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Electronic origin of ferroic quadrupole moment under antiferroic
quadrupole order and finite magnetic moment in Jeff = 3

2 systems
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We study the electronic origin of parasitic ferroic quadrupole moments in antiferroic quadrupole orders
by extending a model studied in G. Chen et al., Phys. Rev. B 82, 174440 (2010) with the effective angular
momentum Jeff = 3/2 quartet ground states. Taking into account the first crystalline-electric-field (CEF) excited
doublet, cubic anisotropy in the quadrupole moments emerges, which leads to the induced ferroic quadrupole
moments in the antiferroic quadrupolar phases. The hybridization with the CEF excited quartet states also
causes finite magnetic moments compatible to the observed size of the effective moment in typical Jeff = 3/2
systems, as opposed to the naive expectation of vanishing moments in the Jeff = 3/2 systems. These results
suggest the importance of the corrections arising from the high-energy CEF excited states in the Jeff = 3/2
systems.
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I. INTRODUCTION

Strongly correlated electrons systems with orbital de-
grees of freedom have attracted great attention in recent
years [1]. The orbital degrees of freedom possess potential
functions alternative to the modern magnetic-based devices
[2]. Combining the orbital and conventional spin degrees
of freedom inevitably leads to the notion of multipole mo-
ments [3]. Such multipole moments play important role
in correlated electron systems with strong spin-orbit cou-
plings. They can exhibit various fascinating phenomena such
as topological spin-orbital Mott insulators [4], spin-orbital
liquid states [5–8], superconductivity mediated by multi-
polar spin-orbital fluctuations [9,10], and in doped Mott
insulators [11].

For activating multipole physics, one needs high sym-
metry and strong spin-orbit couplings. Possible candidates
are Mott insulators with d1 configuration surrounded by
a regular oxygen octahedron. Although materials with 3d
electrons often exhibit the Jahn-Teller distortion as lower-
ing temperature, some 5d electron systems keep their cubic
symmetry even at low temperatures. As a such d electron
system, double-perovskite compounds A2BTrO6 (A = Ba,
Sr, Ca; B= Mg, Ca, Sr, Ba, Zn, Cd, Tr = Re, Os, Mo)
[12–22] and Ta chlorides A2TaCl6 (A = K, Rb, Cs) [23] have
been recently studied intensively. The oxygen octahedron
crystalline-electric-field (CEF) lifts the tenfold degeneracy
of the d electrons to the high-energy eg and the low-energy
t2g states. The latter is split further by the spin-orbit cou-
pling and form so-called effective angular momentum Jeff =
3/2 ground state and Jeff = 1/2 first excited state. In these
compounds, the spin-orbit coupling λ is of the order of ∼0.2–
0.4 eV, while the CEF gap between the ground t2g and the
excited eg states D is D ∼3–5 eV [23–25].

What is unique to these systems is that the ground state
with Jeff = 3/2 has no magnetic dipole moment as a result
of exact cancellation between the spin and orbital angular

momenta. This leads to various possibilities of multipole
orders at low temperatures. For example, Re based double-
perovskites exhibit ferroic and antiferroic quadrupole orders
in addition to dipole-octupole magnetic orders. In Ba2TrOsO6

(Tr = Zn, Mg, and Ca) with d2 configuration, octupole orders
have been suggested recently [26,27].

The vanishing magnetic dipole moment is also reflected
in the small moment typically ∼0.3–0.8μB in their high-
temperature magnetic susceptibility, where μB is the Bohr
magneton. This small but finite value has been interpreted as
a partial cancellation of the spin and orbital angular momenta
owing to the hybridization between the d and the oxygen p
orbitals [22,23,28].

In the pioneering work by Chen et al. [29], a model con-
taining the ground-state CEF quartet originating from the
t2g orbital was constructed in the limit of the strong spin-
orbit coupling λ → ∞. The quartet can be described by the
effective angular momentum Jeff = 3/2 and they predicted
several interesting multipolar ordered states in terms of the
multipole moments of the Jeff = 3/2 multiplet: an antiferroic
quadrupole order with the eg irreducible representation and
ferro- and antiferromagnetic dipole-octupole orders. These
results are indeed supported by the experimental observa-
tion of the phase transitions, e.g., in Ba2MgReO6 [22] and
Ba2NaOsO6 [30].

Recently, Hirai et al., reported that ferroic quadrupole mo-
ments ∼O20 = 3z2 − r2 emerge under the antiferroic order
of the type O22 = x2 − y2 below Tq = 33 K by their x-ray
experiments [31]. The presence of the ferroic moment can
be understood by a simple symmetry argument; the free
energy for the eg orbital moments contains a cubic cou-
pling ∼O2

22O20. This induces ferroic quadrupole moments
proportional to the square of the antiferroic ones. They
discuss this can be due to the Jahn-Teller effects and the
lattice anharmonicity. The former has been recently analyzed
and successfully reproduced the emergence of the ferroic
quadrupole moments [32].
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In this paper, we point out that d electron CEF excited
states can influence the CEF ground quartet with Jeff = 3/2,
which has no magnetic dipole moment and no cubic coupling
∼O2

22O20 without couplings to other degrees of freedom. In
the Jeff = 3/2 multiplets, the local cubic anisotropy which
arises from the CEF potential vanishes. The anisotropy can
emerge when the CEF excited states are taken into account.
Such anisotropy due to the excited spin-singlet state (�1 in the
cubic symmetry) are indeed discussed in the �3 non-Kramers
doublet ground state in Pr-based compounds [33–37] and the
analysis there is also applicable to the case of the d1 systems.
This is because the Jeff = 3/2 states is classified as �8 irre-
ducible representation (irrep) in the cubic symmetry and can
be regarded as a product of the spin-1/2 and the orbital eg(�3).
Indeed, the CEF first-excited state is the �7 state which is
the spin-1/2 and the orbital-singlet state. Thus, apart from the
spin degrees of freedom, the orbital sector is identical in the
two systems. For the small but finite magnetic dipole moment,
it will be shown that the corrections of order λ/D ∼ 0.1 leads
to non-negligible contribution to the magnetic moment in
realistic systems in this paper.

