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Recent experiments have established that semiconductor-based moiré materials can host incompressible states
at a series of fractional moiré-miniband fillings. These states have been identified as generalized Wigner crystals
in which electrons localize on a subset of the available triangular-lattice moiré superlattice sites. In this article,
we use momentum-space exact diagonalization to investigate the many-body ground-state evolution at rational
fillings from the weak-hopping classical-lattice gas limit, in which only spin degrees-of-freedom are active at
low energies, to the strong-hopping metallic regime where the Wigner crystals melt. We specifically address the
nature of the magnetic ground states of the generalized Wigner crystals at fillings v = 1/3 and v = 2/3.
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I. INTRODUCTION

It is now several years since Wu et al. [1] pointed out that
the Hamiltonian of interacting holes in the moiré bands of
transition metal dichalcogenide (TMD) heterobilayers can be
mapped to the triangular lattice Hubbard model. Experiments
quickly confirmed the validity of this assertion by observing
Mott insulating states at band filling v =N/M =1 of the
moiré superlattice [2-5], where N is the number of holes and
M the number of moiré unit cells in the system. Subsequent
experiments have established that TMD-based moiré materi-
als also exhibit correlated insulating states at a discrete series
of fractional fillings of the lowest moiré miniband [5-10].
These insulating states form because electrons localize on a
subset of moiré sites in order to minimize strong long-range
Coulomb interactions. Because they break translational sym-
metry, they are reminiscent of the Wigner crystals expected
to appear in the two-dimensional electron gas (2DEG) at
very low densities [11]. There are, however, some qualitative
differences between Wigner crystals formed in an electron
gas with continuous translational symmetry, and the incom-
pressible states at fractional fillings in moiré materials, which
have only discrete translational symmetry. Most importantly,
the moiré superlattice potential narrows bands and reduces
the relevant single-particle energy scales, making interactions
dominant in much of the available phase space.

The incompressible states in moiré superlattices are com-
monly referred to as generalized Wigner crystals and we
adopt that terminology in this paper. The ubiquity of robust
crystalline states at fractional fillings in the moiré material
platform opens up a new thread in the study of strongly inter-
acting electrons in low dimensions and promises to reveal new
physics. Given the abundance of distinct moiré semiconductor
heterostructures, even within the group VI transition-metal
dichalcogenide family alone, and the ability to tune samples
through large ranges of filling factor by varying gate voltage, it
seems likely that it will be possible to realize a rich variety of
generalized Wigner crystal states with distinct structural and
magnetic properties in the coming years.

2469-9950/2023/107(23)/235131(11)

235131-1

The emergence of incompressible states at noninteger
partial band filling can be explained only if intersite electron-
electron interactions are included. Recent experiments have
therefore established moiré TMDs as a platform to simulate
extended Hubbard models whose Hamiltonians have tunable
hoppings t,, on-site interaction Uy, and long-range interaction
strengths U, (n stands for nth neighbor). Assisted hopping
and direct exchange nonlocal interaction terms can also play
a crucial role [12] in determining the magnetic properties of
moiré Hubbard systems. The mapping to a Hubbard model is
a one-band approximation, whose applicability at v < 1 has
generally been confirmed by experiment. For fillings above
half-filling, there is a competition between the upper Hubbard
band and remote bands; hence the simple one-band Hubbard
model is often insufficient. For that reason, in this paper we
focus on the regime v < 1, having addressed v = 1 in a pre-
vious study [12,13].

In moiré superlattices, localization of electrons in an
insulating state is expected [1] in the long-moiré-period
narrow-moiré-band limit. In this regime, the dominant en-
ergy scale is Up at v =1 and U, for 1/3 < v < 1. When the
twist angle is increased and the moiré period decreased, or a
displacement field is applied to decrease the moiré potential
strength, the effective hopping parameters ¢ between moiré
lattice sites increase and eventually become comparable to
intersite interaction strengths U;, complicating the electronic
properties. The interplay between spin and charge degrees of
freedom can give rise to different magnetic orders at each
filling factor. For example, recent experiments have reported
that some of the crystal states are striped phases [8], and
that antiferromagnetic interactions are frustrated for v = 2/3
band filling factor [14]. When hopping is strong enough to
overcome the near-neighbor interaction, the Wigner crystal
will melt into a liquid state—the Mott-Wigner transition. In-
terestingly a recent experiment performed on MoSe,/WS;
observed that the charge gap continuously vanishes as the
superlattice potential is weakened [10]. Further experiments
have shown that the charge gaps of the generalized Wigner
crystal states are asymmetric with respect to half-filling
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(v =1) of a single spinful band, and also with respect to
quarter-filling (v = 1/2) [6] and demonstrate the role of quan-
tum fluctuations involving remote bands, as we will show in
this paper, before and across the Mott-Wigner transition.

The magnetic order of the generalized Wigner crystal
phases, as well as the nature of their bandwidth and density-
tuned quantum melting transitions are still a matter of debate.
Previous theoretical efforts to understand moiré Wigner crys-
tals and their evolution with interaction strength have focused
on the deep crystalline regime [15-17], where classical Monte
Carlo simulations can be used to investigate the ground-state
charge order at different fillings. Hartree-Fock [18-20] and
classical Monte Carlo studies [21] have addressed the compe-
tition between different charge and spin orders in the crystal
phase, and its transition to metal when bandwidth or density
are tuned. An analysis that includes quantum fluctuations
and goes beyond mean-field is needed; however, since mean-
field theory approximations are known to favor ferromagnetic
ground states and to overestimate the stability of insulating
states in the proximity of metal-insulator transitions.

