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Hybrid-order topological odd-parity superconductors via Floquet engineering
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Having the potential for performing quantum computation, topological superconductors have been generalized
to the second-order case. The hybridization of different orders of topological superconductors is attractive
because it facilitates the simultaneous utilization of their respective advantages. However, previous studies found
that they cannot coexist in one system due to the constraint of symmetry. We propose a Floquet engineering
scheme to generate two-dimensional (2D) hybrid-order topological superconductors in an odd-parity supercon-
ductor system. Exotic hybrid-order phases exhibiting coexisting gapless chiral edge states and gapped Majorana
corner states not only in two different quasienergy gaps but also in one single quasienergy gap are created by
periodic driving. The generalization of this scheme to the 3D system allows us to discover a second-order Dirac
superconductor featuring coexisting surface and hinge Majorana Fermi arcs. Our results break a fundamental
limitation on topological phases and open a feasible avenue to realize topological superconductor phases without
static analogs.
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I. INTRODUCTION

As one of the central fields in modern physics, topo-
logical phases of matter not only enrich the paradigm of
condensed matter physics and stimulate the discovery of many
novel quantum materials, but also generate various fascinating
applications in quantum technologies [1–5]. In the family
of topological phases, the topological superconductor has
attracted wide attention. It successfully simulates the mys-
terious Majorana fermion in a condensed matter system [6].
It also may be a promising application in realizing quantum
computation due to its non-Abelian statistics [7–9]. Recently,
there is an intense interest in extending the traditional topolog-
ical phases to higher-order ones [10–13]. Being parallel to the
theoretical proposals [14–19] and experimental observations
[20–29] on second-order topological insulators, second-order
topological superconductors (SOTSCs) have been proposed
[30–42]. This opens another avenue toward topological quan-
tum computation [43–46].

Explorations of physical systems supporting exotic topo-
logical features and of efficient ways to control these features
are not only in the mainstream of condensed matter physics,
but are also a demand of quantum technologies. Symmetry
plays an important role in realizing SOTSCs [30,32–42]. It
is conventionally believed that SOTSCs are achieved by ap-
plying an even-parity term in an odd-parity superconductor to
break the symmetry [43,47–49]. Recently, a general approach
to realize SOTSCs in odd-parity superconductors was pro-
posed [50]. An interesting question is whether the first-order
and SOTSCs can coexist in one system. First, this kind of
hybrid-order topological superconductor (HOTSC) facilitates
the simultaneous utilization of the advantages of both corner
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states and gapless chiral edge states in designing bifunctional
devices [27]. Second, it enriches the family of topological
phases and leads to a different band theory. Nevertheless, ac-
cording to the general view, first- and second-order topologies
exist in different systems [48,51,52] due to their substantially
different features in the energy spectrum at the boundaries
[48,51–54]. Therefore, it seems that a HOTSC is impossible
to realize in a system under the framework of traditional
topological energy-band theory. On the other hand, coherent
control via periodic driving, referred to as Floquet engineer-
ing, has become a versatile tool in artificially creating novel
topological phases in systems of ultracold atoms [55,56],
photonics [57,58], superconductor qubits [59], and graphene
[60]. Many exotic phases absent in static systems have been
controllably generated by periodic driving [61–74]. One of the
interesting findings is that periodic driving can cause different
high-symmetry points to have different topological charges
[75], which lays the foundation to realize different types of
topological phases [76]. Is it possible to realize HOTSCs by
periodic driving?

Addressing these questions, we propose a general scheme
to create a two-dimensional (2D) HOTSC in a two-band
odd-parity superconductor system by Floquet engineering.
A complete topological characterization to such a Floquet
quasienergy band structure is established. We discover two
kinds of HOTSCs, where in one of them the coexisting gap-
less chiral edge states and the gapped Majorana corner states
reside in two different quasienergy gaps, and in the other they
reside in one common gap. The generalization to a three-
dimensional (3D) odd-parity superconductor system reveals
another exotic phase, i.e., a second-order Dirac superconduc-
tor, which features coexisting surface and hinge Majorana
Fermi arcs. Breaking the conventional constraint on realizing
hybrid-order topology, our result reveals Floquet engineering
as a useful way to explore different topological phases.
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FIG. 1. (a) Phase diagram in the λx-λy plane. The red and white
lines mark the regimes with W = 1 and 0, respectively. Energy spec-
tra under the x-direction open boundary condition when(b) λy = 0.8,
(c) 1.0, and (d) 1.2. The insets in (a)–(c) show the energy spec-
trum under the x- and y-direction open boundary condition. We use
λx = 0.3 and lattice sizes Lx = Ly = 50.

