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Symmetric Wannier states and tight-binding model for quantum spin Hall bands
in AB-stacked MoTe2/WSe2
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Motivated by the observation of topological states in AB-stacked MoTe2/WSe2, we construct the symmetry-
adapted Wannier states and tight-binding model for the quantum spin Hall bands in this system. Our construction
is based on the symmetry analysis of Bloch states obtained from the continuum moiré Hamiltonian. For model
parameters extracted from first-principles calculations, we find that the quantum spin Hall bands can be described
by a tight-binding model defined on a triangular lattice with two Wannier states per site per valley. The two
Wannier states in a given valley have the same Wannier center but different angular momenta under threefold
rotation. The tight-binding model reproduces the energy spectrum and accurately describes the topological phase
transition induced by the out-of-plane displacement field. Our study sheds light on the topological states in
moiré transition metal dichalcogenides bilayers and provides a route to addressing the many-body physics in
AB-stacked MoTe2/WSe2.
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I. INTRODUCTION

The discovery of correlated insulators and superconductors
in magic angle twisted bilayer graphene [1,2] has demon-
strated vast opportunities provided by moiré materials to
design quantum phases of matter, including superconductors
[3–16], correlated insulators [17–24], and nontrivial topolog-
ical states [25–33]. One promising direction is to study the
interplay between many-body interactions and band topology,
since moiré superlattices can often host topological flatbands
with enhanced interaction effects. A prominent example of
topological states is the quantum anomalous Hall insulator
(QAHI), which has been realized in various graphene-based
moiré systems [30–32,34–38].

Moiré superlattices formed in bilayers of semiconducting
transition metal dichalcogenides (TMD) can host moiré flat-
bands in a wider range of twist angles [18]. Interaction-driven
quantum phases [20,21,24,39,40] such as Mott insulators and
generalized Wigner crystals have been observed in moiré
TMD bilayers. A theoretical work [27] predicted that moiré
bands in twisted TMD homobilayers can realize quantum
spin Hall insulators (QSHI), which is possible because of
the strong spin-orbit coupling in TMD. Although topological
states have so far not been experimentally observed in twisted
TMD homobilayers, an experiment [41] on AB-stacked TMD
heterobilayer MoTe2/WSe2 reported signatures of QSHI at
filling factor ν = 2 (two holes per moiré unit cell) and QAHI
at ν = 1. Here both topological states were induced by an
external out-of-plane displacement field. This experiment [41]
is remarkable as it clearly demonstrates that distinct types of
topological states can be realized within one system.

*wufcheng@whu.edu.cn

The displacement field-induced topological moiré bands
in AB-stacked MoTe2/WSe2 have been theoretically estab-
lished by large-scale first-principles calculations [42]. The
external displacement field induces topological band inversion
between moiré bands derived, respectively, from MoTe2 and
WSe2. The QSHI at ν = 2 is consistent with the band struc-
ture calculations. A recent experiment further demonstrated
that a small out-of-plane magnetic field drives the QSHI at
ν = 2 into a Chern insulator [43], which can also be un-
derstood within single-particle physics. On the other hand,
the QAHI at ν = 1 is a manifestation of electron correlation
effects in topological bands, since interaction-induced spon-
taneous time-reversal symmetry breaking is necessary for the
QAHI. The exact nature of the QAHI at ν = 1 is under active
study and different types of symmetry-breaking states are
proposed [44–50]. An optical spectroscopy measurement sug-
gested that the QAHI at ν = 1 in AB-stacked MoTe2/WSe2

is valley coherent rather than valley polarized [51], but the
microscopic mechanism remains an open question.

Tight-binding (TB) description of the topological moiré
bands provides not only insights to the band structure, but also
an important starting point to study the interaction physics.
For AB stacked MoTe2/WSe2, previous works [42,52] pro-
posed a tight-binding model without explicitly constructing
the Wannier states, where the proposed model is a gener-
alization of the Kane-Mele model. Recently, several works
[46,50] started from the interacting Kane-Mele model to
study interaction-driven topological phases in AB-stacked
MoTe2/WSe2. However, the tight-binding model description
for the quantum spin Hall bands in this system remains an
open question since the Wannier states have not been con-
structed in previous studies.

In this paper, we construct the symmetry-adapted Wan-
nier states and the effective TB model for the quantum spin
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Hall bands of AB-stacked MoTe2/WSe2. We perform a de-
tailed symmetry analysis of the moiré Hamiltonian and the
moiré bands. The symmetry eigenvalues of the Bloch states
at high-symmetry momenta uniquely determine the center
of the Wannier states [53]. For model parameters extracted
from the first-principles calculations [42], we find that the
Wannier states for AB-stacked MoTe2/WSe2 in the topolog-
ical regime form an effective triangular lattice. We construct
the Wannier states and the TB model defined on the tri-
angular lattice. The constructed TB model is distinct from
the generalized Kane-Mele model [42,52], but similar to
the Bernevig-Hughes-Zhang model [54]. The TB model not
only reproduces the energy spectrum of the moiré bands,
but also accurately describes the topological phase transition
induced by the displacement field. Our TB model can be used
for addressing the electron interaction effects in AB-stacked
MoTe2/WSe2.

The rest of the paper is organized as follows. In Sec. II,
we present the moiré Hamiltonian and the topological phase
diagram characterized by valley Chern numbers. In Sec. III,
we analyze the symmetries of the moiré Hamiltonian and
Bloch states. In Sec. IV, we construct the symmetric Wan-
nier states informed by the symmetry eigenvalues of Bloch
states at high-symmetry momenta. In Sec. V, we build the TB
model based on the obtained Wannier states. In Sec. VI, we
conclude with a discussion and summary. Appendixes A–D
complement the main text by providing additional technical
details.