This paper is organized as follows. In Sec. II, we review
the model proposed in Ref. [29] and explicitly introduce the
matrix form of quadrupole operators including the excited
states. The exchange Hamiltonian is rewritten in terms of
these quadrupole and spin-orbital operators to make this pa-
per self-contained. In Sec. III, we show the results of the
two-site mean-field approximation. We discuss the effects of
the excited CEF state on the ferro components of the order
parameter in the antiferroic quadrupole ordered state and also
on the phase diagram. The temperature-magnetic field phase
diagrams are also analyzed. In Sec. IV, we discuss the results
in this paper and related materials. We also discuss how the
finite magnetic moment emerges in the ground state Jeff = 3/2
state. Finally, Sec. V summarizes this paper.

II. MODEL

We start by introducing the general model describing d1

electron configuration for arbitrary spin-orbit coupling and
CEF strength. This means that both t2g and eg degrees of
freedom together with the spin 1/2 ones are taken into ac-
count. We then derive an effective t2g-dominant model with six
states, ignoring the excited eg dominant states. The interaction
between the effective t2g electrons are introduced as similarly
to the study in Ref. [29]. We will not project them onto the
effective total angular momentum Jeff = 3/2, but keep both
Jeff = 3/2 and 1/2 constructed by the t2g orbitals.

A. Local Hamiltonian

The local part of the Hamiltonian is a conventional one
with the CEF parameter B4 and the spin-orbit coupling λ > 0
as

Hloc = HCEF + HSO, (1)

HCEF = B4

2

∑
σ,m,m′

γmm′d†
mσ dm′σ , (2)

HSO = λ
∑

σ,m,m′
(L)mm′ · sσσ ′d†

mσ dm′σ ′ . (3)

Here, dmσ is the d electron annihilation operator with
the z component of the orbital angular momentum m =
0,±1,±2 and the spin σ =↑,↓. The CEF potential for the
d electrons are parameterized by γmm′ ≡ ( 15

2 m2 − 35
2 |m| +

6)δm,m′ + 5δ|m−m′ |,4, where δm,m′ is the Kronecker delta. L and
s are the orbital angular momentum and the spin-1/2 matrices
for the d electrons, respectively.

The eigenstates of Hloc are split into 4 + 2 + 4 and their
eigenvalues are given as

ε1/2 = −2B4 + λ, (4)

ε3/2 = 1
4

(
2B4 − λ −

√
5
√

20B2
4 + 4B4λ + 5λ2

)
, (5)

ε′
3/2 = 1

4

(
2B4 − λ +

√
5
√

20B2
4 + 4B4λ + 5λ2

)
, (6)

where the subscripts represent the effective angular momenta;
3/2 (1/2) corresponds to �8(�7) state in the cubic point
group Oh.

For small λ/B4 with B4 > 0,

ε3/2 
 −2B4 − λ

2
− 3λ2

10B4
+ · · · , (7)

ε′
3/2 
 3B4 + 3λ2

10B4
+ · · · . (8)

When the CEF potential is sufficiently large, ε′
3/2 is much

larger than the other two and the excitation gap D is D 

5B4 ∼ 3–5 eV for the compounds mentioned in the Intro-
duction [23–25]. Thus, the quartet with its eigenenergy ε3/2

corresponds to the ground state with Jeff = 3/2 and the first
excited state is that with ε1/2. The former approximately con-
sists of the t2g electrons, while the latter is purely t2g origin, see
Appendix A. In the following, we will concentrate on these six
states and ignore the higher energy states at ε′

3/2. The matrices
which will be shown in the following [Eqs. (9),(11), and (12)]
are calculated within the full ten-dimensional Hilbert space
with keeping O(ε2) terms for later purposes. The six states
can be labeled by the diagonal elements of the total angular
momentum Jz for small ε ≡ λ/B4 ∼ 0.5:

Jz 
 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
2 0 −2

√
2 + αJ 0 0 0

− 5
2 0 −2

√
2 + αJ 0 0

1
2 + βJ 0 0 0

0 − 1
2 − βJ 0 0

− 3
2 0

3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Here the empty parts in the matrix have been omitted since
Jz = J†

z . The constants αJ and βJ are given as αJ = 3
√

2
5 ε +

O(ε3), βJ = 12
5 ε − 9

25ε2 + O(ε3). Note that the factor 1/3
in Eq. (9) and the basis of the matrix Jz is the eigenstates
for Hloc = diag(ε1/2, ε1/2, ε3/2, ε3/2, ε3/2, ε3/2). See the wave
functions in Appendix A. From this expression, it is clear
that the quartet can be described by the effective angular
momentum Jeff = 3/2 with Jz

eff = 3Jz when the excited states
are ignored for λ → ∞ with ε = λ/B4 → 0.
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For later purposes, it is useful to show the operators con-
structed by the t2g occupation number nxy, nyz, and nzx; n ≡
nxy + nyz + nzx, u ≡ 2nxy − nyz − nzx, and v ≡ √

3(nyz − nzx ).

n 
 diag(1, 1, 1 − δ, 1 − δ, 1 − δ, 1 − δ), (10)

u 


⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2−δ√
2

0 0 0

0 0 − 2−δ√
2

0 0

1 − δ 0 0 0

1 − δ 0 0

−1 + δ 0

−1 + δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

v 


⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2−δ√
2

0

0 0 0 0 2−δ√
2

0 0 −1 + δ 0

0 0 1 − δ

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where δ = 3
50ε2 + O(ε3), and as similarly to Eq. (9), we have

omitted the lower triangle part. For δ → 0, n → 1 (an identity
matrix) and eg quadrupole moments (u, v) are reduced to
the quadrupole moments (qu, qv ) constructed by the angular
momentum L as

qu = 2L2
z − L2

x − L2
y

3
, qv =

√
3
(
L2

x − L2
y

)
3

. (13)

Note that the u and v include the virtual processes accross
the CEF excited quartet states, which is different from that
calculated by the Lx,y,z restricted within the t2g states. It is
natural to obtain these expressions in terms of L for δ → 0
instead of those of the total angular momentum J since nxy,yz,zx

does not depend on the spin. We note that (u, v) possess
the off-diagonal matrix elements ± 2−δ√

2
between the ground

states and the excited states and their magnitudes are larger
than those among the ground states. This is the source of the
anisotropy in the quadrupole moments and enables one to ob-
tain ferroic quadrupole moments under antiferroic quadrupole
orders. In Fig. 1, the full expressions, i.e., without assumption
of the small ε(= λ/B4) are shown as a function of ε. The off-
diagonal elements for u and qu are exactly the same, while the
diagonal ones differ as ε increases. For the realistic parameter
regime ε � 0.5, the full expression and the approximated one
shown in Eqs. (11) and (12) are quantitatively the same.

