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Evolution of magnetic correlation in an inhomogeneous square lattice
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We explore the magnetic properties of a two-dimensional Hubbard model on an inhomogeneous square
lattice, which provides a platform for tuning the bandwidth of the flat band. In its limit, this inhomogeneous
square lattice turns into a Lieb lattice, and it exhibits abundant properties due to the flat band structure at the
Fermi level. By using the determinant quantum Monte Carlo simulation, we calculate the spin susceptibility,
double occupancy, magnetization, spin structure factor, and effective pairing interaction of the system. It is found
that the antiferromagnetic correlation is suppressed by the inhomogeneous strength and that the ferromagnetic
correlation is enhanced. Both the antiferromagnetic correlation and ferromagnetic correlation are enhanced as the
interaction increases. It is also found that the effective d-wave pairing interaction is suppressed by the increasing
inhomogeneity. In addition, we also study the thermodynamic properties of the inhomogeneous square lattice,
and the calculation of specific heat provides good support for our point. Our intensive numerical results provide
a rich magnetic phase diagram over both the inhomogeneity and interaction.
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I. INTRODUCTION

Originally, the Lieb lattice was believed to be a paradig-
matic model that could be used to characterize flat-band
systems [1], and it was explored as a route to itiner-
ant ferromagnetism and superconducting and topological
properties [1–6]. In particular, tight-binding models with
nearest-neighbor interactions based on the Lieb lattice have
been discussed in the context of CuO2 planes, especially in
doped cuprates [7–11]. The Lieb lattice presents a more ac-
curate three-band picture, which includes not only the square
lattice of copper d orbitals but also the intervening oxygen p
orbitals. For the copper dioxide plane (Cu-O) correlated with
heavy metal atoms, the Cu-O plane is highly correlated with
copper-based superconductors, and the heavy metal atoms
above and below the copper dioxide plane are considered
to be a reservoir for adjusting the density of electron and
hole particles [12]. The Cu-O plane weakly couples with
these heavy metal atoms, and the coupling strength can be
adjusted since the component and type of heavy metal atoms
are experimentally modulated. Moreover, it is found that at
the M point of the Brillouin zone in twisted bilayer graphene
systems the flat band intersects with a Dirac cone, which
makes the Lieb lattice a possible model that can be used to
characterize the superconducting behavior of twisted bilayer
graphene [13–16]. In addition to the theoretical study of the
Lieb lattice, flat band lattices have also been experimentally
realized in optical lattices [17–21]. The optical lattice sys-
tem allows the formation of a Lieb lattice with ultracold
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atoms and not only fermions [17,22] but also bosons [23,24].
Recent tunneling coupled optical tweezer arrays in optical
lattices [25,26] might provide another promising platform to
tune the flat-band-like twisted bilayer graphene and Cu-O.
Current experimental technology allows us to excite atoms to
a higher energy level, which makes it possible to realize the
theoretical hypothesis.

Based on these studies, one interesting model, the Hubbard
model, of an inhomogeneous square lattice has attracted in-
tensive attention [27]. As shown in Fig. 1(a), inhomogeneity
is introduced via modulated lattice hopping. The solid lines
represent the hopping amplitude (1 + α)t , while the dashed
lines represent (1 − α)t . At α = 0, as shown in Fig. 1(c),
this lattice reduces to a square lattice. In its limit with
α = 1, as shown in Fig. 1(e), this inhomogeneous square
lattice turns into a Lieb lattice, and it exhibits abundant
properties due to the flat band structure at the Fermi level.
Thus, the inhomogeneity could be modulated by adjusting
α, which provides an opportunity to study how flat bands
should enhance correlated physics, such as magnetic order
and superconductivity. This tunability can also be compared
with that of twisted multilayer graphene, for which the width
of the low-energy bands can be tuned by changing the twist
angle.