II. MOIRÉ BAND STRUCTURE

A. Moiré Hamiltonian

We study AB-stacked MoTe2/WSe2 with an exact 180◦
twist angle. The lattice constant mismatch generates a moiré
superlattice with a period of aM = abat/|ab − at |, where
ab = 3.575 Å and at = 3.32 Å are the lattice constants of the
bottom (b) MoTe2 layer and the top (t) WSe2 layer, respec-
tively. The moiré superlattice, shown in Fig. 1(a), has the C3v

point group symmetry, which is generated by the threefold
rotation around z axis (C3) and the mirror operation (Mx)
that flips x to −x. In the superlattice, there are three high-
symmetry locations labeled by MM, XX, and MX. Here, MX
refers to the location where the metal (M) atom of the bottom
layer is vertically aligned with the chalcogen atom (X) of the
top layer and likewise for MM and XX locations. The momen-
tum space structure is illustrated in Fig. 1(b), which shows the
Brillouin zones of each layer and the moiré superlattice.

The low-energy continuum Hamiltonian for AB-stacked
MoTe2/WSe2 has been constructed in Ref. [42] informed by
first-principles band structures and is given by

Hτ (r) =
(
Hb,τ (r) + �b(r) �T,τ (r)

�
†
T,τ (r) Ht,τ (r) + �t (r) + Vz

)
, (1)

where Hτ is the valley-dependent moiré Hamiltonian for va-
lence band states in τK valley and τ = ±1 is the valley index.
Here +K and −K indicate corners of Brillouin zones asso-
ciated with each monolayer and represent the valley degree
of freedom. The valley index τ is a good quantum number in
the low-energy Hamiltonian. As schematically demonstrated

FIG. 1. (a) Moiré superlattices of AB-stacked MoTe2/WSe2 het-
erobilayer. (b) Schematic plot of the Brillouin zones. The gray and
orange hexagons are the Brillouin zones of MoTe2 and WSe2, respec-
tively. The left (right) black hexagon represents the moiré Brillouin
zone in −K (+K) valley. (c) Schematic illustration of valence states
in ±K valleys. Only states in the dashed box are retained in the
Hamiltonian Hτ .

in Fig. 1(c), the basis states of Hamiltonian H± are

{|b, d+,↑〉, |t, d−,↓〉} for H+,

{|b, d−,↓〉, |t, d+,↑〉} for H−,
(2)

where (b, t ) are the layer indices, |d±〉 = 1√
2
(|dx2−y2〉 ± i|dxy〉)

represent the predominant atomic d orbitals of the metal
atoms, and (↑,↓) are, respectively, for spin up and down. In
a given valley, the basis states have layer-contrast orbital and
spin characters, which is a result of the 180◦ rotation between
the two layers.

Hb,τ and Ht,τ in Eq. (1) represent, respectively, the kinetic
energy for the bottom and top layers,

Hb,τ = − h̄2(k̂ − τκ)2

2mb
,

Ht,τ = − h̄2(k̂ − τκ′)2

2mt
,

(3)

where k̂ = −i∂r is the momentum operator, κ = (4π/3aM )
(−1/2,

√
3/2), κ′ = (4π/3aM )(1/2,

√
3/2), and (mb, mt ) =

(0.65me, 0.35me) are the effective masses for the two layers
(me is the rest electron mass). The momenta κ and κ′ are
located at the corners of the moiré Brillouin zone and account
for the momentum shift of the band extrema associated with
the two layers [Fig. 1(b)].

�b,t and �T,τ in Eq. (1) are, respectively, the intralayer
potential and interlayer tunneling, which are parametrized as
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follows:

�b,t (r) = 2Vb,t

∑
j=1,3,5

cos(g j · r + φb,t ),

�T,τ (r) = τw(1 + ωτ eiτg2·r + ω2τ eiτg3·r),

(4)

where (Vb,t , φb,t ,w) are model parameters and g j =
4π/(

√
3aM ){− sin[π ( j − 1)/3], cos[π ( j − 1)/3]} are the

moiré reciprocal lattice vectors in the first shell. The form of
�b,t and �T,τ is constrained by symmetry. In particular, the
phase factor ω is fixed to be ei2π/3 by the threefold rotation
symmetry C3. Therefore, the tunneling term �T,τ has a finite
value at the XX location, but vanishes at the MM and MX
locations.

Vz in Eq. (1) is the band offset between different layers
and can be tuned by an applied vertical displacement field.
At zero displacement field, the intrinsic band offset Vz is
around −110 meV [42]. The other model parameters have
been determined in Ref. [42] from fitting to the first-principles
band structures and take the following values: Vb = 4.1 meV,
φb = 14◦, Vt = 0, and w = 1.3 meV. Here, Vt is set to be
zero, because the low-energy physics only involves the va-
lence band maximum of WSe2, and the potential �t (r) can be
neglected. We note that the first-principles calculation might
not be accurate enough to precisely determine w that is on
the scale of 1 meV. Experimentally, w could be modified
by pressure [8]. Therefore, we take w and Vz as adjustable
theoretical parameters to study the topological phase diagram,
but keep the values of other parameters fixed.

The moiré Hamiltonians H+ and H− are related by the
time-reversal symmetry T = iτyσzK, where σz and τy are
Pauli matrices in the layer and valley spaces and K is the com-
plex conjugation operator. We present a detailed discussion of
the T symmetry in Appendix A. In the following, we mainly
focus on the physics of H+ in +K valley, unless otherwise
stated.

B. Topological phase diagram

The topology of the moiré bands can be tuned by the band
offset Vz. In the intrinsic case without external displacement
field (Vz ∼ −110 meV), the topmost moiré valence bands are
mainly derived from the MoTe2 layer and topologically trivial.
When |Vz| is reduced by an applied displacement field, there
can be band inversion between bands derived from different
layers, which can drive topological phase transitions [42,44].

