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Electronic interaction Upp on oxygen p orbitals in oxides:
Role of correlated orbitals on the example of UO2 and TiO2
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We carry out a detailed study of the role of electronic interaction on p oxygen orbitals in a Mott insulator oxide
(UO2) and a charge transfer oxide (TiO2). First, we calculate values of effective interactions Uf f , Upp, and Uf p

in UO2 and Udd , Upp, and Ud p in TiO2. Second, we analyze the role of electronic interactions Upp on p orbitals
of oxygen in spectral and structural properties. Finally, we show that this role depends strongly on the definition
of correlated orbitals and that using Wannier functions leads to more physical results for spectral and structural
properties.

DOI: 10.1103/PhysRevB.107.235126

I. INTRODUCTION

Since its development, density functional theory (DFT)
[1,2] has been applied successfully to a wide variety of
systems [3]. For some elements, however, the local density
approximation (LDA) [4] or the generalized gradient ap-
proximation (GGA) [5] have a tendency to overdelocalize
electrons, due both to the self-interaction error and to the
approximate description of interaction effects. This error is
particularly visible on systems containing localized d or f
orbitals, such as transition metal oxides or lanthanide and
actinide compounds. To address this problem, and more gen-
erally to improve these functionals or the limitations of DFT
concerning excited states, several methods have been de-
signed, such as, e.g., hybrid functionals, the GW method [6],
DFT+U [7–9], and the combination of DFT and dynamical
mean field theory (DFT+DMFT) [10,11].

More specifically, the description of systems that contain
atoms with spatially localized atomic orbitals (such as d or f )
requires a dedicated treatment, because the large electronic
interactions between electrons inside these orbitals need to be
taken into account. It can be handled at the static mean field
level (in DFT+U ) or in DMFT.

However, these two schemes rely on two parameters, the
direct interaction U and the exchange interaction J . These
parameters can be adjusted such that, e.g., the band gap or
cell parameter is in agreement with experiment. However, in
this case, such a calculation is no longer a first-principles
calculation. A more fruitful solution is to try to calculate U
and J from first principles. The main methods used to obtain U
from first principles are the constrained DFT (cDFT) [7], the
linear response method [12–17], a method using Hartree-Fock
orbitals [18–21], and the constrained random phase approxi-
mation (cRPA) [22,23]. These methods have been successful
in describing a wide range of systems including pure metals
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and oxides. Very recently, a method involving the comparison
between DFT and Hartree-Fock eigenvalues was proposed
and tested on transition metals [24]. In these systems, most
of the calculations took into account only the Coulomb in-
teraction on d or f orbitals of the metallic atom (e.g., Ti,
U, or Fe). However, it has been shown also that other or-
bitals (e.g., p orbitals of oxygen) are important (as well as
intershell interactions) and have an impact on the electronic
structure and/or structural parameters of, e.g., TiO2 [25,26],
transition metal oxides [27–30], ZrO2 [31], actinide and lan-
thanide oxides [32–34], cerium [33], lanthanide compounds
[35], and high-Tc cuprates [36]. Such an idea has also been
applied to design a scheme for high throughput [19–21,37],
as effective interactions can also be used within generalized
DFT+U schemes that can be seen as simplified but fast hybrid
functionals. Another method using Bayesian optimization to
tweak the value of U until it reproduces the gap and band
structure of a hybrid Heyd-Scuseria-Ernzerhof (HSE) calcu-
lation has been proposed [38]. However, only a few works
have focused on ab initio calculations of the p electrons’
Coulomb interaction [19,21,33,34,37,39,40]. Moreover, a de-
tailed understanding of the effect of these interactions on
electronic or structural properties is needed: What is the ef-
fect of Upp on spectral functions? The inclusion of Upp often
leads to a surprising decrease in atomic volume (see, e.g.,
Refs. [25,30–32,41,42]): What is its physical interpretation?
Such basic and fundamental questions are important because
the Upp interaction is a building block of a recently proposed
scheme for high-throughput calculations [19,21,37,41].

Whichever group of orbitals may be chosen as correlated
states, the DFT+U and DFT+DMFT methods need a pre-
cise definition of correlated orbitals. It has been emphasized
recently that the calculation of U itself, the spectral func-
tion, and structural properties can be impacted by this choice
[43–48]. The impact of this choice on p states has been only
briefly discussed [37].

In this paper, we carry out a detailed study of interaction ef-
fects on oxygen atoms in oxides. We first compute interactions
in the full d p (Udd , Ud p, and Upp) or df states (Uf f , Uf p, and
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Upp) using the cRPA implementation [43,49] with the ABINIT

code [50,51]. Then we study the relative impact of interactions
on spectral and structural properties. We propose an explana-
tion for the unusual behavior over volume observed here and
in other studies. Lastly, we emphasize the key role of the def-
inition of correlated orbitals, namely, atomic orbitals versus
Wannier functions: Such definition impacts quantitatively the
results of the calculations, as has previously been discussed
[43–48]. However, in our case, and especially for structural
properties, results are qualitatively different. We focus on two
prototypical systems, UO2, a Mott Hubbard insulator, and
TiO2, a charge transfer insulator, both containing a strongly
correlated orbital ( f or d) and an oxygen p orbital close to the
Fermi level.

Section II presents the DFT+U and cRPA methodologies,
the definition of correlated orbitals, and computational details.
Sections III and IV present results on UO2 and TiO2. The
conclusion is in Sec. V.