II. STATIC SYSTEM

Conventional studies suggested that superconductors with
appropriate mixed-parity pairings are candidates for SOTSCs
[47,48]. Reference [50] presented a scheme to realize SOTSCs
in purely odd-parity pairing superconductors. We use this
static system as the starting point of our Floquet engineering.
We consider a p-wave superconductor whose Hamiltonian
reads Ĥ1 = 1

2

∑
k �̂

†
kH1(k)�̂k, with �̂

†
k = (ĉ†

k, ĉ−k ) and

H1(k) =
(

ε(k) �(k)
�∗(k) −ε(k)

)
, (1)

where ε(k) is the kinetic energy of the normal state
and �(k) is the pairing potential of the superconductor.
Equation (1) has spatial inversion symmetry P = σz. We
focus on the inversion symmetric normal state ε(k) and
the odd-parity pairings satisfying �(k) = −�(−k). Via a
Hopf map [77], a SOTSC model which is trivial in the
first-order topology in this odd-parity superconductor is con-
structed as �(k) = 2(cos kx + λx + i cos ky + iλy)(sin kx −
i sin ky) and ε(k) = ∑

j=x,y[(cos k j + λ j )2 − sin2 k j]. The
SOTSC is formed when |λx,y| < 1, where four gapped zero-
mode Majorana corner states are formed [see Figs. 1(a)
and 1(b)]. Different from conventional topological phases,
this SOTSC is not caused by the closing and reopen-
ing of the bulk-band gap. The energy spectra under the
x-direction open boundary condition in Figs. 1(b)–1(d) in-
dicate that, when the parameter runs from the SOTSC to
the topologically trivial regimes, the bulk-band gap is per-
sistently open, however, the boundary-state gap occurs a
closing and reopening. Therefore, we cannot find a topolog-
ical invariant of the bulk bands to characterize the SOTSC.
This type of SOTSC is referred to as the boundary ob-
structed topological phase [54]. A counterexample arises

when λx = λy, where the system has a mirror-rotation sym-
metry σyH1(kx, ky)σy = −H1(ky, kx ). Its topology can be
described by the mirror-graded winding number defined in the
bulk bands as W = i

2π

∫ 2π

0 〈u(k)|∂k|u(k)〉dk, where |u(k)〉 is
the eigenstate of H1(k), along the high-symmetry line kx =
ky ≡ k [see Fig. 1(a)].

III. FLOQUET ENGINEERING

To generate HOTSC, we apply a periodic driving

H(k, t ) = H1(k) + H2(k)δ(t/T − n), (2)

where H2 = mσz, T is the driving period, and n is an in-
teger. The periodic system H(k, t ) = H(k, t + T ) does not
have an energy spectrum because its energy is not conserved.
According to the Floquet theorem, the one-period evolution
operator U (T ) = T exp[−i

∫ T
0 H(k, τ )dτ ] defines Heff(k) ≡

iT −1 ln U (T ) whose eigenvalues are called quasienergies
[75]. The topological phases of our system are defined in such
a quasienergy spectrum. Applying the Floquet theorem to
Eq. (2), we have Heff(k) = iT −1 ln[e−iH2(k)T e−iH1(k)T ] [78].
Different from the static case, our topological phase transition
occurs not only at zero quasienergy but also at π/T due to the
periodicity of the quasienergies, which may cause the Floquet
anomaly in pure-order topological phases [79].