To characterize the band topology, we calculate C(1)
+K and

C(2)
+K in the parameter space of (Vz,w), as shown in Figs. 2(a)

and 2(b), respectively. Here C(n)
+K is the Chern number of the

nth moiré valance band at +K valley. Based on the Chern
numbers, the parameter space (Vz,w) in Fig. 2(c) can be
classified into five regions: (C(1)

+K ,C(2)
+K ) take values of (0,−1)

in phase (i), (0,0) in phases (ii) and (ii′), (1,−1) in phase (iii),
and (1,0) in phase (iv), respectively. Here phases (ii) and (ii′)
have identical Chern numbers for the first two bands, but we
use the two different labels to emphasize that they are sepa-
rated in the parameter space by phase (i). Phase (ii′) appears
in the lower-left corner of the parameter space with weak w

and sufficiently negative Vz, where both of the first two bands

FIG. 2. (a), (b) Chern numbers of the first and second moiré band
at +K valley in the parameters space (Vz, w). (c) The phase diagram
characterized by the Chern numbers (C (1)

+K ,C (2)
+K ). The white dashed

line obtained from Eq. (9) represents an analytical approximation
for the phase boundary between (ii) and (iii). Similarly, the blue
dashed line obtained from Eq. (11) closely follows the numerical
phase boundary between (ii′) and (i). (d) The energy gap ε12(κ′)
between the first and the second bands at κ′ point as a function of
Vz at w = 5 meV. (e), (f) The moiré bands in phases (ii) and (iii)
with different values of Vz at w = 5 meV.

are mainly derived from the bottom layer and topologically
trivial.

In this work, we focus particularly on phase (iii), since the
first moiré valence bands in this phase realize the quantum
spin Hall state when both valleys are considered. Because the
valley index is a good quantum number in our low-energy con-
tinuum model and the ±K valleys are related by time-reversal
symmetry, the Z2 topological invariant for the quantum spin
Hall state can be defined as Z2 = (C(1)

+K − C(1)
−K )/2 mod 2. The

valley Chern numbers are related by time-reversal symmetry
as C(1)

−K = −C(1)
+K . Therefore, the Z2 invariant is 1 (nontrivial)

for the first moiré bands in phase (iii). Note that phase (iv)
also generates the quantum spin Hall state in the first moiré
valence bands. However, its existence requires a value of w

that is possibly too large for AB-stacked MoTe2/WSe2. We
keep phase (iv) in the phase diagram for completeness but do
not study it further in this work.

Phase (ii) is separated from phase (iii) by a topological
phase transition tuned by Vz. At the critical point Vz = V c

z for
the transition, the energy gap ε12(κ′) between the first and the
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second moiré bands closes at κ′ point in +K valley, as shown
in Fig. 2(d). This phase transition is further revealed by the
moiré band structures in Figs. 2(e) and 2(f) for phases (ii) and
(iii), respectively. The color of the bands encodes the layer
polarization P(n)

k , which is defined by

P(n)
k = 〈

ψ
(n)
k

∣∣σz

∣∣ψ (n)
k

〉
. (5)

Here ψ
(n)
k is the Bloch state for the nth band at momentum k

and is obtained by diagonalizing the moiré Hamiltonian H+(r)
in a plane wave basis. In the layer pseudospin space, ψ

(n)
k is

a two-component spinor [ψ (n)
k,b, ψ

(n)
k,t ]T . The layer polarization

clearly reveals the topological phase transition. When Vz <

V c
z , P(1)

k approaches 1 at every k, indicating that the first band
is mainly derived from the MoTe2 layer. After the topological
phase transition (Vz > V c

z ), both P(1)
k and P(2)

k change sign for
k around κ′ point. Therefore, the band inversion at κ′ point,
which drives the topological phase transition, is characterized
by the layer inversion.

C. Analytical phase boundaries

To gain a deeper insight into the topological phase diagram,
we construct an analytical theory for the phase boundary be-
tween phases (ii) and (iii). The approximate analytical theory
is derived by truncating the moiré Hamiltonian at κ′ in the
plane-wave basis to the first shell. In this approximation,
we keep the following four low-energy plane-wave states,
{|κ′, b〉, |κ′ + g2, b〉, |κ′ + g3, b〉, |κ′, t〉}, where b and t refer
to the layer degree of freedom. In the basis of these four states,
the moiré Hamiltonian is

Hκ′,τ=+ ≈

⎛
⎜⎜⎜⎜⎝

−Eκ Vbeiφb Vbe−iφb w

Vbe−iφb −Eκ Vbeiφb w e
i2π

3

Vbeiφb Vbe−iφb −Eκ w e− i2π
3

w w e− i2π
3 w e

i2π
3 Vz

⎞
⎟⎟⎟⎟⎠, (6)

where Eκ = h̄2|κ′−κ|2
2mb

= h̄2|κ|2
2mb

. Hκ′,τ=+ can be block diagonal-
ized by applying the following unitary transformation:

 =

⎛
⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

0

1√
3

1√
3
e− i2π

3
1√
3
e+ i2π

3 0

1√
3

1√
3
e+ i2π

3
1√
3
e− i2π

3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

+Hκ′,τ=+ =

⎛
⎜⎜⎜⎜⎜⎝

e0 0 0 0

0 e−1 0 0

0 0 e1

√
3w

0 0
√

3w Vz

⎞
⎟⎟⎟⎟⎟⎠, (7)

where en = −Eκ + 2Vb cos(φb + 2πn
3 ) with n = 0 and

±1. The eigenvalues of Hκ′,τ=+ are e0, e−1,
e1+Vz

2 ±√
3w2 + ( e1−Vz

2 )2. The gap ε12(κ′) closes when

e0 = e1 + Vz

2
+

√
3w2 +

(
e1 − Vz

2

)2

, (8)

which leads to an analytical expression for V c
z :

V c
z = e0 − 3w2

e0 − e1
. (9)

Equation (9) agrees well with the numerical phase boundary
between phases (ii) and (iii), as shown by the white dashed
line in Fig. 2(c).

The Hamiltonian Hκ′,τ=+ in Eq. (6) also captures the tran-
sition from phase (ii′) to (i), which is signaled by the closing
of the energy gap ε23(κ′) between the second and third bands
at the κ′ point. Using the eigenvalues of Hκ′,τ=+, we find that
ε23(κ′) closes when

e−1 = e1 + Vz

2
+

√
3w2 +

(
e1 − Vz

2

)2

, (10)

which leads to another critical Vz,

V c′
z = e−1 − 3w2

e−1 − e1
. (11)

Equation (11), which is represented by the blue dashed line in
Fig. 2(c), agrees excellently with the numerical phase bound-
ary between phases (ii′) and (i).