In this paper, we report on a finite-system exact diagonal-
ization study of semiconductor moiré materials at fractional
filling factors. Starting from the continuum model description
[1], we add relevant electron-electron interactions projected to
the topmost moiré band and obtain the many-body spectrum.
We find, as already suggested by experiment, that a rich set of
fractional band fillings v support correlated insulating states
with tunable magnetic properties. We show that there is an
overriding competition between antiferromagnetism and fer-
romagnetism particularly at v = 2/3 band filling, which we
explain using a low-energy effective spin model description
and relate to a recent experiment [14]. We also address the
Mott-Wigner transitions at fractional fillings, finding that as
in the v = 1 case they are not strongly first order.

II. MOIRE MATERIAL MODEL

A. Continuum model

Our starting point is the continuum model description of
TMD heterobilayers with type-I or type-II band alignment [1].
In this case the topmost moiré band is concentrated in one of
the layers, which we refer to as the active layer, depicted in
red in Figs. 1(a) and 1(b). The influence of the second layer,
shown in blue in Figs. 1(a) and 1(b), is responsible for a moiré
potential that affects charge carriers in the active layer. The
moiré pattern can be induced by a small twist angle 6 or a
lattice mismatch & between the two layers. The moiré lattice
constant is given by ay = ao/(9* + 62)!/2, with ay the lattice
constant of the active TMD layer. To date most heterobilayer
experiments have focused on unrotated WSe, /WS, with a
moiré lattice constant of ay; =~ 8.2 nm, or MoSe,/WS,, with
a moiré lattice constant of ay; ~ 7.5 nm. Because the moiré
lattice constant reaches a maximum, the system is expected to
be less sensitive to twist angle disorder at zero twist angle.

Valley and spin are locked in TMD heterobilayers and the
valley (or spin) projected continuum Hamiltonian is given
by [1]
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FIG. 1. (a) Schematics of a TMD heterobilayer with metallic
gates at distance d from the sample. By varying gate voltages a
displacement field is applied. (b) Schematics of the heterobilayer in
momentum space. Charge carriers populate the active WSe, band
while the presence of a WS, layer generates the moiré potential,
Eq. (2), whose strength is modified by the displacement field D.
(c) Example of WSe, /WS, moiré minibands obtained from Eq. (1),
with V,, = 40 meV. (d) Evolution of the energy scales of the problem
as 'V, is varied: the interaction strength U, (green), the kinetic energy
scale W), (black), the bandwidth B (blue), and the gap to the first
remote Ay (brown).

A(r) =2V, Y cosb;-r+ ). )

j=1,3,5

The first term in Eq. (1), which corresponds to the kinetic
energy of carriers in the top moiré band, is diagonal in mo-
mentum space and the second term, the moiré potential, is
diagonal in coordinate space. The moiré€ potential depends on
only two parameters (V,,, ) because [1] of the system’s Cs
symmetry. The phase i fixes the geometry of the moiré su-
perlattice, which we take to be triangular as it is in most of the
TMD heterostructures, and the strength of the moiré potential
V., can be related to the experimentally tunable displacement
field. For concreteness, throughout this paper we take the
effective mass m* = 0.45my and ¢ = 45°, corresponding to
WSe, /WS, [22]. We take the modulation potential strength
V., as an experimentally controllable parameter since it has
been demonstrated to be sensitive to the displacement field D.
The form we have used for the moiré modulation parameter
assumes that it varies smoothly with position on the moiré
scale; higher harmonics in the plane-wave expansion are more
important in longer period moirés in which relation relative to
rigidly twisted bilayers is stronger.

An example of the bandstructure obtained from diagonal-
izing Eq. (1) is shown in Fig. 1(c). We label the band energies
of Eq. (1) as ¢, while the eigenstates can be written in a
plane wave expansion as |n, V%) = Y ;7 ¢ Ik + G), where
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n is a band index and G are reciprocal lattice vectors. In
order to study the emerging many-body phases we consider
the interacting Hamiltonian projected to the topmost moiré
valence band (hence we omit band index)

o,0’
ikl v
H =§ €kChy Cho + E =5 o Chyor i’ Clsr 3)
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0,0’

where the Coulomb matrix elements are given by
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The summation involving the term in brackets results from the
projection of interactions to a single band and can be rewritten
in terms of the form factors, as described elsewhere [23]. In
Eq. 4), g = |k; + G; — ki — G| is the momentum transfer, A
is the area of the system, ¢ the effective dielectric constant,
and total momentum conservation is implicit.

B. Exact diagonalization methodology

In this article we take the same approach as in previous
papers [12,13], utilizing exact diagonalization (ED) to solve
the many-body Hamiltonian. We present our results in phase
diagrams that depend on dimensionless parameters obtained
by taking ratios of the relevant energy scales of the system.
In particular, three energy scales can be identified; the moiré
potential depth V,,, the interaction strength Uy = €?/(eay),
and the kinetic energy scale Wy, = 7° /m*a3,. By varying the
two ratios of these three scales, we can simulate any heter-
obilayer as long as the moiré period is much larger than the
microscopic lattice constant. This ensures that our conclusions
apply for arbitrary heterobilayers as long as their low-energy
physics is captured by the continuum model, Eq. (1) and
that the shape of the moiré potential is similar to that of a
triangular lattice model. The energy gap to the remote moiré
bands Ag can, in principle, be viewed as another relevant
energy scale. We take parameter values such that this scale is
always larger than all other scales involved, as can be seen in
Fig. 1(d), justifying the single band projection of Eq. (3). As
we have pointed out above, however, interactions renormalize
bands more at higher electron densities. For this reason the
single-band approximation should be treated with caution for
fillings v > 1, where remote band mixing is often relevant.