We first focus on Floquet engineering when λx = λy ≡ λ,
where the phases are characterized by the bulk bands. First,
we can derive from Heff(k) that the phase transition occurs
when the parameters satisfy either

2(1 − λ2) − m = nπ/T (3)

or

2[1 + λ2 + λ(eiαx + eiαy )] + m = nαx,αyπ/T (4)

at zero quasienergy (π/T ) for even (odd) n and nαx,αy , with
αx,y = 0 or π (see Appendix A). Giving the phase boundaries
of our system, Eqs. (3) and (4) offer us sufficient space to
artificially synthesize exotic topological phases absent in the
static system (1) by periodic driving. Second, we can establish
a complete topological characterization on Heff(k) to the rich
emergent topological phases in our periodic system. Besides
the intrinsic SOTSC in the static case, our periodic driving
also induces a first-order Chern superconductor phase. We
have to find appropriate topological invariants to characterize
the first- and second-order superconductor phases occurring
at both zero and π/T quasienergies. The overall topology of
the first- and second-order phases at the α/T quasienergy,
with α = 0 or π , is described by Wα/T = (W1 + eiαW2)/2,
where W j are the mirror-graded winding numbers defined
in H̃ j (k) = iT −1 ln[GjU (T )G†

j ], with Gj = ei(−1) jH j (k)T/2,
along the high-symmetry line kx = ky = k [80]. The first-
order topology at the α/T quasienergy is described the
dynamical winding number [81,82]

Vα/T =
∫ T

0
dt

d2k
24π2

εi jkTr(U†
α∂iUαU†

α∂ jUαU†
α∂kUα ). (5)

Here, εi jk , with {i, j, k} ∈ {t, kx, ky}, is the completely anti-
symmetric tensor and a sum over repeated indices has been
used, Uα = U (t )

∑2
l=1 eiE (α)

l,k t |ul (k, T )〉〈ul (k, T )|, where E (α)
l,k

is the quasienergy in the lth band chosen in the regime
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FIG. 2. Phase diagram in the λ-m plane characterized by Wα/T

and Vα/T (α = 0, π ). The black dotted-dashed line is from Eq. (3)
with n = 0. The red dashed, blue dotted, and white solid lines are
from Eq. (4) with n0,0 = 1, 2, and nπ,π = 1, respectively. NSCα/T de-
notes the topologically trivial normal superconductor with Wα/T =
Vα/T = 0, CSCα/T denotes the first-order Chern superconductors
with |Wα/T | = 1 and |Vα/T | = 1, and SOTSCα/T is the SOTSC with
|Wα/T | = 2 and |Vα/T | = 0. We use T = 1.

[α/T, (α + 2π )/T ) and |ul (k, T )〉 is the corresponding Flo-
quet eigenstate. The number of first-order gapless edge states
and second-order gapped Majorana corner states at the α/T
quasienergy is equal to |Vα/T | pairs and 2(|Wα/T | − |Vα/T |),
respectively.

To reveal the topological characters of our periodic system,
we plot in Fig. 2 the phase diagram characterized by Wα/T

and Vα/T (α = 0, π ). We find that the system exhibits more
colorful topological phases than the static one in Fig. 1(a). Its
topological features are not only carried by the quasienergy
gaps at both zero and π/T , but also become diverse for a
given gap. We discover that rich phases, which may be any
possible pair combination of the topologically trivial normal
superconductor, first-order Chern topological superconductor,
and SOTSC coexisting in the two quasienergy gaps, are cre-
ated by periodic driving. Each phase boundary perfectly obeys
either Eq. (3) or (4). The result indicates that, permitting us to
realize diverse exotic HOTSCs absent in its static counterpart,
periodic driving supplies us with another dimension to change
the topology orders and realize different topological phases at
will.