II. METHODS AND COMPUTATIONAL DETAILS

A. DFT+U

1. Expression of energy in DFT+U

The standard expression for DFT+U total energy is

Etot = EDFT + EU , (1)

where EDFT is the energy of the system in DFT and EU is the
energy due to the DFT+U correction. EU can be split into two
terms,

EU = Eee − Edc, (2)

with Eee being the mean field electron-electron interaction in
DFT+U and Edc being the double-counting correction (see
below).

We use the rotationally invariant expression of Eee

[52,53],

Eee = 1

2

∑
m1,m2,m3,m4,σ

〈m1m2|Vee|m3m4〉nσ
m4,m2

n−σ
m3,m1

+ (〈m1m2|Vee|m3m4〉 − 〈m1m2|Vee|m4m3〉)nσ
m4,m2

nσ
m3,m1

,

where m1, m2, m3, m4 are indices of real spherical harmonics
of angular momentum l , |m1〉 is a generic correlated orbital,
〈m1m2|Vee|m3m4〉 is an element of the electron-electron inter-
action matrix Vee [54], and σ is the spin. nσ

m1,m2
is the element

m1, m2 of the occupation matrix in the basis of correlated
orbitals, calculated as

nσ
m1,m2

=
∑
ν,k

f σ
ν,k

〈
�σ

ν,k

∣∣m2
〉〈

m1

∣∣�σ
ν,k

〉
, (3)

with �σ
ν,k being the Kohn-Sham wave function and f σ

ν,k being
the occupation factor, for band ν, k point k, and spin σ .

The second part in EU is Edc. It can take various forms
[7,55]; in this paper, we will focus on the fully localized limit
(FLL) formulation. The role of this double-counting correc-
tion is to cancel the interaction between correlated electrons

as described in DFT. It is written as

Edc = U
1

2
N (N − 1) − J

∑
σ

1

2
Nσ (Nσ − 1), (4)

with Nσ being the total number of electrons for the considered
orbital (the trace of the occupation matrix for spin σ ) and N =∑

σ Nσ .
In this paper, we use the projector augmented-wave (PAW)

[56] implementation [57,58] of DFT+U in ABINIT [50,51]. In
the next section we discuss the choice of correlated orbitals.

2. Choice of correlated orbitals in DFT+U

As discussed above, the occupation matrix nσ
m1,m2

is the
central quantity in DFT+U and contains the major informa-
tion about localization, hybridization, and orbital polarization
or anisotropy in the system under study. It is computed using
Eq. (3). The goal of this section is to specify several possibil-
ities to define correlated orbitals |m1〉.

We can separate the local orbital into a radial part and an
angular part, yielding

|m1〉 = |Yl,m1〉|φ〉, (5)

with |Yl,m1〉 being a spherical harmonic accounting for the
angular part and |φ〉 being the radial part, which can take
different formulations (and depends on l).

In this paper, we use two different ways to define correlated
orbitals, namely, atomic orbitals and Wannier orbitals.

We first use an atomic local orbital |φ〉 = |φ0〉. As dis-
cussed in Refs. [46,59], we truncate these atomic wave
functions at the PAW radius. For p orbitals, a renormalization
scheme is useful (see Supplemental Material [60], Sec. S4).

As an alternative, we use projected localized orbitals Wan-
nier functions [43,61,62] that are adapted to the solid as
correlated orbitals. We briefly review their construction: In
the first step, we built functions |χ̃ lσ

km〉 by projecting atomic
orbitals over Kohn-Sham wave functions as

∣∣χ̃ lσ
km

〉 =
∑
ν∈W

∣∣�σ
kν

〉〈
�σ

kν

∣∣χ l
km

〉
, (6)

with |�σ
kν〉 being a Kohn-Sham wave function and |χ l

km〉 be-
ing an atomic-like orbital. Here, the atomic-like orbitals χ l

km
are the same as the ones used in the atomic formulation of
DFT+U . As the sum is limited to a subset of bands (W),
χ̃ lσ

km are not orthonormal. In a second step, we thus proceed to
an orthonormalization using the overlap matrix [61,62]. Af-
ter orthonormalization, we obtain a set of Wannier functions
|W lσ

km〉.
The choice of the subset of bands W is guided by correla-

tion effects we want to consider in our system [62]. We have
shown previously that these Wannier functions give similar
results to maximally localized Wannier functions for spec-
tral functions in SrVO3 [62] and cRPA calculations in UO2

[34]. Lastly, a comparison of DFT+U with Wannier orbitals
and DFT+U with atomic orbitals has been discussed before
[63].

3. DFT+U with more than one correlated orbital

At this point, it is important to stress the fact that it is
possible to consider more than one orbital in DFT+U . If one
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neglects the interorbital interaction [33,64], we have, for the
total energy, considering a system with a +U term, on both f
orbitals and p orbitals:

Etot = EDFT + EUf f + EUpp . (7)

B. The cRPA method to compute effective Coulomb interactions

The constrained random phase approximation (cRPA) is
intended to compute effective interactions, by carefully sep-
arating the screening effect [22,40,65,66]. In order to avoid
double counting of screening effects, effective interactions
between correlated electrons should not contain screening
effects arising from correlated electrons.