The magnetic phase diagram for the square lattice has been
studied intensively, and some consensus about this model
has been reached. For example, the first-order metal-insulator
Mott transition in the half-filled paramagnetic state and an in-
finitesimal critical coupling strength for the antiferromagnetic
phase at half filling due to the nested Fermi surface have been
established [28–32]. For the Lieb lattice, a series of rigorous
results have been achieved. Lieb established a theorem stating
that in a class of bipartite geometries in any spatial dimension
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FIG. 1. (a) A lattice with L = 4 and the lattice inhomogeneity
is introduced by modulated hopping. The smallest unit cell contains
four types of sites, labeled A, B, C, and D. A sites have solid line
bonds and D sites have dashed line bonds, and B/C sites have both
bonds. The solid black line bonds represent the hopping amplitude
(1 + α)t , while the dashed blue line bonds represent (1 − α)t . When
α = 0, the lattice become (c) a square lattice, and the blue and black
lines both are t = 1. When α = 1, the lattice becomes (e) a Lieb
lattice, and the blue lines are dashed which mean t = 0. The energy
band along the high symmetry line in the unfolded Brillouin zone is
shown for different inhomogeneities: (b) α = 0.5, (d) α = 0.0, and
(f) α = 1.0.

the ground state is ferromagnetic at half filling, as long as the
number of atoms of each sublattice is different. Applied to
the case of the Lieb lattice, its ground state should be iden-
tified with ferrimagnetism, which means that although each
sublattice is indeed ferromagnetic, there is antiferromagnetic
ordering between every pair of nearest neighbors [1]. There
is an open question that needs further study: how does the
magnetic order evolve from the square lattice to the Lieb
lattice with increasing inhomogeneity? Within the framework
of dynamical mean-field theory, magnetization and d-wave
superconductivity have been studied in an inhomogeneous
square lattice, in which a crossover from Fermi-liquid to non-
Fermi-liquid behavior from dispersive to flat bands has been
proposed [27].

In this paper, we explore the evolution of magnetic cor-
relations in this inhomogeneous square lattice by using the
determinant quantum Monte Carlo (DQMC) simulation. We
are especially interested in the inhomogeneity-dependent fer-
romagnetic and antiferromagnetic correlation at half filling.
We calculate the thermodynamic specific heat, which helps us
to further understand the evolution of magnetic correlations.

We also identify the dominant superconducting pairing sym-
metry in such an inhomogeneous square lattice.

II. MODEL AND METHOD

The Hamiltonian we studied is the Hubbard model on an
inhomogeneous square lattice,

H = −
∑
〈i j〉,σ

[(ti jc
†
i,σ c j,σ + H.c.)] − μN

+ U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)
, (1)

where c†
iσ (ciσ ) is the operator that creates (annihilates) an

electron with spin σ at site i. To describe the inhomogene-
ity between the square and Lieb lattice, we modulated the
next-nearest hopping by setting tx = t[1 + (−1)yα] and ty =
t[1 + (−1)xα], as shown in Fig. 1(a), where the solid lines
represent the hopping amplitude (1 + α)t and the dashed
lines represent (1 − α)t . In the second term, μ is the chem-
ical potential, and the total particle number N is defined as
N = ∑

i,σ c†
i,σ ci,σ . The last term in the Hamitonian introduces

the on-site Hubbard interaction, where U � 0 is the on-site
interaction strength. As inhomogeneity is introduced in the
model by α, the average hopping strength is kept. The smallest
unit cell contains four types of sites, labeled A, B, C, and D,
represented in Fig. 1, due to the flat band structure at the Fermi
level.

At half filling, particle-hole symmetry holds even in the
inhomogeneous case, and the properties of the Hamiltonian,
Eq. (1), could be solved using the DQMC method free of
the infamous “minus-sign problem.” Away from half filling,
DQMC simulations are plagued by the sign problem, prevent-
ing us from reaching very low temperatures. Nonetheless, we
can still shed some light on the effects on superconductivity. In
the present simulations, 4000–8000 sweeps were used to equi-
librate the system, and an additional 30 000–80 000 sweeps
were made, each of which generated a measurement.