The finite offdiagonal elements ±(2 − δ)/
√

2 ∼ ±√
2 for

ε � 0.5 leads to a finite cubic anisotropy in the local
quadrupole free energy, which can be calculated by the local
CEF model via the Legendre transformation [38] as

F loc
q ∼ F loc

q0 + a
(
φ2

u + φ2
v

) − b
(
φ3

u − 3φuφ
2
v

) + · · · , (14)

(u)13=(qu)13

1−δ

(qu)33

ε (=λ/B4)

M
at

ri
x
 e

le
m

en
ts

(u)33

(2−δ)/√2

FIG. 1. The matrix elements of u and qu as a function of ε =
λ/B4. For the off-diagonal elements, u and qu are identical: (u)13 =
−(u)24 = (qu)13 = −(qu)24, while for the diagonal ones, they are
different for finite ε: (u)33 = (u)44 = −(u)55 = −(u)66. (qu)33 =
(qu)44 = −(qu)55 = −(qu)66. The approximated values for the matrix
elements of u: 1 − δ and (2 − δ)/

√
2, are also plotted.

where F loc
q0 , a, and b are constants and φu and φv correspond to

the quadrupole fields for u and v, respectively. The coefficient
of the cubic anisotropy b is given by

b 
 1

2β2
(

3
2λ

)(
2 − δ√

2

)2

. (15)

Here, β is the inverse of temperature T . This is the con-
sequence of standard Landau expansion of quadrupole free
energy for βλ � 1. The T 2 dependence of b is meaningful
near the quadrupolar transition temperature Tq 
 33 K and T
is usually replaced by Tq for its phenomenological analysis.
We note that b is proportional to the square of the off-diagonal
element in u and v in Eqs. (11) and (12). The denominator
3
2λ represents that the perturbative processes to the CEF ex-
cited doublet are important. As for the opposite limit βλ ∼ 0,
b ∝ T .

B. Interactions in t2g manifolds

In this subsection, we introduce the exchange interactions
between the t2g electrons. The model used in this paper is
basically given in Ref. [29], but for making this paper self-
contained we summarize the model in the following.

First, we discuss exchange interactions in the quadrupole
sector. We use the quadrupole-quadrupole interactions intro-
duced in Ref. [29] with slightly different notation [36,37]
including two parameters giso and gani as

Hq =
∑
〈i, j〉

(gisoQi · Q j + ganiQi · Ki jQ j ). (16)

Here, Qi ≡ (ui, vi ) is the eg quadrupole vector at the ith
site and the sum runs over the nearest-neighbor sites on the
fcc lattice. The bond directional anisotropic interactions are
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parameterized by the matrix Ki j :

Ki j =
[−1 0

0 1

]
≡ K3 i j bond ‖ xy plane, (17)

Ki j =
[−c s

s c

]
≡ K1 i j bond ‖ yz plane, (18)

Ki j =
[−c −s
−s c

]
≡ K2 i j bond ‖ zx plane, (19)

with c ≡ cos 2π
3 and s ≡ sin 2π

3 . One can also rewrite them as

Kn = −t̂nt̂ T
n , t̂ T

n ≡ (cos nω, sin nω), n = 1, 2, 3, (20)

with ω ≡ 2π/3. Note that the unit vector t̂1,2,3 represents
the projection operator to 3x2 − r2, 3y2 − r2, and 3z2 − r2

type orbital, respectively. The parameter V in Ref. [29] cor-
responds to giso = −7V/72 and gani = −25V/72. Since the
ratio gani/giso = 25/7 > 2, this naively suggests an antiferroic
“v” order (O22 type) with the ordering vector at the X point:
(0, 0, 2π ) from the results for �3 non-Kramers doublet sys-
tems on the fcc lattice [36,37]. For a more general situation,
the ratio gani/giso �= 25/7, but in this paper we restrict our-
selves to the case derived in Ref. [29] since the modification
in gani/giso leads to just a qualitative difference for our purpose
in this paper.

For the spin part, by using the spin operator at the
ith site for the ρ=xy, yz, and zx orbital: Sμ

i,ρ≡ 1
2

∑
σσ ′ d†

i,ρσ

(σ̂ μ)σσ ′di,ρσ ′ , antiferromagnetic interactions are given as

Hs1 = J
xy-plane∑

〈i, j〉

⎛
⎝∑

μ

Sμ
i,xySμ

j,xy − 1

4
ni,xyn j,xy

⎞
⎠

+ (xy → yz and zx). (21)

Here, ni,ρ ≡ ∑
σ d†

i,ρσ di,ρσ is the number operator for ρ =
xy, yz, and zx orbitals. There are also ferromagnetic interac-
tion,

Hs2 = − J ′
xy-plane∑

〈i, j〉

⎡
⎣∑

μ

Sμ
i,xy

(
Sμ

j,yz + Sμ
j,zx

) + i ↔ j

⎤
⎦

+ 3J ′

2

∑
〈i, j〉∈xy-plane

ni,xyn j,xy

+ (xy → yz and zx). (22)

niρ is represented by the quadrupole operators as

ni,xy = 1

3
(ni + ui ), (23)

ni,yz = 1

3

(
ni − 1

2
ui +

√
3

2
vi

)
, (24)

ni,zx = 1

3

(
ni − 1

2
ui −

√
3

2
vi

)
. (25)

The terms consisting of ni,ρ’s in Eqs. (21) and (22) can be
rewritten by the quadrupole forms as

H ′
q = −J − 6J ′

72

∑
〈i, j〉

Qi · (1 − Ki j )Q j, (26)

which renormalizes giso and gani in Eq. (16).