The model we study has orbital and spin degrees of free-
dom, discrete triangular lattice translational symmetry, SU(2)
spin-rotational invariance, and no spin-orbit coupling. The
Hilbert space can be divided into smaller subspaces with total
momentum K with discrete values determined by the number
of moiré€ unit cells M, total spin S, and azimuthal spin S°. The
basis is constructed in an occupation number representation,
distributing particles among single-particle states labeled by
§% quantum number and quasiparticle (k, k,) momentum.
The total number of possible configurations Nops for parti-
cles distributed on M single particle states with Ny spins up
and N, spins down is determined by a product of binomial
coefficients, Neont = (1]\% ) - (II‘Z ). The many-body Hamiltonian
projected to a given total momentum K is diagonalized in S°

subspaces. We do not rotate the Hamiltonian matrix to a S
basis as this is an additional computational cost, and instead
determine the ground-state total spin S by identifying mul-
tiplets from the S*-dependent energy eigenvalues. The total
spin S assignments have been confirmed by calculating the
spin structure factor S(g = 0). For a given momentum, the
S-multiplet structure implies that the largest subspace corre-
sponds to the lowest possible S¢, which contains states with
all values of total spin S.

All of our exact diagonalization calculations are limited
only by the maximal matrix size of a given subspace, with the
largest subspace corresponding to the lowest possible S. The
results presented here correspond to systems containing M =
9, 12, and 16 moiré unit cells. Despite the limited system sizes
that can be reached with the exact diagonalization method,
important information can still be extracted concerning the
behaviors of charge gaps and the nature of the magnetic order
of insulating states. Numerical nonperturbative approaches,
like the one taken in this paper or DMRG, are particularly
important in the quantum melting regime, where Hartree-Fock
is known to overestimate the stability of the insulating phase.

III. FINITE-SIZE PHASE DIAGRAMS

A phase diagram for TMD heterobilayers as a function
of filling factor and the kinetic-energy-scale to moiré-depth
ratio W/V,, is shown in Fig. 2(a). The color scale specifies
the ratio of the charge gap to the Coulomb interaction-energy
scale A./U. A finite value of the charge gap indicates an
incompressible state, while a vanishing charge gap indicates
a metallic state. The charge gap is extracted from the many-
body spectrum via the relation A, (N) = E(N + 1)+ E(N —
1) — 2E(N), where N is the number of particles in the system
and E is the energy of a many-body ground state obtained
from diagonalization of the Hamiltonian in Eq. (3) for a
system with a finite number of moiré unit cells M. When
interactions are sufficiently strong, we verify the presence of
a Mott insulating state at half-filling v = N/M = 1, and also
of a set of incompressible states at the fractional fillings: v =
1/3,2/3,4/3,5/3,1/4,1/2,3/4,5/4,3/2,7/4 [24]. All in-
sulating states become metallic when V,, is decreased below
a critical value, in qualitative agreement with experimental
results. Fig. 2(b) shows the evolution of the charge gap in meV
with W/V,, for selected multiples of v =1/3 and v = 1/4.
The typical gap values in the localized limit A, ~ 3 — 5 meV,
are in accord with those measured in experiment [10,14].

At each fractional filling factor we can follow the evolution
of the ground state from the atomic limit as the bandwidth
increases. For very narrow bands, the physics reduces to that
of a triangular lattice-gas model. At rational filling factors
the charge distributions that minimize the interaction energy
break translational symmetry and have an energy gap for
unbound electron-hole pairs. As the bandwidth increases,
quantum fluctuations induce interactions between electron
spins that is usually expected to yield a ground state with
magnetic order. Quantum fluctuations can potentially change
the preferred charge order [17] from that of the atomic limit
and they eventually dominate, driving a transition to a metallic
state. In the following we first make a number of general re-
marks about our numerical results and then focus on the filling
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FIG. 2. (a) Exact-diagonalization phase diagram for TMD heter-
obilayers as a function of filling factor v and W/V,, (kinetic energy to
moiré potential depth ratio). We perform calculations on finite-size
systems with N electrons in M unit cells. Results shown are obtained
at M =9 for fillings multiples of v = 1/3 and M = 16 for fillings
multiples of v = 1/4. Incompressible (gapped) states are clearly
present at several values of v = N/M specified in the main text, with
the color scale indicating the magnitude of the charge gap A, relative
to the interaction scale U, at ¢ = 20. Our results are for a discrete set
of (N, M) and we do an interpolation to obtain a continuous plot,
which is saturated for clarity. [(b),(c)] Evolution of the charge gaps
for selected values of v. The gaps coincide with known classical
values in the atomic limit and vanish at various different values of
W/V,, in the melting regime. Insets show the finite geometries used.

factors v = 1/3 and v = 2/3 that have the most prominent
insulating states in experiment [5-9].