To study the magnetic correlation, we computed the spin
structure factor, which is defined as [33]

S(q) = 1

Ns

∑
i, j

eiq·(i− j)〈Si · S j〉, (2)

We compute the spin susceptibility in the z direction at zero
frequency, which is defined as [34]

χ (q) = 1

Ns

∫ β

0
dτ

∑
i, j

eiq·(i− j)〈mi(τ ) · mj (0)〉, (3)

where mi(τ ) = eHτ mi(0)e−Hτ with mi = c†
i↑ci↑ − c†

i↓ci↓. χ is
measured in units of |t |−1, and χ (�) with � = (0, 0) measures
the ferromagnetic correlation, while χ (K ) with K = (π, π )
measures the antiferromagnetic correlation. We also compute
the double occupancy,

DX = 4
∑
j,X

(n j,↑n j,↓), (4)
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and the local magnetization,

mX = 4
∑
j,X

(n j,↑ + n j,↓ − 2n j,↑n j,↓), (5)

where X is the type of sites labeled A, B, C, and D. We define
the average magnetization for the cluster as m̄ = (mA + mB +
mC + mD)/4 and the staggered magnetization is defined as
ms = (mA − mB − mC + mD)/2. In this article, we discuss the
situation at half filling by default, 〈n〉 = 〈n↑〉 + 〈n↓〉 = 1.0.

In general, the magnetic correlation can be well reflected
by the above physical quantities. In the perspective of finite
temperature thermodynamics, we can also find corresponding
evidence. Especially in specific heat, the magnetic correlation
is closely related to the specific heat peak, which is adequately
understood in square lattice [35] and honeycomb lattice [36].
To further understand the evolution of magnetic correlations
in the inhomogeneous square, we also perform calculations
for the thermodynamic specific heat. The specific heat is cal-
culated by differentiating a nonlinear fit of the energy of the
form

c(T ) = ∂e f it (T )

∂T
. (6)

We start by calculating the energy datum of the system by the
DQMC method, and use an exponential fit of the energy by
the function

e f it (T ) = c0 +
M∑

n=1

cne−βn
, (7)

We choose a cutoff at M = 7.

III. RESULTS AND DISCUSSION

We first present the band structure of the inhomogeneous
square lattice in its noninteracting limit. In Figs. 1(b), 1(d),
and 1(f), the energy bands along the high symmetry line in
the unfolded Brillouin zone with different α are presented.
As the inhomogeneity factor α increases from 0.0 to 0.5 to
1.0, the energy band is split from the two to four bands, then
degenerated to three bands to form a flat band, as shown in
Fig. 1(f).

To explore how the magnetic properties change with the
band structure, we present the spin susceptibility χ (q) as a
function of momentum q with different U at half filling for
various inhomogeneities α in Fig. 2. As Fig. 2 shows, for any
inhomogeneity α, the spin susceptibility increases as the in-
teraction U increases, especially at the peak q = K = (π, π ),
indicating that the antiferromagnetic correlation is robust in
the system, either for a square lattice or Lieb lattice. As α

increases, the correlation at the � = (0, 0) point arises, which
corresponds to the ferromagnetism of the Lieb lattice at half
filling. When α = 0.2, 0.4, the peak value of U = 3 at the
K point is reduced compared to α = 0.0, while the values
corresponding to the other vectors have a certain increment.
When α = 0.6, there is also a peak at the � point, but it is
still smaller than that at χ (K ), and, as the value of α increases
to 1, the difference between the two peaks decreases. We also
notice that χ (K ) > χ (�) when α = 1.

The effect of α is more apparent when we fix the interaction
strength U . As Fig. 3 shows, χ (q) is plotted as a function of

FIG. 2. Spin susceptibility χ (q) in momentum space along the
high symmetry points in the Brillouin zone. Results are obtained at
β = 6 and L = 8 and presented for different values of the inhomo-
geneity α and the interaction U .

momentum q with different α at interaction strengths U = 3.0
(a) and U = 4.0 (b) for a fixed temperature β = 6. We can
see that the peak at K decreases as α increases, while χ (�)
slightly increases.

Next, we discuss the effect of the interaction and inhomo-
geneity on the double occupancy and magnetic moment at
different kinds of lattice sites. In Fig. 4, we compare the values
of double occupancy corresponding to different homogeneity
at inverse temperature β = 6, and we set varying interaction
values to Ũ = U/t (1 + α). The corresponding double occu-
pancy value of lattice site A is shown in Fig. 4(a), while values
on sites B/C are shown in Fig. 4(b). In the homogeneous
system, that is, when α = 0.0, the double occupancy curves
behave the same at lattice sites A and B/C. However, when
α increases, the double occupancy at the A site behaves the
same way, as shown in Fig. 4(a). On the other hand, the double
occupancy on sites B/C has a significant decrease and behaves
exponentially at small Ũ . This may be caused by the fact that
the flat band electrons only occupy the B/C sites, and the
existence of the flat band supports single occupancy even for
infinitesimal Ũ .