Summing up Eqs. (16), (21), and (22) with Eq. (26), we
obtain the total nearest-neighbor exchange Hamiltonian as

Hint =
∑
〈i, j〉

(
g̃isoQi · Q j + g̃aniQi · Ki jQ j

)

+ (J + 2J ′)
∑

ρ

ρ-plane∑
〈i, j〉

Si,ρ · S j,ρ

− J ′ ∑
ρ

ρ-plane∑
〈i, j〉

(Si,ρ · S j + S j,ρ · Si ), (27)

where ρ = xy, yz, and zx. We have introduced the t2g spin
operators at the ith site: Si = ∑

ρ Si,ρ and the renormalized
quadrupole interactions g̃iso = giso − 1

72 (J − 6J ′) and g̃ani =
gani + 1

72 (J − 6J ′).

III. MEAN-FIELD RESULTS

In this section, we show the results of the mean-field anal-
ysis of the model (27) with the local part of the Hamiltonian
(1). In Sec. III A, we demonstrate the results for the magnetic
field h = 0. For h = 0, the CEF excited quartet plays just a
minor role as is evident from the small factors δ 
 3

50ε2 and

α 
 3
√

2
100 ε2 in the matrix elements in the Hamiltonian (27)

in addition to the energy gap D ∼ 5B4. See Eqs. (11), (12),
and (D1)–(D3). Thus, one can consider the ε = λ/B4 → 0
limit neglecting the CEF excited quartet states with setting
ε3/2 = 0, ε1/2 = 3λ

2 , and ε′
3/2 
 5B4 → ∞ in Eqs. (4), (7),

and (8), respectively. Here, we shift the energy in order to set
the energy of the CEF ground quartet states to 0. The matrix
elements of various operators are also simplified in this limit:
These simplifications are justified for h = 0. In Sec. III B, we
will discuss the properties under finite magnetic fields h �= 0.
It turns out that one needs O(ε) terms in the Zeeman energy.

A. Two-sublattice mean-field approximation for
zero magnetic field

Throughout this paper we assume two-sublattice orders,
which are indeed observed experimentally in the double-
perovskite compounds. This is because our primary purposes
in this paper are to demonstrate the electronic mechanism
for the induced ferroic quadrupole moments under antiferroic
quadrupole orders (Sec. III A) and the finite magnetic mo-
ments in Jeff = 3/2 systems (Sec. III B). In a recent analysis,
the authors of Ref. [39] have carried out similar calculations
with a four-sublattice unit cell. However, there is no comment
about the finite ferroic quadrupole moments in the antiferroic
quadrupole phase, although the reason is unclear. For our
purposes, it is sufficient to use the two-sublattice unit cell.
In some parameter sets used in the following sections, the
four-sublattice antiferromagnetic orders [39], which corre-
spond to double-q magnetic orders with induced a single-q
quadrupole moments, are more stabilized than a ferromag-
netic (FM) order: FM110 (see below), when one applies
the four-sublattice approximation. In this sense, our results
within the two-sublattice orders are regarded as simple ex-
tension with the excited states from the Jeff = 3/2 model in
Ref. [29]. Nevertheless, the comparison between the results
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FIG. 2. Temperature dependence of the quadrupole moments QF
u

and QAF
v for J ′/J = 0.3, V/J = 0.3, and λ/J = 104, 500, 100, 50,

and 20. QF
v = QAF

u = 0 and are not shown.

within the two-sublattice approximation and the experiments
for the FM110 orders in Sec. III B possesses important infor-
mation, since regardless of which types of the microscopic
interactions favor the experimentally observed FM110 phase,
qualitative properties in the FM110 phase are unchanged. The
detail analysis about the four-sublattice orders is one of our
future problems.

Let us take the two sublattice position in the unit cell as
A: (0, 0, 0) and B: (0, 1

2 , 1
2 ) and assume the ordered con-

figurations are uniform on the xy planes: (x, y, n) and (x +
1
2 , y, n + 1

2 ), where the lattice constant is set to unity and n
is an integer and x and y represent the site positions on the
z = n plane. This choice corresponds to the domain with its
ordering wave vector k∗

3 ≡ (0, 0, 2π ). The expressions for the
mean-field Hamiltonian are trivially obtained and listed in
Appendix C. The inclusion of the CEF excited doublet in the
model Hamiltonian causes only small effects on the overall
feature of the phase diagram and the magnitude of the primary
order parameters. Thus, the qualitative results here are almost
identical to those in Ref. [29] except for the ferroic quadrupole
moments.

Figure 2 shows the temperature dependence of the ferroic
and antiferroic quadrupole (AFQ) moments defined as

QF ≡ 〈Q〉A + 〈Q〉B, QAF ≡ 〈Q〉A − 〈Q〉B. (28)

Here 〈·〉A(B) indicates the expectation value calculated by
the A(B)-site local mean-field Hamiltonian. The data for
λ/J = 104 � 1 corresponds to those shown in Fig. 8 in
Ref. [29]. For these parameter sets, the system undergoes
a phase transition into a pure quadrupolar phase with the
primary antiferroic and induced ferroic ones (AFQ + f q) at
T/J 
 0.9 and another transition at T/J 
 0.3 into a mag-
netic phase (FM110). The order parameter configuration of
the FM110 phase is schematically shown in Fig. 2: the x and
y components of the ferromagnetic/antiferromagnetic dipole
SF,AF and ferromagnetic/antiferromagnetic octupole T F,AF

α,β

moments take finite values. The definition of these multipole
moments are given in Appendix B and we use the definition of

FIG. 3. T -λ phase diagram for V/J = 0.3, and (a) J ′/J = 0.1,
(b) 0.3, and (c) 0.5. The inset in (a) shows the AFM configurations
SAF, T AF

α , and T AF
β in the AFM* phase.

