from (implicit) atomic entities (tight binding). Although sev-
eral numerical methods exist, which treat molecules and solids
with an atom like basis, many contemporary highly accurate
density functional theory (DFT) codes are based on modified
plane wave bases. To gain back the local description, a trans-
formation to a local orthonormal Wannier function basis is
desirable.

The usefulness of Wannier functions has gained new mo-
mentum in the context of topological properties of extended
systems, for whose determination a downfolding of the whole
system’s Hamiltonian onto a smaller model is very helpful.
While smaller models reduce the often heavy burden of cal-
culating topological quantities, numerical accuracy, especially
symmetry conservation, becomes an important issue as well,
in particular for higher order transport properties, which in-
volve taking derivatives (e.g., Berry curvature dipole [1]) or
for tensorial properties.

Wannier functions (WFs) can be defined in many ways due
to the gauge freedom in choosing a unitary transformation
among the wave functions to be wannierized. One way of
fixing the gauge, now widely used, is the requirement of max-

imum localization [2–4] (ignoring the constraints of the space
group symmetry). This is an rather intricate algorithm which
becomes even more complicated, if space group symmetry is
added [5,6].

Extending the ideas of Ref. [7] to retain full symmetry
information we implemented a different scheme into the full
potential local orbital code, FPLO [8], as outlined in Ref. [9].
This scheme, which we call symmetry conserving maximally
projected Wannier functions (SCMPWF), basically represents
the zeroth order approximation of the maximally localized
approach [2], in projecting a subset of wave functions onto
a set of suitably chosen local trial functions with subsequent
orthonormalization.

The particular nature of the local orbitals in FPLO make
them an ideal set of projectors, since they are constructed to be
a “chemical” basis. In many cases, projection onto the FPLO
basis orbitals is sufficient, while the option is there to choose
particular local linear combinations (molecular orbitals [MO])
as projectors, in order to treat cases of bond centered Wannier
functions. It turns out that our choice leads to highly localized
Wannier functions, which obey the space group symmetry of
the crystal by construction. In cases where the resulting WFs
are not well localized, it is due to a bad choice and can be
fixed.

Many similar projective schemes have been proposed be-
fore, often including localization criteria (Refs. [10–12] and
references therein) as well as including symmetry consider-
ations [13]. The main difference to our method is that ours
is straightforward and simple as the approach of Ref. [7].
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On top it conserves symmetry and is generally applicable to
entangled bands with very few adjustable parameters.

The main challenge of our approach is that the user has
to decide where the WFs shall sit and which local symmetry
they shall have. However, this is often exactly what one wants
to do, when constructing a Wannier model for a given subset
of bands. The strong connection of the FPLO basis and the re-
sulting WFs and the comparatively small basis size allows for
automatic wannierization, which is nothing but constructing
the Löwdin orthogonalized FPLO basis. In principle, every-
thing which can be expressed in WFs could be transformed
back into the nonorthogonal FPLO basis, which opens the
possibility to circumvent WFs altogether, although this is less
efficient.

The method described here is used in conjunction with the
FPLO density functional (DFT) code, but it can also be used
whenever a Hamiltonian is given in a local basis [tight-binding
(TB) models], even if the basis is not explicitly known. This
can, for instance, be helpful to further reduce the dimension-
ality of a TB model.

The structure of a local basis code also requires modifi-
cations to the way the Berry connection/curvature need to be
calculated. The connection of these quantities to the position
operator was discussed in great detail in Ref. [14] before
the recognition of their fundamental nature for topological
properties of mater. The local basis formulation of the Berry
operators presented here offers insights into the correct way
of neglecting the position operator matrix elements and into
the correct phase choice of Bloch sums, especially when the
Wannier basis is not explicitly known, in particular, for tight-
binding models.

B. Outline

This paper thus serves as a reference to the Wannier mod-
ule of FPLO and describes the algorithm underlying it as well
as the post-processing tools, including semi-infinite slab cal-
culations, Weyl point search and calculation of Z2 topological
indices. In Sec. II, we outline in detail the construction of sym-
metry conserving maximally projected Wannier functions. In
Sec. III, the position operator matrix elements are discussed.
Sec. IV introduces various features which are accessible via
the FPLO implementation of SCMPWF and Sec. V discusses
and compares performance and gives example applications,
in particular on the construction of tight-binding models and
band disentangling, the calculation of the Berry curvature and
anomalous Hall conductivity [15,16].

II. FORMALISM AND METHOD

A. Wannier orbitals in FPLO

The FPLO basis consists of local atom like orbitals �Rsν (r)
localized at site s in unit cell R, having atom like quantum
numbers (qns) ν = nlmσ without spin orbit coupling and
ν = nl jμ in the four-component full-relativistic mode, where
n is the main quantum number, lm are the qns. of real spherical
harmonics, σ is the spin index and l jμ are the qns. of a
standard (complex) spherical spinor (see Appendix A 1).

From these orbitals Bloch sums can be formed

�k
sν (r) = 1√

N

∑
R

eik(R+λs)�Rsν (r), (1)

where N is the number of unit cells in the Born-von-Kármán
(BvK) torus. The chosen normalization is further discussed in
Appendix A 2. The parameter λ allows to choose the phase
gauge and is of interest later. The default gauge in FPLO
and hence in constructing the Wannier functions is the rela-
tive gauge (λ = 1) in which matrix elements of an operator
between two Bloch sums only depend on the relative vector
connecting the two orbital locations in each term of the sum.
In post processing modules, which use the WFs, the periodic
gauge (λ = 0) can be chosen, in which the Bloch sums are
periodic in k space.

The FPLO orbitals from different sites are in general
nonorthogonal, which leads to a nontrivial overlap matrix
Sk. This avoids complicated orbital shapes away from the
atomic core region and in fact the SCMPWF transformation
is essentially nothing but the orthogonalization of (a subset
of) our local orbitals (LO). Introducing the row vector �k of
all orbitals and the matrix of wave function coefficients Ck,
the overlap and Hamiltonian matrices read

Sk = 〈�k|�k〉,
Hk = 〈�k|Ĥ |�k〉, (2)

and the eigenvalue problem becomes

HkCk = SkCkεk, Ck+SkCk = 1, (3)

which gives the row vector of full wave functions

�k = �kCk. (4)

as a linear combination of the Bloch sums of LOs. In the
following, we will often suppress the orbital/WF indices (and
sometimes site indices). The corresponding expressions must
then be understood as subblocks of vectors of functions or
matrices.

We will now expand on the method of Refs. [7,9] by
introducing the symmetrization and Bloch gauges. In order
to obtain Wannier functions, one needs to Fourier back trans-
form the extended wave functions �k including some unitary
matrix Uk which constitutes a general gauge choice

wRc = 1√
N

∑
k

e−ik(R+λc)(�kUk)c, (5)

where the normalization was chosen such that with Uk+
c′ Uk

c =
δc′c also 〈wR′c′ |wRc〉 = δR′Rδc′c holds. The phase gauge (λ
term) is there for convenience and can be thought of as a part
of U . The difference between various methods to calculate
Wannier functions is the choice of U . In the following, we
will describe our choice and argue why it is reasonable. It
is a matter of experience through many calculations that a
certain setup seems to guarantee localization if done right.
Basically, if one knows from band characters and symmetry
conditions which orbitals engender a certain band complex
then the WFs obtained from projection onto these orbitals will
be localized. In essence, SCMPWF as implemented in FPLO
are a symmetry and chemistry based basis reduction. Note that

235135-2



SYMMETRY-CONSERVING MAXIMALLY PROJECTED … PHYSICAL REVIEW B 107, 235135 (2023)

the resulting WFs cannot in general be more localized than
the corresponding projector orbitals, due to orthogonalization
tails.

In order to obtain Wannier functions we need to select a
physically motivated subset of wave functions (bands) and
construct a weighted Hilbert subspace “projector”

H =
∑

k

|�k〉hk〈�k| (6)

from them, where hk is an energy dependent diagonal ma-
trix with values between zero and one, which discards the
unwanted part of the band structure. In contrast to a pure
projector (e.g., Ref. [12]), the noninteger weights hk help
adjust the WF- to the target-band structure without the need
to minimize a spread functional.

This Hilbert subspace must contain at least as many bands
as the number of desired Wannier functions. It can contain
more bands, however, of which some get discarded by the
projection onto trial functions by the fact that the overlap of
the trial functions with some wave-functions will be small.

If properly chosen this Hilbert space is mainly spanned by
a well defined linear combination of a subset of the original
LOs. For generality, we consider local linear combinations
of LOs, which can be called molecular orbitals (MOs). Note
that orthogonality of the MOs in this stage is not required. In
detail, we construct MOs

φci =
∑
Rsν ′

�Rsν ′URsν ′,ci (7)

sitting at an imagined Wannier center c, having an index i from
LOs �Rsν ′ in the vicinity of c. In practice, the input URsν ′,ci

consists of a few lines specifying the center c, the contributing
site numbers, difference vectors from the center to these sites
and weights. In the simplest case, URsν ′,ci = δR+s,cδν ′,i for a
subset of orbitals. U can also contain a transformation onto
different local quantization axes in which the LOs are rotated,
which helps to yield WFs adapted to certain local symmetries.

At this step, we insist that the set of MOs transforms
properly under the space group. A space group operation with
point group matrix α and translation τ is given in the Seitz
notation by g = {α|τ}. The atom positions transform as

g(R + s) = α(R + s) + τ = αR + gs. (8)

The transformed site can be backfolded onto the original set
of sites via

gs = sg + Rg,s, (9)

where sg is the site in the original set of sites which s gets
mapped onto by g and Rg,s is a lattice vector. This backfolding
is needed since Bloch sums of the same site in two different
unit cells can differ in phase and since sites are indices to
the Bloch sums. Hence, consistency requires that we always
consider the functions in the original set of sites. Of course,
also the Wannier centers c transform this way. Note that in our
formalism, the Wannier centers are not an output of the calcu-
lation but an input. The most general transformation property
of local orbitals or MOs is given by (see Appendix B 2)

{α|τ }φci =
∑

i′
φαR+Rg,c,cgi′Dc,i′i(g), (10)

where Dc,i′i is a matrix which mixes the MOs at center c such
that MOs at the transformed center cg are obtained. In essence,
if a MO at some center is picked, all MOs which are symmetry
related at the same center as well as all equivalent MOs at
symmetry related centers must be included into the set of
projectors. The sets at related centers can be arbitrarily unitary
mixed. Knowing the transformation properties of the FPLO
orbitals and the MO matrix U in Eq. (7), D in Eq. (10) is fully
defined. By constructing the MOs this way we have explicit
information about the symmetry properties of the resulting
Wannier functions. In most cases, the MOs are identical to
a subset of our LOs.

Using Eq. (A8) in Appendix A 2, we can calculate the
projection of the Hilbert subspace Eq. (6) onto a MO as

H|φRc〉 =
∑

k

|�k〉hk〈�k|φRc〉

=
∑

k

(
|�k〉hkCk+SkU k 1√

N

)
c
e−ik(R+λc)

= 1√
N

∑
k

w̃k
c e−ik(R+λc), (11)

which defines the Bloch sums

w̃k
ci = (|�k〉hkCk+SkU k)ci (12)

of the raw (not orthonormal) Wannier functions as well as the
phase gauge to be used in the Fourier back transformation into
real space.

This simple projection completely defines Uk in Eq. (5)
(besides orthonormality) and is quite intuitive: define the
desired subset of bands by specifying hk and project out
the part which has overlap with suitably selected MOs (trial
functions). If these MOs span the most part of this Hilbert
space, the result must be the Wannier functions describing H.
The raw WF contains the weights Ck+SkU k, which can be
interpreted as the “square root” of the band weights of the
MOs in �k; a form of band characters (fat bands) of the con-
sidered orbitals, only with the phase information retained. So,
we basically sum wave functions according to MO weights
contained in them.

We apply the Löwdin procedure to Eq. (12) in order to
obtain orthonormal WFs, which are guaranteed to have the
smallest least square deviation from the raw functions: we
divide by the square root of the overlap matrix of the raw WFs

Ok = 〈w̃k|w̃k〉 = U k+SkCk(hk)2Ck+SkU k (13)

and obtain the orthonormal Bloch sums of maximally pro-
jected WFs

wk
ci =

(
w̃k 1√

Ok

)
ci

. (14)

The inverse square root of the overlap is calculated using the
eigendecomposition OkZk = Zkok according to (Ok)−1/2 =
Zk 1√

ok
Zk+. Furthermore, since we know the symmetry trans-

formation U k = U k′D, we also know the transformation prop-
erty Ok = D+Ok′D, which gives Zk = D+Zk′ and (Ok)−

1
2 =

D+(Ok′)−
1
2 D. So, the WFs wk

ci transforms as the MOs them-
selves. Finally, we Fourier back transform into real space by
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inserting Eq. (14) into Eq. (11):

wRci = 1√
N

∑
k

wk
cie

−ik(R+λc). (15)

In summary, our gauge fixing matrix when transform-
ing wave functions into Wannier functions is obtained by
basically picking linear combinations of wave functions of
a Hilbert subspace which have maximal projection (band
weight) for a number of MOs/LOs. The result then is orthogo-
nalized and Fourier back transformed into real space to obtain
the Wannier functions, which by construction have maximum
resemblance to the MOs. Since the projectors are identical to
or are constructed out of our original LOs, which form the
basis of the wave functions to begin with, the projection result
is expected to be closer to the picked subspace than what is
obtained from the original idea of Ref. [7] of projecting onto
hand-made atom like trial functions, which are not a basis of
the wave function formation.

In the extreme case, where we calculate a Wannier basis as
large as the FPLO basis (automatic mode), we can use φ = �

for all orbitals and hk = 1 (all bands), which gives U = 1 and
with CkCk+ = (Sk)−1:

w̃k = �k, (16)

which results in the orthonormalized WFs

wk = �k 1√
〈�k|�k〉

, (17)

which is nothing but the Löwdin orthonormalized FPLO basis.
From this, it is also clear why we need to use the same λ in the
Fourier back transformation as in the definition of the orbital
Bloch sums Eq. (1). If �k were orthonormal the Fourier back
transformation of Eq. (1) would just yield the (assumed to be
orthonormal) local orbitals, i.e., Wannier functions.

Equations (12) and (14) can be written in matrix form as

wk = �kUk = �kak, (18)

which emphasizes either the connection to the wave functions
or the basis. While

Uk = hkCk+SkU k 1√
Ok

(19)

is projective unitary Uk+Uk = 1,

ak = CkUk (20)

fulfills ak+Skak = 1 since the basis has nontrivial overlap. The
Hamiltonian in the Wannier basis then becomes

H (w)k = 〈wk|Ĥ |wk〉 = Uk+εkUk = ak+Hkak (21)

with Hk according to Eq. (2). A general operator B̂ with
matrix elements between LO Bloch sums Bk then reads in
Wannier basis B(w)k = 〈wk|B̂|wk〉 = ak+Bkak.