As shown in Fig. 4(c), compared with lattice sites A/B/C,
the corresponding double occupancy value of D changes
sharply with Ũ and α, and when α = 1.0 the double
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FIG. 3. Spin susceptibility χ (q) in momentum space along the
high symmetry points in the Brillouin zone. Results are obtained at
β = 6 and L = 8 and presented for different values of the inhomo-
geneity α for (a) U/t = 3 and (b) U/t = 4.

occupancy decreases to 0 after Ũ = 0.5. Briefly, as Fig. 4
shows, the double occupancy will tend to zero at all sites in the
strong coupling limit regardless of α. Figure 4(c) also implies
that we should pay attention to the influence of the magneti-
zation of heavy metal atoms on the properties of copper-based
superconductors.

Next, we discuss the interaction of inhomogeneities on
the uniform magnetization ms and average magnetization m̄
in Fig. 5. As shown in Fig. 5(a), m̄ increases as α and U
increase. While all the m values converged to the same limit
for different α, the uptrend of the curve is sharper with larger
U strength. As shown in Fig. 5 (b), ms increases with in-
creasing U when U < Up, and then decreases, thus forming
a peak at Up. As α increases, we find that the peak moves
toward lower U . In the strongly interacting regime, all curves
for different α coalesce and asymptotically approach zero. In
Fig. 5(c), mB/C − mA is considered as ms for the Lieb lattice.
Compared with Fig. 5(b), the behavior of the curves is roughly
similar, except that the magnetization changes gently with
Ũ but changes sharply with α. Our results on the double
occupancy and uniform magnetization are in agreement with
previous studies within dynamical mean-field theory [27].

A more rigorous probe of long range order is accomplished
using finite-size scaling analyses. The order parameter can
be obtained by normalizing the structure factor S(�) to the
thermodynamic limit, as shown in Fig. 6. When inverse tem-
perature β = 6, according to linear fitting, it can be predicted
that, under the size limit, S(�) will gradually increase with
the increase of α, and when it increases to α = 0.5 a positive

FIG. 4. (a) Double occupancy on A sites for varying interaction
Ũ with different α at β = 6 and L = 8, (b) double occupancy on B/C
sites, and (c) double occupancy on D sites.

value will appear, which means that there is a possible ferro-
magnetic order in the system when α is larger than 0.5.

To elucidate the effect of inhomogeneity on the super-
conductivity, we also studied the effective pairing interaction
as a function of inhomogeneity. Following previous stud-
ies [37–39], pairing susceptibility is defined as

Ps = 1

NS

∑
i j

∫ β

0
dτ 〈
†

s (i, τ )
s( j, 0)〉, (8)

where s is the pairing symmetry. Due to the constraint of
the on-site Hubbard interaction in Eq. (1), the corresponding
order parameter 
†

s (i) is


†
s (i) =

∑
l

f †
s (δl)(ci↑ci+δl↓ − ci↓ci+δl↑)†, (9)

where fs(δl) is the form factor of the pairing function. Ps

includes both the renormalization of the propagation of the
individual particles and the interaction vertex between them,
whereas P̃s includes only the former effect. To extract the
effective pairing interaction in a finite system, one should
subtract from Ps its uncorrelated single-particle contribution
P̃s, which is achieved by replacing 〈c†

i↓c j↓c†
i+δl↑c j+δl′ ↑〉 in

Eq. (8) with 〈c†
i↓c j↓〉〈c†

i+δl↑c j+δl′ ↑〉, and the effective pairing
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FIG. 5. (a) Average magnetization of lattice, m, (b) staggered
magnetization of lattice, ms, and (c) magnetization mB/C − mA for
varying interaction Ũ for different α at β = 6 and L = 8.

interaction Ps is defined as Ps = Ps − P̃s. The positive Ps,
namely Ps > 0, indicates the presence of superconductivity.
More details can be found in Refs. [37–39].

It is widely known that the dominant pairing symmetry is
the d wave in the Hubbard model on a square lattice [40,41].