The transition between phases (i) and (ii) is accompanied
by the closing of the energy gap ε23(κ) between the second
and third bands at the κ point. An approximate expression
for ε23(κ) would require truncating the moiré Hamiltonian at
κ in the plane-wave basis to the second shell; keeping more
states would complicate the analysis and, therefore, we do not
pursue to derive an analytical theory for the phase boundary
between phases (i) and (ii).

III. SYMMETRY

We study the symmetry properties of the Hamiltonian and
the Bloch states. At high-symmetry points in the Brillouin
zone, the Bloch states are classified by the symmetry group of
the system. The symmetry representations of the bands at the
high-symmetry momenta play an essential role in determining
whether and how the bands can be decomposed into sym-
metric Wannier orbitals [53]. For example, in twisted bilayer
graphene, the symmetry representations of the two low-energy
bands near the charge neutrality point do not match with those
of any atomic insulator, which leads to Wannier obstructions
[4,29].

For AB-stacked MoTe2/WSe2, symmetries include the
threefold rotation C3, the mirror operation Mx, and the time-
reversal symmetry T . The C3 operation acts within one valley,
while the Mx and T operations change the valley index.
However, the combined operation MxT does not change the
valley index. In the following, we analyze the C3 and MxT
symmetries of H+(r) separately.

To study the C3 symmetry, we first apply a unitary trans-
formation to H+(r),

H̃+(r) ≡ U (r)H+(r)U −1(r),

U (r) =
(

e−iκ·r 0
0 e−iκ′·r

)
,

H̃+(r) =
⎛
⎝− h̄2 k̂

2

2mb
+ �b(r) �̃T (r)

�̃
†
T (r) − h̄2k̂

2

2mt
+ �t (r) + Vz

⎞
⎠,

(12)
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FIG. 3. Amplitude and phase of states ψ (n)
γ (r) = [ψ (n)

γ,b(r), ψ (n)
γ,t (r)]T at γ point. (a)–(d) The amplitude of ψ

(n)
γ,l (r)/, where l = b, t is

the layer index and  = ψ
(1)
γ,b(r = 0) is a normalization factor. (e)–(h) The phase of ψ̃

(n)
γ,l (r), where ψ̃

(n)
γ,b(r) = e−iκ·rψ (n)

γ,b(r) and ψ̃
(n)
γ,t (r) =

e−iκ′·rψ (n)
γ,t (r). The black lines mark the effective triangular lattice formed by the MM points. Parameter values are the same as those used for

Fig. 2(f).

where �̃T (r) = w(eiq1·r + ei2π/3eiq2·r + ei4π/3eiq3·r). Here
q1 = κ′ − κ, q2 = R̂3q1, q3 = R̂3q2, and R̂3 is the
counterclockwise rotation by 2π/3. The new Hamiltonian
H̃+(r) has a transparent threefold rotation symmetry
represented by C̃3,

C̃3H̃+(r)C̃−1
3 ≡ DC̃3

H̃+(R̂3r)D−1
C̃3

,

DC̃3
=

(
1 0
0 ei 2π

3

)
, (13)

where C̃3 not only rotates r to R̂3r, but also includes a unitary
transformation DC̃3

. Here DC̃3
is determined (up to an arbitrary

phase) by requiring that C̃3H̃+(r)C̃−1
3 = H̃+(r).

The C3 symmetry of the Hamiltonian H+(r) is, therefore,
represented by C3 = U −1(r)C̃3U (r) and acts on the Bloch
state ψ

(n)
k in the following way:

C3ψ
(n)
k (r) = U −1(r)C̃3ψ̃

(n)
k (r)

= U −1(r)DC̃3
ψ̃

(n)
k (R̂3r), (14)

where ψ̃
(n)
k (r) = U (r)ψ (n)

k (r). In the layer pseudospin space,
ψ̃

(n)
k (r) = [ψ̃ (n)

k,b(r), ψ̃ (n)
k,t (r)]T , where the two components are,

respectively, given by

ψ̃
(n)
k,b(r) = e−iκ·rψ (n)

k,b(r), ψ̃
(n)
k,t (r) = e−iκ′·rψ (n)

k,t (r). (15)

In the moiré Brillouin zone, there are three high-symmetry
momenta κ, κ′, and γ = (0, 0), which are invariant under the
threefold rotation. For k at one of these three momenta, ψ

(n)
k

is the eigenstate of the symmetry operator C3,

C3ψ
(n)
k (r) = ei2πL(n)

k /3ψ
(n)
k (r), (16)

where L(n)
k is the angular momentum of ψ

(n)
k under threefold

rotation and is defined modulo 3. By combining Eqs. (14) and

(16), we have

DC̃3
ψ̃

(n)
k (R̂3r) = ei2πL(n)

k /3ψ̃
(n)
k (r). (17)

We now take the first moiré band in Fig. 2(f) at γ point
as an example to demonstrate the derivation of L(1)

γ . Figure 3
plots the amplitude and phase for each layer component of
ψ̃ (n)

γ (r). Extracting the phase information from Figs. 3(e) and
3(f), we find that

ψ̃
(1)
γ,b(R̂3r) = ψ̃

(1)
γ,b(r), ψ̃

(1)
γ,t (R̂3r) = e−i2π/3ψ̃

(1)
γ,t (r). (18)

Thus, following Eq. (17), we have

DC̃3
ψ̃ (1)

γ (R̂3r) = DC̃3

(
ψ̃

(1)
γ,b(r)

e−i2π/3ψ̃
(1)
γ,t (r)

)

=
(

ψ̃
(1)
γ,b(r)

ψ̃
(1)
γ,t (r)

)
, (19)

which implies that L(1)
γ is zero in this case. L(n)

k in other cases
can be derived in a similar way (see Appendix B).