B. Accuracy and localization

If the Wannier transformation is well set up, the eigenval-
ues of Eq. (21) will reproduce the band structure of the chosen
band subspace. In cases of an isolated band complex with a
WF basis of the same dimension, the Wannier and FPLO band
structure are usually identical. If band disentangling is needed,

the dimension of the Hilbert subspace is usually larger than
the WF basis dimension [3]. Then hk can be chosen such that
an agreement of the two band structures for the targeted subset
of bands is achieved to within an error of the order of 10 meV.

For post processing, the wannierized operators need to be
stored in their real space representation which is obtained
from

B(TB)
0c′,Rc =

∑
k

fke−ik(R+λ(c−c′ ))B(w)k
c′,c , (22)

where in the simplest case fk = 1/N . The superscript stands
for tight-binding (TB). From the tight binding representation
the WF Bloch representation is recovered via

B(BL)k
c′c =

∑
R

eik(R+λ(c−c′ ))B(TB)
0c′,Rc. (23)

Besides the TB-representation of the operators also the
basis representation of the WFs themselves is useful. Inserting
Eqs. (1) and (18) into Eq. (15), one gets

wRc =
∑

R′
�R′saR′s,Rc (24)

with the coefficients

a0s,R−R′,c = aR′s,Rc = 1

N

∑
k

e−ik(R+λc−R′−λs)ak
sc. (25)

These coefficients can serve to illustrate the WF decay and
hence degree of localization.

At this step, we have two possibilities. Either a real space
cutoff ρ is defined such that all matrix elements from a WF
center c′ to another center at R + c are discarded if |R + c −
c′| > ρ, or one chooses the maximum possible set of center
pairs c′, Rc which are consistent with the k mesh used in the
Fourier back transformation, which is the mesh used in the self
consistent DFT calculation (new since FPLO version 19.00).
A cutoff is useful to reduce storage space, to speed up the
calculation or to aim at a WF model with minimal number of
parameters (not as accurate, of course).

Operators recovered via Eq. (23) at a post processing stage
are in general different from their exact Wannier transform
B(w)k for a k point not included in the k mesh. This is the very
essence of Wannier interpolation. Hence, the resulting band
structure after this transformation through the real space rep-
resentation will also differ from the band structure obtained
directly from the exact transform Eq. (21). The size of this
error determines the quality of the Wannier fit.

If the error is unacceptable there are two possible reasons:
either the cutoff removed too much information and needs
to be increased or the maximum possible cutoff is not big
enough, which is equivalent to saying that the underlying k
mesh is not fine enough. In practice a cutoff between 25–
40 Bohr radii is sufficient to reduce this error to a satisfactory
degree. An exception is the automatic mode in which all
FPLO orbitals become Wannier functions. Since, the higher
lying states are spanned by polarization orbitals which have a
larger extent than the valence orbitals the corresponding WFs
are also more extended.

To further elucidate this issue we discuss the Fourier back
transformation in more detail. If symmetry was of no concern
the acceptable R mesh in Eqs. (22) and (23) is determined

235135-4



SYMMETRY-CONSERVING MAXIMALLY PROJECTED … PHYSICAL REVIEW B 107, 235135 (2023)

entirely by the k mesh [17]. The k mesh is defined as a
regular grid defined via Ni subdivisions of the three primitive
reciprocal lattice vectors. The R mesh then is the dual mesh,
i.e., the smallest parallelepiped supercell in real space for
which exp(ikR) �= 1. This supercell is the reciprocal cell of
the smallest grid micro cell. This mesh is not optimal, instead
one folds the vectors of this mesh back to form a set of vectors
surrounding the origin and having smallest possible length.
Localization of the Wannier functions ensures that the vectors
of larger length become more and more unimportant.

If R vectors were included which lie outside of the su-
percell the Wannier functions will acquire replica features:
the contributions of the local orbitals to a Wannier function
as measured by a0s,Rc first decrease exponentially with in-
creasing distance of the orbital to the Wannier center until
distances are reached which are comparable to multiples of the
real space length corresponding to the inverse of the smallest
k-mesh distance. At these points the orbital contributions start
increasing again, i.e., the Wannier functions are quasiperiodic
objects in real space with periods defined by the inverse of the
smallest k-mesh distances.

Since we construct symmetry conserving Wannier func-
tions, ideally our R mesh would be chosen to reflect the
symmetry. This is achieved by backfolding the supercell vec-
tors into the smallest possible spherical volume around the
origin for each pair of WF centers c′, Rc. Then for all vectors
of this set all vectors additionally obtained by symmetry are
added to the set. Finally, weights are attached to all vectors
such that the weights for symmetry related vectors are iden-
tical and that the sum of the weights of all vectors which are
identical by supercell translations is one. This way we include
vectors which violate the supercell condition, but replica do
not occur due to the weighting. This algorithm determines the
maximal number of real space vectors if no cutoff is used.

In order to reduce computation time, the k summation is
done for the irreducible part of the mesh, which changes
the effective weights to fk = mk/N by multiplying with the
multiplicity of the k point. This also requires an explicit sym-
metrization of the resulting matrix elements Eq. (22). This can
easily be done, since the transformation properties of the WFs
are explicitly known.

The symmetry which we consider is the full space group
or in spin polarized full relativistic mode the group formed
by operations, which do not invert the magnetic field, and by
products of time reversal with the operations, which invert the
field. In non-spin-polarized full relativistic mode time reversal
is added as an extra symmetry.

Without spin orbit coupling the FPLO orbitals are real,
which means that WFs which are obtained by projecting onto
these orbitals are also real, if inversion symmetry is present. In
relativistic mode the angular parts of the orbitals are spherical
spinors, which are inherently complex, and so are the Wannier
functions.

C. Practical application of the method

For applications of this method, the input needs to be
discussed. We outlined above that, unless automatic mode is
used, a Hilbert subspace of the full band structure needs to
be chosen first. This is usually the bands around the Fermi

level. Once this decision is made it has to be determined which
orbitals contribute to these bands, which can be achieved by
inspecting the orbital character of the band structure. At this
point, one has to make sure that at each point in k space the
number of bands highlighted by the orbital character is not
smaller than the dimension of the desired Wannier basis. If
this condition is not fulfilled, it is an indication that other
orbitals contribute essentially to the targeted bands, and most
importantly, it means that at these k points the raw WF overlap
Eq. (13) will be singular. In cases where bond centered WFs
are expected, simple molecular orbitals can be constructed
from the relevant orbitals, otherwise the relevant orbitals are
the projectors themselves.

In full relativistic mode, the option exists to project
onto spherical spinors with l jμ quantum numbers [Ap-
pendix B 1, Eq. (A1)] or onto orbitals which are transformed
into pseudo nonrelativistic symmetry with lmσ qns [Ap-
pendix B 1, Eq. (B7)]. The latter are still four spinors but
their large components are mostly resembling real spherical
harmonics and they transform as real spherical harmonics.
Additionally, local quantization axes can be chosen separately
for the orbital angular momentum part as well as the spin part,
which facilitates the construction of specialized models and
band structure analysis.

The automatic mode can be used in two ways: either all
basis orbitals are Wannierized or a reduced set is Wannier-
ized, where all deep lying orbitals (semicore and deep lying
valence orbitals), which do not contribute to the essential band
structure are removed.

The last step is the choice of hk. We will discuss the
case of entangled bands, since this is the most common case.
Isolated band complexes are a trivial sub case. The targeted
group of bands has a certain energy window [Emin, Emax] in
which it is located. When these bands are entangled with other
bands it means that the projector’s character is also appearing
to a certain degree in the entangled irrelevant bands outside
of the core energy window while character of the irrelevant
bands flows into the targeted bands inside the core window
due to hybridization. By choosing hk = 1 for the core energy
window, one ensures that all targeted bands are fully included
in the Hilbert subspace H. At points where the targeted bands
go outside the core energy window H will suffer a sudden
collapse of some of its dimensions. Hence, we apply smooth
Gaussian tails

hk = exp

(
−

(
εk − Emin / max

min / max

)2
)

(26)

at the lower and upper end of the energy window, where εk

is the band energy of the considered band. The width param-
eter E and the core window boundaries Emin / max need to
be adjusted to achieve several objectives. First, the resulting
wannierized band structure should not be pulled to lower or
higher energies. Secondly, Eq. (13) must not be singular and
lastly the projector weight which flows into entangled bands
outside the core window must be sufficiently sampled by the
Gaussian tails.

It turns out that a core window which is smaller than the tar-
geted window supplied with relatively wide tails are the best
recipe in most entangled cases. This choice also increases the
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localization of the resulting WFs. In cases like bcc iron where
the d bands are hybridized with sp bands of several tens of
electron volts band width, the upper tail must be large enough
(order 10 eV) to capture some d weight which flows far up into
the sp bands. The resulting WFs are well localized as shown
by the comparison of the results of Sec. IV C (Figs. 2–4) and
Sec. V B (Figs. 10 and 11).

The main reason why the tails can be larger than expected
is the fact that we project onto the very orbitals which are
the basis of the band structure and hence get large weights
from the d projectors in the core window while the tails
collect only small parts of d character. In cases of isolated
band complexes, the tails can be chosen very small and the
core window set to the energy window of the isolated band
complex.

When picking isolated band complexes for wannieriza-
tion it must be avoided that the gaps above and below are
topological. Otherwise, the WFs cannot be localized due to
topological obstruction. This is usually flagged by the fact
that it will be hard to find a set of projectors with basis size
equal to the number of targeted bands. In such cases molecular
orbitals might look like a possible basis. However, the result
would either be singular or not localized (the other option is
breaking of symmetry, which we exclude by construction).
Essentially, one has to avoid to pick parts of split elementary
band representations according to the concepts of topological
quantum Chemistry [18].

There is a general recipe which circumvents this issue:
always pick a set of projectors which forms a chemical basis,
i.e., for instance, a 4s4p3d basis for a transition metal or
a 5s5p/6s6p basis for many cases with heavy main group
elements (sometimes even a simple 5p/6p basis might work).
In compounds the collection of these minimal chemical bases
for all atoms contributing to the targeted bands must be chosen
as projectors. This way the probability to pick split elementary
band representations is drastically lowered, since the size of
the projector set also increases the number of the targeted
bands and chemical basis sets are likely to form whole el-
ementary band representations. This strategy increases the
size of the resulting WF model, but for many applications,
one actually wants the whole set of valence bands and the
low lying conduction bands, which is actually formed by the
chemical basis.

The algorithm described here can also be applied in the
molecule mode of FPLO (which is a genuine 0d mode with-
out the need of a simulation box) to construct basis-reduced
Hamiltonian models.

III. TOPOLOGICAL ASPECTS

This section is not essential for the basic understanding
of the general method of calculating SCMPWFs. It discusses
the position operator matrix elements in the framework of
local basis methods, which enter a complete description of the
Berry connection and curvature.

A. Position operator

The Berry connection and its relation to the position op-
erator r has been discussed widely, especially in the context

of Wannier functions where it is given as the Fourier back
transform of the r-matrix elements between a WF in the first
cell and all other WFs. The representation of the position
operator in Bloch and Wannier basis has also has been exten-
sively discussed in Ref. [14], where all expressions for Berry
connection and curvature are provided although without the
realization of their benefit in the study of topological aspects
of electronic structures [19].

Here we will reiterate the representation of the position
operator and introduce a basis invariant formulation which
allows for consistent and arbitrary basis transformations and
naturally lends itself to application in local orbital frame-
works. A simple gauge dependent approximation for the
Berry connection will be given, which is important in TB
frameworks, where the basis is only implicitly known. In
the following, we will deal with whole connection/curvature
matrices to retain the transformation properties. The fi-
nal Berry connection/curvature is a subspace trace of these
matrices.

We start with the obvious observation that the position
operator is not translation invariant, which makes its lattice
Fourier transform rqk nondiagonal in k. Furthermore, the limit
q → k is badly defined [see Eqs. (B27) and (B28) in Ap-
pendix B 3].

In the space of extended (Bloch) functions, let us introduce
the operator identity

r = eikri∇ke−ikr − i∇k, (27)

which defines the Berry operator (discussed below)

βk = eikri∇ke−ikr. (28)

Both equations are differential operators with respect to k for
all terms which are multiplied from the right. The action of βk
and ∇k hence must be understood as

βk|�k〉 = |βk�
k〉 + |�k〉i∇k, (29a)

i∇k|�k〉 = |i∇k�
k〉 + |�k〉i∇k (29b)

(using the chain rule), where |βk�
k〉 is the isolated action of

βk on �k.
Matrix elements of r between Bloch functions (i.e., Bloch

sums or linear combinations thereof) can be written as

〈�q|r|�k〉 = 〈�q|βk|�k〉 − 〈�q|i∇k|�k〉, (30a)

〈�q|r|�k〉 = 〈�q|βk�
k〉 − (

i∇kSqk
�

)
, (30b)

where in Eq. (30a) the differentiations are not confined in both
terms, while in Eq. (30b) the differentiation is confined, i.e.,
these are normal matrices. The unusual shape of Eq. (30b)
is formally correct in that it transforms properly under basis
changes such that with �k = �kCk one gets

〈�q|r|�k〉 = 〈�q|βk�
k〉 − (

i∇kSqk
�

)
(31)

by bracketing Eq. (30b) with Ck from both sides and applying
the chain rule Eq. (29) to both terms on the rhs. At this stage, it
is vital to always consider the full nondiagonal form. Note that
the last term of Eq. (30b) reduces to (i∇kδq,k) for orthonormal
�k, which is basis independent. (For correct transformation
behavior the overlap matrix has to be kept until the end result,
however.) Hence, the essential part of the position operator is
the Berry connection matrix discussed in the following.
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B. Berry connection

Using the Berry operator defined above it can be shown
[Appendix B 3, Eq. (B29)] that |βk�

k〉 fulfills the Bloch
theorem and hence 〈�q|βk�

k〉 is diagonal in k. Each Bloch
function can be written as �k = eikruk

� which leads to

〈�q|βk�
k〉 = δqk

〈
uk

�

∣∣i∇kuk
�

〉
, (32)

which contains the matrix underlying the Berry connection

Ak
� = 〈

uk
�

∣∣i∇kuk
�

〉
. (33)

Consequently, the position operator matrix elements in a
Bloch basis consist of a k-diagonal well defined part, the
Berry connection matrix, and the gradient of the overlap
matrix (delta function for orthonormal bases) (which also
contains diagonal elements, implicitly) and this is true in all
bases.

An illustrative example of the meaning of Eq. (31) is to
formally calculate the dipole integral D = ∫

rn(r)d3r of the
density n(r) = ∑

kn fkn|�k
n |2, which using Eq. (31) becomes

D =
∑

kn

fkn
[
Ak

�,nn − lim
q→k

(i∇kδqk)
]

(34)

of which the first term, the essential part of r, is the polariza-
tion Pλ of Ref. [20] up to constant factors.

The Berry connection matrix is Hermitian if the Bloch
basis is orthonormal

Ak+
� = Ak

� − i∇kSk
�, (35)

e.g., for Wannier functions and Hamiltonian eigenfunctions,
which remedies its asymmetric formulation (derived via
i∇kSk = i∇k〈�k|�k〉 = i∇k〈e−ikr�k|e−ikr�k〉).