FIG. 6. Finite-size scaling of the spin structure factor S(�),
which changes with the inhomogeneity α from 0 to 0.7, at interaction
strengths U = 3 and inverse temperature β = 6.

FIG. 7. Effective pairing interaction Ps as a function of inhomo-
geneity α for different pairing symmetries for (a) charge density
n = 0.8 and (b) charge density n = 0.9 with β = 6 and L = 8.

As shown in Fig. 7, the effective pairing interaction with
different pairing symmetries is shown for (a) n = 0.8 and (b)
n = 0.9 with U = 3.0 and β = 6. One can see that for both
n = 0.8 and n = 0.9 the effective pairing interaction with the
d wave is positive, and the others are negative. This means that
superconductivity with d-wave pairing symmetry is possible.
Moreover, the effective pairing interaction decreases as the in-
homogeneity α increases, and it tends toward zero as α = 1.0,
which indicates that at least the d-wave superconductivity
should be suppressed by the increasing inhomogeneity. The
effective pairing interaction with the d + id wave is not obvi-
ous with negative small value.

Finally, we use the same parameters as Fig. 3 to calculate
the specific heat, which is shown in Fig. 8. The same param-
eters are chosen so that we can directly compare the physical
quantities of these two figures, which provides useful support
for our view on the evolution of magnetic correlations with
the inhomogeneity α. Fig. 8 shows the specific heat as a func-
tion of temperature, inhomogeneity and interaction, with all
cases showing a two-peak structure. Regardless of U = 3 or
U = 4, as α increases, the high-temperature peak associated
with the generation of the local moment has a move to the
high temperature region. Here we put more attention on the
low-temperature peak which is correlated with the collective
spin excitation. The increasing temperature tends to destroy
the magnetic order, and the position of low-temperature peak,
Tlow indicating where a magnetic transition may develop. The
ground state magnetic correlation shall be more strong with
a higher Tlow. As shown in Fig. 8(a) for U = 3, Tlow has no
obvious change for α = 0, 0.2, 0.4 and starts to increase from
α = 0.6, suggesting that there is no obvious change in the
antiferromagnetic correlation at α = 0, 0.2, 0.4 while ferro-
magnetic correlation is likely established and enhanced from
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FIG. 8. Results for specific heat c(T ) calculated at L = 8 by
fitting method. Those results are presented for different values of the
inhomogeneity α for (a) U = 3 and (b) U = 4.

α = 0.6. Also in Fig. 8(b) for U = 4, with α = 0, 0.2, 0.4,
Tlow has a significant decrease, corresponding to the suppres-
sion of antiferromagnetic correlation, and then increases like
that of U = 3. The turning point approximately occurs at α =
0.4 ∼ 0.6, indicating where the ferromagnetic correlation de-
velops. Compared with that of Fig. 3, we can find a good
consistency between spin susceptibility χ (q) and specific heat
c(T ).

In addition, for both U = 3 and U = 4, the low-
temperature peak has a obvious move to the high temperature
region with the increasing α as α > 0.4, while the peak value
is decreasing. It may suggest that ferromagnetic correlation
tends to be strong. Since the fiercer the competition between
antiferromagnetic and ferromagnetic correlation in the ground
state, the smaller the entropy change caused by spin excitation
at low temperature, resulting in a small low-temperature peak
of specific heat.

IV. CONCLUSIONS

In summary, by using the determinant quantum Monte
Carlo method, we studied an inhomogeneous square lattice,
which turns into a Lieb lattice in the inhomogeneous limit
with α = 1. The special lattice provides us with a platform
to study the features of flat-band structure systems. As α

increases, the spin susceptibility χ (K ) decreases, while χ (�)

FIG. 9. Colormap of spin susceptibility χ (q) in momentum
space along the high symmetry lines in the Brillouin zone. Re-
sults are presented for different values of the inhomogeneity α for
(a) U/t = 3 and (b) U/t = 4 with β = 6 and L = 8.

increases. In consideration of interactions, we find that χ (q)
is enhanced when U increases. Then, we studied the double
occupancy, magnetization moment, relation between ferro-
magnetic order and α, the effective pairing interaction, and the
specific heat. Our intensive numerical results provide a global
understanding of the evolution of magnetic correlations in an
inhomogeneous square lattice.
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APPENDIX A: VISUALLY PERCEPTIVE COLORMAP