In Table I, we list L(n)
k of the first two moiré valence bands

at the C3 invariant momenta in phases (ii) and (iii). In phase
(ii), L(n)

k for a given n ∈ {1, 2} takes the same value, namely,
L(1)

k = 0 and L(2)
k = 1 for k ∈ {γ, κ, κ′}. In phase (iii), moiré

bands have band inversion at κ′ point, which changes the val-
ues of L(n)

κ′ to (L(1)
κ′ , L(2)

κ′ ) = (1, 0). The above analysis of L(n)
k

is consistent with the calculation of Chern number C(n)
+K , since

[C(n)
+K − (L(n)

γ + L(n)
κ + L(n)

κ′ )] mod 3 = 0 in a system with C3

symmetry [55].
We now turn to the MxT symmetry. For the Hamiltonian

H̃+(r), we note that [H̃+(−x, y)]∗ = H̃+(x, y). This identity
implies that the MxT symmetry of Hamiltonian H+(r) can be
represented by MxT = U −1(r)MxKU (r), where Mx is the
operation that only flips x to −x.
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TABLE I. Angular momentum L(n)
k of state ψ

(n)
k (r) at high-

symmetry momenta in phases (ii) and (iii).

In the momentum space, the MxT operator changes
momentum (kx, ky) to (kx,−ky ). Therefore, E (n)(kx, ky) =
E (n)(kx,−ky ), where E (n)(k) is the energy of state ψ

(n)
k un-

der H+(r). Moreover, the Bloch state ψ
(n)
k with ky = 0 is an

eigenstate of the MxT symmetry, but the eigenvalue is gauge
dependent since MxT is an antiunitary operator.

IV. WANNIER STATES

We construct Wannier states for the first two moiré bands in
phases (ii) and (iii), which is feasible because C(1)

+K + C(2)
+K = 0

in both phases. The two phases are separated by a single
topological phase transition with the band gap closing and
reopening at κ′ point. Therefore, we can construct a unified
TB model to describe the two phases.

The center of the Wannier states can be determined by
C3 eigenvalues at the high-symmetry momenta. We start with
phase (ii), where the first and second bands are both topo-
logically trivial and therefore, can be separately described by
a single-orbital TB model on a triangular lattice. In the first
(second) band of phase (ii), the C3 eigenvalues take the same
value at γ, κ, and κ′ momenta, which implies that the Wannier
center for the first (second) band is localized at MM sites (see
Appendix C). By this argument, we can build a two-orbital TB
model for the first two bands in phases (ii) and (iii), where the
two Wannier orbitals are both localized at MM sites.

The Wannier states located at R = 0 (one of the MM sites)
can be formally constructed as

W (n)(r) = 1√
N

∑
k

φ
(n)
k (r), (20)

where n labels the two Wannier states (n = 1, 2), N is the
number of moiré unit cells, and φ

(n)
k (r) is defined by

φ
(n)
k (r) =

∑
n′=1,2

V n′n
k ψ

(n′)
k (r). (21)

Here the 2 × 2 unitary matrix Vk is used to disentangle the
layer hybridization. We determine Vk such that φ

(1)
k (φ(2)

k ) is
maximally polarized to the bottom (top) layer. This maximum
value problem can be transformed to seek the eigenbasis of
the layer polarization operator σz projected to the subspace

spanned by ψ
(1)
k and ψ

(2)
k ,

�k =
(〈ψ (1)

k |σz|ψ (1)
k 〉 〈ψ (1)

k |σz|ψ (2)
k 〉

〈ψ (2)
k |σz|ψ (1)

k 〉 〈ψ (2)
k |σz|ψ (2)

k 〉

)
. (22)

The desired Vk is given by

V †
k �kVk =

(
ρ

(1)
k 0

0 ρ
(2)
k

)
, (23)

where ρ
(1)
k > ρ

(2)
k . We further fix the gauge such that the

bottom (top) layer component of φ
(1)
k (φ(2)

k ) is real and positive
at r = 0.

The Wannier states constructed using the above procedures
for the first two bands in Fig. 2(f) are shown in Fig. 4, which
plots both the amplitude and phase for each layer component
of W (n)(r) = [W (n)

b (r),W (n)
t (r)]T . The Wannier state W (1)(r)

mainly resides on the bottom layer, while W (2)(r) has signifi-
cant weights on both layers.

The symmetry properties of the Wannier states can be
analyzed in a similar way as that discussed in Sec. III. As
illustrated in Fig. 4, the Wannier states are symmetric under
C3 symmetry with symmetry eigenvalues given by

C3W
(1)(r) = W (1)(r),

C3W
(2)(r) = ei2π/3W (2)(r). (24)

Thus W (1)(r) and W (2)(r) have angular momentum zero and
1, respectively.

By construction, the Wannier states have a gauge such
that W (1)

b (r = 0) > 0 and W (2)
t (r = 0) > 0. Under this gauge,

both Wannier states are invariant under MxT symmetry with
symmetry eigenvalue 1,

MxT W (1)(r) = W (1)(r),

MxT W (2)(r) = W (2)(r). (25)

Therefore, the constructed Wannier states are symmetric
with respect to the C3 and MxT symmetries. Finally, Wannier
states located at a generic lattice site R are obtained through
lattice translation, W (n)

R (r) = W (n)(r − R).