A. General trends

We can identify three main regimes in our phase diagram,
Fig. 2(a):

(1) Atomic limit-W/V,, < 1. This limit corresponds to a
perfectly flat band with 1 = 0, equivalent to a classical elec-
tron gas on a lattice created by the strong moiré potential.
Electrons are expected to localize on a subset of superlattice
sites so as to minimize on-site and near-neighbor interactions,
giving rise to generalized Wigner crystal states. Classical
Monte Carlo [7,17] and Hartree-Fock [25] calculations can
address the specific form of the charge order, which depends
on the filling. We see in Fig. 2(b) that the charge gaps at all
multiples of 1/3 and 1/4 are equal in the atomic limit. The
many-body ground-state manifold contains a large number of
nearly degenerate states, corresponding to different spin states
on the same sublattice of occupied sites. As the atomic limit
is approached, the spacings between these levels become too
small to allow numerical determination of the ground-state
magnetic order. The small spacing of these levels implies that
the full entropy of the spin subspace will be realized at a low
temperature.

(2) Melting regime-W /V,, ~ 0.05 — 0.1. In the intermedi-
ate regime, the competition between electron localization due
to long-range Coulomb interaction and quantum fluctuations
controls the generalized Wigner crystal melting. Quantum
fluctuations of charge distributions are enabled by the hopping
term . When ¢ increases from the atomic limit, interac-
tions between spins located on different sites strengthen. The
ground-state spin manifold then broadens sufficiently to allow
the magnetic properties of some crystal states to be addressed.
Interestingly, depending on the dielectric constant value ¢ and
the filling fraction v, we can obtain either ferromagnetic or
antiferromagnetic states.

(3) Electron gas limit-W/V,, > 1. This is the limit of
weak moiré modulation. The system will resemble a 2DEG
and the ground state is determined by the electron density. The
question of how Wigner crystallization in the 2DEG is mod-
ified by adding an underlying lattice as a small perturbation
is not a trivial one and the properties expected for electron
crystals in the 2DEG are significantly modified. We obtain
vanishing charge gaps at all fillings corresponding to Fermi
liquid states as can be seen in Fig. 2(a) (in Appendix B we
show examples of occupation distributions where the Fermi
surfaces can be identified). This is a limit where Hartree-Fock
calculations do not give reliable results [26].

In focusing on filling fractions v = 1/3 and v = 2/3, we
will mainly discuss results for a system containing M =9
moiré unit cells in the main text and present some additional
results for M = 12 in Appendix B. Despite the small system
size, the M = 9 geometry captures the charge distribution ob-
served in experiments [9,27], hence it can give us some insight
into how increasing hopping amplitudes from the localized
limit initially determines the magnetic ground state and then,
ultimately, drives melting.

In order to determine the nature of the magnetic ground
states, translational symmetry breaking can be tested by eval-
uating the static spin-spin correlation function

Er,r) = (S(r)- S(), &)

and using it to calculate a static spin structure factor defined
as

S(g) = f% / dr / dr’' e T e ). 6)

In these equations ¢ is an extended zone wavevector, A is
the sample area, and the expectation values are taken in the
many-body ground state. Finite size peaks in this quantity
at wavevectors that are not reciprocal lattice vectors indicate
broken translational symmetry. The inverse Fourier transform
of S(q),

S(r)=f—1‘2q: eiq"£(q)=%/dx€(x,x+r) (N

is used below to characterize the correlations between spins at
positions separated by r.

Additional insight is provided by the number of finite-
size many-body eigenvalues in different energy ranges. The
Hilbert space can be divided into a singly-occupied subspace
(low-energy sector) and a doubly-occupied subspace (high-
energy sector) analogous to the lower and upper Hubbard
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FIG. 3. Generalized Wigner crystal state at v = 1/3. (a) Real
space configuration indicating charge order (green) and localized
spins forming a 120°-Néel state. The magnetic unit cell is indi-
cated in gray. Super-exchange processes of order 7, t{, and 1?1,
are represented by blue arrows. (b) Schematics of the low-energy
spectrum and the double-occupancy manifold with energy ~Uj, with
the hopping processes connecting different sectors. (¢c) Many-body
low-energy spectrum as a function of W/V,, showing the evolution of
the three bands corresponding to the ground-state manifold, bound
particle-hole pairs (excitons) and itinerant charged excitations. The
charge gap evolution is shown as a green solid line. (We have added
a Coulomb-blockade correction that brings A, and the bottom of the
charged excitation band of many-body excitations into coincidence).
(d) Structure factor and (e) spin-spin correlation function calculated
at V,, = 30 meV. Lattice sites in (e) are indicated as white circles.

bands for half-filling. Since the spectrum connects adiabat-
ically to the atomic limit, the number of states with energy
smaller than ~Uj is equal to the dimension of the full single-
occupancy Hilbert space. For filling v = N/M, the subspace
of the single-occupancy Hilbert space with N} spins up and
N, spins down has dimension given by

M!

ANy, N)= ——
(N1 0 NiIN, /(M = N)!

®)
By considering all possible configurations (N4, N;,) we ob-
tain the total dimension of the single occupancy, low-energy,
sector.

B. v = 1/3 band filling

In Fig. 3(a) we illustrate the spatial configuration of the
ground state for v = 1/3. In the atomic limit (+ = 0) all spin
configurations are degenerate and the ground-state charge dis-
tribution corresponds to a triangular lattice with periodicity
V3 ay (represented as green sites). This is the only charge
configuration that avoids the U; nearest-neighbor interaction
scale. This charge order has been measured by STM [9,27].
Other theoretical studies [18-20] have also found the charge
configuration of Fig. 3(a) in the highly localized limit.