The basis change �k = �kCk of the k-diagonal Berry con-
nection matrix in Eq. (31) reads explicitly

Ak
� = Ck+Ak

�Ck + Ck+Sk
�i∇kCk. (36)

If one interprets � as the Bloch sums of local orbitals or
Wannier functions and � as the eigenfunctions of the Hamil-
tonian, the Berry connection consists of a term C+A�C,
where A� shall be called basis connection, and the usual
gradient-of-coefficients term (with an overlap matrix for the
nonorthonormal case). The latter term is always available
while the former is not known in most situations involving
tight binding models. Below, a proper approximation for the
basis-connection will be introduced. Practically, Eq. (36) is
not useful due to the random phase issue in ∇kCk. It will be
useful in deriving corrections to the Berry curvature later on.

For a plane wave basis �k = ∑
G ei(k+G)rCk+G, the basis

functions are the exponentials and the basis connection matrix
is zero:

Ak
G′G = 〈eiG′r|i∇keiGr〉 = 0. (37)

For a local basis, we introduce vector valued functions

(r�)Rs = (r − R − s)�s(r − R − s) (38)

with Bloch sums

(r�)k
s = 1√

N

∑
R

eik(R+λs)(r�)Rs, (39)

which leads to (λ = 1 − λ)(
βk�

k
s

) = (r�)k
s + λ�k

s s (40)

and the basis connection

Ak
�,s′s = 〈

�k
s′
∣∣βk�

k
s

〉
= 〈

�k
s′
∣∣(r�)k

s

〉 + λSk
s′ss. (41)

The λ term is zero for the relative gauge, but nonzero for
the periodic gauge of the Bloch sums. The first term on the
right-hand side (rhs), which shall be called reduced position
operator, can be straightforwardly evaluated as〈

�k
s′
∣∣(r�)k

s

〉 =
∑

R

eik(R+λ(s−s′ ))〈�0s′ |(r�)Rs〉 (42)

from local orbital matrix elements, which are translation in-
variant:

〈�R′s′ |(r�)Rs〉 = 〈�0s′ |(r�)R−R′,s〉 (43)

and Hermitian if � is orthonormal.
Equation (43) is very useful due to its invariance, which

makes them transferable on a lattice. It is the ideal form to
store position operator matrix elements (also for the Wannier
functions).

The relation to the position operator follows by expanding
the r − R − s part of Eq. (38) in Eq. (41), using

i∇kSk
s′s = −

∑
R

eik(R+λ(s−s′ ))S0s′,Rs(R + λ(s − s′))

and reads

Ak
�,s′s = 1

N

∑
R

eik(R+λ(s−s′ ))〈�0s′ |r|�Rs〉 + (i∇k − λs′)Sk
s′s.

(44)

In the periodic gauge λ = 0 and for WFs Sk
s′s = δs′s, this is the

expression usually given. However, Eq. (41) is the simpler and
arguably the more natural choice.

In order to calculate the basis connection (41) for the
Wannier functions, one needs to express the reduced position
operator matrix (42) of the WFs in terms of the basis orbitals.
Note that in our implementation the relative gauge λ = 1 is
used and hence the last term in Eq. (41) is zero and basis-
connection and reduced position operator matrix are identical.

Our Wannier functions are related to the LOs via Eq. (18).
The Berry connection in the Wannier basis hence is obtained
by a basis change Eq. (36) when letting � → w and C → a:

Ak
w = ak+Ak

�ak + ak+Sk
�i∇kak. (45)

The first term on the rhs is given by Eq. (41) with � being our
LOs, while the gradient needs special treatment. It turned out
that a direct calculation via the real-space coefficients a0c′,Rc is
not very accurate. Instead we use a numerical differentiation
technique akin to the one described in Ref. [2]. Finally, Ak

w

is Fourier back transformed which gives 〈w0c′ |(rw)R,c〉 in real
space which is stored together with the other WF information
for post processing. From this the Wannier basis connection
Ak

w can be retrieved via Eqs. (41) and (42) with � → w,
Ss′s → δs′s in either Bloch sum gauge.
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The reduced position operator matrix elements Eq. (43),
especially for orthonormal bases, are quite intuitive. The on-
site elements are the integral of two orbitals multiplied with
the position vector from the orbital origin. For two equal
orbitals, which are eigenfunctions of inversion, this integral
is always zero due to parity. For other cases and also for
the off-site case one can argue that the orthonormality of the
orbitals/WFs will somewhat transfer to these matrix element
to make them rather small.

Also the reduced elements are Hermitian (for orthonor-
mal bases) and transform according to all symmetries (see
Appendix B 4). Hence, they are a reasonable choice to be con-
sidered as the physically important matrix. By approximating
it by zero, we get

Ak
w,s′s ≈ λδs′ss (46)

for orthonormal bases. Note that this is nonzero in the periodic
gauge, in which the Bloch sums are k-periodic.

The basis connection can only be zero in one gauge, which
forces a choice which matrix to put to zero. We argue that the
relative gauge, which is usually not mentioned in the context
of Wannier functions is the one in which the WF basis connec-
tion can be neglected. We will show numerical evidence for
this later. This might be important in tight-binding models,
where the basis is not explicitly known and hence the basis
connection is missing. Furthermore, approximation Eq. (46)
is needed to preserve symmetry properties (Appendix B 4),
which further indicates the correctness of this choice.

C. Berry curvature

In this section, we derive the Berry curvature matrix

Fk
� = ∇k × Ak

� (47)

in the eigenstate representation. Starting from the (Wannier)
basis connection Ak

w = 〈wk|βkw
k〉 (usually reassembled from

the reduced position operator in WF basis during post pro-
cessing) we make a basis change �k = wkCk using Eq. (36)
with � → w

Ak
� = Ck+Ak

wCk + Ck+Sk
wi∇kCk (48)

where the overlap matrix is the unit matrix for orthonormal
WFs. Let’s introduce some short hands

〈A〉C = Ck+Ak
wCk, (49)

〈Si∇〉C = Ck+Sk
wi∇kCk, (50)

〈 f 〉C = Ck+(∇k × Ak
w

)
Ck. (51)

Differentiation of the normalization Ck+Sk
wCk = 1 gives

〈Si∇〉+C = 〈Si∇〉C + Ck+(
i∇kSk

w

)
Ck (52)

and Eq. (35) gives

〈A〉+C = 〈A〉C − Ck+(
i∇kSk

w

)
Ck. (53)

Then using ∇ × uvw = (∇u) × vw + u(∇ × v)w − uv ×
(∇w), where u, w are matrices and v is a vector of matri-
ces, and the identity CkCk+Sk

w = 1 and commuting nonvector

matrices through the × symbol one gets

Ak
� = 〈A〉C + 〈Si∇〉C, (54a)

Fk
� = 〈 f 〉C − i〈A〉+C × 〈A〉C + iAk+

� × Ak
� (54b)

= 〈 f 〉C + i〈A〉+C × 〈Si∇〉C + i〈Si∇〉+C × 〈A〉C

+ i〈Si∇〉+C × 〈Si∇〉C . (54c)

Note that the cross product expressions are matrix products at
the same time ((a × b)nm,k = ∑

li j εi jkanl,iblm, j). The second

term grouping of Fk
� corresponds to the result of Ref. [21]

while the first emphasizes the symmetry between the cur-
vature in both bases and is discussed in the Appendix of
Ref. [21].

Due to Eq. (35) Ak
� is Hermitian, since �k is orthonor-

mal, and the basis curvature f k = ∇ × Ak
w is Hermitian since

Sk
w is smooth and ∇ × ∇S = 0. This makes 〈 f 〉C and hence

also Fk
� Hermitian. Equations (54) are true for any basis wk

and hence could also be used directly in the nonorthogonal
FPLO basis. [If additionally �k were to be nonorthonormal
(S� )−1 needs to be inserted before or after all × symbols
in Eq. (54).]

In practice, 〈Si∇〉C is obtained in the parallel transport
gauge [21], which is not a periodic gauge and hence makes
Eq. (54a) useless for topological applications but it allows
to calculate Eq. (54b). In detail, nondegenerate perturbation
theory of first order gives

〈Si∇〉C,mn = i
Ck+

m

(∇kHk
w

)
Ck

n − Ck+
m

(∇kSk
w

)
Ck

n εk
n

εk
n − εk

m

(1 − δmn),

(55)

where the gradient of the Hamiltonian in Wannier basis reads

∇kHk
w = i

∑
R

eik(R+λ(s−s′ ))(R + λ(s − s′))

×〈w0s′ |Ĥ |wRs〉. (56)

For an orthonormal basis, the gradient of the overlap vanishes.
The basis curvature f k is obtained by directly taking the curl
of the exponential in Eq. (42) (� → w) and inserting into
Eq. (41). (The curl of the overlap can be obtained in a similar
way for nonorthonormal bases.)

We need to discuss the non Abelian (degenerate) case, in
which the Berry curvature matrix obtains a covariant cor-
rection in each degenerate subspace [22]. If Pi denotes the
projector onto the ith subspace (degenerate or not), one needs
to write

PiFk
�nAPi = Pi

(
Fk

� − iAk
�Pi × PiAk

�

)
Pi (57)

for each subspace. For a nondegenerate subspace, Ak
�,ii =

PiAk
�Pi is a single vector-valued matrix element and hence

Ak
�,ii × Ak

�,ii = 0 and the correction is zero. In a degenerate
subspace, only the average of the trace is physically mean-
ingful. In the case of an orthonormal basis, this allows to
introduce a unitary transformation, which ultimately leads to
iTrPi〈A〉CPi × Pi〈A〉CPi = 0 and permits to discard such block
diagonal terms (if only degenerate subspace averages are con-
sidered). Inserting Eq. (54b) into Eq. (57) and introducing
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Qi = 1 − Pi, one gets for orthonormal bases

PiFk
�nAPi = Pi

(〈 f 〉C − i〈A〉CQi × Qi〈A〉C

+ iAk
�Qi × QiAk

�

)
Pi. (58)

This expression contains 〈Si∇〉 bracketed between Qi and Pi

and hence only matrix elements between different subspaces
such that the energy denominator in Eq. (55) is never zero.
This solves the division by zero issue. In essence, the non-
Abelian Berry curvature is obtained from Eqs. (54b) and (54c)
by removing the diagonal blocks of all subspaces from 〈A〉C

and 〈Si∇〉C .
Reference [21] discusses the terms of F k and argues

that the 〈Si∇〉 × 〈Si∇〉 term of Eqs. (54c) is by far the
leading term. This would allow to ignore the basis connec-
tion/curvature terms, especially if they are not obtainable.
However, this is not necessarily correct. In Appendix B 4,
it is shown that the term 〈Si∇〉 × 〈Si∇〉 does not transform
properly under symmetry in the periodic gauge. However,
if Ak

w is approximated by Eq. (46) in Eqs. (49) and (54a)
proper symmetry transformation is restored. This shows that
the term grouping Eqs. (54b) and (58) is to be preferred
and in fact under the approximation the only term left is
iPAappr

� Q × QAappr
� P with approximated Aappr

� , which reduces
to the 〈Si∇〉-only term in relative gauge.

Another argument for the grouping Eq. (54b) is the fact
that both iPA�Q × QA�P and 〈 f 〉C − i〈A〉CQi × Qi〈A〉C are
invariant under symmetry and with respect to the Bloch sum
gauge choice controlled by λ (see Appendix B 5) while the
other grouping is not, especially not the approximation of
only taking the 〈Si∇〉 × 〈Si∇〉 term. Finally, if the � basis
is complete 〈 f 〉C − i〈A〉CQi × Qi〈A〉C will go to zero and
Fk

�nA = iPA�Q × QA�P is the complete Berry curvature.
In FPLO before version 19, only the periodic gauge was

implemented; now both gauges as well as the full basis con-
nection are available. Furthermore, for historical reasons the
FPLO implementation contains an overall minus sign for
the Berry connection/curvature as if we defined Ak = 〈uk| −
i∇kuk〉 instead of Eq. (33). Taking this sign into account we
are consistent with the data presented in Ref. [21].

On a final note, in cases of TB models for which no
explicit WFs but the nature/symmetry of these functions are
known, instead of approximation Eq. (46) one could derive
parametrized analytic expressions for leading matrix elements
in Eq. (43) based on the nature of the WFs which inserted
into Eq. (41) give a reasonable approximation for the basis
connections.

IV. FEATURES OF MAXIMALLY PROJECTED
WANNIER FUNCTIONS

The examples shown here are not discussed in terms of
their DFT setup. More details can be found in Appendix C.

A. Work flow

The WF creation is controlled by the choice of projectors
φ, the energy window, which can be chosen individually for
each projector (although most of the time a global window
is used) and the real space cutoff ρ and a coefficient threshold
(to save space), below which WF data are discarded. The latter

FIG. 1. The work flow to construct and use SCMPWFs in the
FPLO implementation.

might need to be changed from its default if the targeted bands
are very flat.

The projectors can be single FPLO orbitals, for which
only a site number, an orbital descriptor and optionally local
quantization axes need to be defined. In full relativistic mode,
the projectors can be in four-spinor quantum numbers nl jμ
or in pseudo-non-relativistic qns. nlmσ , in which case sepa-
rate local spin axes can be defined. Also unnormalized linear
combinations of LOs (MOs) can be chosen as projectors,
which are defined by picking an imagined Wannier center,
from which difference vectors to the contributing sites must
be defined. Furthermore, for each contribution a site number,
a weight and local axes must be specified. The main constraint
is that the set of projectors must be closed under all symmetry
operations. Band disentangling and the quality of the fit is
controlled by proper choice of projectors and energy window.

Alternatively, there is an automatic mode, which picks
either all FPLO orbitals as projectors or only the subset which
does not clearly form semicore states. The FPLO basis is
relatively small with of 15 to 35 orbitals per atoms for most
of the periodic table, which avoids a too large resulting WF
basis. Removal of semicore states further decreases the basis
size. The advantage of this mode is application in automated
calculations and the fact that no energy window needs to be
defined. The cutoff ρ however might need to be increased
(preferably to it is maximum) due to the larger extent of higher
energy WFs.

To construct WFs with FPLO a WF input file needs to
be created, which can be done by hand or with the help of
a PYTHON module, which allows to efficiently create single-
orbital projectors for any set of sites/orbitals as well as
molecular orbital projectors. Starting from a converged cal-
culation and with the input file present an FPLO run will
produce a file with all the data needed to construct the Wannier
functions in a second run (see Fig. 1). At this stage, the real
space Wannier representation, the symmetry operations and
all demanded operators [like reduced position operator, full
relativistic spin operators β 
� and the exchange-correlation
(xc) magnetic field] are written to a separate file for post
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FIG. 2. (a) Band structure (black) of CaCuO2, the FPLO or-
bital 3dx2−y2 band character (red) and the single band Wannier fit
(cyan). (b) Unit cell containing the Wannier function at isovalue 0.04.
(c) Maximum of orbital contributions to the WF in logarithmic scale
as a function of WF-orbital distance. (d) WF printed along the (100)
axis through the WF center (black), the Cu 3dx2−y2 (orange), and the
O 2px (red) orbitals scaled according to their amplitude. The inset
shows |w| along the same path in logarithmic scale.

processing. Additionally, WF output on a real space grid for
visualization purposes can be requested.