V. TIGHT-BINDING MODEL

We further construct the TB model based on the obtained
Wannier states,

Hτ,TB =
∑
RR′

∑
nn′

t τ
nn′ (R − R′)c†

R,τ,ncR′,τ,n′ , (26)

where c†
R,τ,n (cR′,τ,n′ ) is the electron creation (annihilation)

operator for the nth Wannier state in valley τ at the lattice
position R and t τ

nn′ is the hopping parameter. In Eq. (26),
we reintroduce the valley index τ for completeness. Again,
we first focus on the TB model in +K valley. The hopping
parameter is calculated in the following way:

t+
nn′ (R) = 〈

W (n)
R

∣∣H+
∣∣W (n′ )

0

〉
= 1

N

∑
k

eik·R ∑
n′′

[
V n′′n

k

]∗
E (n′′ )(k)V n′′n′

k , (27)

where E (n′′ )(k) is the energy of state ψ
(n′′ )
k (r) under H+(r).
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FIG. 4. Amplitude and phase of Wannier states W (n)(r) = [W (n)
b (r),W (n)

t (r)]T . (a)–(d) The amplitude of W (n)
l (r), where l = b, t is the layer

index. (e)–(h) The phase of e−iκ·rW (n)
b (r) and e−iκ′ ·rW (n)

t (r). We take the gauge such that W (1)
b (r) and W (2)

t (r) are real and positive at r = 0. The
black lines mark the effective triangular lattice. The parameter values are the same as those used for Fig. 2(f).

The symmetries of the Hamiltonian H+ and the Wannier
states impose restrictions on the hopping parameters. The
Hermiticity of the Hamiltonian requires that

t+
nn′ (R) = [t+

n′n(−R)]∗. (28)

The C3 symmetry leads to the following constraints:

t+
11(R) = t+

11(R̂3R), t+
22(R) = t+

22(R̂3R),

t+
21(R) = ei2π/3t+

21(R̂3R). (29)

Finally, the MxT symmetry imposes that

t+
nn′ (x, y) = [t+

nn′ (−x, y)]∗. (30)

At R = 0, Eqs. (28) and (29) require that t+
nn(0) is real

and t+
12(0) = t+

21(0) = 0. Along x = 0, Eq. (30) requires that
t+
nn′ (0, y) is real.

Figures 5(a)–5(c) present the numerical values of the hop-
ping parameters. It can be verified that the calculated t+

nn′ (R)
obey the aforementioned symmetry constraints in Eqs. (28),
(29), and (30). In Fig. 5(d), we present the absolute values of
nearest-neighbor (|t+,(1)

nn′ |) and next-nearest-neighbor (|t+,(2)
nn′ |)

hopping parameters as a function of Vz at a fixed w; the
numerical results show that |t+,(1)

11 | and |t+,(2)
11 | remain almost

constants with varying Vz, but other hopping parameters in
Fig. 5(d) slowly decrease with the decreasing of |Vz|. The
dependence of the hopping parameters on Vz can be revealed
by the layer polarization of the Wannier states, which is
defined as

P(n)
W = 〈W (n)|σz|W (n)〉. (31)

As shown in Fig. 6, P(1)
W for the first Wannier state almost does

not change with Vz and is saturated to be ∼1, indicating that
the first Wannier state is primarily in the bottom layer. This
explains the weak dependence of t+,(1)

11 and t+(2)
11 on Vz. In

contrast, P(2)
W decreases with decreasing of |Vz|, which implies

that the top layer component of W (2) becomes larger. The

dependence of t+,(1)
22 on Vz is consistent with the variation of

W (2) as a function of Vz.
The Bloch Hamiltonian obtained by performing Fourier

transformation to Hamiltonian H+,TB is given by

H+,TB(k) =
(

h+
11(k) h+

12(k)

h+
21(k) h+

22(k)

)
. (32)

The matrix element h+
nn′ (k) of Hamiltonian H+,TB(k) can be

written as

h+
11(k) = t+

11(0) +
∑
R�=0

t+
11(R)e−ik·R,

h+
22(k) = t+

22(0) +
∑
R �=0

t+
22(R)e−ik·R,

h+
21(k) =

∑
R �=0

t+
21(R)e−ik·R,

(33)

and h+
12(k) = [h+

21(k)]∗ owing to the Hermiticity of Hamil-
tonian. By combining Eqs. (27) and (33), we can simplify
H+,TB(k) to be

H+,TB(k) = V †
k

(
E (1)(k) 0

0 E (2)(k)

)
Vk. (34)

Figures 5(e) and 5(f) plot the energy bands obtained from
H+,TB(k), which accurately reproduce the moiré bands in
Fig. 2(e) and Fig. 2(f), respectively. The Chern numbers calcu-
lated using the TB model in Eq. (34) and the continuum model
in Eq. (1) are compared in Fig. 5(g), which confirms that the
constructed TB model can faithfully describe the topological
phase transition tuned by Vz.

The topological phase transition of H+,TB(k) can also be
understood by the Vz-tuned band inversion at κ′ point. The
band gap at κ′ closes when h+

11(κ′) = h+
22(κ′) because the

off-diagonal term h+
12(κ′) vanishes. The diagonal terms h+

nn(κ′)
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FIG. 5. (a)–(c) Numerical values of hopping parameters t+
11(R), t+

22(R), and t+
21(R) for R �= 0. The color of the dots and the direction of the

arrows at site R indicate the absolute value and the phase of t+
nn′ (R), respectively. We take the same model parameters as those used for Fig. 2(f).

(d) The absolute values of nearest-neighbor (|t+,(1)
nn′ |) and next-nearest-neighbor (|t+,(2)

nn′ |) hopping parameters, as functions of Vz. (e), (f) Bands
obtained from the TB model compared to those from the continuum model. (g) Chern numbers C (1)

+K and C (2)
+K given by the TB model compared

to those given by the continuum model. (h) The numerical values of h+
11(κ′), h+

22(κ′), t+
11(0), and t+

22(0), as functions of Vz. The vertical black
dashed line marks the topological phase transition point V c

z . In (d), (g), and (h), we fix w = 5 meV.

as functions of Vz are presented in Fig. 5(h), which veri-
fies the band gap closing at the topological phase transition.
Figure 5(h) shows that h+

11(κ′) is almost a constant as a
function of Vz, but Vz significantly tunes the on-site potential
t+
22(0) of the second Wannier state W (2)(r) and, therefore,

h+
22(κ′). This is because Vz only tunes the top layer potential

in Eq. (1).
Finally, we discuss the Wannier states and the TB model

in the other valley. In Appendix D, we explicitly construct the
two Wannier states in −K valley using the same procedure
and gauge choice discussed in Sec. IV and show that they
can be expressed as −T W (1)(r) and T W (2)(r), respectively.
Therefore, the T symmetry relates the hopping parame-
ters of the TB models in the two valleys in the following

FIG. 6. Layer polarization of the two Wannier states as a func-
tion of Vz. The parameter values are the same as those used for
Fig. 2(f).

way:

t−
11(R) = [t+

11(R)]∗, t−
22(R) = [t+

22(R)]∗,

t−
12(R) = −[t+

12(R)]∗,
(35)

which fully determines the TB model in −K valley.