In this paper, we have generalized the implementation of
Ref. [43] in ABINIT to the calculation of effective interactions
among different correlated orbitals. This implementation has
been used in Ref. [34].

In this section, we present the method and notations we
will be using in the rest of the paper. We note that possible
improvements of the cRPA have been proposed [67].

1. From the noninteracting polarizability to effective interactions

In a system of interacting electrons, with a Coulomb in-
teraction v = 1

|r−r′ | , each interaction is screened by the rest
of the system. Using linear response theory, it is possible to
compute this screening in the random phase approximation
(RPA) using the noninteracting polarizability of the system
χ0(ω) and v. χ0(ω) is obtained from first-order perturbation
as electron-hole excitations (see, e.g., Ref. [68]).

The main idea of cRPA is to split this term as follows:

χ0(ω) = χ correl
0 (ω) + χ r

0(ω), (8)

with χ correl
0 being the part due to excitations among correlated

orbitals and χ r
0 being the part due to the rest of the electronic

excitations.
The cRPA polarizability is thus

χ r
0(r, r′, ω) =

∑
k,k′,ν,ν ′,σ

�σ
k,ν (r)�σ

k′,ν ′ (r′)�σ
k′,ν ′ (r′)�σ

k,ν (r)

× w(k, k′, ν, ν ′, σ )
f σ
k′,ν ′ − f σ

k,ν

εσ
k′,ν ′ − εσ

k,ν + ω + iδ
,

(9)

with εσ
k,ν being the energy for band index ν at k point

k, with spin σ , and with f σ
k,ν being the factor of occupa-

tion. w(k, k′, ν, ν ′, σ ) is a weight function that permits us
to exclude transitions among the correlated bands. Different
definitions of this term are detailed in the next section for
entangled and nonentangled bands.

The polarizability is linked to the susceptibility, in matrix
notation for the position variables, by εr (ω) = 1 − vχ r

0(ω).
We can define the dynamically screened Coulomb interaction
matrix using this:

U σ,σ ′
m1,m2,m3,m4

(ω) = 〈
mσ

1 mσ ′
3

∣∣ε−1
r (ω)v

∣∣mσ
2 mσ ′

4

〉
. (10)

Finally, we compute the U scalar using this interaction
matrix:

U = 1

4

∑
σ,σ ′

1

(2l + 1)2

2l+1∑
m1=1

2l+1∑
m2=1

U σ,σ ′
m1,m2,m1,m2

. (11)

We can also define J as [49,55,69]

U − J = 1

4

∑
σ,σ ′

1

(2l + 1)2l

2l+1∑
m1=1

2l+1∑
m2=1

(
U σ,σ ′

m1,m2,m1,m2

−U σ,σ ′
m1,m2,m2,m1

)
. (12)

2. Practical calculation of χr
0

To constrain electronic transitions in χ r
0 to transitions other

than the ones among correlated bands, we use the term
w(k, k′, ν, ν ′, σ ) in Eq. (9). If correlated bands are completely
isolated from the other ones, then one has [22]

w(k, k′, ν, ν ′, σ ) = 0, (13)

when (νk) and (ν ′k′) are both correlated bands, and w = 1
otherwise. This weighting scheme is called model (a).

If correlated bands are hybridized with noncorrelated
bands, then the previous scheme cannot be used: Due to the
partial character of some bands, it is mandatory to consider
some noninteger weight. To achieve such a goal, we follow
what has been proposed by Şaşıoğlu et al. [66] and use a
weight function proportional to the correlated orbitals’ weight
on each Kohn-Sham function (see also Refs. [43,70]). This
weighting function takes the form

w(k, k′, ν, ν ′, σ )

= 1 −
⎡
⎣∑

m1

∣∣〈�σ
kν

∣∣W σ
km1

〉∣∣2

⎤
⎦

⎡
⎣∑

m2

∣∣〈�σ
k′ν ′

∣∣W σ
k′m2

〉∣∣2

⎤
⎦ (14)

and is called model (b).

3. Notations and models for cRPA calculations

The cRPA scheme is based on the following three parame-
ters: (i) the bands used to construct Wannier functions (called
W); (ii) the bands used to remove transitions (called C); and
(iii) the model used to remove transitions, either model (a) or
model (b) (see previous section).

We use a simplified notation for cRPA calculations that
reads as C − W [model (a) or (b)]. It may be useful to take
a large C, using model (b); in this case, as this energy window
cannot be identified to bands of a given character, we denote
it as “ext” (for “extended”; see Ref. [43]). Table I gives the
model used in cRPA calculations in UO2 in this paper.

C. Calculation parameters

All the calculations are done using the ABINIT code, in the
PAW formalism. Spectral calculations are converged to a pre-
cision of 0.1 eV on the gap, structural parameters calculations
are converged to 0.1 Å3 on the volume, and cRPA calculations
of effective interactions are converged to 0.1 eV.
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TABLE I. Models used for cRPA calculations in UO2 and TiO2

and the corresponding ranges of bands W used to build Wannier
functions.