B. Model extraction

The first example demonstrates the construction of a sin-
gle band model of the anti-bonding (AB) Cu 3dx2−y2 band
for the infinite layer cuprate CaCuO2. The band structure
(Fig. 2) contains the prototypical AB band in the energy
interval [−2, 2] eV around the Fermi level highlighted by the
FPLO-orbital band character. The bonding part below −3 eV,
which is more diffuse, is of course also present.

The input (essentially a site number and an orbital name)
for the wannierization contains a single projector consisting
of the 3dx2−y2 orbital sitting at the Cu site. The k mesh has 123

points. The core energy window is chosen as [−1, 1] eV with

symmetrical Gaussian tails, Eq. (26), of width  = 2 eV as
indicated on the right side of the band structure. This window
is considerably overlapping with the bonding part, yet the
resulting WF (cyan) follows the antibonding part, where hk

is dominant. The fit is not perfect, owed to the fact that there
are lots of hybridizations interrupting the unbroken flow of the
band character. It however samples the essence of the targeted
band. The WF fit was calculated from WF data with a real
space cutoff ρ = 25aB. To illustrate the exponential localiza-
tion of the WF the maximum of the amplitudes max(|aRs,0c|)
of contributing orbitals around the WF, Eq. (24), as a function
of WF-orbital distance are shown in Fig. 2(c) for a cutoff
ρ = 70aB. Note, the logarithmic scale.

Figure 2(b) shows the crystal structure and the WF, which
clearly has x2 − y2 symmetry and sizable oxygen hybridiza-
tion tails as to be expected for this case. The WF along the
(100) direction through the WF center is plotted in Fig. 2(d).
Additionally, the Cu 3dx2−y2 and O 2px orbitals scaled ac-
cording to their amplitude aRs,0c is shown. The circles show
the position of the atoms in the same color as the orbitals.
This WF is rather extended since it needs to describe a Cu-O
hybridized band via a single WF. It is however exponentially
localized as indicated by the inset which shows |w| in loga-
rithmic scale. Note that the projector consists only of the Cu
3dx2−y2 orbital (orange), all other contributions to the WF are
pulled in due to the projection process.

C. Band disentangling

A more complex example which demonstrates band disen-
tangling is the 3d-only WFs for spin polarized fully relativistic
bcc iron (see Appendix C 2). Spin is no longer a good qn.
although spin orbit coupling and hence spin-mixing is quite
small. The complication is the hybridization with the 4sp
bands, which have a band width of several tens of electron
volts, which means that bands which start as d bands at some
k point can mutate into free electron bands away from the
point. Hence, the predominantly 3d-character Hilbert space is
not restricted to a finite energy window and the corresponding
WFs cannot follow the d-band structure at all points.

We performed a Wannier fit using 3d orbitals with nonrela-
tivistic symmetry as projectors [see Appendix B 1, Eq. (B7)].
These are obtained from a linear combination of the four
spinors Eq. (A1), such that the resulting orbital transforms as
a real Harmonic (which is an inbuilt option besides projec-
tion onto the relativistic four spinors themselves). The energy
window as indicated at the right side of Fig. 3(a) has a core
region [−5, 0] eV and Gaussian tails of width  = 7 eV. We
used a k mesh with 163 points in the primitive reciprocal
cell and a cutoff ρ = 25aB for the real space representation
of the WFs. Although, the energy window is quite large, the
resulting Wannier fit (bright green and red) follows the bands
with 3d character (milky green and red) very closely at most
parts of the Brillouin zone (BZ). The WFs also resolve the
original spin character.

Figure 3(a) shows three regions marked by numbers. In
region 1, the highest minority d band at � becomes a free
electron band (milky blue) as it progresses towards the H
point. At the same time, an sp band enters the d region from
below. So, the WFs must reconnect the manifold at � to the
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FIG. 3. (a) Band weights of the FPLO calculation in pastel colors
and Fe 3d WF fit in bright colors (see text). (b) 3dx2−y2 WF printed
along the (100) axis through the WF center (black), the Fe 3dx2−y2

local orbital (orange). Left inset shows |w| along the same path
in logarithmic scale. Right inset shows the maximal orbital contri-
butions to the WFs in logarithmic scale as a function of WF-LO
distance.

manifold at H by interpolating through some dispersion not
existing in the DFT band structure (the same happens for the
majority spin bands).

One of the lowest (degenerate) minority bands (−3 eV) at
H bends upwards and turns into an sp band at N, as marked
by the right arrow in region 2, while the missing d character
flows in from above 2 eV. At the N point, all d weight sits in
the two bands at 1–1.5 eV. Consequently, the WF (left arrow)
must deviate from the DFT band to smoothly interpolate the
pure d bands between H and N.

A similar situation as in region 1 occurs in region 3 be-
tween the H and � points and the � and P points, respectively.
d weight flows to lower energies from N to � and to higher
energies between � and P, which forces the WFs to deviate
from the original band structure. Between, P and H the second
and forth lowest Wannier bands deviate from the DFT bands
by 180 meV (not visible in the fat-band plot). Besides these
regions the WF fit follows the original bands rather closely.

Figure 3(b) plots the WF along the (100) direction through
the Wannier center (black) together with the 3dx2−y2 orbital
(orange). The circles denote the atom positions. There are
some notable orthogonalization tails at first and second neigh-
bor, but otherwise the WF and the local orbital are nearly

FIG. 4. (a) Band weights of the FPLO calculation in pastel colors
and the WF fit in bright colors. (b) (Top down) 3dx2−y2 , 4s and 4p
WFs printed along the (100) axis through the WF center (black),
the FPLO local orbitals (orange). (c) Corresponding WF isosurfaces
for isovalue 0.09. (d) Maximal orbital contributions to the WFs in
logarithmic scale as a function of WF-LO distance. (e) |w| along the
same path in logarithmic scale.

identical. The right inset shows max(|aRs,0c|) [Eq. (24)] as a
function of the WF-LO distance and the left inset shows the
WF along the same direction as the main panel with logarith-
mic y axis. Clearly, the expansion coefficients as well as the
WF itself are exponentially localized and the localization is
similar to that of the d orbital.

To get a useful 3d WF fit, the 4s4p orbitals have to be
included, which represents the minimum chemical basis for
bcc Fe. The corresponding projectors are all the 4s4p3d or-
bitals sitting at their respective site, i.e., (000). The energy
window needs to have a rather large upper Gaussian tail to
sample all the needed representations of which especially the
“free-electron” states lie at higher energies. The core window
is [−9,−1] and the upper tail has  = 15 eV (the lower
does not matter). A real space cutoff ρ = 40aB was used.
Figure 4(a) shows the resulting WF fit. The DFT results are
shown in pastel colors with larger width while on top the WF
fit is plotted with a smaller width. The two sets of bands are on
top of each other to within 20 meV error. Figure 4(b) shows
the WFs along the (100) direction through the origin for the
3dx2−y2 , 4s, and 4px orbitals together with the corresponding
FPLO basis functions (orange and only plotted towards the
positive axis). The WFs follow the orbitals very closely within
the first neighbor region, while the “free-electron” WFs have
sizable hybridization tails which is related to their large band
width. Figure 4(c) shows the (suitably translated) isosurfaces
of these three functions for isovalue 0.09, while (d) shows
the maximum orbital contributions max(|aRs,0c|) to all WFs
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FIG. 5. Berry curvature of spin polarized full relativistic bcc Fe.
(a) Thin lines: Fermi surface contour in the ky = 0 plane. Color
plot: −Fz. (b) The Berry curvature components along the path �HP
(see text). The left panel shows term-grouping of Ref. [21]: ∇∇ =
i〈Si∇〉C × 〈Si∇〉C , ∇a = i〈Si∇〉C × 〈A〉C + H.c., and f = 〈 f 〉C The
right panel shows our preferred grouping AA = iA� × A� and
f − aa = 〈 f 〉C − i〈A〉C × 〈A〉C .

in logarithmic scale, which shows exponential localization,
albeit less localized than the pure Fe-3d fit discussed above.
Note that the 3d orbitals are more localized than the rest as
is to be expected. Finally Fig. 4(e) shows the absolute value
of the WFs from (b) in the logarithmic scale along the same
path, which also proves localization.

D. Berry curvature, anomalous Hall conductivity

To compare to Ref. [21] and to illustrate the Berry cur-
vature terms and their grouping we show the results for the
Berry curvature of full-relativistic spin-polarized bcc Fe in
Fig. 5 (for the 3d4s4p Wannier model of Sec. IV C). By
comparing the Fermi surface contour to Ref. [21], it becomes
clear that the two band structure codes do not give the ex-
act same result, which is not surprising given that the cited
results use a pseudo-potential code and treats the relativistic
effects differently from our full four-component treatment. It
is likely that our results compare better for slightly different
lattice constants. Nevertheless, the Berry curvature plot and
the curvature plotted along the Brillouin zone path �(000) −
H(010) − P( 1

2
1
2

1
2 ) compare well. Figure 5(b) shows the two

different ways of grouping the terms. The left panel uses the
grouping of Ref. [21], which corresponds to Eq. (54c) while
the right panel shows the grouping Eq. (54b) (also discussed
in the Appendix of Ref. [21]), preferred by us for symme-
try, gauge invariance and approximation reasons. In bcc Fe,
there is only one site at (000) and hence the gauge depen-
dent corrections are all zero and periodic and relative gauge
identical. The term-grouping according to the Ref. [21] shows
that the 〈Si∇〉 × 〈Si∇〉 is indeed the dominant term while

FIG. 6. (Left) Berry curvature of spin polarized full relativistic
B2 FeAl. (Right) Berry curvature of non-spin-polarized full rela-
tivistic HgS. (Top) Term grouping of Ref. [21] for periodic gauge.
(Middle) Term grouping of Ref. [21] for relative gauge. (Bottom)
Preferred term grouping. The terms are explained in Fig. 5 except for
AAapprox, which is the AA term with approximated basis connection.

〈Si∇〉 × 〈A〉C and 〈 f 〉C are quite small. The approximation
Eq. (46) is zero and hence the approximated curvature is the
〈Si∇〉 × 〈Si∇〉 term itself.

Our preferred term grouping in the right panel shows
that A� × A� is even closer to the total result while 〈 f 〉C −
〈A〉C × 〈A〉C is rather small.

We also integrated the Berry curvature over the irreducible
part of the BZ (with subsequent symmetrization) to obtain
anomalous Hall conductivity (AHC). To speed up this quite
time consuming calculation we reduced the real space cutoff
to ρ = 25aB, which leads to small band energy errors of
maximal 200 meV around the N point but yields a smaller
Wannier model. For a mesh with 3003 k points in the total
BZ, we obtain 715.4 and 720.5 S/cm for the ∇ × ∇ only and
the full Berry curvature, respectively. For 6003 k points, this
becomes 717.9 and 722.90 S/cm. This is a bit smaller than the
756.8 S/cm reported by Ref. [21], which used a finer adaptive
integration. However, their smallest mesh which compares to
our largest also deviates by about the same amount, which
is most likely due to the method/band structure differences
discusses above.

To further assess the validity of the general arguments of
Sec. III A in favor of our preferred term grouping we show
the Berry curvature results for two more cases. The left panel
of Fig. 6 shows the Berry curvature along a BZ path for
spin-polarized full-relativistic B2 FeAl, which is obtained
from bcc Fe by replacing the iron at the unit cell center by
Al (see Appendix C 3), while the right panel shows F for
non-spin-polarized full-relativistic HgS along the same path
(different high symmetry point names). The top and middle
rows show the results for the term-grouping of Ref. [21]
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in the periodic and relative gauge, respectively, while the
bottom row shows the preferred term-grouping which is in-
dependent of the Bloch sum gauge. Additionally, in the top
row the Aappr

� × Aappr
� term is shown within the approximation

Eq. (46), which is distinct in the periodic gauge and equivalent
to the 〈Si∇〉C × 〈Si∇〉C term in relative gauge.

Clearly, for FeAl in the periodic gauge, the individual
terms in the Ref. [21] grouping are larger than the total which
demonstrates the necessity of including the basis connection
terms. Interestingly, the approximated Aappr

� × Aappr
� term in

periodic gauge (which equals the ∇ × ∇ term in relative
gauge) is quite close to the total. The preferred grouping
shows as for bcc Fe that the A� × A� term is largely dom-
inant.

For HgS, the situation is less satisfactory. We first note that
all individual terms in the Ref. [21] grouping in periodic gauge
(top right panel) are nonzero along � − X, although the total
as well as the approximated Aappr

� × Aappr
� term are zero due to

symmetry (non-spin-polarized). In the relative gauge (middle
right panel) as well as in the preferred grouping (bottom right
panel), the symmetry is preserved, which confirms the general
arguments of Sec. III A. On the line X-L neither term grouping
has a dominant term.

E. Molecular orbital projectors

Up to now, we always projected onto single orbitals, which
creates WFs which look like these orbitals in the Fe case
or which acquire sizable hybridization tails for CaCuO2. Es-
pecially in cases of isolated band complexes (and if these
complexes are Wannier representable) bond centered WFs
might be needed. To illustrate this we perform a Wannier fit
for MgB2, which has alternating triangular Mg and hexagonal
boron layers. The occupied band structure consists of 3 boron-
2s2px,y bands, which can be described by sp2 hybrids and
one mostly decoupled boron-2pz band. We will construct a
Wannier model of the occupied sp2 hybrids.

Figure 7(d) shows the two boron sites in the boron plane of
the unit cell viewed down the c axis. On each site, we define
a projector containing a 2s and a 2px orbitals with the local
quantization axis chosen such that the linear combinations
as depicted in the upper panel of Fig. 7(d) (in solid color)
are obtained. The 2s and 2p orbitals get a weight of 1 and√

2, respectively, which corresponds to the relative weights
in an sp2 hybrid. Also depicted are the other two hybrids at
site s2, which are obtained by a C3 rotation. Together with
the rotated hybrids at site s1 these form six MOs, of which
the bonding combinations, shown in the lower panel, form
the three occupied sp2 bands. These unnormalized bonding
sp2 MOs consist each of four LOs. A simple PYTHON script
was used to setup these molecular orbital projectors, which
essentially uses the C3 rotation to determine the local axes of
all contributing p orbitals.

The energy window, shown at the right side of Fig. 7(a)
was chosen such that the most part of the target bands where
sampled by a larger upper Gaussian tail with E = 7 eV. Due
to the weak hybridization with the 2pz band away from the
high symmetry lines, the WF band energies at the band bottom
along � − A would be pulled to higher energies, compared to

FIG. 7. (a) FPLO band weights in pastel colors compared to the
sp2-hybrid Wannier fit in black and the energy window plotted at
the right side. (b) WF profile along a path through the Wannier
center as indicated by the thin line in (c). The left inset shows |w|
along the same path in a logarithmic plot, while the right inset shows
max(|aRs,0c|), i.e., the orbital contributions to the WF, also in a loga-
rithmic plot. (c) Isosurface of the WF for isovalue 0.4. (d) Schematic
of the MO projectors used to obtain the WFs.

the FPLO bands, if a simple rectangular window encompass-
ing the target bands would be chosen.