VI. DISCUSSION AND CONCLUSION

In summary, symmetry-adapted Wannier states and TB
model are constructed for the quantum spin Hall bands in
AB-stacked MoTe2/WSe2. For each valley, the TB model is
defined on a triangular lattice with two Wannier states on each
lattice site. The two Wannier states have the same Wannier
center but different angular momenta. The difference in the
angular momenta of the two Wannier states is crucial for the
topological phase transition induced by the displacement field.
The constructed TB model is similar to the Bernevig-Hughes-
Zhang model with band inversion between s-type and p-type
orbitals [54]. We emphasize that symmetry representation of
the Bloch states at high-symmetry momenta essentially deter-
mines the Wannier centers.

Previously, the TB model for topological bands in twisted
TMD bilayers has been shown to be a generalized Kane-Mele
model [56,57] on a honeycomb lattice for certain model pa-
rameters [27,52,58,59]. Our study shows that the TB model
for topological bands depends on system details and should
be constructed case by case based on symmetry analysis of
Bloch states. The developed methods to analyze the symmetry
of moiré Hamiltonian and construct Wannier states are appli-
cable to other TMD moiré systems.

We also construct the maximally localized Wannier states
(see Appendix E for details), which have less spread in real
space but are qualitatively similar to the Wannier states before
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FIG. 7. Amplitude and phase of Bloch states ψ (n)
κ (r) = [ψ (n)

κ,b(r), ψ (n)
κ,t (r)]T at κ point. Parameter values are the same as those used for

Fig. 2(f).

optimization. We expect that the constructed Wanner states
and TB model can provide a basis to study the rich interaction-
driven quantum phase diagrams in AB-stacked MoTe2/WSe2.
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APPENDIX A: TIME-REVERSAL SYMMETRY

The moiré Hamiltonian of AB-stacked MoTe2/WSe2 can
be expressed in the second quantized form as follows:

Ĥ0 =
∫

d2r �†(r)H0(r)�(r), (A1)

where

H0(r) =
(

H+(r) 0

0 H−(r)

)
,

Hτ (r) =
(
Hb,τ (r) + �b(r) �T,τ (r)

�
†
T,τ (r) Ht,τ (r) + �t (r) + Vz

)
,

�(r) = [ϕ+,b,↑(r), ϕ+,t,↓(r), ϕ−,b,↓(r), ϕ−,t,↑(r)]T . (A2)

In Eq. (A2), ϕτ,l,s(r)[ϕ†
τ,l,s(r)] is the electron annihilation (cre-

ation) operator, where τ = ± is the valley index, l = b, t is the
layer index, and s =↑,↓ is the spin index. The time-reversal
symmetry acts on ϕτ,l,s(r) in the following way:

T ϕ+,b,↑(r)T −1 = −ϕ−,b,↓(r),

T ϕ+,t,↓(r)T −1 = ϕ−,t,↑(r),

T ϕ−,b,↓(r)T −1 = ϕ+,b,↑(r),

T ϕ−,t,↑(r)T −1 = −ϕ+,t,↓(r). (A3)

Therefore, the time-reversal symmetry can be written as T =
iτyσzK in the basis �(r) and acts on the Hamiltonian H0 as

T H0(r)T −1 =
(

σzKH−(r)σzK 0

0 σzKH+(r)σzK

)
= H0(r). (A4)

APPENDIX B: ANGULAR MOMENTUM
OF BLOCH STATES

In Fig. 7, we present the amplitude and phase for each layer
component of ψ (n)

κ (r), which represents the Bloch states of the
first two bands (n = 1, 2) in Fig. 2(f) at κ point. Figure 8 is
similar to Fig. 7, but for the Bloch states ψ

(n)
κ′ (r) at κ′ point.

The angular momentum under C3 symmetry for Bloch states
shown in Figs. 7 and 8 can be analyzed using the approach
discussed in Sec. III, with results given by

C3ψ
(1)
κ (r) = ψ (1)

κ (r),

C3ψ
(2)
κ (r) = ei2π/3ψ (2)

κ (r),

C3ψ
(1)
κ′ (r) = ei2π/3ψ

(1)
κ′ (r),

C3ψ
(2)
κ′ (r) = ψ

(2)
κ′ (r),

(B1)

which gives rise to the angular momentum listed in Table I.

APPENDIX C: WANNIER CENTER

For AB-stacked MoTe2/MoSe2, three are three high-
symmetry positions in the moiré superlattices, namely MM,
XX, and MX points. A Wannier state can be centered at
one of these three points. For different choices of the Wan-
nier center, the corresponding Bloch state at high-symmetry
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FIG. 8. Amplitude and phase of Bloch states ψ
(n)
κ′ (r) = [ψ (n)

κ′,b(r), ψ (n)
κ′,t (r)]T at κ′ point. Parameter values are the same as those used for

Fig. 2(f).

momenta γ , κ, and κ′ has different patterns of the C3 symmetry
eigenvalues.