“F/AF” similarly to Eq. (28). Note that the realistic value of
λ in Fig. 2 is, e.g., λ/J = 100 baring the magnetic transition
temperature ∼20 K in mind. One can see a finite QF

u � −0.1
inside the AFQ + f q phase for 0.3 � T/J � 0.9. It is quite
natural that as λ decreases and thus the energy of the excited
doublet ε1/2 lowers, the ferroic quadrupole moment |QF

u | in-
creases. It is interesting that the effect of the excited state is not
negligible even if the excited state energy is 100 times larger
than the transition temperature into the quadrupole order. The
presence of the excited doublet also affects the transition tem-
peratures and the two transition temperatures slightly increase
upon decreasing λ but these are minor points.

Figure 3 shows T -λ phase diagram for V/J = 0.3 and
J ′/J = 0.1–0.5. For these parameter sets, the AFQ + f q
phase robustly appears from the normal (paramagnetic) state
via the second-order transition. For J ′/J = 0.3 and 0.5, the
ground state is the FM110, whose configuration is shown in
the inset of Fig. 2. For J ′/J = 0.1, the ground states change
with varying λ. When λ is large, the planer antiferromag-
netic (AFM) order takes place, where SAF

y /SAF
x = T AF

α,y /T AF
α,x =

−T AF
β,y /T AF

β,x and the other multipole moments are zero. As
noted in Ref. [29], owing to an accidental degeneracy there
is no anisotropy and SAF

x,y = 0 at T = 0, while the x and y

components of T AF
α,β are finite. This feature continues even

for finite λ. This is because the ground-state wave function
at each sublattice (A and B) in the AFM phase for finite λ

is exactly the same as that at λ = ∞, which is the eigenstate
of the quadrupole moment 〈Q〉A,B = (−1 + δ, 0). As is evi-
dent from Eq. (11), the matrix u does not have finite matrix
elements between the excited states and the fifth and sixth
states, while v in Eq. (12) does. In the language of Sρ , the
ground state is characterized by 〈Sxy〉A,B = 0, 〈Sz

yz,zx〉A,B = 0,
〈Sμ

yz〉A = −〈Sμ
yz〉B = −〈Sμ

zx〉A = 〈Sμ
zx〉B with μ = x or y. They

ensure that the state with 〈Q〉A,B = (−1 + δ, 0) remains to be
decoupled from the excited states since there is only a term
proportional to Sμ

i,yz − Sμ
i,zx (μ = x, y) in the magnetic sector

of the mean-field Hamiltonian at the site i, see Appendix C.
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FIG. 4. T -V phase diagram for J ′/J = 0.2. The lines represent
the phase boundaries. The color map shows

√−QF
u , where QF

u � 0
for any V and T . The square-root of −QF

u is used just for visualization
of the small value of QF

u in the AFQ phase.

This has indeed no matrix element between the states with
u = −1 + δ and the excited states as in u; see their expres-
sions in Eqs. (D7), (D8), (D10), and (D11).

In contrast, for small λ, the low-T phase is another anti-
ferromagnetic phase (AFM*) as schematically shown in the
inset of Fig. 3(a). The order parameters for the AFM* phase
are similar to those in the AFM phase, but there are finite
SAF

x,y moments even at T = 0. To realize the AFM* phase,
the spin-orbit coupling λ is tuned to be λ � 30J , where a
finite quadrupole moment v appears and thus the symmetry
is lowered. This also causes a finite mixing between the states
with u = −1 + δ and the excited states. Thus, the ground-state
wave function in the AFM state is no longer the eigenstate of
the mean-field Hamiltonian. Then, a different state becomes
the ground state with a finite SAF. Indeed, such a transi-
tion has been studied in the non-Kramers �3 system in our
previous study [37], where a kind of topological protection
is important. However, the value of the spin-orbit coupling
is not realistic, and thus, we do not analyze it in detail
here.

Let us now examine the T -V phase diagram for the realistic
value of λ 
 100J . There are three phases: the AFM, the
AFQ + f q, and the FM110 phases in Fig. 4. For visualizing
the magnitude of the QF

u in the ordered phases,
√−QF

u is
also depicted in Fig. 4 as colormap. The reason for using
the “square-root” is just due to the technical one to show the
finiteness in the AFQ + f q phase, where the |QF

u | is much
smaller than that in the other ordered phases. We have checked
that even for λ/J = 10000 ignoring the excited states, the
phase diagram is semiquantitatively the same as that shown in
Fig. 4. The difference is that the QF

u 
 0 in the AFQ + f q for
λ/J = 10000, which corresponds to the results in Ref. [29].

B. Finite magnetic fields

Under the magnetic field h = (hx, hy, hz ), which includes
the Bohr magneton μB and is related to the real magnetic field

H as h = μBH , we introduce the Zeeman coupling with the
electronic g factor with g = 2 as

HZ = −
∑

σ,σ ′,m,m′
h · (M)σσ ′,mm′d†

mσ dm′σ ′ . (29)

Here, the magnetic moment operator is defined as
(M)σσ ′,mm′ ≡ [(1)σσ ′ (L)mm′ + 2sσσ ′ (1)mm′ ]. In actual
calculations for the six states manifold, M reduces
to the matrix form listed in Eqs. (D1)–(D3) and
Eqs. (D13)–(D15).

To determine which ordering wave vectors are stabilized
under the magnetic fields within the two-sublattice mean-field
approximation, we repeat the calculations with different or-
dering wave vector set up: k∗

1 = (2π, 0, 0), k∗
2 = (0, 2π, 0),

and k∗
3 = (0, 0, 2π ) and compare their free energies. We

note that the diagonal matrix elements of M in the bases
of the eigenstates of the Hamiltonian (1) are O(ε) in the
CEF ground-state quartet. For example, the diagonal elements
of Mz is diag(1,−1, 4

5ε + 1
50ε2,− 4

5ε − 1
50ε2, 0, 0) + O(ε3).

Thus, the half of the quartet state with u 
 1 has a finite dipole
moment ∼ 4

5εμB 
 0.4μB, which has not been recognized
well so far.

Before discussing the numerical data, we should note the
following. Using the O(ε) terms in the M means that we
treat the CEF ground state quartet as effective t2g state with
hybridizing to the excited quartet. This treatment is valid if the
interactions (27) are not modified significantly when the pro-
cesses related to the eg electrons are also taken into account.
In this study, we do not estimate such processes and we keep
the interaction form derived within the t2g states as a starting
approximation. The more sophisticated analysis remains as
one of our future problems.