Starting from the atomic limit, there is a regime of finite ¢
in which the charge order pattern and the insulating state gap
survive, but quantum fluctuations induce interactions between
localized spins that lift the large ground-state spin degeneracy.
From our ED results we obtain a ground state with minimum

total spin, indicating an antiferromagnetic state. The magnetic
configuration in this regime is also shown in Fig. 3(a). We
confirm that spins form a 120°-Néel antiferromagnetic state
by evaluating the structure factor S(q) and its inverse Fourier
transform & (r), presented in Figs. 3(d) and 3(e) respectively.
We observe structure factor peaks at the middle inner points
¥ of the Brillouin zone, indicating a magnetic unit cell with
nine sites. From the correlation function &(r) we see that
all first neighbors of an occupied site are empty, while the
spin orientations on the second neighboring sites form an
angle larger than 7 /2 with respect to the occupied site, which
translates into negative values. In the limit of classical spins,
for this triangular Néel state, evaluation of the structure factor
at high symmetry points results in a finite value only at i,

S(y)=84)=0, S@) = . ®

When quantum fluctuations are not too strong, these classical
estimates are still approximately valid [28]. Therefore the
appearance of peaks at # in Fig. 3(d) is in agreement with
the indicated spin configuration.

The many-body spectrum separates into a high-energy
sector associated with double occupations and characteris-
tic energy Uy and a low-energy sector of configurations
with no double occupations. For N = 3 particles on M =
9 sites, the full Hilbert space has dimension 816 and the
low-energy sector of single-occupancy consists of 672 states.
Figure 3(c) shows the many-body energies as a function
of W/V,,, obtained by ED, corresponding to the low-energy
single-occupancy Hilbert space, that in turn separates into
three bands.

The lowest band, or ground-state manifold, contains 24
states that are degenerate in the atomic limit. This number
can be understood by noting that there are three inequivalent
Wigner crystal configurations at v = 1/3-filling, correspond-
ing to choosing one of the three sites to occupy within the
unit cell. For each of these states there is a multiplicity of
23 when the spin degree of freedom is taken into account.
As t is increased (right limit of the plot) the degeneracy is
lifted. In contrast to the half-filled case, the v = 1/3 state has
a branch of excitonic states with energies that lie below the
charge gap, indicated by a dark green line with dots, as can be
observed in our spectrum. The number of these particle-hole
excitations is N, = 432 = 24 x 3 x 6, corresponding to the
product of the number of states in the ground-state manifold,
the number of electrons, and the number of neighboring empty
sites around each filled site. Finally, the third band in Fig. 3(c)
is the manifold of itinerant charged excitations. Its minimum
coincides with the charge gap A, in the atomic limit. This
band has 216 states for the system size considered, corre-
sponding to configurations where the three particles occupy
neighboring sites. The multiplicity of the itinerant charged
excitation branch grows most quickly as the system size is
increased.

From the mapping of the TMD continuum model to an
extended triangular Hubbard model [1,12], we have derived an
effective spin model that describes the magnetic ground state
we observe. The Heisenberg interaction between localized
spins in the configuration shown in Fig. 3(a), up to order
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FIG. 4. Generalized Wigner crystal state at v =2/3. (a) Real
space configuration, which effectively forms a honeycomb lattice
(blue sites) with near-neighboring occupied sites having oppo-
site spins. Processes contributing to the spin coupling and to the
formation of the excitonic band are depicted in blue and red re-
spectively. (b) Schematics of the three low-energy bands and the
double-occupancy manifold, the dominating super-exchange process
of order 1‘12 is represented by the blue arrows; however, direct ex-
change X also gives a significant contribution to the spin coupling.
(c) Many-body low-energy spectrum as a function of W/V,, showing
three bands: the ground-state manifold, particle-hole pair excitations,
and charged excitations. The charge gap evolution is shown as a blue
solid line. (d) Structure factor and (e) spin-spin correlation function,
calculated at V,, = 30 meV.

l;l/U()Ulz, is

42, 2, 4t
- — —2Xo, 10
TR + 307 2 (10)

Ji(1/3) =

where #; and ¢, stand for the first and second nearest-neighbor
hopping parameters, X, is the second-neighbor direct ex-
change, and we have defined an effective second-neighbor
hopping te =1, — t12 /U,. Figures 3(a) and 3(b) show a
schematic of the virtual state processes that contribute to f.g.
This virtual second-neighbor hop process does give a contri-
bution to the effective spin model, Eq. (10), that is similar to
the analog half-filling #; process.

Hopping of an arbitrary particle to a neighboring site by 7y,
increases the energy by 2U; (we neglect the long-range part
of Coulomb interaction in this analysis, for simplicity). Note
that terms of order t12 do not influence spin interactions, but
repeated 7, and #, hops without double-occupying a site yield
the second and third terms in Eq. (10). The value of J;(1/3) as
a function of interaction strength is plotted in Fig. 5(a) below.

C. v = 2/3 band filling

The spatial configuration of the ground state for N = 6
particles on M = 9 sites (for the same parameters as those of
Fig. 3) is shown in Fig. 4(a). In the atomic limit the charge
distribution forms a honeycomb lattice, in agreement with
recent STM measurements [9]. When quantum fluctuations
are turned on, the ground state has antiferromagnetic order,

consistent with the measured Curie-Weiss (CW) temperature
indicator [14] on a similar heterobilayer system.