Figure 3(a) shows the quasienergy spectrum in different
m for a given λ. We observe three typical regimes from
zero quasienergy, i.e., the regimes with gapped zero-mode
states when m < 1.82, with an open zero-mode gap when
1.82 < m < 2.9, and with a closed gap when m � 2.9. The
topological invariants W0 and V0 in Figs. 3(b) and 3(c) reveal
that these regimes correspond exactly to the SOTSC with four
Majorana corner states, the normal superconductor, and the
first-order Chern superconductor with one pair of gapless edge
states, respectively. At the π/T quasienergy, the gap is closed
when m � 2.16 and the gapped π/T -mode states are formed
when m > 2.16. The two regimes, according to Wπ/T and

FIG. 3. (a) Quasienergy spectrum, (b) Wα/T , (c) Vα/T , and prob-
ability distributions of the (d) zero- and (e) π/T -mode states in
different m. We use T = 1 and λ = 0.3.

Vπ/T in Figs. 3(b) and 3(c), correspond to the first-order Chern
superconductor and SOTSC, respectively. The features in this
quasienergy spectrum match well with the phase diagram in
Fig. 2. We show the probability distributions of the zero- and
π/T -mode states in Figs. 3(d) and 3(e). A clear coexistence
of the first-order chiral edge and the second-order Majorana
corner states at the zero and π/T quasienergies consistent
with Fig. 3(a) is found. It confirms the hybrid-order nature of
the topological odd-parity superconductor phases generated
by our periodic driving protocol.

A generalization of our result to the case of λx �= λy can
be made. An exotic HOTSC in one single quasienergy gap is
realizable. Applying periodic driving on the critical phase in
Fig. 1(c), we find in Fig. 4(a) that two extra gapless chiral edge
states are present near ky = 0 in the quasienergy gap of zero.
By decreasing the system parameter λy, the boundary-state
gap at ky = π is opened and four gapped boundary states are
formed [see Fig. 4(b)]. The probability distributions of the
gapless edge state at ky = 0 in Fig. 4(c) and the gapped bound-
ary state at ky = π in Fig. 4(d) confirm that they are first-order
edge and second-order Majorana corner states, respectively.
The evidence proves that it is a HOTSC with coexisting
SOTSC and Chern superconductors in the same quasienergy
gap. Although it is not protected by bulk topology, it also ex-
hibits a certain robustness to the static and temporal disorders
due to the inversion symmetry (see Appendix B).

IV. 3D SECOND-ORDER DIRAC SUPERCONDUCTOR

We generalize our result to the 3D odd-parity supercon-
ductor system with a spin degree of freedom. We consider the
same driving protocol as Eq. (2) but with H1(k) = dxszσx +
dyσy + dzσz and H2(k) = (tz sin kz + m)σz, where si and σi

are the Pauli matrices, dx + idy = �(k), and dz = ε(k). It is
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FIG. 4. Quasienergy spectra under the x-direction open boundary
condition when (a) λy = 1 and (b) 0.95. The inset of (b) shows the
quasienergies under the x- and y-direction open boundary condition.
(c) Probability distributions of the gapless chiral zero-mode edge
state and (d) the gapped Majorana corner state near zero quasienergy
when λy = 0.95. We use λx = 0.3, m = 0.6, and T = 1.1.

found that H1(k) and H2(k) are PT invariant, with T =
is2σ0K and P = s0σz being the time-reversal and spatial-
inversion operations, which are inherited by Heff(k). The 3D
phase is sliced into a family of 2D kz-parametrized phases.
If they are a SOTSC or a normal superconductor for all kz,
then the 3D phase is a SOTSC or a normal superconductor.
If a 2D phase transition occurs at certain kz, then the 3D
phase is a Dirac superconductor [83,84]. The Dirac super-
conductor is conventionally classified into first and second
order [see Figs. 5(a) and 5(b)]. Here, we can realize a distinct

FIG. 5. Schematic illustration of conventional (a) first- and
(b) second-order and (c) our second-order Dirac superconductors.
The phase transitions between the 2D sliced Z2 topological supercon-
ductor (Z2 TSC) and the SOTSC occur at certain kz. (d) Numerical
result of the coexisting surface and hinge Majorana Fermi arcs
contributed by the π/T -mode first-order gapless chiral edge and
second-order gapped Majorana corner states. We use λx = λy = 0.3,
m = 1.87, tz = 0.45, and T = 1.