C − W Bands for W Scheme for removal

UO2 f p − f p 7–19 model (a)
UO2 f p − ext 5–38 model (b)

TiO2 d − d 25–34 model (a)
TiO2 d p − d p 13–34 model (a)

1. UO2

The PAW atomic data for uranium is composed of 6s, 6p,
7s, 5 f and 6d electrons as the valence electrons, whereas
for oxygen, it is composed of 2s and 2p electrons as the
valence electrons. For LDA+U calculations, we have used
a plane wave cutoff of 20 hartrees for the wave function
and 35 hartrees for the compensation quantity of PAW and
a 64 k-point grid. For cRPA, the plane wave cutoff are set to
25 hartrees for the wave function, 50 hartrees for the PAW
compensation quantity, 7 hartrees for the polarization, and 35
hartrees for the effective interaction. We have used 100 bands
and a 64 k-point grid.

For the cRPA calculations, we used for simplicity the
ferromagnetic state. Indeed, the ferromagnetic (FM) and
antiferromagnetic (AFM) states have similar gaps (see Sup-
plemental Material [60], Sec. S1), and in Ref. [43] it was
shown that cRPA calculations give similar results using FM
and AFM ground states. The difference in U is indeed only
0.2 eV (Table III of Ref. [43]). In Sec. S2 of the Supplemental
Material [60], we also show that FM LDA and FM GGA lead
to similar values of U .

Calculations on UO2 require the monitoring of the density
matrix to find the electronic ground state of the system in
LDA+U [71,72] (see Supplemental Material [60], Sec. S3).
This is also true for hybrid functionals [73,74]. This problem
can be solved using DMFT [63,74], but it does not impact the
spectral function and the equilibrium volume [63]. Section S3
of the Supplemental Material [60] gives the occupation matrix
of the ferromagnetic ground state.

2. TiO2

The PAW atomic data for titanium is composed of 3s,
3p, 4s and 3d electrons as the valence electrons, whereas
for oxygen, it is composed of 2s and 2p electrons as the
valence electrons. For LDA+U , the plane wave cutoffs are
set to 30 hartrees for the wave function and 60 hartrees for the
PAW compensation quantity. An 8×8×8 k-point grid is used,
except for the HSE06 hybrid functional calculation, for which
a 6×6×6 grid is used. For the cRPA calculations, we used a
cutoff of 90 hartrees for the plane wave, 100 hartrees for the
PAW compensation quantity, 5 hartrees for the polarization,
and 30 hartrees for the effective interaction. We used a 64
k-point grid and 70 bands. All the calculations are done using
the LDA. As the p band is full and the d band is empty, the
ground state is found, without the need to use the occupation
matrix control method.

FIG. 1. Spectral properties of UO2: (a) photoemission spectra
measured by Baer and Schoenes [75], (b) LDA density of states
(DOS), (c) LDA+U density of states with Uf f = 4.5 eV, and
(d) HSE06 functional density of states.

III. ROLE OF Uf f AND Upp IN UO2

This section focuses on UO2, which is is a prototypical
Mott-Hubbard insulator. It orders antiferromagnetically under
30 K and exhibits a 2-eV gap [75]. It is used as fuel for
nuclear reactors. Its first-principles description requires that
one includes explicitly the electronic interactions using, e.g.,
DFT+U [72,76], hybrid functionals, or DFT+DMFT. In this
paper, we use DFT+U to show the impact of pp interac-
tions on spectral and structural properties. In the literature,
well-suited values of U are known to reproduce experiment.
Here, we focus on the physical effects and not on the precise
value of U to describe experiment.

A. Spectral properties

We first review the role of Uf f in the density of states of
UO2 before studying the role of Upp.

1. Spectral properties with DFT+Uf f

We emphasize that UO2 is particularly interesting to in-
vestigate the effect of Upp because O p-like bands and lower
U f -like Hubbard bands are separated in energy, so that the
relative impact of Uf f and Upp can be disentangled. This
separation is clearly seen in Fig. 1. This figure compares
the experimental spectral function [75] [Fig. 1(a)] and our
calculations of the LDA spectra [Fig. 1(b)], the DFT+U spec-
tra using Uf f = 4.5 eV [Fig. 1(c)], and the HSE06 hybrid
functional spectra [Fig. 1(d)].

The experimental photoemission spectra show that UO2

is insulating. The conduction band is composed of a broad
band centered at 5 eV; it can be interpreted as an upper
f -like Hubbard band. The valence band exhibits a peak at
−1 eV—which can be seen as a lower Hubbard band—and
a broad band localized at −5 eV which can be interpreted as a
p-like band. In the DFT-LDA band structure [Fig. 1(b)] the
f -like band is at the Fermi level; thus the system is described
as metallic in contradiction to the experimental photoemission
spectra [Fig. 1(a)] [77].
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FIG. 2. Role of Upp in the density of states of UO2 calculated
in DFT+U . Electronic interaction is taken into account both in f
and p orbitals. In all calculations, Uf f is constant and equal to 4.5 eV.
(a) Upp = 0 eV, (b) Upp = 5 eV, and (c) Upp = 5 eV. (c) is a calculation
in which the Hamiltonian (for Upp = 5 eV) is built with the DFT+Uf f

density (with Upp = 0) and diagonalized without any self-consistency
over charge density.

DFT+U with U = 4.5 eV [Fig. 1(c)] recovers an insulat-
ing density of states, by splitting the 5 f band in two parts,
creating a gap of 2.0 eV in good agreement with experiment
[77]. Nevertheless, the position of the p band is at −3 eV, too
high in comparison to experiment.

Lastly, the hybrid functional HSE06 improves on the po-
sition of the p-like band, but does not correctly describe its
width, in agreement with previous work [78].