The structure factor, shown in Fig. 4(d), has peaks at «,
indicating a magnetic unit cell with three sites, while also
showing smaller nonzero values for the middle points #. The
function & (r) is illustrated in Fig. 4(e). The second-neighbor
sites have a positive value indicating same spin orientation,
while the six nearest neighbors of an occupied site have neg-
ative values. We interpret these small negative values as the
average of three occupied sites with opposite spin orientation
and three empty sites. These spin correlation function results
seem to indicate that at v = 2 /3-filling, there is greater virtual
occupation of empty sites compared with the v = 1/3-filling
case. A classical analysis of the structure factor for the spin
configuration in Fig. 4(a) yields the following values for high-
symmetry points

S(y)=8@) =0, Sk) =, (1)

allowing us to conclude in favor of the state in Fig. 4(a) when
quantum fluctuations are not strong.

For N =6 particles on M =9 sites, the full Hilbert
space has dimension 18 564, while the dimension of the
single-occupancy Hilbert space is 5376. Figure 4(c) shows
the low-energy many-body spectrum, which separates into
three bands as in the v = 1/3 case, with a higher-energy
charged sector, and a mid-energy region containing excitonic
states with bound electron-hole pairs, indicated by red ar-
rows in Figs. 4(a) and 4(b), and the ground-state manifold.
The ground-state band has 192 states, corresponding to three
inequivalent Wigner crystal configurations (the conjugate con-
figurations of the v = 1/3 case) and a multiplicity of 2% for
each, when the spin degree of freedom is accounted for. The
electron-hole bound pair sector has N, = 3456 = 192 x 6 x
3 states, which result from the product of the number of
states in the ground-state manifold, the number of electrons
and the number of empty sites where each electron can hop.
The higher band contains the charged excitations and has
1728 states, which correspond to the conjugates of the charge
distributions forming the higher band in the v = 1/3 case,
times the spin multiplicity 2°. In this case the Heisenberg
coupling constant of the effective spin honeycomb model for
the configuration in Fig. 4(a), at lowest order, is

41}
Uy — U,

where X is nearest neighbor direct exchange. Virtual hopping
to a double occupied site by #; is the main process responsible
for antiferromagnetism, the first term in Eq. (12), shown by
blue arrows in the cartoon of Figs. 4(a) and 4(b). The value
of J1(2/3) as a function of interaction strength is plotted in
Fig. 5(b).

Ji(2/3) = —2X,, (12)

D. Tuning magnetic properties

The magnetic honeycomb pattern found at v = 2/3, shown
in Fig. 4(a), is sensitive to model parameters. If the value
of the dielectric constant ¢ is increased, the ground state
transits from antiferromagnetic to ferromagnetic. The dielec-
tric function increase can be accomplished experimentally by
modifying the substrate or varying the distance from active
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FIG. 5. Competing magnetic interactions in generalized Wigner
crystals. Solid lines show the effective spin couplings, (a) J;(1/3)
and (b) J;(2/3), as a function of . Insets correspond to structure
factors for system sizes M = 9, 12 and two values of dielectric con-
stant ¢ = 10, 20. Peaks in (a) always remain at #, consistent with
a magnetic unit cell of nine sites with antiferromagnetic order. In
contrast, at v = 2/3-filling the main structure factor peak changes
location from k at ¢ = 20 to y at ¢ = 10, indicating a transition from
a an antiferromagnetic to a ferromagnetic state. Results shown in
(a) and (b) have been obtained for V,, = 30 meV and V,, = 40 meV
respectively.

device to electrical gates. This change of properties is illus-
trated in Fig. 5, where we present structure factors for two
values of ¢ for both fillings v = 1/3 and 2/3. (We also include
results corresponding to M = 12.) For v = 1/3, shown in
Fig. 5(a), the main peaks are at the middle points ¥, for the
two system sizes and for both values of ¢, in agreement with
the state of Fig. 3(a). On the other hand, structure factors
for v = 2/3 change qualitatively from ¢ = 20 to ¢ = 10, as
seen in Fig. 5(b). In particular, we observe peaks at y in the
structure factors for & = 10 in both system sizes, character-
istic of a ferromagnetic state. Smaller peaks at ¥ can also
be observed, indicating that the system still breaks the moiré
lattice translation symmetry. For ¢ = 20, the main peaks in the
structure factor are at k, in agreement with the state depicted
in Fig. 4(a).

The behavior at v = 2/3 can be qualitatively understood
in terms of the effective spin model of Eq. (12). As the value
of ¢ is decreased, the contribution from direct exchange starts
to dominate, eventually turning the coupling constant nega-
tive and driving the ground-state ferromagnetic. We show in
Fig. 5(b) that J; (v = 2/3) changes sign as ¢ decreases. For the
other filling, v = 1/3, the effective spin coupling J; (v = 1/3)
remains positive for all values of ¢ considered, as seen in
Fig. 5(a). However, because the main processes determining
the magnetic properties have a much smaller energy scale for
J1(v = 1/3), it is almost one order of magnitude smaller than
Ji(v = 2/3) at the same V,,,. This trend agrees with a recent
experiment by the Cornell group [14], where the Curie-Weiss
temperature measurements for v = 2/3-filling clearly con-
firmed antiferromagnetic order, while for v = 1/3-filling the
result is inconclusive due to the very small values obtained.
The experiment also found that the Curie-Weiss temperature
vs v has a strong local minimum at v = 2/3, suggesting
a competition between superexchange and direct exchange.