second-order Dirac superconductor. Being independent of kz,
H1(k) possesses the same energy spectrum as the 2D case
in Eq. (1). Thus, the static phase of H1(k) is a 3D SOTSC
or normal superconductor depending on the parameters in
Fig. 1(a). Using the parameter of H1(k) in the SOTSC regime
and switching on the periodic driving, it is remarkable to
find that a 3D second-order Dirac superconductor is realized
[see Fig. 5(c)]. Such a unique topological phase is featured
with coexisting surface and hinge Majorana Fermi arcs [see
Fig. 5(d)]. Although a similar coexistence has been found
in Weyl semimetals [85,86], it has yet to be found in Dirac
semimetals and superconductors. It reveals that Floquet en-
gineering offers us a useful tool to manipulate the types of
Majorana Fermi arcs in PT -symmetric systems.

V. DISCUSSION AND CONCLUSION

It is noted that the delta-function driving protocol is con-
sidered just for the convenience of analytical calculation. Our
scheme is generalizable to other driving forms. Our HOTSC
phases are generalizable to other static systems constructed by
the Hopf map [50], which reveals the universality of our result.
Boundary obstructed topological high-Tc superconductivity
is predicted in Ca1−xLaxFeAs2 [40]. Floquet engineering
has been used to design novel topological phases in several
platforms [55–60]. The higher-order topological phases have
been simulated in Josephson junction platforms [87,88] and
circuit QED systems [89], where in the latter our static model
has been realized. Based on these developments, we believe
that our proposal can be realized in state-of-the-art quantum
simulation platforms.

In summary, we have investigated the periodic-driving-
induced topological phase transition in a two-band odd-
parity superconductor system. A general Floquet engineering
scheme to create exotic HOTSCs exhibiting coexisting first-
order chiral edge and second-order Majorana corner states not
only in two different quasienergy gaps but also in one single
quasienergy gap has been established. The generalization of
this scheme to a 3D system in the presence of PT symmetries
permits us to realize a second-order Dirac superconductor.
This phase features coexisting surface and hinge Majorana
Fermi arcs. Our result indicates that periodic driving offers us
a feasible way to explore exotic topological phases by adding
time periodicity as an extra control dimension in the system.
This significantly expands the scope of topological materials
and enriches their controllability.
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APPENDIX A: BOUNDARIES OF TOPOLOGICAL
PHASE TRANSITION

Applying the Floquet theorem to our periodically driven
system H(k, t ) = H1(k) + H2(k)δ(t/T − N ), we obtain

Heff(k) = iT −1 ln[e−iH2(k)T e−iH1(k)T ]. (A1)
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FIG. 6. (a) The quasienergy spectrum as a function of the dis-
order strength d when static disorder is considered. Probability
distributions of the gapless zero-mode state when (b) d = 1, (c) 2,
and (d) 3. We use λx = 0.3, λy = 0.4, m = 0.38, and T = 1.

Using H j (k) = h j · σ and the Euler’s formula of the Pauli
matrices e−ih j ·σT = cos(h jT ) − i sin(h jT )h j · σ , with h j =
|h j | and h j = h j/h j , we have

UT = e−ih2·σT e−ih1·σT = εI2×2 + ir · σ ≡ e−iHeffT ,

ε = cos(h1T ) cos(h2T ) − h1 · h2 sin(h1T ) sin(h2T ), (A2)

r = h1 × h2 sin(h1T ) sin(h2T ) − h2 cos(h1T )

× sin(h2T ) − h1 sin(h1T ) cos(h2T ). (A3)

Again using Euler’s formula, we can infer Heff from Eq. (A2)
as

Heff(k) = − arccos(ε)r · σ/[T sin(arccos ε)]

= − arccos(ε)r · σ/[T
√

1 − ε2]

= − arccos(ε)r · σ/T, (A4)

where ε2 + |r|2 = 1 has been used. Thus we obtain heff =
− arccos ε

T r. The quasienergy bands touch at 0 and π/T ,
which occurs when ε = +1 and −1, respectively. Therefore,
the phase transition is associated with the closing of the
quasienergy bands, which occurs for k and driving parameters
satisfying any one of the following conditions.