Thus the comparison of DFT+Uf f results with experiment
or hybrid functional calculations highlights the wrong place-
ment of the O 2p-like band in DFT+Uf f . In order to improve
this description, we include electronic interaction Upp on the
2p orbitals. Such a correction is expected to lower the position
of the p-like band. It is discussed in the following section.

2. Spectral properties with DFT+Uf f +Upp

The goal of this section is to investigate the role of Upp in
spectral properties. Figure 2(a) first reproduces as a reference
the density of states obtained in DFT+Uf f with U = 4.5 eV.
Then we use DFT+Uf f +Upp with Upp = 5.0 eV. The results
of this calculation are reproduced in Fig. 2(b). We first com-
pare these fully converged DFT+Upp and DFT+Upp+Uf f

calculations [Figs. 2(a) and 2(b)]. As the +U potential for p
orbitals is −Upp(np − 0.5) (see Supplemental Material [60]),
and as p orbitals are filled (np = 1), we could naively expect a
shift of U/2 for the p band. Upp = 5 eV should thus shift the
p band by 2.5 eV [79]. However, we observe a surprisingly
small shift in Fig. 2(b) with respect to Fig. 2(a).

In order to investigate this behavior, we report in Fig. 2(c)
the density of states without self-consistency. This is similar
to applying only once the DFT+Uf f +Upp potential to the
DFT+Uf f density and then diagonalizing the Hamiltonian
without recomputing the density. The only difference between
Figs. 2(b) and 2(c) is the electronic density which appears
in the Hamiltonian. It thus impacts the number of electrons
that appears in the DFT+U potential: In Fig. 2(b) the number

FIG. 3. Role of Upp in the density of states of UO2 calculated in
DFT+U with Wannier orbitals. In all calculations, Uf f is constant
and equal to 4.5 eV. (a) Upp = 0 eV, (b) Upp = 5 eV, and (c) Upp =
5 eV. (c) is a calculation in which the Hamiltonian (for Upp = 5 eV)
is built with the DFT+Uf f density (with Upp = 0) and diagonalized
without any self-consistency over charge density.

of p electrons used to compute the Hamiltonian is the fully
converged DFT+Uf f +Upp number of electrons, whereas in
Fig. 2(c), it is the DFT+Uf f number of electrons. In this last
case, we observe that the shift of the p-like band is much
larger. In the Supplemental Material [60], we propose a ten-
tative explanation based on the change in occupations of p
orbitals (Supplemental Material, Sec. S6).

In order to evaluate the impact of the choice of correlated
orbitals on the results, we produce the same calculations using
Wannier orbitals instead of atomic orbitals (see Fig. 3).

Figure 3 is obtained using similar calculations to the ones
used to produce Fig. 2 but using Wannier orbitals as corre-
lated orbitals. Let us now compare these two calculations.
Figures 2(a) and 3(a) show that the DFT+Uf f densities of
states are similar except that the p-like band width is larger.
This larger bandwidth can be attributed to the larger hybridiza-
tion between the p-like band and the lower f Hubbard band
using Wannier orbitals.

For self-consistent DFT+Uf f +Upp [Figs. 2(b) and 3(b)],
there is an important difference. Whereas with the atomic
orbitals [Fig. 2(b)] the p bands are weakly shifted with respect
to DFT+Uf f , with the Wannier orbitals [Fig. 3(b)] the shift is
much larger (1 eV).

Concerning the final results with the Wannier orbitals
[Fig. 3(c)], the density of states of the fully converged calcu-
lation is in rather good agreement with the HSE06 calculation
and experiment concerning the position of the bands. This is
in contrast to the calculation using atomic orbitals.

A tentative explanation is given in the Supplemental Mate-
rial [60] in terms of amplitude and variation in the number of
p electrons (Supplemental Material, Sec. S6).

B. Calculation of Uf f , Upp, and Uf p in UO2

In this section, we use our recent cRPA implementation,
which allows calculations of effective interactions among
multiple orbitals in systems with entangled bands to compute
Uf f , Upp, and Uf p in UO2. The goal is first to understand the
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TABLE II. cRPA calculations on top of GGA and GGA+U band
structures in the ferromagnetic phase. Calculations are done in two
different models, f p − f p and f p − ext (see Table I). Calculation (a)
is a calculation from Seth et al. [33] without U in. Calculations (b) and
(c) reproduce this result, using an f p − f p model and an f p − ext
model. Calculations (e)–(i) use various combinations of models and
U in, to study the impact of each parameter. Calculation (i) is a cRPA
calculation, performed on an HSE06 band structure.

Calculation Band structure Bands U in
f f U in

pp Uf f Uf p Upp

(a) GGA [33] f p − f p 0 0 6.5 1.9 6.0
(b) GGA f p − f p 0 0 6.4 2.3 5.2
(c) GGA f p − ext 0 0 2.1 0.7 5.9

(d) GGA+U f p − f p 2 0 6.3 2.2 5.1
(e) GGA+U f p − ext 2 0 6.3 2.0 6.9

(f) GGA+U f p − ext 4.5 0 7.1 2.2 7.2
(g) GGA+U f p − ext 4.5 5 7.6 2.4 7.6
(h) GGA+U f p − ext 4.5 10 8.1 2.6 8.1

(i) GGA+U f p − ext 6 0 7.3 2.2 7.3

(j) HSE06 f p − ext 0 0 8.2 2.9 8.3

role of the initial band structure in calculated values and to
determine values that could be used to compute structural and
electronic properties. The results are gathered in Table II.