The three bands of the WF-fit in Fig. 7(a) accurately follow
the FPLO band structure. Figure 7(c) shows an isosurface of
one of the bonding sp2 WFs together with a semitransparent
density plot of the WF in the plane through it’s center. Along
a path, indicated by the thin line through the Wannier center,
the WF has a profile as shown in Fig. 7(b), where the circles
mark the positions of the boron atoms. The WF is clearly
localized as shown by the logarithmic plot of |w| along the
path in the left inset and the logarithmic plot of the maximal
orbital contributions [Eq. (24)] to the WF in the right inset.

F. Molecule Wannier functions

In FPLO, molecules are treated without a simulation box,
since all orbitals have a finite compact support. The algorithm
described in Sec. II A is not restricted to bulk materials. The
only places where the extended nature of a sytem comes into
play are k sums and by using the � point only (effectively
no sum) one can also create molecule WFs. To illustrate this
we will determine the smallest model Hamiltonian for an
H2O molecule (see Appendix C 6). There are four occupied
valence MOs formed by O-2s/2p and H-1s orbitals of which
one is formed to nearly 100% by the O-2py orbital, whose
lobes point out of the H-O-H plane and which hence is de-
coupled by symmetry from the other orbitals in lower orders,
so that this orbital can be neglected in a model. To obtain
WFs, we chose the O-2s, O-2pz and the two H-1s orbitals as
projectors. The O-2px orbital will be pulled into the Wannier
basis via hybridization tails at the other WFs by choosing
an energy window [−24, 0.3] eV with an upper  = 1 eV,
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FIG. 8. Isosurfaces of the four WFs of the minimum model for
H2O for an isovalue of 0.09. The character is denoted at the side. The
atoms are shown as white (H) and red (O) spheres.

which encompasses the four lowest valence MOs and some
unoccupied states. This basis will fit the three mixed occupied
MOs and one unoccupied MO. The corresponding Wannier
model Hamiltonian (C1) will have the same eigenenergies
as the corresponding MOs in the DFT calculation Eq. (C2)
except for the omitted orbital. Isosurfaces of the resulting WFs
in real space are shown in Fig. 8.

G. Post processing

For post processing of the Wannier function data a PYTHON

package is provided. It reads the Wannier data and maps them
onto a chosen structure. This can be the original unit cell
forming the original lattice, any supercell and corresponding
lattice, a semi infinite slab or a finite slab based on a chosen
supercell. If the original lattice is 2d, the resulting slabs are
one-dimensional. The slabs are idealized in the sense that no
surface relaxation effects can be considered; it is a straight-
forward mapping of the original hoppings/data onto the sites
forming the slabs. For the semi-infinite slab, the termination
can be chosen and for the finite slab both terminations can be
chosen and an arbitrary number of atoms can be removed to
get a rough estimate of such effects on the surface states.

The python package offers an interface to obtain the Hamil-
tonian and all requested operators for a user specified k point,
which provides maximum flexibility. It also offers ready made
procedures to calculate several properties depending on the
chosen structure mapping. For all but the semi-infinite map-
ping the band structure, including band weights, and Fermi
surfaces and Fermi surface cuts can be calculated. For the
original and super cell mappings, a bulk-projected band struc-
ture can be obtained which integrates the band structure along
a chosen k direction. This offers the spectral densities with
surface effects excluded.

For the semi-infinite slabs a Green’s function method
[23,24] is used to calculate spectral densities as a function
of energy and momentum (band structure plot equivalent) or
in a k plane (Fermi surface cut equivalent). Figure 9 shows
an example of this for the ternary Type-II Weyl semimetal
TaIrTe4 [25].

FIG. 9. Surface spectral densities (SD) for TaIrTe4 of a semi
infinite slab with (001) (left column) and (001̄) (right column) termi-
nation. The crosses mark the position of the Weyl point. (Top) Fermi
surface SD, the arrows mark the Fermi arcs. (Bottom) Corresponding
energy resolve SD along a line ky = 0.125. The arrows mark the
surface bands forming the arcs.

For the mapping onto the original lattice, the symmetry op-
erations and their eigenvalues can be analyzed. Furthermore,
an adaptive algorithm for the search for Weyl points (WP) is
available. We use a 3d version of the methods of Ref. [26] to
determine the chirality of each microcell of a regular subdi-
vision of the primitive unit cell. Then in refinement steps for
each cell with a nontrivial chirality the cell is subdivided into
eight subcells for which the chirality again is determined. The
subdivision stops if the subcell size falls bellow a specified
threshold. For each found Weyl point, its veracity can be
checked by calculating an integral of the Berry curvature over

TABLE I. CPU time in seconds for the cases discussed in Sec. IV
on a single core of an Intel Xeon CPU E5-1650 @ 3.5 GHz. SCF: full
self consistent calculation from scratch. WF: calculation of Wannier
functions consisting of dumping the relevant data from a single
SCF cycle (first number) and the actual WF creation run (second
number). WF on grid: the WF creation run can optionally include the
calculation of the WF on a real space grid for visualization, which is
not needed in most applications. Post processing: for Fe the largest
time is used for the calculation of the Berry curvature of Fig. 5(a).

SCF WF WF on grid Post processing

CaCuO2 53 8 + 2 9
Fe (3d4s4p) 39 11 + 10 76 198
FeAl 74 23 + 77 248 32
HgS 46 18 + 25 142 14
MgB2 13 3 + 2 9
H2O 2.9 0.2 + 0.2 1.3
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FIG. 10. (Left) LDA band structure of CaCuO2 computed with QUANTUM ESPRESSO and Wannier fit for a one-orbital model performed
using symmetry-adapted scheme implemented in WANNIER90. Right: maximal contributions to the WF in a logarithmic scale as a function of
WF-orbital distance.

a small spherical shell around the WP, as well as creating
a plot of the Berry curvature field for visual confirmation.
The resulting Fermi arks can be analyzed by calculating the
spectral density for a mapping onto a semi-infinite slab or
by calculating the band structure and Fermi surface cuts for
a finite slab.

Also for the original mapping the Z2 topological indices
can be determined for noncentrosymmetric lattices using a
Wannier-center algorithm [27] with automatic determination
of the indices [28]. This algorithm is also directly available
from the FPLO code itself, by internally Löwdin orthogo-
nalizing the whole FPLO basis (which results in full-basis
Wannier functions), but it is faster to use a Wannier model due
to the resulting basis reduction. For centrosymmetric lattices
FPLO itself calculates the Z2 indices.

The Berry curvature can be calculated band wise for any
nonslab mapping either with approximated reduced position
operator as discussed in Sec. III A or in full form, which also
gives access to the anomalous Hall conductivity (Sec. IV D).
By using the symmetry information mirror Chern numbers
[29,30] for topological crystalline insulators can be obtained
as well.

Besides Hamiltonian and reduced position operator in
full-relativistic mode the spin operators and the exchange
correlation magnetic field can be extracted. This is achieved
by starting from the xc term of the Hamiltonian

HB = 〈�k|β�B|�k〉, (59)

FIG. 11. (Top) Wannier fit of the LDA band structure of bcc Fe computed with QUANTUM ESPRESSO. The Wannier model is constructed
by projections onto 3d states. Right panel shows maximal contributions to the WF in a logarithmic scale as a function of WF-orbital distance.
Only the orbital-diagonal contributions are shown. (Bottom) Same for the model comprising 3d , 4s, and 4p states.
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FIG. 12. Berry curvature of spin polarized full relativistic bcc Fe computed using WANNIER90.

where the 4 × 4 matrices β and � are defined as

β =
(

12×2

−12×2

)
, � =

(
σ

σ

)
. (60)

B(r) is the xc-field and �k is the column vector of the FPLO
basis orbitals. Assuming basis completeness, the identity

1 = |�k〉 1

Sk
〈�k| (61)

can be inserted to separate the field followed by the Wannier
transformation Eq. (18) using the identity 1 = Sk

w = ak+Sk
�ak,

which leads to Wannier representation

Hw
B = 〈β�〉k

w〈B〉k
w, (62)

〈β�〉k
w = 〈wk|β�|wk〉, (63)

〈B〉k
w = 〈wk|B|wk〉 (64)

with separate matrix representation for the vector of spin
operators and of the xc field.

The spin operator matrix can be used to add model mag-
netic fields as was for instance done in Ref. [31] to simulate a
canted magnetic field. The PYTHON interface provides model
fields which are constant on user defined subsets of WFs with
the definition

Hw
B =

∑
i

Pi〈β�〉wBiPi, (65)

where the diagonal of matrix Pi is one for the targeted WFs
and zero otherwise and Bi is a constant vector.

The Wannier functions can also be used in the dHvA-
package of FPLO instead of the full FPLO data [32]. Although
the dHvA-package already uses an adaptive algorithm to
sample the Fermi surface the use of a Wannier model can
considerably speed of the process.

V. PERFORMANCE AND COMPARISON

A. Numerical performance

For orientation Table I shows the timing of various stages
of the calculations of Sec. IV. We recorded the times for
the complete self consistent calculation, for the single loop,
which dumps the raw data needed for the WFs, for the actual
Wannier function creation run, for the calculation of the WFs
on a real space grid and for post processing, where it was used.
All calculations are done on a single core.

B. Comparison with WANNIER90

At present, the most popular code in the community is
WANNIER90 [4,33,34]. It supports interfaces with widely used
band-structure codes has a growing number of postprocessing
options [4]. It is therefore reasonable to use WANNIER90 for
benchmarking our FPLO results. To this end, we use band-
structure tools from the QUANTUM ESPRESSO package version
6.7 [35] and the wannierization software provided in WAN-
NIER90 version 3.1.0. We use serial (single-core) executables
compiled using the Intel’s Math Kernel Library (MKL) ver-
sion 2020.4.304. In contrast to the full-potential code FPLO,
QUANTUM ESPRESSO does not calculate the potential of core
electrons explicitly, it is adopted from external pseudopo-

FIG. 13. Berry curvature of spin polarized full relativistic FeAl (left) and nonmagentic HgS (right) computed using WANNIER90.
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TABLE II. Anomalous Hall effect.

Theory Experiment This work
Compound (S/cm) (S/cm) (S/cm)

Co2FeAl 39 [41] 320–360 [52] 60
Co2FeGa 181 [41] 50–350 [42] 210
Co2FeSi 189 [41] 163, 400–600 [42,43] 260
Co2FeGe 119 [41] 64
Fe3Sn2 200 400 [47,48] 590
Co3Sn2S2 1100 [49] 1130
Co2MnAl 1631 [50] 1520
Rh2MnGa 1860 [50] 1760
Rh2MnAl 1720 [50] 1640
Fe 1000 [44] 840
Fe3GeTe2 500 [51] 590
Ni 2200 [45] 2300
Co(hcp) 470 [45] 480
Co (fcc) 250 [46] 270

tential files. Here, we used ultrasoft LDA (Perdew-Wang
91 [36]) Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) pseu-
dopotenitals [37] from PSLIBRARY version 1.0.0 [38], except
for bcc-Fe calculations for which projector-augmented-wave
pseudopotenitals [39] were employed.

We start with the one-orbital model for CaCuO2. As these
calculations do not include the spin-orbit coupling, we can
use symmetry-adapted Wannier functions [5] implemented in
WANNIER90 [4]. The agreement with the GGA band and the
localization of the resulting Wannier functions (Fig. 10) are
comparable to that in FPLO (Fig. 2).

Next, we consider full-relativistic calculations of bcc Fe.
Again, we distinguish two models: a ten-band model which
includes only the 3d states, and a 18-bands model, which
additionally accounts for 4s and 4p contributions. The former
provides a generally good description of the LDA band struc-
ture, but deviations can be seen with a naked eye (Fig. 11,
top left). Inclusion of the 4s and 4p states readily yields
an excellent description of the entire valence band and the
low-energy region of the polarization band (Fig. 11, bottom
left). Also here the degree of localization is comparable with
respective models calculated using FPLO. Berry curvature

TABLE III. Anomalous Nernst effect. Maximum value with T <

500K for Fe3Pt, Fe3Ga, Fe3Al, Fe3Si, and Fe4N.

Theory Experiment
Compound (A/Km) (A/Km) This work

Fe3Pt 6.2 [53] 4.0
Fe3Ga 3.0 [53] 3.0
Fe3Al 2.7 [53] 3.0
Fe3Si 2.5 [53] 2.7
Fe4N 2.4 [53] 1.1
Co2MnGa 4 (EF = E0 6.2 (300K) [54] 4.4 (EF = E0

+0.08 eV) +0.06 eV))
Co3Sn2S2 3 (80K) [55] 2.6
Fe3GeTe2 0.3 (150 K) [56] 0.38

TABLE IV. Pt, SHC in unit of (h̄/e) (S/cm).

Pt

σ z
xy

This work 2260
Ref. (ab initio) 2200 [61]
Ref. (ab initio) 2281 [62]
Ref. (ab initio) ∼2200 [63]
Ref. (ab initio) ∼2500 [64]
Ref. (Exp., T = 10 K) 1700 ± 400 [65]
Ref. (Exp., room temperature) ∼5100 [66]
Ref. (Exp., room temperature) 310 ± 50 [67]
Ref. (Exp., room temperature) 870 ± 120 [68]
Ref. (Exp., room temperature) 1750 [69]
Ref. (Exp., room temperature) 1900 [70]

calculations (Fig. 12) are in excellent quantitative agreement
with the FPLO results (Fig. 5).

Berry curvature of FeAl (Fig. 13, left) generally agrees
with the FPLO result (Fig. 6, left), the discrepancies likely
stem from the RRKJ pseudopotential for Fe. For HgS, the
calculated Berry curvature does not vanish along the � − X
line (Fig. 13, right), in contrast with the FPLO result (Fig. 6,
right). This discrepancy is however quite small and must be
due to either symmetry violation (due to full relativistic mode)
and or numerical artefacts, since we argued in Sec. IV D that
the total contribution must vanish along this line.

C. Comparison with previous reports

We performed calculations of the anomalous Hall effect
[15,16], the anomalous Nernst effect[40], and the spin Hall
effect based on the symmetry conserving Wannier functions
implemented in FPLO. Our results for the anomalous Hall
conductivity in Heusler compounds Co2FeX (X=Al, Ga, Si,
and Ge) are around 60, 210, 260, and 64 S/cm, respectively,
by choosing the magnetic moment along the z direction. We
obtain good agreement with the previous ab initio report [41].
In addition to calculations, different groups also performed
experimental Hall measurement for Co2FeAl, Co2FeGa, and
Co2FeSi. The calculated results fit well with the experimental
measurements in Co2FeGa and Co2FeGe [42,43]. Though our
results and previous ab initio reports give similar anomalous
Hall conductivity for Co2FeAl, it is much smaller than the

TABLE V. fcc Au, SHC is in unit of (h̄/e) (S/cm).