Our simple finite-size calculations allow us to reproduce this
phenomenology. We note that in [14] a similar effective hon-
eycomb spin model with positive first-neighbor coupling but
negative second-neighbor coupling was proposed, and it can
also give rise to a ferromagnetic ground state.

IV. DISCUSSION

Generalized Wigner crystal states are ubiquitous in semi-
conductor moiré materials at fillings v # 1, indicating that
extended-range Coulomb interactions play a more relevant
role in those systems than has been recognized in atomic ma-
terials, which are often successfully described by the standard
Hubbard model. The crystal states can give rise to rich physics
due to an interplay between spin and charge order. We have
numerically explored how the effects of weak quantum fluctu-
ations affect the charge order observed experimentally in the
localized limit at fillings v = 1/3 and v = 2/3 of triangular
moiré superlattices. In particular, we found a tunable magnetic
ground state at v = 2/3-filling, which is more sensitive to the
superexchange-exchange competition of localized spins than
its v = 1/3 counterpart. This delicate competition, that is also
suggested by experiment, indicates that it would be possible to
investigate the antiferromagnet-to-ferromagnet transition that
is expected at v = 1 [12] also at v = 2/3.

By further increasing the band dispersion, we addressed
the melting of the Wigner crystal states. The nature of the
Mott-Wigner transition [10,29] between insulating broken
translations symmetry states and metallic states with no bro-
ken symmetries is a fundamentally important issue. Musser
et al. [29] theoretically explored the possibility of two con-
tinuous transitions with an intermediate spin liquid phase.
Recent experiments, which are sensitive mainly to the charge
gaps, have found that the transitions appear to be continu-
ous as the moiré displacement field is varied [10]. From our
results, Fig. 2, we can only conclude that the Mott—Wigner
transition is not strongly first order, in the sense that the jump
in the charge gap upon melting is very small compared to the
atomic limit gap.

The one-band models we study have particle-hole sym-
metry in the + = 0 atomic limit, which guarantees identical
charge gaps at filling factors v and 2 — v. Hopping on a
triangular lattice at finite 7 violates this symmetry as we see for
instance in Figs. 2(b) and 2(c), which show larger gaps for fill-
ings below v = 1 than for fillings above v = 1, in agreement
with experiment [5-7,9,10,14]. We note, however, that remote
band effects, neglected in our single-band study, are likely to
play an equally important role in the particle-hole asymmetry
seen in experiment. In Appendix B we show the effects of
including remote bands in our calculations, indicating that
the importance of mixing with remote bands increases with
filling factor. This is in agreement with different experimental
measures where states for smaller hole fillings of the topmost
band always have larger charge gaps [5-7,14].

Finally we comment on the importance of two items that
can be relevant in experiment, gate distance and disorder.
First, extended Coulomb interactions that trigger generalized
Wigner crystal formation, are much more sensitive to the
sample-gate coupling than the on-site interactions and can
be controlled by varying the distance to the gate electrodes.
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The results presented in the main text have been obtained
for the limit of infinite gate distance. In Appendix B we study
the effect of modifying the distance d to gates on our phase
diagrams for the fillings multiples of v = 1/3, finding the
same general trends with only quantitative changes.

Unrotated bilayers with a lattice mismatch, as considered
here, eliminate the twist-variation source of disorder. Disorder
is always present; however, and it may have some importance
in determining the details of the observed metal-insulator
transitions [30-32] at fractional and half-filling. Our calcu-
lations, which neglect disorder nevertheless reproduce many
qualitative and quantitative experimental features.

In this paper we have focused on generalized Wigner
crystal states on a triangular moiré superlattice, appearing
on TMD heterobilayers and tuned by the displacement field.
Some TMD homobilayers can be approximated by honey-
comb moiré superlattice models [33] and incompressible
states are also expected to appear if long-range interactions
are strong enough [17,25]. In that case applying a displace-
ment field breaks inversion symmetry and induces a complex
hopping, which could modify the picture presented here and
deserves further analysis. In a broader context, recent experi-
mental efforts on designing patterned dielectrics that induce a
superlattice on semiconductors or semimetals [34] could also
host generalized Wigner crystals and the results obtained here
would apply in the triangular case of those systems.
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APPENDIX A: STRUCTURE FACTORS
OF THE CLASSICAL CRYSTAL STATES

The Brillouin zone mesh of size M = 9 includes the y
point, the «/«’ points and six internal points that we label
. We want to calculate the values that the structure factor
acquires at these points for the magnetic states presented in the
main text, but in the classical limit and for a lattice with an ar-
bitrary number of sites M. The coordinates of the momentum
points of interest are given by y = ky(0,0), ¥ = ky(1/3, 0)
(due to the symmetry, it suffices to take one of the six internal
points), and k/k’ = kg(1/2, £1/2+/3), with kg = 47 //3ay.
For convenience, we will consider a triangular lattice with M
sites, where M is a multiple of 3, such that we can divide the
lattice into three triangular sublattices that we denote A, B, and
C, each containing M /3 sites. We want to calculate

1 .
S(q) — W ZezQ'(RrR;‘) (S; - Sj) , (A1)

iJj

For magnetic states in the classical limit, we can replace spin
operators S; by vectors of norm 1/2, and expectation values
(Si - §;) become dot products.