1. Role of the model: f p − f p versus f p − ext

We first discuss the comparison between the f p − f p and
f p − ext models (see definition in Sec. II B 3). Only calcula-
tions with low values of Uf f (below 2 eV) can be performed
with the f p − f p model, because in this case, both the p-like
band and the f -like band are isolated from the others. For high
values of U , because of the mixing of the upper f Hubbard
band with d orbitals, the f p − f p model cannot be used any
more.

We first discuss cRPA calculations using GGA band
structure: The f p − f p model leads to large values of U ,
whereas with the f p − ext model, values of Uf f and Uf p are
weaker. It can be explained with the same argument that in
Ref. [43] for the difference between f − f p (a) and f − f p
(b) calculations: In the f p − ext model, there is a residual
weight at the Fermi level, which is of neither f nor p character.
It contributes a lot to the screening of the interaction. We
can also note that in contrast, the value of Upp is larger with
the f p − ext model (5.9 instead of 5.2 eV). This is because
the bare value of interactions increased importantly in the
f p − ext model for these orbitals that are more delocalized.

Concerning cRPA calculations using GGA+U band struc-
ture with Uf f = 2 eV, the difference between the f p − f p
model and the f p − ext model is negligible because the sys-
tem is insulating and thus there is no residual contribution at
the Fermi level.

2. Role of U in
f f in computed U values

As can be seen in Table II, when U in
f f increases from 0 to

6.0 eV, values of Uf f , Uf p, and Upp increase. This is simply
due to the fact that the screening is lower as Uf f , and thus the
gap, increases.

FIG. 4. Equilibrium volumes of UO2 calculated in DFT,
DFT+Uf f , and DFT+Uf f +Upp (with Uf f = 4.5 eV and Upp = 5 eV)
using atomic and Wannier orbitals as correlated orbitals. The red
line corresponds to the experimental volume. In DFT+Uf f , re-
sults are nearly independent of correlated orbitals, whereas in
DFT+Uf f +Upp, atomic and Wannier orbitals lead to opposite vari-
ation of volume with respect to DFT+Uf f . As discussed in the text,
this difference comes from the variation in the number of p electrons
as a function of volume, which is more physical using Wannier
orbitals.

3. Role of U in
pp in computed U values

We now compare the values of U , with respect to the input
values of Upp. The effect of Upp is to increase the partial
gap between f and p bands as discussed in Sec. III A 2.
As a consequence, some transitions are occurring at a larger
transition and thus the screening is reduced. Comparing values
computed for Upp ranging from 0 to 10 eV, we indeed obtain
increasing values of all interactions.

4. Hybrid functionals

Using the HSE06 hybrid functional, the p band is even
lower in energy. As a consequence, the screening is even
lower, and thus values of interactions are found to be
larger.

C. Effect of U on structural parameters

In this section, we investigate the role of Upp in structural
properties.

1. Values of the equilibrium cell parameter
for different calculations

Figure 4 reports the calculated values for the equilibrium
volume in different cases. The LDA calculation underes-
timates the equilibrium volume for UO2, with a value of
147.4 Å3 where the experimental one is 163.7 Å3. As shown
previously in a large number of studies (e.g., Ref. [76]),
adding a Uf f in the calculation increases the value of the
equilibrium volume, and we get 159.9 Å3. Using Wannier
orbitals, the volume is very close (159.7 Å3). The application
of Upp leads to drastically different results depending on the
choice of correlated orbitals. If we choose the atomic basis, we
find a decrease in the volume when Upp is applied: The volume
decreases from 159.9 to 154.7 Å3 [80]. This is in agreement
with several studies on oxides [25,30,32,41,42]. In Ref. [41],
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FIG. 5. EDFT+U , EU , and EDFT+U − EU as a function of volume
using different values of U and correlated orbitals: Uf f = 4.5 eV
and Upp = 0.0 eV with atomic orbitals (a) or Wannier orbitals (b).
Uf f = 4.5 eV and Upp = 5.0 eV with atomic orbitals (c) or Wannier
orbitals (d).

for example, DFT+Udd+Upp calculations [called ACBN0 (for
Agapito, Curtarolo, and Buongiorno Nardelli) in this context]
for oxides give smaller volumes than DFT calculations. In
contrast, when using the Wannier basis, we observe a much
larger equilibrium volume in comparison to the LDA+Uf f

case, with a value of 164.1 Å3. We interpret this difference
in the next section.

2. Influence of the DFT+U correlated orbitals
on equilibrium volume

Understanding this difference in behavior according to cor-
related orbitals requires that we go back to the expression for
total energy. The DFT+U total energy can be written as

EDFT+U [nDFT+U ] = EDFT[nDFT+U ] + EU . (15)

In order to understand the origin of the change in volume in
various DFT+U calculations, we have plotted EDFT+U , EDFT,
and EU in Fig. 5 for four different calculations: DFT+Uf f

using atomic orbitals or Wannier orbitals and DFT+Uf f +Upp

using atomic orbitals or Wannier orbitals.
In those graphs [Figs. 5(a)–5(d)], the different energies

have been shifted in order to make the comparison of the
variation easier. The blue curve is the total energy of the
system EDFT+U , as a function of the volume. The minimum of
this function gives the equilibrium energy and the equilibrium
volume. The green curve represents the DFT energy, calcu-
lated with the DFT+U density EDFT[nDFT+U ]. The orange
graph represents EU that depends explicitly on the Uf f and
Upp terms.