We consider a Wannier state χ (r − R − rα ) centered at
R + rα , where R is the lattice translation vector and rα rep-
resents one of the three positions, namely, r1 = (0, 0) for
the MM site, r2 = aM (1/2, 1/2

√
3) for the XX site, and

r3 = aM (1, 1/
√

3) for the MX site. The corresponding Bloch
state can be written as

�k(r) =
∑

R

eik·(R+rα )χ (r − R − rα ). (C1)

The threefold rotation symmetry C3 acts on the Bloch state
�k(r) as

C3�k(r) =
∑

R

eik·(R+rα )DC3χ (R̂3r − R − rα )

=
∑

R

eik·(R+rα )DC3χ
(
R̂3

[
r − R̂−1

3 (R + rα )
])

=
∑

R

eik·(R+rα )DC3χ (R̂3[r − R′ − rα])

= ei2π�/3
∑

R

eik·(R+rα )χ (r − R′ − rα ), (C2)

where R′ + rα = R̂−1
3 (R + rα ), DC3 is the representation ma-

trix of C3 operation, and � is the angular momentum of
Wannier state χ . Equation (C2) can be further written as

C3�k(r) = ei2π�/3
∑

R′
eik·R̂3(R′+rα )χ (r − R′ − rα )

= ei2π�/3
∑

R′
ei(R̂−1

3 k)·(R′+rα )χ (r − R′ − rα ). (C3)

At the high-symmetry momenta k = γ, κ, κ′, we have
R̂−1

3 k = k + gk, where gk is a reciprocal lattice vector, with
gγ = 0 for k = γ , gκ = 4π√

3aM
(
√

3/2,−1/2) for k = κ, and

gκ′ = 4π√
3aM

(0,−1) for k = κ′. At these three high-symmetry
points, Eq. (C3) can be further written as

C3�k(r) = ei2π�/3
∑

R′
ei(k+gk )·(R′+rα )χ (r − R′ − rα )

= ei2π�/3eigk·rα

∑
R′

eik·(R′+rα )χ (r − R′ − rα )

= ei2π�/3eigk·rα�k(r)

= ei2πLk/3�k(r), (C4)

where Lk = (� + 3gk · rα/2π ) mod 3 is the angular mo-
mentum of the Bloch state �k under threefold rotation. In
Table II, we list the angular momentum Lk at the high-
symmetry momenta for different positions of the Wannier
center.

As shown in Table II, Lk takes the same value at γ, κ,
and κ′ points for Wannier center at the MM site, but dif-
ferent values for Wannier center at the XX (MX) site.
Therefore, only Wannier states centered at the MM sites are
compatible with the pattern of angular momentum listed in
Table I.

TABLE II. Angular momentum Lk at the high-symmetry mo-
menta for Wannier states centered at different positions.
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FIG. 9. Amplitude and phase of Wannier states W (n)
− (r) = [W (n)

−,b(r),W (n)
−,t (r)]T in −K valley. (a)–(d) The amplitude of W (n)

−,l (r). (e)–(h) The

phase of eiκ·rW (n)
−,b(r) and eiκ′ ·rW (n)

−,t (r). We take the gauge such that W (1)
−,b(r) and W (2)

−,t (r) are real and positive at r = 0. Parameter values are the
same as those used for Fig. 2(f).

APPENDIX D: WANNIER STATES OF −K VALLEY

In this section, we present the Wannier states in −K valley
and show how time-reversal symmetry relates the Wannier
states from ±K valleys.

For definiteness, we use W (n)
+ (r) and W (n)

− (r) to denote
the Wannier states at +K and −K valleys, respectively. The
Wannier state W (n)

τ (r) can be represented by a two-component
spinor [W (n)

τ,b (r),W (n)
τ,t (r)]T in the layer pseudospin space. If the

valley degree of freedom is also taken into account, W (n)
τ (r) is

then represented by a four-component spinor in the combined

layer and valley pseudospin space,

W (n)
+ (r) = [

W (n)
+,b(r),W (n)

+,t (r), 0, 0
]T

,

W (n)
− (r) = [

0, 0,W (n)
−,b(r),W (n)

−,t (r)
]T

,
(D1)

where we take the same basis as that for Hamiltonian H0 in
Eq. (A2).

We calculate the Wannier states W (n)
− (r) in −K valley using

the same approach as presented in Sec. IV. We also use the
same gauge such that W (1)

−,b(r) and W (2)
−,t (r) are real and positive

FIG. 10. Amplitude (a)–(d) and phase (e)–(h) of maximally localized Wannier states at +K valley. Parameter values are the same as those
used for Fig. 2(f).
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at r = 0. Figure 9 shows the calculated results for W (n)
− (r).

It can be shown that W (n)
− (r) also satisfies the C3 and MxT

symmetries and the angular momentum of W (n)
− (r) is 0 and

−1 for n = 1 and 2, respectively.
We now turn to the time-reversal symmetry T , which acts

on the Wannier states W (n)
+ (r) as

T W (n)
+ (r) =

⎛
⎜⎜⎝

0 0 K 0
0 0 0 −K

−K 0 0 0
0 K 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

W (n)
+,b(r)

W (n)
+,t (r)

0
0

⎞
⎟⎟⎠

= [
0, 0,−KW (n)

+,b(r),KW (n)
+,t (r)

]T
. (D2)

By comparing Figs. 4 and 9, it can be verified following
Eq. (D2) that

T W (1)
+ (r) = −W (1)

− (r),

T W (2)
+ (r) = W (2)

− (r),
(D3)

which confirms that Wannier states from ±K valleys are con-
nected by the T symmetry.

APPENDIX E: MAXIMALLY LOCALIZED
WANNIER STATES

We construct the maximally localized Wannier states by
following the method in Refs. [60,61]. We take the Wan-
nier states presented in Sec. IV as the initial guess and then
minimize the spread of the Wannier states. The obtained max-
imally localized Wannier states are illustrated in Fig. 10. It can
be verified that the maximally localized Wannier states remain
symmetric under the C3 and MxT symmetries.

The spread of the Wannier states is characterized by

� =
∑

n=1,2

〈W (n)|r2|W (n)〉 − (〈W (n)|r|W (n)〉)2, (E1)

where W (n) denotes the Wannier states. The spread � is
1.744a2

M before the optimization and reduced to 1.347a2
M after

the optimization for parameters used in Fig. 4. As shown in
Figs. 4 and 10, the optimization only leads to quantitative
changes in the Wannier states.
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