Figure 5 shows the magnetization Mh ≡ 〈M〉 · h/h and
|〈M〉| for J ′/J = 0.3 and V/J = 0.27 as a function of h = |h|
for three high-symmetric directions h ‖ [001], [110], and
[111]. At h = 0, the ground state is the FM110 phase and
the intermediate-temperature phase is the AFQ + f q phase
for this parameter set. As for the scale of the magnetic
field, h/J = 0.1 corresponds to ∼10 T if we set the mag-
netic transition temperature Tm ∼ 0.34J ∼ 20 K. There are
three equivalent domains for the FM110-type phases: FM110,
FM101, and FM011. As can be trivially understood, these
phases have its magnetization along [110], [101], and [011]
directions, respectively. A finite magnetic field selects some
of the three domains and the results are shown only for those
with the lowest free energy.

Owing to the difference in the field direction and that for
the spontaneous one for h ‖ [001] and [111], M �= Mh, while
M = Mh for h ‖ [110]. One can notice that the increase in
Mh as increasing h is steepest for h ‖ [001]. This is related
to the fact that the ferroic quadrupole moment QF

u is large
in the FM110 phase (Fig. 2) and the increase in Mh = Mz is
more favored than that for h ‖ [111]. In the AFQ + f q phase,
the magnetic field also selects the two of the domains: k1

or k2. However, the energy difference between the domains
with k1,2 and k3 is so tiny and it is not physically important
in actual situations, where there are many aspects such as
electron-lattice couplings.
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FIG. 5. Magnetization curve for J ′/J = 0.3 and V/J = 0.27. (a) h ‖ [001], (b) h ‖ [110], and (c) h ‖ [111]. The magnetization Mh is
defined as Mh ≡ 〈M〉 · h/h, with h ≡ |h| and plotted by lines, while the absolute value M ≡ |〈M〉| is indicated by symbols. The domain with
the lowest free energy is considered; (a) k1 or k2 domains, (b) k3 domain, and (c) k1, k2, or k3 domains. The temperatures shown correspond
to the FM110 phase (T/J = 0.1 < Tm/J 
 0.34), the AFQ + f q phase (T/J = 0.5), and the normal phase (T/J = 1.0).

IV. DISCUSSIONS

In the following subsections, we discuss two aspects. The
first is the induced ferroic quadrupole moments under the
AFQ orders. The second is the magnitude of the magnetic
moment, which vanishes in the model of Jeff = 3/2.

A. Ferroic quadrupole moments

Let us compare the results in Sec. III and the experimental
data in the double perovskite compound focusing on the fer-
roic quadrupole moments observed in Ba2MgReO6 [31]. The
relative magnitude of the QAF

v and the QF
u moments can be

indirectly estimated by observing O displacement (εu, εv ) cor-
responding to (u, v) in the ordered phases. At T = 6 K, i.e.,
inside the magnetically ordered phase, Hirai et al., reported
that there is about 0.4% elongation of the oxygen octahedron
along the z(c) axis in average. Here “average” means that
the analysis without in-plane v type displacement. With the
further analysis including this in-plane displacements, they
estimated that the ratio v/u ∼ QAF

v /QF
u ∼ 4. Here, we have

assumed a linear relation between the oxygen displacement
and the d-electron quadrupole moments, ignoring anharmonic
couplings. In the Supplimental Material in Ref. [31], the data
of average oxygen positions at T = 25 K inside the quadrupo-
lar phase are also listed. One can estimate 0.18% elongation
of the oxygen octahedron along the z(c) axis in average. This
naively leads to the ratio QAF

v /QF
u ∼ 8. Although there is am-

biguity about the quadrupole-displacement coupling, which
can be anisotropic even in the first-order in Qu,v , the finite

values of QF
u shown in Fig. 2 are qualitatively consistent with

this. Indeed, when setting J ∼ 50 K and λ/J= 50–100, the
AFQ order appears at Tq ∼ 40 K and the magnetic one at
Tm ∼ 25 K in Fig. 2. In the actual situation, one should take
into account couplings between the electrons and the oxygen
displacement as discussed recently [32,40]. Nevertheless, this
result demonstrates that the contribution of the excited states
on the induced ferroic quadrupole moments in the AFQ state
is a noticeable in the double perovskite materials.

B. Effective magnetic moment

We now discuss the magnetic properties of this system. It
is well known that the magnetic moment M in the effective
Jeff = 3/2 theory, i.e., ε → 0 limit, vanishes. This is one of
the weak points in the theory and some discussions about the
impact of the orbital orders on the magnetic susceptibility
have been done recently [39]. Let us estimate the effective
moment μeff defined by the high-temperature asymptotic form
of the magnetic susceptibility as

μBMz 
 μB

4ε
5 (e

4
5 εh/T − e− 4

5 εh/T )

e
4
5 εh/T + e− 4

5 εh/T + 2



(√
3√
2

4
5εμB

)2

3T

h

μB
, (30)

where we have assumed h ‖ [001]. Thus,

μeff = 4
√

3

5
√

2
εμB = 4

√
2√
3

(
3
2λ

5B4

)
μB. (31)

As is evident from the factor 3
2λ/(5B4), this arises from

the hybridization between the ground and excited quartets.
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Remember that the induced ferroic quadrupole moments dis-
cussed in the previous subsection arises from the off-diagonal
elements of the quadrupole operators between the ground
state quartet and the first excited doublet. Substituting the
values for Rb2TaCl6 with D 
 5B4 
 3.2 eV and λ 
 0.27 eV
leading to ε 
 0.42, the effective moment is estimated as
μB 
 0.41μB, which is similar to the observed one 0.27μB

[23]. When using the typical values for the double perovskites,
3λ/2∼0.5 eV [24,28] and D ∼ 5 eV [25], one finds μeff 

0.49μB. The present estimation is not far from the observed
one μeff 
 0.68μB [22] in Ba2MgReO6. The remaining dis-
crepancy might be improved by taking into account the effects
of ligand ions [28] and/or the vibronic degrees of freedom
[32]. The fluctuation effects neglected in the present analysis
also affect the magnitude of the magnetic moment quantita-
tively. Analyses including these more sophisticated aspects
are one of our future problems.