For the classical state at v = 1/3-filling, only one of the
three sublattices is filled (we choose it to be the A—sublattice)
and we can divide it again into three sublattices A1, A2, and A3
with different spin orientations, obtaining the Néel state. Their
coordinates within the magnetic unit cell are R4; = a},(0, 0),
Ry = d),(1,+/3), Ras = @), (—1, v/3), with a, = v/3ay /2.
We note that S; - S; = 1/4 when the two spins at i and j are
aligned and that S; - S; = —1/8 when spin orientations differ
by +27 /3. Therefore we get

=S50 20D 2]
)0 )]
) 2E)20)

=0. (A2)

For the edge points of the Brillouin zone the phase factors are
explik - (R4; — Ry;)] = 1, with i # j, hence the calculation is

similar to the y case,
Z L 0. (A3)
8 8]

For the internal point we obtain a finite value,

2 () (4
(0

1

72
For the v = 2/3filling classical ground state, we choose to
populate sublattices B and C within the magnetic unit cell,
with coordinates Rz = @}, (0, 2+/3) and R¢ = a),(0, 4+/3),
respectively. In this case the product is S; - S; = £1/4, for
aligned and anti-aligned spins respectively. The structure fac-
tor at the three points of interest is given by

S(k) =8 =

1
S@) = A?3

(A4)

s= 2 (T4 + 2 -3)
T(rz)e
Sk) =S
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FIG. 6. Effect of remote bands in the evolution of charge gaps as a function of W/V,, for fillings v = 1/3 and v = 2/3.

(A6)

1 i (Rg—Rpy) 1 i (Rg—R¢)

=0, (A7)

where in the last line we used that R = Rp + R, with Ry =
ay, (0, 24/3) the vector that separates the two sublattice sites
within each unit cell, to rewrite the summations and that
exp(it- Ry) = 1.

APPENDIX B: EFFECT OF REMOTE BANDS, DISTANCE
TO GATES AND SOME RESULTS FOR OTHER
SYSTEM SIZES

The results presented in the main text correspond to pro-
jecting Coulomb interactions to the topmost moiré band,
which is equivalent to mapping the system to an extended
triangular Hubbard model. As we pointed out, this approxima-
tion is not always valid and is more expected to break down
above half-filling v > 1. In order to determine how much the
inclusion of remote bands affects our results, in Fig. 6 we
show charge gaps for v = 1/3 and v = 2/3, calculated after
projecting the Hamiltonian to different numbers of bands in
the ED calculation.

Adding the remote bands has the effect of enlarging the
Hilbert space, lowering the ground-state energy. The phase
boundary between antiferromagnetic and ferromagnetic re-
gions at v = 2/3-filling will be shifted because the remote
bands effectively screen the dielectric function. Besides these

quantitative changes, the general trends regarding the evolu-
tion of the charge gaps and the magnetic properties remain
the same. From Fig. 6 we see that the effects of remote bands
become more prominent for smaller dielectric constant ¢ and
higher filling factor v. This makes sense, since a small ¢ means
stronger Coulomb interactions, which will allow for virtual
transitions to remote bands.

In Fig. 7 we show the effect of modifying gate distance on
the charge gaps at fillings v = 1/3 and v = 2/3. The effect of
the gates is introduced by modifying the interaction elements,
Eq. (4), to

, 1 27 e?
0,0 -
Vi,j,k,l = Z Z (Zk;,G,-ij,G/Zkk,Gkal,Gz) e tanh (g d),
G.G; q
GG

(B1)

where d is the distance from gates to sample, as shown in
Fig. 1(a). Making the gates closer will screen the long-range
interactions, which in turn will decrease the charge gap values.
In particular, making the gate sufficiently close to the sample
will cause the Wigner crystal states to completely disappear,
as has been seen in experiments done in high proximity to
gates [14].

Finally, in Fig. 8(a), we show examples of occupation dis-
tributions for different system sizes in the atomic limit (top)
and in the metallic limit (bottom). The top panel shows con-
stant occupations for all system sizes, which are in agreement
with an insulating state of localized spins. In the bottom panel,
all system sizes present vanishing occupations at the points

(a) (b)
s 10 ! 18| o v=2/3 e d=40nm
£ £ —e— d=8.2nm
4 05 g 05 —e— d=5nm
0.0 T 0.0 {7
0.05 010 0.15 0.05 010 0.15
WIVm WiVn

FIG. 7. Charge gaps as function of W/V,, for (a) v = 1/3-filling
and (b) v = 2/3-illing corresponding to different distances to gates
and for ¢ = 20.
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FIG. 8. (a) Ground-state occupations in the atomic limit (top panel) and in the metallic regime (bottom panel). Results for system sizes
M =9 and M = 12 correspond to v = 1/3 and results for M = 16 correspond to filling v = 1/4. (b) Many-body low-energy spectrum for
v = 1/3 obtained at size M = 12, as a function of W/V,,. (c¢) Many-body low-energy spectrum for v = 2/3 obtained at size M =12, as a

function of W/V,,. These calculations were done for ¢ = 20.

closer to the edge of the Brillouin zone. This is in agreement
with a metallic state and the formation of a Fermi surface.
The low-energy spectra for the M = 12 system size are
also shown in Fig. 8(b) for v = 1/3-filling and in Fig. 8(c)
for v = 2/3-filling, as a function of W/V,,. We see the

evolution of the ground-state manifold, as well as the second
(particle-hole excitation) and third (charged excitation) bands
that we see in M = 9. We additionally see two higher energy
bands above the unbound particle-hole band for this system
size.
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