Au

σ z
xy

This work 377
Ref. (ab initio) 400 [71]
Ref. (ab initio) 470 [64]
Ref. (ab initio) 350 [72]
Ref. (Exp., T = 4 K) 11100 [73]
Ref. (Exp., room temperature) 880 ± 80 [67]
Ref. (Exp., room temperature) ∼234 [74]
Ref. (Exp., room temperature) 500 ± 100 [75]
Ref. (Exp., room temperature) 42000 [76]

235135-17



KOEPERNIK, JANSON, SUN, AND VAN DEN BRINK PHYSICAL REVIEW B 107, 235135 (2023)

TABLE VI. fcc Pd, SHC in unit of (h̄/e) (S/cm).

Pd

σ z
xy

This work 1180
Ref. (ab initio) 1200 [71]
Ref. (Exp., room temperature) ∼350 [77]
Ref. (Exp., T = 10 K) 270 ± 90 [65]
Ref. (Exp., room temperature) 260 ± 40 [67]
Ref. (Exp., room temperature) ∼200 [78]
Ref. (Exp., room temperature) 300 ± 70 [79]
Ref. (Exp., room temperature) 290 ± 50 [75]

value from Hall measurements [41], which might be due to
a large extrinsic scattering contribution in the experimental
setup.

For the anomalous Hall effect in typical transition elements
such as Fe, Co, and Ni, our calculations show good agreement
with both experimental measurements and previous ab initio
calculations [44–46]. We also made comparisons with some
typical magnetic topological materials from recent reports,
such as Fe3Sn2 which features a massive Dirac cone [47,48],
the first experimentally verified magnetic Weyl semimetal
Co3Sn2S2 [49], and the magnetic nodal line semimetals
Rh2MnGa, Rh2MnAl, and Fe3GeTe2 [50,51]. We find good
agreements for all of these magnetic topological systems, see
Tables II.

Recently, starting with high throughput calculations, strong
anomalous Nernst effects were observed in iron-based ferro-
magnets Fe3X (X=Pt, Ga, Al, and Si) and Fe4N [53]. From
Table III, one can see the good agreement between our cal-
culations and recent reports. We also find good agreements
for the anomalous Nernst conductivity in typical magnetic
topological materials Co2MnGa [54], Co3Sn2S2 [55], and
Fe3GeTe2 [56]. All of them show the reliability of the Wannier
functions derived from FPLO.

Another widely studied transport property in the linear re-
sponse regime is the spin Hall effect [57–60] (SHC). We made
a systematic comparison between reported results and that
obtained from FPLO. We find that the results for cubic (bcc
and fcc) transition metals from our calculations are in good
agreement with previous ab initio calculations, see Tables IV–
X. We also tried to compare our theoretical results to the
experimental reports. However, the experimental values from
different reports differ a lot, due to details of experimental
setup and extrinsic contributions.

TABLE VII. bcc Ta, SHC in unit of (h̄/e) (S/cm).

Ta

σ z
xy

This work −133
Ref. (ab initio) −142 [62]
Ref. (Exp., T = 10 K) 11 ± 3 [65]
Ref. (Exp., room temperature) −630 [80]
Ref. (Exp., room temperature) −160 ± 120 [81]

TABLE VIII. bcc Nb, SHC in unit of (h̄/e) (S/cm).

Nb

σ z
xy

This work −94
Ref. (Exp., T = 10 K) 100 ± 20 [65]

As for the hexagonal transition metals, there are some
differences between our calculations and that from previous
reports [84] (Tables XI and XII), but overall, the two calcu-
lations are in good agreement. The differences might be due
to the different sets of coordinates for the hexagonal lattice
vectors. So far, most of the experiments focused on cubic
transition metals and some compounds, whereas, to the best
of our knowledge, there are almost no experimental reports
for hexagonal transition metals. In addition to the transition
metals, we also made a comparison for other compounds with
available experimental reports and ab initio calculations, see
Table XIII, and here good agreements can also be found.

D. Berry curvature dipole

We also calculated the Berry curvature dipole [1] for the
type-I Weyl semimetal TaAs and the type-II Weyl semimetal
TaIrTe4. The crystal structure of TaAs and TaIrTe4 belong to
point group 4mm and mm2, respectively. According to the
symmetry analysis for these two point groups, TaAs has only
one independent component with Dxy=−Dyx, and TaIrTe4 has
two independent components of Dxy and Dyx. Our calcula-
tions fulfill these symmetry restrictions. The results reach
convergence at a dense k grid of 7203 and 4803 for TaAs and
TaIrTe4, respectively, see Fig. 14. The Berry curvature dipole
has a value of about 0.37 for the xy component of TaAs, in
good agreement with Ref. [91]. The Berry curvature dipole in
TaIrTe4 can reach up to around −0.19 and −0.50 for the xy
and yx components, respectively.

VI. SUMMARY AND CONCLUSIONS

We thoroughly documented the underlying methods of the
FPLO package for the construction of symmetry conserving
maximally projected Wannier functions.

The method does not enforce maximum localization but
rather results in Wannier functions with (near) maximum pro-
jection onto FPLO orbitals or linear combinations thereof, yet
yields a very high degree of localization due to the nature of
the orbitals while retaining the symmetry properties of the
chosen projectors. The simplicity of this algorithm leads to
numerical efficiency and a high level of accuracy, which is

TABLE IX. bcc W, SHC in unit of (h̄/e) (S/cm).

W

σ z
xy

This work −819
Ref. (ab initio) −785 [82]
Ref. (Exp., room temperature) −1270 ± 230 [83]
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TABLE X. bcc Mo, SHC in unit of (h̄/e) (S/cm).

Mo

σ z
xy

This work −276
Ref. (Exp., K = 10 T) −230 ± 50 [65]
Ref. (Exp., room temperature) −23 ± 5 [67]

needed in the context of topological properties, where sym-
metry conservation is of the essence, especially when taking
derivatives (e.g., for the Berry curvature dipole).

For a complete treatment of topological properties, the full
Berry connection/curvature is desirable. To this end, we dis-
cussed the position operator matrix elements as they have to
be treated in a local orbital context as well as their symmetry
properties in the context of possible approximations of this
operator. The latter gives valuable insights for the application
of such approximations in tight binding models with implicit
(unknown) Wannier basis.

TABLE XI. Hexagonal transitionmetals from [84]. The SHC is
in unit of (h̄/e) (S/cm).

Sc

σ z
xy σ x

yz σ y
zx

This work −40 7 6
Ref. (ab initio) ∼50 ∼−10 –

Ti

σ z
xy σ x

yz σ y
zx

This work −2 −23 −19

Ref. (ab initio) ∼5 ∼−15 –

Zn

σ z
xy σ x

yz σ y
zx

This work −70 −6 −6
Ref. (ab initio) ∼−130 ∼−20 –

Y

σ z
xy σ x

yz σ y
zx

This work 109 77 68
Ref. (ab initio) ∼140 ∼40 –

Zr

σ z
xy σ x

yz σ y
zx

This work −242 −48 −19
Ref. (ab initio) ∼−300 ∼−60 –

Tc

σ z
xy σ x

yz σ y
zx

This work −160 −18 −97
Ref. (ab initio) ∼−200 ∼−140 –

Ru

σ z
xy σ x

yz σ y
zx

This work 90 190 163
Ref. (ab initio) ∼−10 ∼90 –

TABLE XII. Continuation of Table XI. The SHC is in unit of
(h̄/e) (S/cm).

La

σ z
xy σ x

yz σ y
zx

This work 290 316 308
Ref. (ab initio) ∼150 ∼300 –

Hf

σ z
xy σ x

yz σ y
zx

This work −375 −53 112
Ref. (ab initio) ∼−800 ∼−600 –

Re

σ z
xy σ x

yz σ y
zx

This work −325 −441 −519
Ref. (ab initio) ∼−500 ∼−700 –

Cd

σ z
xy σ x

yz σ y
zx

This work −93 2 −5
Ref. (ab initio) ∼−30 ∼−20 –

Os

σ z
xy σ x

yz σ y
zx

This work −68 −162 −72
Ref. (ab initio) ∼−260 ∼−300 –

The method has been applied to a set of compounds to il-
lustrate various applicational aspects as well as to demonstrate
the general quality of the resulting Wannier models and the
available post processing tools.

TABLE XIII. Other compounds, SHC in unit of (h̄/e) (S/cm).

Pt3O4

bcc Cubic
σ z

xy σ z
xy

This work 1420 215
Ref. (ab initio) [85] 1838 244

PtTe2

This work (largest component σ x
yz) 122

Ref. (Exp. room temperature) [86] 100–800

NbSe2

This work (largest component σ z
yx) 188

Ref. (Exp. room temperature) [87] ∼150
WTe2

σ x
zy σ y

zx

This work 34 85
Ref. (ab initio) [88] ∼20 ∼80
Ref. (Exp., room temperature) [88] 14–96

Bi2Se3

σ z
xy σ y

zx σ x
yz

This work 105 104 96
Ref. (Exp., room temperature) [89] ∼80
Ref. (Exp., room temperature) [90] 500–1000
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FIG. 14. (a) Berry curvature dipole of TaAs. The solid and
dashed lines represent the xy and yx components, respectively. The
Berry curvature dipole of (b) the xy component and (c) the yx com-
ponent of TaIrTe4.

We gave an idea of the efficiency of our method and re-
peated some of the calculations using the WANNIER90 package
to convince the reader that our method indeed yields com-
parable results. We gave an extensive list of results for the
anomalous Hall effect, the anomalous Nernst effect, and the
spin Hall effect compared to results of other publications.

As a technical reference an extended Appendix documents
the FPLO basis orbitals and their transformation properties
from which the symmetry properties of the Wannier functions
result.

In summary, we believe to have demonstrated that max-
imally projected symmetry conserving Wannier functions
based on optimized local orbital methods have similar lo-
calization and flexibility as maximally localized Wannier
functions, however with minimal computational cost and
complexity and explicit symmetry properties.
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APPENDIX A: LOCAL BASIS STATES

1. FPLO basis

An FPLO basis orbital �Rsν (r) is a solution of a
Schrödinger/Dirac equation in an atom centered suitably mod-

ified potential with compact support. The boundary conditions
are chosen such that there is no leakage of the orbital wave
function at the compact support radius (this is not possible
exactly in the Dirac case but practically the leakage can be
made tiny and irrelevant). The orbitals sit in the unit cell at
lattice vector R at site s and have quantum numbers ν. To be
precise �Rsν (r) = �sν (r − R − s), where �sν (r) is a function
of atom site index s and qns. ν.

In non- and scalar-relativistic modes, the orbitals have the
shape �snlmσ = ϕsnl (r)Ylm(r̂)χσ where n is the main quantum
number, Ylm is a real spherical harmonic with angular momen-
tum qns. l and m and χσ is a spin-1/2 basis spinor defined via
σzχσ = χσσ (σ = ±1). The radial basis functions are not spin
dependent which is compensated by the variational freedom
of the chosen basis set which contains polarization orbitals
additionally to the chemical valence (and semicore) orbitals.

In the full relativistic mode, the orbitals are solutions to a
four-component Dirac equation and are four spinors

�snl jμ =
(

gsnl j (r)χκμ

i fsnl j (r)χ−κμ

)
(A1)

with one large component (gsnl j) and one small compo-
nent ( fsnl j) radial function per l j-shell and spherical spinors
χκμ, where κ = (2 j + 1)(l − j) are the eigenvalues of the
spin orbit operator κ̂ = 1 + σ̂L̂ with κ̂χκμ = −χκμκ (in de-
tail κ j=l− 1

2
= l and κ j=l+ 1

2
= −l − 1) and μ = − j,− j +

1, . . . , j is the Ĵz eigenvalue.
The orbitals can be made orthonormal at each site. How-

ever, off-site orthonormality is hard to achieve, since this
would mean to explicitly construct Wannier functions from
the start. With a proper choice of orbitals a well conditioned
overlap matrix

SR′s′ν ′,Rsν = 〈�R′s′ν ′ |�Rsν〉
can be achieved. Lattice translations

T̂R′�Rsν (r) = �Rsν (r − R′) = �sν (r − R − s − R′)

= �R+R′,sν (r) (A2)

yield translation invariance according to

SR′s′ν ′,Rsν = 〈T̂−R′�R′s′ν ′ |T̂−R′�Rsν〉
= 〈�0s′ν ′ |�R−R′,sν〉
= S0′s′ν ′,R−R′,sν . (A3)

2. Bloch sums

In order to form extended basis states, Bloch sums of local
orbitals are defined as

�k
sν (r) = 1√

N

∑
R

eik(R+λs)�Rsν (r), (A4)

where λ = 0, 1 (λ = 1 − λ) picks a particular phase gauge
as discussed in the main text. The normalization contains
the number of unit cells N in the Born-von-Kármán (BvK)
torus, which is there for formal correctness but never actually
appears in any coded formulas except for the normalization of
the Fourier back transform. The Fourier transformed overlap
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matrix is defined as

Sk
s′ν ′,sν = 1

N

∑
RR′

eik(R+λs−R′−λs′ )SR′s′ν ′,Rsν

= 1

N

∑
RR′

eik(R+λs−R′−λs′ )S0s′ν ′,R−R′sν

= 1

N

∑
R′

∑
R

eik(R+λ(s−s′ ))S0s′ν ′,Rsν

=
∑

R

eik(R+λ(s−s′ ))S0s′ν ′,Rsν, (A5)

which motivates the normalization choice in Eq. (A4). The
exponential contains the difference vector between the two
orbital positions if λ = 1, which is why we call it relative
gauge.

The overlap of a Bloch sum with a single basis orbital �Rsν

reads〈
�k

s′ν ′
∣∣�Rsν

〉 = 1√
N

∑
R′

e−ik(R′+λs′ )〈�R′s′ν ′ |�Rsν〉

= 1√
N

∑
R′

e−ik(R′+λs′ )SR′s′ν ′,Rsν

= 1√
N

∑
R′

e−ik(R−R′+λs′ )S0s′ν ′,R′sν

= 1√
N

∑
R′

eik(R′+λ(s−s′ ))S0s′ν ′,R′sνe−ik(R+λs)

= 1√
N

Sk
s′ν ′,sνe−ik(R+λs) (A6)

using R′ → −R′ + R and Eqs. (A3) and (A5). Using
Eqs. (A4) and (A6), the overlap of two Bloch functions yields
the overlap matrix

〈
�k

s′ν ′
∣∣�k

sν

〉 = 1

N

∑
R

Sk
s′ν ′,sν = Sk

s′ν ′,sν .

We introduce local linear combinations of orbitals (MOs) for
projection purposes

φRci =
∑
R′sν ′

�R′sν ′UR′sν ′,Rci, (A7)

which shall be translation invariant in the same way as the
orbitals Eq. (A2), i.e., UR′sν ′,Rci = U0sν ′,R−R′ci and have Bloch
sums

φk
ci = 1√

N

∑
R

eik(R+λc)φRci =
∑
sν ′

�k
sν ′U k

sν ′,ci,

U k
sν ′,ci =

∑
R

U0sν ′,Rcie
ik(R+λc−λs).