Compared to the estimation of μeff , the results of the or-
dered magnetic moment shown in Fig. 5 is not satisfactory in
the present mean-field analysis. As discussed in Fig. 5, which
roughly corresponds to the parameter set for Ba2MgReO6
with setting J ∼ 50 K, Mh and M are ∼0.1. This is only ∼20–
30% of the observed moment in Ba2MgReO6 [22]. As shown
in Fig. 2, QF

u < 0 and this corresponds to larger occupation
in the yz and zx orbitals at h = 0. In terms of the four states
in the ground state quartet, the energy of the ⇓ states (Jz

eff =
±3/2) is lower than that for the ⇑ states (Jz

eff = ±1/2). See
Eqs. (A3)–(A6) and the matrix u in Eq. (11). The point is that
these ⇓ states have no moment even with the O(ε2) correc-
tion. Thus, the ordered moment is smaller compared with the
effective moment even without the additional

√
3 factor in the

definition of μeff : 0.49/
√

3 = 0.28 > 0.1. Recently, Zhang
et al., have proposed that the quadrupole configurations in the
AFQ + f q phase modifies the spin-spin exchange interactions
and the Dzyaloshinskii-Moriya type interaction induced in the
AFQ + f q phase stabilizes the magnetic order of FM110 and
obtained a reasonable value of the FM moments [41], although
the relation between the CEF excited quartet states are not
clear.

In Ref. [28], the orbital angular momentum renormaliza-
tion was discussed. Owing to the extended d like orbital
including the surrounding p orbitals at the oxygen sites,
M = 2S + L → 2S + γ L with γ = 0.536 for Ba2MgReO6.
Although it is unclear whether their analysis without the cu-
bic anisotropy includes the effect of the local excited states
shown in this paper, let us here qualitatively examine how this
renormalization effect influences the results in our model. By
introducing γ in Eq. (29), the value of M and Mh change
as decreasing γ from γ = 1. For the parameters shown in
Fig. 5, firstly M and Mh decrease and vanish at γ ∼ 0.8 and
then increase. At γ = 0.5, Mh ∼ 0.25 as shown in Fig. 6.
In an actual situation in real materials, not only the Zeeman
energy (29), but also the interactions (27) must be modified.
Nevertheless, a finite ε modifies the orbital character in the
presence of the renormalization owing to γ . As shown in
Fig. 6, the orbital contributing to the magnetic moment is ∼ ⇑
state (Jz

eff = ±1/2) for γ ∼ 1, while ⇓ components (Jz
eff =

±3/2) increase as lowering γ . For the ferroic quadrupo-
lar phase observed in Rb2TaCl6 and Cs2TaCl6, QF

u > 0 and

 0
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 0.6

 0.8
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γ

 M
h 
, M
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T / J  = 0.1, J’ / J  = 0.3, V / J  = 0.27 
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FIG. 6. γ dependence of M, Mh for T/J = 0.1 K, h/J = 0.05
along h ‖ [001], J ′/J = 0.3 and V/J = 0.27. The effective moment
μeff ’s given by Eq. (31) for several values of ε are also drawn.

γ ∼ 0.8 is estimated [23]. Since QF
u > 0, ⇑ components (i.e.,

Jeff = ±1/2) are energetically favored both by the uniform
distortions and magnetic fields.

For smaller γ , the correction owing to the excited state
proportional to ε is minor in the present simplified analysis.
However, for large ε, μeff ∼ 0.5μB without the correction
owing to the ligand ions. It is expected that the combined
corrections by the excited states and the ligand ions influ-
ence the orbital character of the magnetic moment in more
complex ways than discussed here. The theory describing
the magnetic moment in the Jeff = 3/2 model requires more
elaborate treatments and the interpretation of the experimen-
tal results should also be reconsidered. In this respect, it is
highly important to clarify the orbital profile, i.e., the ratio
between ⇑ and ⇓, of the magnetic moments as analyzed in,
e.g., LiV2O4 [42].

V. SUMMARY

We have clarified that the ferroic components of O20 are in-
duced under the antiferroic O22 orders in the fcc lattice model.
We have microscopically demonstrated the mechanism of the
induced ferroic moments. This is in fact quite simple: just tak-
ing into account the CEF excited doublet state. It is important
that the excited state located at ∼5000 K, ∼100 times larger
scale than the transition temperature Tq ∼ 30 K, can influence
the order parameter via generating the local anisotropy. We
have also clarified that the magnetic dipole moment in the
Jeff = 3/2 model does not vanish in the realistic values of
the spin-orbit coupling and crystalline electric field, when the
CEF excited quartet states are taken into account. Since these
aspects have not been seriously considered so far, we believe
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our results shed a renewed light on the orbital orders in related
correlated systems.
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APPENDIX A: WAVE FUNCTIONS

We list the lowest six local eigenstates for λ > 0 and
B4 > 0. They are mainly constructed by the t2g orbitals in
the parameter regime relevent to our considerations. In terms
of mσ bases {2 ↑, 1 ↑, 0 ↑,−1 ↑,−2 ↑, 2 ↓, 1 ↓, 0 ↓,−1 ↓
,−2 ↓}, the local eigenstates for the �7 with the energy ε1/2

and the �8 with ε3/2 are expressed as

|�7+〉 : {0,−2, 0, 0, 0,−1, 0, 0, 0, 1}, (A1)

|�7−〉 : {−1, 0, 0, 0, 1, 0, 0, 0, 2, 0}, (A2)

|�8+ ⇑〉 :

{
0,

ε

4
+ w

4
+ 1

2
, 0, 0, 0,−ε

2
− w

2
, 0, 0, 0, 1

}
,

(A3)

|�8− ⇑〉 :

{
1, 0, 0, 0,−ε

2
− w

2
, 0, 0, 0,

ε

4
+ w

4
+ 1

2
, 0

}
,

(A4)

|�8− ⇓〉 :

{
0, 0, 0,−1 − ε

10
− w

2
, 0, 0, 0,

√
6

5
ε, 0, 0

}
,

(A5)

|�8+ ⇓〉 :

{
0, 0,

√
6

5
ε, 0, 0, 0,−1 − ε

10
− w

2
, 0, 0, 0

}
,

(A6)

where we have not normalized the eigenstates and w ≡√
ε2 + 4ε/5 + 4. We have labeled these states by the diagonal

matrix elements of Jz and u for ε → 0. The label ± represents
the sign of the diagonal matrix element Jz in Eq. (9), while the
quadrupole part ⇑ (⇓) in the �8 states indicates the positive
(negative) diagonal matrix element u in Eq. (11).