The use of a visually perceptive colormap is useful since
it can carry informational content. Visually perceptive col-
ormaps for Figs. 3–6 are shown in Figs. 9–11, to have a

FIG. 10. Colormap of (a) double occupancy on A sites for vary-
ing interaction Ũ with different α at β = 6 and L = 8, (b) double
occupancy on B/C sites, (c) double occupancy on D sites and
(d) normalized spin structure factor S(�) for lattice size scaling with
different α at U = 3 and β = 6.
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FIG. 11. Colormap of (a) average magnetization of lattice, m,
(b) staggered magnetization of lattice, ms, and (c) magnetization
mB/C − mA for varying interaction Ũ with different α at β = 6 and
L = 8. (d) is for staggered magnetization of lattice, ms, at β = 20.

better view of order parameters corresponding to smaller or
larger values of α. As shown in Fig. 9, we can see how spin
susceptibility χ (q) changes with q for different values of α.
Figures 10(a)–10(c) show how double occupancy D changes
with Ũ for different values of α. Figure 10(d) shows how
normalized spin structure factor S(�) changes with L−1 for
different values of α. In Fig. 11, we can see how magnetization
m changes with Ũ for different values of α.

FIG. 12. Antiferromagnetic and ferromagnetic spin susceptibili-
ties χ (K ), χ (�) presented for different values of the inhomogeneity
α and the interaction U . Results are obtained at β = 6 and L = 8.

FIG. 13. Antiferromagnetic and ferromagnetic spin suscepti-
bilities χ (K ), χ (�) are presented for different values of the
inhomogeneity α and temperature T at L = 8. Results are obtained
at (a) U = 4 and (b) U = 6.

APPENDIX B: NUMERICAL SIMULATIONS FOR
LARGER U AND β

In general, antiferromagnetism is enhanced around U/t =
8–12 in two- and three-dimensional square lattices [30,42,43].
The behavior of magnetic order in this inhomogeneous square

FIG. 14. (a) Double occupancy on A sites for varying inverse
temperature β with different Trotter step 
τ at U = 3, β = 6, and
L = 8, and (b) double occupancy on B/C sites.
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lattice is unknown for larger interactions and lower temper-
atures. We have extended the numerical simulation for the
spin susceptibility to larger interaction strength, from which
one can see that our main conclusion remains unchanged. In
Fig. 12, we find that with increasing inhomogeneity α, in the
strong coupling region, the ferromagnetic spin susceptibility
χ (�) increases and the antiferromagnetic spin susceptibility
χ (K ) decreases.

Thus, there is a suppression of the spin susceptibility at the
q = K point as α increases, and the spin susceptibility grows
at q = �. However, the value of χ (k) is almost twice as large
as χ (�) for the U and temperature considered in Fig. 12. This
means that, although there is suppression in χ (k), the nature
of the system is still antiferromagnetic.

It is interesting to ask whether there should be a set of
points (U, T ) where the ferromagnetic spin susceptibility will
surpass the antiferromagnetic one. In Fig. 13, χ (K ) and χ (�)
are plotted vs T for different values of α with U = 4, 6. One
could find that the ferromagnetic spin susceptibility χ (�) is
smaller than the antiferromagnetic one χ (K ), so the antifer-

romagnetism is dominant in a large parameters region. From
current results, one can see that χ (K ) is always larger than
χ (�) except for case of U = 10, α = 1 where χ (K ) is almost
as large as χ (�). Due to the limit of DQMC technique, the
numerical instability prevent us to perform lower temperature
or larger interaction, and it is difficult for us to conclude
whether there would be a set of points (U, T ) where the
ferromagnetic spin susceptibility will surpass the antiferro-
magnetic one. Anyway, the antiferromagnetism is dominant
in a large parameters region.

APPENDIX C: TROTTER STEP

In the DQMC algorithm, the systematic error mainly
comes from the Trotter step, 
τ . Figure 14 shows double
occupancy for different Trotter step values 
τ . One can
find that double occupancy changes slightly when the Trot-
ter step is smaller than 0.1. Due to the convergence of the
finite 
τ scaling, we use the value of 
τ = 0.1 in all the
simulations.
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