To calculate the overlap between a MO and an orbital
Bloch sum, Eq. (A6) gets then modified according to〈

�k
sν

∣∣φRci
〉 = 1√

N
(SkU k)sν,cie

−ik(R+λc). (A8)

The Fourier back transformation which yields real space
objects is practically obtained by a k sum whose underlying

mesh implicitly defines the BvK torus and N

S0s′,Rs =
∑

k

fke−ik(R+λ(s−s′ ))Sk
s′s (A9)

with ∑
k

fk = 1.

If the full mesh is used fk = N−1, but if only irreducible
k points are used fk is corrected for the multiplicity of the
irreducible point. Combining Eqs. (A5) and (A9), one gets∑

k

fkeik(R−R′ ) = δR,R′ ,

which is only true modulo a lattice vector which describes
the BvK periodicity. The back transformation of a Bloch sum
itself with correct normalization reads

�Rs = 1√
N

∑
k

e−ik(R+s)�k
s .

A translation invariant operator in Bloch sum basis (as the
overlap) contains two Bloch sums and is diagonal in k space.
A full Fourier back transformation of both sides of the matrix
then reduces to Eq. (A9) with 1/N normalization instead of
1/

√
N .

APPENDIX B: SYMMETRY

1. Local basis symmetry

The complex spherical harmonics are defined as

Ylm(ϕ, θ ) = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P|m|

l (cos θ )eimϕ

(B1)

with the associated Legendre functions for positive m as a
function of z = cos(θ )

Pm
l (z) = (1 − z2)

m
2

dm

dzm
Pl (z),

Pl (z) ≡ P0
l (z) = 1

2l l!

dl

dzl
(z2 − 1)l .

From this, the real harmonics are obtained via

Ylm(θ, ϕ) =
∑

m′
Ylm′ (θ, ϕ)U ∗

mm′

=

⎧⎪⎪⎨
⎪⎪⎩

1√
2
((−1)mYl|m| + Yl−|m|) m > 0

Yl0 m = 0
1

i
√

2

(
(−1)|m|Yl|m| − Yl−|m|

)
m < 0

.

(B2)

The spherical spinors as introduced after Eq. (A1) are
defined as

χκμ =
∑
s=±1

χsYlμ− s
2
cs
κμ (B3)
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with basis spinors χs, complex harmonics Eq. (B1) and
Clebsch-Gordon coefficients

cs
κμ = −

(
s(κ + |κ|) + (κ − |κ|)

2|κ|
)√

1

2
− s

μ

(2κ + 1)
,

which can be written as

χκμ =
lκ∑

s=±1,m=−lκ

χsYlκ mT lκ
ms,κμ,

χκμ =
lκ∑

s=±1,m=−lκ

χsYlκ m(UT )lκ
ms,κμ,

T l
ms,κμ = δm,μ− s

2
cs
κμ (B4)

with lκ = |2κ+1|−1
2 , where T l can be arranged in a unitary

matrix for each l shell.
Inversion Îr = −r at the origin of the harmonics with

Î f (r) = f (−r) acts like

ÎYlm = Ylm(−1)l , ÎYlm = Ylm(−1)l , Îχκμ = χκμ(−1)lκ ,

Îχs = χs.

A proper rotation α̂ with α̂ f (r) = f (α̂−1r) parametrized by
the Euler angles is represented by the Wigner-D functions in
the l or l j basis which without further details reads

α̂Ylm =
l∑

m′=−l

Ylm′Dl
m′m(α), (B5a)

α̂Ylm =
l∑

m′=−l

Ylm′D̃l
m′m(α),

α̂χκμ =
jκ∑

μ′=− jκ

χκμ′D jκ
μ′μ(α), (B5b)

α̂χσ =
∑

σ ′=±1

χσ ′D
1
2
σ ′σ (α), (B5c)

where jκ = 2|κ|−1
2 and D̃m′m(α) = (UD(α)U +)m′m, with U

from Eq. (B2).
From Eqs. (B3)–(B5)

D
1
2 DlT l = T lD j (B6)

where all matrices must be appropriately formed for the com-
plete l shell (which includes the two j = l ± 1

2 subshells or
the single j = 1

2 shell for l = 0). Now, since j−κ = jκ both
spherical spinors in Eq. (A1) transform with the same D jκ and
Eq. (B6) yields

α̂(�lT l+) = (�lT l+)D
1
2 Dl , (B7)

which shows that the totality of all four spinors of an l shell
�l = (�l

j=l− 1
2
�l

j=l+ 1
2
) multiplied by T l+ transforms as non-

relativistic complex harmonics Y (or as real harmonics Y if
(UT l )+ is used).

Finally, the time reversal operator is defined as θ =
−iσyK0, where σy is the y component of the Pauli matrix
vector and K0 is complex conjugation, which gives the gen-

eral action θ fi = ∑
i′ fi′Dθ

i′iK0, where Dθ can be read off the
following relations:

θYlm = Yl−m(−1)mθ, (B8a)

θYlm = Ylmθ, (B8b)

θχκμ = χκ−μ(−1)l+ j−μK0, (B8c)

θχσ = χ−σ σK0. (B8d)

2. Space group symmetry/time reversal

The space group contains the set of operations

TRg = TR{α|τα} = {α|τα + R},
where TR is a lattice translation and g = {α|τα} is the Seitz
symbol containing a proper/improper rotation α and a nonlat-
tice translation τα . The latter depends on the origin choice and
a particular pick among all the vectors τα + R. A real space
vector transforms according to

TRgr = {α|τ + R}r = gr + R = αr + τ + R.

This is especially true for a lattice site s + R′ for which one
gets

TRg(R′ + s) = αR′ + gs + R = αR′ + αs + τ + R.

The inverse is given by

{α|τ + R}−1 = {α−1| − α−1(τ + R)}. (B9)

When setting up a structure a certain set of sites will be
generated. They do not need to lie in the first unit cell. The set
of transformed sites gs will in general not be identical to this
original set. A simple lattice translation

gs = sg + Rg,s

will map the transformed set back onto the original one. If
this is done consistently, the site numbers s, sg can be used as
indices to orbitals and Bloch sums.

The vector of all orbitals (and of Wannier functions) at a
site transforms according to

g�Rs(r) = g�s(r − R − s)

= �s(g
−1r − R − s)

= �s(α
−1(r − τ) − R − s)

= �s(α
−1(r − αR − αs − τ))

= �s(r − αR − sg − Rg,s)D�
s (α)

= �αR+Rg,s,sg (r)D�
s (α) (B10a)

= �g(Rs)(r)D�
s (α), (B10b)

where D�
s (α) is the appropriate transformation matrix, which

transforms orbitals at site indexed by s into orbitals at site
indexed by sg. For the FPLO basis, these matrices are the same
at each site and are obtained according to Appendix B 1. The
last row, Eq. (B10b), is a useful short hand for Eq. (B10a) in
deriving symmetry properties since g(R + s) is a complete set
of lattice sites which can serve as summation variable.

In case of molecular orbitals as WF projectors, the symme-
try properties of the WFs is an implicit input in our method
an they are required to transform akin to Eq. (B10a). The
input matrix U in Eq. (A7) together with the transformation
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properties of the orbitals D�
s determine the transformation

properties of φc completely. In practice, one chooses U in
Eq. (A7). The code looks if application of symmetry replicates
the set of Wannier functions and if the resulting matrices
Dφ

c are unitary. If not the input is invalid. This requires the
following relations

gφc =
∑
Rs

g�RsURs,0c

=
∑
Rs

�g(Rs)D
�
s (α)URs,0c

= φgcDφ
c (α)

=
∑
Rs

�RsURs,gcDφ
c (α)

=
∑
Rs

�g(Rs)Ug(Rs),gcDφ
c (α)

or

URs,0c = (
D�

s (α)
)+

Ug(Rs),gcDφ
c (α),

where again we need to replace g(Rs) by αR + Rg,s, sg and gc
by Rg,c, cg.

Additionally, useful operators need to be lattice periodic

TRB̂(r)T −1
R = B̂(r − R) = B̂(r) (B11)

and invariant under the space group

gB̂(r)g−1 = B̂(g−1r) = B̂(r)DB(α), (B12)

where DB(α) is the representation matrix of the operator. For
example, DB(Îα) = ±α if B̂ is a polar (+α) or axial (−α)
vector and α a proper rotation. This does however not apply
to the position operator r̂, since it is not translational invariant.
For all point group operations which leave the origin invariant,
α̂r̂α̂−1 = α−1r = rα holds, but for a general space group op-
eration one gets gr̂g−1 = α−1(r − τ ) = (r − τ )α.

If time reversal applies, it yields

θ B̂(r)θ−1 = B̂(r)DB(θ ), (B13)

where DB(θ ) is, e.g., +1 for the Hamiltonian and −1 for
the spin and magnetic field. In full relativistic spin polarized
mode products of time reversal with operations, which flip the
magnetic field, are group elements. We apply the latter only
to the subset of the actual space group, which preserves the
magnetization axis, i.e., we do not implement full magnetic
groups.

Using the shorthand Eq. (B10b) with its meaning
Eq. (B10a) matrix elements transform as

BR′s′,Rs = 〈�R′s′ |B̂|�Rs〉
= 〈g�R′s′ |gB̂g−1|g�Rs〉
= D�+

s′ 〈�g(R′s′ )|B̂|�g(Rs)〉D�
s DB

= D�+
s′ Bg(R′s′ ),g(Rs)D

�
s DB, (B14)

where DB applies to the degrees of freedom of the internal
tensor structure of B.

With the general behavior [details in Eq. (B8)]

θ� = �D�θK0, (B15a)

�+θ−1 = K0D�θ+�+, (B15b)

one gets the general behavior of matrix elements under time
reversal

BR′s′,Rs = 〈�R′s′ |θ−1θ B̂θ−1θ |�Rs〉
= K0D�θ+

s′ 〈�R′s′ |B̂DBθ |�Rs〉D�θ
s K0

= (D�θ+
s′ B̂R′s′,RsD

�θ
s DBθ )∗. (B16)

Now, the transformation of Bloch sums of LOs/WFs is ob-
tained from Eqs. (A4) and (B10a) where the use of backfolded
sites sg is of the essence

g�k
s = 1√

N

∑
R

eik(R+λs)g�Rs

= 1√
N

∑
R

eik(R+λs)�αR+Rg,s,sgD
�
s

= 1√
N

∑
R

eiαk(αR+λαs)�αR+Rg,s,sgD
�
s

= 1√
N

∑
R

eiαk(R+λsg+λαs−Rg,s−λsg)�RsgD
�
s

= �αk
sg

D�
s eiαk(λαs−Rg,s−λsg)

= (�αkD�k)s (B17)

with

D�k
s′s = δs′sgD

�
s e−iαk(λ(gs−sg)+λτ ). (B18)

Forming matrix elements of B̂ with Bloch sums, inserting
pairs of gg−1 and using Eqs. (B12) and (B17) yields〈

�k
s′
∣∣B̂∣∣�k

s

〉 = 〈
g�k

s′
∣∣gB̂g−1

∣∣g�k
s

〉
(B19)

= eiαkλ(gs′−s′
g)D�+

s′
〈
�αk

s′
g

∣∣B̂∣∣�αk
sg

〉
D�

s DBe−iαkλ(gs−sg) (B20)

from this one sees that the relative gauge λ = 0 leads to
simpler expressions, since all the phase factors in Eq. (B20)
vanish.

Equations (A4) and (B15a) gives the time reversal of the
orbital Bloch sums

θ�k
s = θ

1√
N

∑
R

eik(R+λs)�Rs

= 1√
N

∑
R

e−ik(R+λs)θ�Rs

= 1√
N

∑
R

e−ik(R+λs)�RsD
�θ
s K0

= �−k
s D�θ

s K0 (B21)

and together with Eqs. (B15b) and (B13)〈
�k

s′
∣∣B̂∣∣�k

s

〉 = 〈
�k

s′
∣∣θ−1θ B̂θ−1θ

∣∣�k
s

〉
= (

D�θ+
s′

〈
�−k

s′
∣∣B̂∣∣�−k

s

〉
D�θ

s DBθ
)∗

. (B22)
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If the operation is a product θg this gets modified by carefully
inserting Eq. (B20) for −k into Eq. (B22) which is not spelled
out due to the unwieldy phase factors. Essentially we let
D� → D�D�θ , DB → DBD�θ and αk → −αk in Eq. (B20)
and apply complex conjugation to the whole rhs.

In order to symmetrize the matrix elements when needed
we make use of the fact that the sum of the rhs of Eq. (B14)
over all group operations divided by the number of group
elements is a projector. So, for all pairs of lattice sites we
perform this sum over all transformed pairs. In case if time
reversal is contained in the operation the corresponding for-
mulas Eq. (B16) or a mix of this with Eq. (B14) must be used.

On a final note, in relativistic case the ambiguity of choos-
ing the rotation or rotation + 2π as pointgroup part of g
cancels out in all formulas which transform matrix elements,
since they are bilinear in the orbitals.

3. Bloch theorem

Equation (B17) can be specialized to pure translations by
using α = 1, τ = R i.e., g = {E |R} for which gs = s + R and
D�

s (α) = 1, which gives the Bloch theorem

TR�k
s = �k

s e−ikR, (B23)

which can be applied to matrix elements of translational in-
variant operators Eq. (B11) between Bloch sums Eq. (A4) of
different k vectors (the most general case) to get (dropping all
nonessential indices)

〈�q|B̂|�k〉 = 〈TR�q|TRB̂T −1
R |TR�k〉

= 〈�q|B̂|�k〉e−i(k−q)R. (B24)

For q �= k in the first BZ, the phase cannot become one and
hence

〈�q|B̂|�k〉 = δq,k〈�k|B̂|�k〉. (B25)

For the position operator which fulfills

TRrT −1
R = r − R, (B26)

Eq. (B24) becomes

〈�q|r|�k〉 = (〈�q|r|�k〉 − δqkSkR)e−i(k−q)R, (B27)

which specializes to

〈�k|r|�k〉 = 〈�k|r|�k〉 − SkR (B28)

for the k-diagonal terms, which shows that the limit q →
k is badly defined and that the operator is essentially k-
nondiagonal.

The Berry operator Eq. (28) transforms like the position
operator itself:

TRβkT −1
R = eikre−ikRi∇ke−ikreikR

= eikri∇ke−ikr + e−ikR(i∇keikR)

= βk − R,

which then gives

TR|βk�
k〉 = ∣∣TRβkT −1

R TR�k〉
= |(βk − R)�ke−ikR〉
= |βk�

ke−ikR〉 − |�k〉e−ikRR.

Applying Eq. (29a) to the first term of the rhs yields

TR|βk�
k〉 = |βk�

k〉e−ikR (B29)

and hence Eqs. (B24) and (B25) apply and βk is k-diagonal.