APPENDIX B: MULTIPOLE OPERATORS

We here list various multipole operators appearing in the
Hamiltonian (27). In the following, we omit the site index i
for simplicity.

Sμ
xy = 1

3

[
1

2
σ̂ μ + 1

2
σ̂ μû

]
, (B1)

Sμ
yz = 1

3

[
1

2
σ̂ μ + 1

2
σ̂ μ

(
−1

2
û +

√
3

2
v̂

)]
, (B2)

Sμ
zx = 1

3

[
1

2
σ̂ μ + 1

2
σ̂ μ

(
−1

2
û −

√
3

2
v̂

)]
. (B3)

Here, σ̂ μ/2 represents the spin operator of the t2g orbital:
Sμ

xy + Sμ
yz + Sμ

zx, and 1
2 σ̂ μû and 1

2 σ̂ μv̂ are the spin-orbital com-

posite ones: 2Sμ
xy − Sμ

yz − Sμ
zx and

√
3(Sμ

yz − Sμ
zx ), respectively.

In terms of the irreducible representation of the Oh group, the
operators belonging to �4 are

S ≡ 1

2
{σ̂ x, σ̂ y, σ̂ z}, (B4)

Tα ≡ 1

2

{
σ̂ x

(
−1

2
û +

√
3

2
v̂

)
, σ̂ y

(
−1

2
û −

√
3

2
v̂

)
, σ̂ zû

}
,

(B5)

and those belonging to �5 are

T β ≡ 1

2

{
σ̂ x

(
−

√
3

2
û − 1

2
v̂

)
, σ̂ y

(√
3

2
û − 1

2
v̂

)
, σ̂ zv̂

}
.

(B6)

Using these irreps., one finds

Sx
xy = 1

3

[
Sx − 1

2
T x

α −
√

3

2
T x

β

]
, (B7)

Sy
xy = 1

3

[
Sy − 1

2
T y

α +
√

3

2
T y

β

]
, (B8)

Sz
xy = 1

3

(
Sz + T z

α

)
, (B9)

Sx
yz = 1

3

(
Sx + T x

α

)
, (B10)

Sy
yz = 1

3

[
Sy − 1

2
T y

α −
√

3

2
T y

β

]
, (B11)

Sz
yz = 1

3

[
Sz − 1

2
T z

α +
√

3

2
T z

β

]
, (B12)

Sx
zx = 1

3

[
Sx − 1

2
T x

α +
√

3

2
T x

β

]
, (B13)

Sy
zx = 1

3

(
Sy + T y

α

)
, (B14)

Sz
zx = 1

3

[
Sz − 1

2
T z

α −
√

3

2
T z

β

]
. (B15)

APPENDIX C: MEAN-FIELD HAMILTONIAN

We show the detail expression of the two-site mean-field
Hamiltonian used in the main text. The total mean-field
Hamiltonian is Hmf

int = HA
int + HB

int + C, where HA(B)
int is the

mean-field Hamiltonian at the A(B) sublattice and C is a
constant depending on the order parameters. Denoting the ex-
pectation values of order parameters X at the A(B) sublattice
as 〈X 〉A(B), we obtain HA

int = ∑
i∈A(HA,xy

int,i + HA,yz
int,i + HA,zx

int,i ),
where

HA,xy
int,i = znn{〈Q〉A · (g̃iso1 + g̃aniK3)Qi − J ′〈Sxy〉A · Si

+ [(J + 2J ′)〈Sxy〉A − J ′〈S〉A] · Si,xy}, (C1)

HA,yz
int,i = znn{〈Q〉B · (g̃iso1 + g̃aniK1)Qi − J ′〈Syz〉B · Si

+ [(J + 2J ′)〈Syz〉B − J ′〈S〉B] · Si,yz}, (C2)
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where i obviously belongs to the A sublattice sites and znn = 4
is the number of the nearest neighbor sites on each of the
xy, yz, and zx plane. Similarly to HA,yz

int , HA,zx
int can be ob-

tained by replacing yz → zx and K1 → K2 in Eq. (C2). The

mean-field Hamiltonian at the B sublattice HB
int is also trivially

obtained by replacing A ↔ B in Eqs. (C1) and (C2). The
constant part C is necessary for calculating the free energy
and this is given as

C

znnN
=

∑
α=A,B

[
− 〈Q〉α g̃iso1 + g̃aniK3

2
· 〈Q〉α + J ′〈Sxy〉α · 〈S〉α − J + 2J ′

2
|〈Sxy〉α|2

]

+ [−〈Q〉A(g̃iso1 + g̃aniK1) · 〈Q〉B + J ′(〈Syz〉A · 〈S〉B + 〈S〉A · 〈Syz〉B) − (J + 2J ′)〈Syz〉A · 〈Syz〉B + (yz → zx)]. (C3)

Note that N is the number of the unit cell (= the number of the A sublattice) and remember K1 → K2 when yz → zx.

APPENDIX D: MATRIX FORM OF MULTIPOLE OPERATORS

The explicit 6 × 6 matrix forms of the spin and angular momentum operators are listed below. First, the spin operators S’s
are given with α = 3

√
2

100 ε2 + O(ε3) 
 √
2δ in Eq. (11) as,
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. (D3)

Here, we have not shown the left bottom part of the matrices since they are all Hermitian matrices. For the t2g spin operators
Sρ’s,
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Finally, we show the expression of the orbital angular momentum L:
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where κL = 9
5ε − 9

50ε2 + O(ε3), ηL = 3
5ε + 3

50ε2 + O(ε3), ζL = − 3
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250ε3 + O(ε4), and γL = − 9

50ε2 + O(ε3).
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