In DFT+Uf f , the energy variations are similar [see
Figs. 5(a) and 5(b)] for the calculations using either atomic or
Wannier orbitals. This is expected as the equilibrium volumes
are similar as shown previously in Fig. 4. In DFT+Uf f +Upp,
the energy variations are different [Figs. 5(c) and 5(d)], co-
herent with the fact that the equilibrium volumes are different.
Analysis of these graphs shows that a large contribution to the

FIG. 6. Occupation (occ.) of one p orbital of oxygen in UO2

as a function of the volume for DFT+Uf f +Upp (Uf f = 5 eV,
Upp = 4.5 eV).

change in volume comes from EU . Indeed, by comparing the
evolution of this term, we observe that for atomic orbitals, it
decreases with the volume, whereas for Wannier orbitals, it
increases with the volume. The EU contains two contributions
coming, respectively, from Upp and Uf f . The Uf f term in EU

has a similar variation as seen in Figs. 5(a) and 5(b). Thus
the difference in the variation of EU in Figs. 5(c) and 5(d)
comes mainly from the Upp term in EU . As Upp is fixed,
this difference is linked to the evolution of occupations as a
function of volume which are plotted in Fig. 6. As expected,
the p occupations have a different variation when volume
increases in the two cases: It decreases for atomic orbitals and
increases for Wannier orbitals. The variation in the number
of p electrons in the calculation using Wannier orbitals is
expected on a physical basis: When the volume increases,
oxygen p orbitals and uranium f orbitals are less hybridized,
so that p-like bands contain a lower contribution of f orbitals,
and thus occupation of p orbitals increases. So we can expect
the Wannier calculation to give more physical results. The
variation in np in the calculation using atomic orbitals appears
to be nonphysical. It might be related to the fact that atomic
orbitals are not adequate to describe accurately these ionic
systems as a function of volume [81].

Let us understand now how these variations in np impact
the energy-versus-volume curve.

3. Mechanism of structure modification

The link between structural properties and occupations is
simply the relation between EU and occupations, which is
(with J = 0) [12,77]

EU = U

2

∑
σ,i

(
ni,σ − n2

i,σ

)
, (16)

where ni,σ is the number of electrons with spin σ on the orbital
i. This quantity is plotted as a function of ni in Figs. 7 and
8. Before explaining the role of Upp and the impact of the
variation in the number of p electrons on equilibrium volume,
we first focus on Uf f , whose impact on equilibrium volume is
well established.
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FIG. 7. Blue: Variation in energy due to DFT+Uf f with respect
to number of occupations ni for f -type orbitals (orb.). Black: Ap-
proximate occupation of the 12 nearly empty f orbitals. Orange:
Approximate occupation of the two nearly filled f orbitals. Red
and green arrows: When volume increases, direction of the change
in the values of occupations on the atomic and Wannier orbitals,
respectively.

In UO2, there are 14 f orbitals and two f electrons. In DFT,
the two electrons are shared between all the orbitals taking
into account the crystal field (and/or spin-orbit coupling). In
DFT+U , applying Uf f to the f orbital splits orbitals into two
parts in order to lower the DFT+U energy [72]: Two orbitals
getting nearly full and below the Fermi level (see Fig. 1) and
the 12 others getting nearly empty [72].

Figure 7 illustrates the change in energy due to the change
in occupations when the volume increases in DFT+Uf f . First,
when the volume increases, hybridization is lowered. Thus
the 12 f orbitals corresponding to empty bands will get more
empty (ni closer to 0): Their number of occupations is shown

FIG. 8. Blue: Variation of energy due to DFT+Uf f with respect
to number of occupations ni for p-type orbitals. Orange: Approxi-
mate occupation of the six nearly filled p orbitals. Red and green
arrows: When volume increases, the direction of the change in the
values of occupations on the atomic and Wannier orbitals, respec-
tively (the actual change is plotted in Fig. 6). As discussed in the text,
the Wannier description is coherent with the decrease in hybridiza-
tion as the volume increases: This leads to a decrease in energy as a
function of volume and thus an increase in the equilibrium volume.

by the black line in Fig. 7, and this value changes according
to the arrows when the volume increases. On the other side of
the graph, the two f orbitals corresponding to filled bands will
get more full. By looking at Fig. 7, we can understand that it
will lead to a lower DFT+U energy as volume increases, so
that the equilibrium volume will be greater, in agreement with
Fig. 4. In other words, if the number of electrons is closer to 0
or 1, then the self-interaction correction decreases.

We now discuss the evolution of energy for the EUpp term.
p orbitals are different from f orbitals: p-like bands are all
below the Fermi level and so all fully occupied. Because of the
hybridization, p orbitals are, however, not completely filled.

Figure 8 illustrates the DFT+U energy variation due to
occupation of p orbitals. As discussed above, the variation in
the number of p electrons upon increase in volume is different
for the atomic and Wannier calculations. Straightforwardly,
the increase (decrease) in the number of electrons in DFT+U
using Wannier (atomic) orbitals induces a decrease (increase)
in the energy. As a consequence, using the atomic orbitals,
the equilibrium volume is lowered when Upp increases. Us-
ing Wannier orbitals, we have the opposite (more physical
and expected) behavior: When interaction increases, volume
increases. Such results thus raise doubts about the physical
results obtained with Upp applied on atomic orbitals.