4. Berry connection/curvature

The transformation of the vector valued functions Eq. (38)
is obtained by using Eq. (B9) and gf (r) = f (g−1r) as in
Eq. (B10) which results in (g−1r − R − s) = (r − αR − gs)α
for the r factor and hence in

g(r�)Rs = (r�)g(Rs)D
�
s (α)α, (B30)

where the last α acts on the vector structure. Hence, the
reduced position operator matrix elements Eq. (43) transform
as Eq. (B14) with DB → α, i.e., as LO matrix elements in the
orbital indices and as a polar vector in the position operator
indices. Bloch sums of Eq. (B30) lead to the transformation
of Eq. (42) according to

〈�k|(r�)k〉 = D�k+〈�αk|(r�)αk〉D�kα (B31)

with D�k from Eq. (B18).
Equations (41) and (B31) then lead to

Ak
� − λSks = D�k+(

Aαk
� − λSαks

)
D�kα, (B32)

where s is the diagonal matrix containing the site vectors of
the corresponding orbitals. By using Eqs. (B18) and (B20)
with B̂ = 1 this can be transformed into

Ak
� = D�k+Aαk

� D�kα + λSk(s − sgα). (B33)

From this, it is clear that for WFs (Sk = 1) approximation
Eq. (46) fulfills the transformation law Eq. (B32) trivially
while setting the basis connection to zero Ak

� = 0 will in
general not.

Acting with g on r in Eq. (28) and using ∇k = ∇αkα, we
get

gβkg−1 = (βαk − τ)α,

which allows to derive the general transformation properties
of Ak

� directly when assuming a general law g�k = �αkD�k

with some representation matrices D�k

Ak
� = 〈�k|βk�

k〉
= 〈�αkD�k|(βαk − τ)α�αkD�k〉
= 〈�αkD�k|(βαkα�αk)D�k + �αki∇αkαD�k〉 − Sk

�τα

= 〈�αkD�k|βαkα�αk〉D�k + D�k+Sαk
� i∇kD�k − Sk

�τα

= D�k+(
Aαk

� α + Sαk
� i∇k

)
D�k − Sk

�τα, (B34)

which specializes to Eq. (B33) by inserting the gradient of
Eq. (B18), in other words the local basis connection trans-
forms as a general Berry connection matrix would.

Now, we introduce the basis change �k = wkCk, which
leads to the Berry connection matrix Eq. (54a). Then we can
show that if Ak

w transforms as Eq. (B34) with � → w, also
Ak

� [Eq. (54a)] transforms like Eq. (B34) with � → �. Using
the abbreviations bk → b, bαk → bα , and C+bC → 〈b〉C , one
gets the transformation properties of �, w, and C

gw = wαDw, � = wC,

g� = �αD�, DwC = CαD�,
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and 〈
Sα

wi∇〉
DwC = 〈〈

Sα
wi∇〉

Dw

〉
C + 〈〈

Sα
w

〉
Dw i∇〉

C

= 〈〈
Sα

wi∇〉
Dw

〉
C + 〈

Swi∇〉
C, (B35)

which leads to

Aw = 〈
Aα

wα
〉
Dw + 〈

Sα
wi∇〉

Dw − Swτα, Eq. (B34);

A� = 〈Aw〉C + 〈Swi∇〉C [Eq. (B54a)]

= 〈〈
Aα

wα〉Dw

〉
C + 〈〈

Sα
wi∇〉

Dw

〉
C − S�τα + 〈Swi∇〉C

= 〈
Aα

wα
〉
DwC + 〈

Sα
wi∇〉

DwC − S�τα

= 〈
Aα

wα
〉
CαD� + 〈

Sα
wi∇〉

CαD� − S�τα

= 〈
Aα

wα
〉
CαD� + 〈〈

Sα
wi∇〉

Cα

〉
D� + 〈〈

Sα
w

〉
Cα i∇〉

D� − S�τα

= 〈
Aα

�α
〉
D� + 〈

Sα
� i∇〉

D� − S�τα. (B36)

Of course, usually Wannier and eigenfunctions are orthonor-
mal, which means Sw,� = 1. Equation (B36) explicitly shows
that the basis change again leads to the generic transformation
law Eq. (B34). All we need to show now is that this law leads
to the proper transformation behavior of the curvature.

We start with the cross-product term, which we write in its
most general form (including the correction for nonorthonor-
mal �) using Eq. (B36)

iA+
�

1

S�

× A� = (a − S�τα)+
1

S�

× (a − S�τα) (B37)

with a = A� + S�τα = 〈Aα
�α〉D� + 〈Sα

� i∇〉. Using the fact
that τα is constant diagonal in matrix space and hence com-
mutes with any matrix one gets (τα) × S� (τα) = 0 and a ×
(τα) + (τα) × a = 0. Furthermore, Eq. (35) gives a+ = a −
i∇S� and hence a+ × τα + τα × a = −(i∇S� ) × τα. which
ultimately yields

iA+
�

1

S�

× A� = ia+ 1

S�

× a − (∇S� ) × (τα). (B38)

Next the transformation of � yields S� = D�+Sα
�D� and

since all matrices are invertable also

1 = D� 1

S�

D�+Sα
�,

which by insertion gives

i∇D� = D� 1

S�

D�+Sα
� i∇D�

= D� 1

S�

〈
Sα

� i∇〉
D� . (B39)

Furthermore, for any two vector valued quantities (bα) ×
(cα) = (b × c)α holds, where α = Iα if the point group op-
eration is improper and α otherwise. The gradient transforms
as ∇αkα = ∇k, which leads to ∇ × Aα

�α = (∇α × Aα
� )α and

with Eqs. (B39)

∇ × 〈
Aα

�α
〉
D�

= 〈(∇α × Aα
�

)
α
〉
D� + i

〈
Sα

� i∇〉+
D�

1

S�

× 〈
Aα

�α
〉
D�

+ i
〈
Aα

�α
〉
D�

1

S�

× 〈
Sα

� i∇〉
D� . (B40)

Also, by differentiation and Eqs. (B39)

∇ × 〈
Sα

� i∇〉
D� = i(

〈
Sα

� i∇〉+
D� − 〈(

i∇Sα
�

)〉
D� )

1

S�

〈
Sα

� i∇〉
D� .

(B41)

Equations (35), (B40), and (B41) then yield the curl of
Eq. (B36) after some term sorting

∇ × A� = 〈(∇α × Aα
�

)
α
〉
D� − i

〈
Aα

�α
〉+
D�

1

S�

× 〈
Aα

�α
〉
D�

+ ia+ 1

S�

× a − (∇S� ) × (τα), (B42)

which together with Eq. (B38) results in

∇ × A� = 〈(∇α × Aα
�

)
α
〉
D� − i

〈
Aα

�α
〉+
D�

1

S�

× 〈
Aα

�α
〉
D�

+ iA+
�

1

S�

× A�. (B43)

This is the most general case.
If � is orthonormal and an eigenbasis, the representation

matrices D� are now unitary D�+D� = 1 and block diago-
nal with blocks for each degenerate subspace and hence the
subspace projector P commutes [D�, P]− = 0 and hence

Q〈i∇〉D� P = QD�+i∇D�P

= D�+iQP∇D�

= 0 (B44)

and QaP = Q〈Aα
�α〉D� P and together Eq. (B38) specializes

to

iPA�Q × QA�P = iP
〈
Aα

�α
〉
D� Q × Q

〈
Aα

�α
〉
D� P

= i
〈
PAα

�αQ × QAα
�αP

〉
D�

= i
〈
PAα

�Q × QAα
�P

〉
D� α, (B45)

which shows that the A × A term of the non-Abelian Berry
curvature alone transforms as a matrix in orbital indices and
as pseudo vector in vector indices. Subtracting iPAP × PAP
from Eq. (B43), one finally gets for the full non-Abelian
Berry curvature PFnAP = P(∇ × A� − iA�P × PA� )P the
expression

Fk
�nA = D�k+Fαk

�nAD�kα. (B46)

Now, since both the full curvature as well as the A × A term
transform the same proper way, so also the difference 〈 f 〉C −
i〈A〉CQi × Qi〈A〉C in Eq. (54b) must transform this way.

The discussion of this section shows that the approximation
Eq. (46) leads to proper behavior of the connection and hence
curvature and consequently, that the leading term 〈Si∇〉 ×
〈Si∇〉 alone cannot transform properly in the periodic gauge.

5. Bloch sum gauge invariance

We show the influence of the Bloch sum gauge choice (λ)
on various expressions used in the main text. From Eq. (A4)
with � → w, one gets

wkλ = wkλ�k, �k = eiks(λ−λ), 0 = [�k, s]−, (B47)

Skλ = �−kSkλ�k (B48)
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with λ = 1 − λ and (λ − λ)2 = 1. Together with �k =
wkCk = wkλCkλ this leads to

Ckλ = �kCkλ, (B49a)

1 = Ckλ+SkλCkλ (B49b)

= Ckλ+SkλCkλ (B49c)

and altogether to

Akλ
w = �−k〈wkλ|βkw

kλ�k〉
= �−k〈wkλ|βkw

kλ〉�k + �−k〈wkλ|wkλ〉(i∇k�
k)

= �−kAkλ
w �k − (λ − λ)�−kSkλ

w �ks

= �−kAkλ
w �k − (λ − λ)Skλ

w s (B50)

so, the basis connection does not transform like a simple
operator [as the overlap Eq. (B48)]. Equations (B47), (B49),
and (B50) then give

〈A〉λC = Ckλ+Akλ
w Ckλ

= Ckλ+[
�−kAkλ

w �k − (λ − λ)Skλ
w s

]
Ckλ

= Ckλ+Akλ
w Ckλ − (λ − λ)Ckλ+Skλ

w sCkλ

= 〈Aw〉λC − (λ − λ)〈Ss〉λC, (B51)

and in a similar way,

〈Si∇〉λC = Ckλ+Skλi∇kCkλ

= Ckλ+Skλi∇k�
k+Ckλ

= Ckλ+[Skλ�k+i∇k + Skλi(∇k�
k+)]Ckλ

= 〈Si∇〉λC + (λ − λ)〈Ss〉λC . (B52)

Consequently, Eqs. (49) and (50) are not invariant under gauge
change of the Bloch sums, even though they are expressions
in the eigenbasis. However, their sum and hence the Berry
connection matrix in eigenbasis Eq. (54a) and the A × A
term in Eq. (54b) are invariant. In the following, we drop
the k index for simplification. The gradient of Eq. (B48) then
reads

∇Sλ = �+(∇Sλ + i(λ − λ)[Sλ, s]−)�. (B53)

The curl of the basis connection together with Eqs. (B50) and
(35) and Ss × s = 0 then reads

∇ × Aλ
w = ∇ × (

�+Aλ
w�

) − (λ − λ)
(∇Sλ

w

) × s

= �+(∇ × Aλ
w

)
�

− i�+(λ − λ)
(
s × Aλ

w + Aλ+
w × s

)
�

+ �+(isSλ × s)�, (B54)

which bracketed between Ck, by inserting CC+S = 1 where
needed and using Eq. (B49a), gives

〈∇ × Aw〉λC = 〈∇ × Aw〉λC − i(λ − λ)〈(s × Aw + A+
w × s)〉λC

+ i〈sS × s〉λC . (B55)

Finally, 〈Ss〉λC = 〈Ss〉λC and application of CC+S = 1 and
Eq. (B51) yields

〈A〉λ+
C × 〈A〉λC = 〈Aw〉λ+

C × 〈Aw〉λC
− (λ − λ)〈s × Aw + A+

w × s〉λC
+ 〈sS × s〉λC (B56)

from which follows

〈 f 〉λC − i〈Aw〉λ+
C × 〈Aw〉λC

= 〈 f 〉λC − i〈Aw〉λ+
C × 〈Aw〉λC, (B57)

and hence the full Berry connection Eq. (54b) is invariant too.

APPENDIX C: CRYSTAL STRUCTURES

1. CaCuO2

CaCuO2 forms a tetragonal lattice with spacegroup 123
(P4/mmm). We used lattice parameters a0 = 7.29434aB and
c0 = 6.04712aB with Wyckoff positions: Ca at 1d = ( 1

2
1
2

1
2 ),

Cu at 1a = (000) and O at 2 f = ( 1
2 00). We performed a non-

spin-polarized calculation in scalar relativistic mode within
the local (spin) density approximation L(S)DA [36] (PW92) in
FPLO version 19.00-60. The self-consistent k mesh contains
123 points in the primitive reciprocal unit cell.

2. bcc Fe

We performed a full relativistic spin polarized calculation
for bcc iron with space group 229 (Im3̄m), Wyckoff position
2a = (000) and lattice parameter a0 = 5.4aB in FPLO version
19.00-60. The exchange and correlation functional is LSDA
(PW92) and the magnetization axis is (001) with resulting spin
moment of 2.19μB. The self consistent k mesh contains 163

points in the primitive reciprocal unit cell.

3. B2 FeAl

We performed a full relativistic spin polarized calculation
for B2 FeAl with space group 221 (Pm3̄m) with Fe at Wyckoff
position 1a = (000) and Al at 1b = ( 1

2
1
2

1
2 ) and lattice param-

eter a0 = 5.364aB in FPLO version 19.00-60. The exchange
and correlation functional is LSDA (PW92) and the magneti-
zation axis is (001) with resulting spin moment of 0.662μB.
The self consistent k mesh contains 123 points in the primitive
reciprocal unit cell.

4. HgS

We performed a full relativistic non-spin-polarized cal-
culation for HgS with space group 216 (F4̄3m) with Hg at
Wyckoff position 4a = (000) and S at 4c = ( 1

4
1
4

1
4 ) and lat-

tice parameter a0 = 5.85aB in FPLO version 19.00-60. The
exchange and correlation functional is LSDA (PW92). The
self consistent k mesh contains 123 points in the primitive
reciprocal unit cell.

5. MgB2

We performed a scalar relativistic non-spin-polarized cal-
culation for MgB2 with space group 191 (P6/mmm) with
Mg at Wyckoff position 1a = (000) and B at 2d = ( 1

3
2
3

1
2 )

and lattice parameters a0 = 3.078aB, c0 = 3.552aB in FPLO
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version 19.00-60. The exchange and correlation functional is
LSDA (PW92). The self consistent k mesh contains 123 points
in the primitive reciprocal unit cell.

6. H2O

We performed a scalar relativistic non-spin-polarized cal-
culation for H2O in the group Pmm2 with H at Wyckoff
position 2e = (1.457, 0, 1.127)aB and O at 1a = (000) in
FPLO version 19.00-60 within LDA (PW92).

For completeness, we give the WF model Hamiltonian

H =

⎛
⎜⎜⎜⎜⎝

h2s h2s,2pz h2s,1s h2s,1s

h2s,2pz h2pz h2pz,1s h2pz,1s

h2s,1s h2pz,1s h1s h1s,1s

h2s,1s h2pz,1s h1s,1s h1s

⎞
⎟⎟⎟⎟⎠ (C1)

with parameters are h2s = −18.9547, h2s,2pz = 1.6832,
h2pz = −8.3644, h2s,1s = 6.5549, h2pz,1s = −2.9232, h1s =
−8.9814, and h1s,1s = 3.5277 and a subset of the DFT
eigenenergies

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

−24.398

−12.509

−8.6791

−6.6177 O2py omitted

0.3046

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)
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For the interested reader, we give an (incomplete) list of
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