(1) sin(h1T ) sin(h2T ) = 0: In this case, ε =
cos(h1T ) cos(h2T ). Then the bands of Heff(k) close when

h jT = n jπ, n j ∈ Z. (A5)

(2) h1 · h2 = ±1: In this case, ε = cos(h1T ± h2T ). Then
the bands of Hα

eff(k) close when

h1T ± h2T = nπ, n ∈ Z, (A6)

at zero quasienergy (or π/T ) if n is even (or odd).
As a sufficient condition for the topological phase transi-

tion, Eqs. (A5) and (A6) supply a guideline to manipulate
the driving parameters for Floquet engineering to various
topological phases at will. Remembering H2(k) = mσz and

FIG. 7. When a temporal disorder is considered, the evolution of
the probability distributions of the π/T -mode corner state at (a) t =
10T , (b) 15T , (c) 20T , and the gapless zero-mode edge state (d) t =
10T , (e) 20T , (f) 30T . We use λx = 0.3, λy = 0.4, m = 0.38, and
T = 1.

rewriting H1(k) = h1(k) · σ with h1(k) ≡ Tr[H1(k)σ ], we
have

hx
1(k) = 2

∑
j=x,y

(cos k j + λ) sin k j, (A7)

hy
1(k) = 2[(cos kx + λ) sin ky − (cos ky + λ) sin kx], (A8)

hz
1(k) =

∑
j=x,y

[(cos k j + λ)2 − sin2 k j], (A9)

hx
2(k) = hy

2(k) = 0, hz
2(k) = m. (A10)

It can be checked that the band touching points given by
Eq. (A5) generally do not cause a topological phase transi-
tion in the phase diagram [75]. Then, according to the band
touching condition in Eq. (A6), we obtain the boundaries of
topological phase transition as follows.

Case I. h1 · h2 = −1 needs cos kx = cos ky = −λ. Then
Eq. (A6) requires

2(1 − λ2)T − mT = nπ. (A11)

Case II. h1 · h2 = 1 needs kx,y ≡ αx,y = 0 or π . Then Eq. (A6)
requires

2[1 + λ2 + λ(eiαx + eiαy )]T + mT = nαx,αyπ. (A12)

APPENDIX B: ROBUSTNESS TO DISORDER

We now show the robustness of our hybrid-order topologi-
cal superconductor to the disorders. According to Ref. [90],
the existence of class A Floquet topological phases with
gapless edge states does not require any symmetry. The
higher-order topological odd-parity superconductors in our
Floquet systems are protected by inversion symmetry.
So our hybrid-order topological odd-parity superconduc-
tors are robust against disorders that preserve inversion
symmetry.
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After adding a disorder dξ , where ξ is a random number
in the regime [−0.5, 0.5] and d is the disorder strength, on
the on-site potential m, we plot in Fig. 6(a) the quasienergy
spectrum as a function of the disorder strength d . In the clean
case when d = 0, the system is a hybrid-order topological
superconductor phase with a first-order gapless edge state
in the zero mode and the second-order corner state in the
π/T mode. After turning on the disorder, we see that the
π/T -mode corner state survives even when d is as large as
4. The probability distribution of the zero-mode edge state in
Figs. 6(b)–6(d) reveals that the zero-mode gapless edge state
is present even when d is as large as 2. With further increasing
d , the two gaps close and the hybrid-order topological phase
vanishes.

To reveal the robustness of our hybrid-order phase to the
temporal disorder, we add a disorder T ξ , where ξ again is
a random number in the regime [−0.5, 0.5] and T is the
disorder strength, on the driving period T . It is naturally
expected that the zero and the π/T -mode states would no
longer be in the stationary state as long as T ξ is added on the
driving period T . Therefore, they are not dynamically stable.
Figures 7(a)–7(c) show the evolution of the π/T -mode corner
state when the disorder strength is T = 0.5. It is seen that
the corner feature is stably presented even when the evolution
time is as large as 20T . Similar behavior is observed in the
gapless zero-mode edge state [see Figs. 7(d)–7(f)].

Therefore, our hybrid-order topological phases exhibit ro-
bustness to both of the static and temporal disorders.
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