In conclusion of this section on UO2, we have shown that
the effect of Upp can be understood and its role depends
crucially on the choice of correlated orbitals.

IV. ROLE OF Udd AND Upp IN TiO2

Here, we study the role and calculation of Upp in the
rutile phase of TiO2. Contrary to UO2, which is a Mott
insulator, TiO2 is a prototypical charge transfer insulator
with empty d orbitals and is the subject of active research
concerning its technological applications. It has been the sub-
ject of several studies using DFT+Udd or DFT+Udd+Upp

(e.g., Refs. [25,26,30,37,42,82,83]).

A. Density of states of TiO2

In this section, we compare and analyze successively the
respective role of Udd and Upp in the spectral properties of
TiO2.

1. Density of states calculated with LDA+Udd

Figure 9 compares the densities of states calculated in
LDA, LDA+Udd , and the HSE06 functional. As for several
charge transfer insulators with filled shells, DFT-LDA de-
scribes the system as an insulator, but underestimates the
band gap (1.9 eV instead of 3.0 eV experimentally [84];
see, e.g., Ref. [85]). The effect of Udd on the density of
states is straightforward. The empty d-like band is shifted
upward, and the band gap increases (see Fig. 9). For Udd =
4.5 eV [Fig. 9(b)], LDA+Udd gives a gap of 2.7 eV. The last
calculation [Fig. 9(c)] uses the self-consistent values of Udd =
8.1 eV calculated in the d p − d p model (see Table III) and
gives a band gap of 3.5 eV. This gap is a bit overestimated
compared with other works [25,26]. Concerning HSE06, we
find a gap of 3.2 eV in agreement with previous work [85].
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FIG. 9. Role of Udd in the density of states of TiO2 calculated
in (a) LDA, (b) LDA+Udd with Udd = 4.5 eV, (c) LDA+Udd with
Udd = 8.1 eV, and (d) the HSE06 functional. The thin vertical line
inside the O p band is the barycenter of the band. We choose to put
the Fermi level just above the p-like band in order to highlight the
shift of the d-like band.

2. Density of states calculated in LDA+Udd+Upp

We now include the interaction on both titanium d orbitals
and oxygen p orbitals. Figure 10 compares the densities of
states in LDA+Udd and LDA+Udd+Upp. As for UO2, in
order to disentangle physical effects, we show self-consistent
calculations [Fig. 10(b)] and non-self-consistent calculations
[Fig. 10(c)]. We show that adding Upp increases the band gap
to 5.3 eV in the first iteration [Fig. 10(c)]. At convergence
of the self-consistency, we find a band gap value of 4.1 eV.
As has already been discussed [19,42], using DFT+U on
TiO2 affects the p-band width. In order to decorrelate the
effect of bandwidth from the band shift, we represent on the
density of states the barycenter of the p band, which should
not be affected by a bandwidth change. The study of the
barycenter gives us a shift of −1.27 eV when Upp is included
in a non-self-consistent way from the DFT+Udd calculations
[comparison of Figs. 10(c) and 10(a)]. Self-consistency gives
a shift of 1.00 eV [from the comparison of Figs. 10(b) and
10(c)]. In summary, Upp has a small effect on the density of
states. We underline that the effect would be even smaller if
we would not renormalize the atomic wave functions used to
define correlated orbitals.

TABLE III. Effective interactions computed in cRPA for TiO2.
In TiO2 the d and p bands are separated from the rest of the bands;
thus the results do not depend on the choice of the transition removal
model [model (a) or (b)] but only on the choice of bands. The p-like
are numbered from 13 to 24 and the d-like bands are numbered from
25 to 34.

Band structure Model U in
dd U in

pp Udd Upp Ud p

LDA d − d 0 0 2.7
LDA d − d 3.0 0 3.0
LDA d p − d p 0 0 11.7 9.8 3.9
LDA d p − d p 8.1 5.3 11.6 8.8 3.7

FIG. 10. Role of Upp in the density of states of TiO2 calculated
in LDA+U . (a) Udd = 8.1 eV and Upp = 0 eV, (b) Udd = 8.1 eV
and Upp = 5.3 eV, and (c) Udd = 8.1 eV and Upp = 5.3 eV. (c) is
a calculation in which the Hamiltonian (for Upp = 5.3 eV) is built
with the DFT+Udd charge density (with Upp = 0) and diagonalized
without any self-consistency over charge density. The vertical thin
line inside the p band is the barycenter of the band. We choose to put
the Fermi level just below the d-like band in order to highlight the
shift of the p-like band.

Again, as for UO2, we present here DFT+Udd+Upp cal-
culations using Wannier functions as correlated orbitals to
study the dependence of the results on this choice. Figure 11
represents the TiO2 total density of states in a similar manner
to Fig. 10 but computed using Wannier orbitals. By com-
paring Figs. 11(a) and 11(b) with Fig. 11(c), we see that in
comparison to atomic-like orbital calculations (Fig. 10), the

FIG. 11. Role of Upp in the density of states of TiO2 calculated
in LDA+U with Wannier orbitals. (a) Udd = 8.1 eV and Upp= 0 eV,
(b) Udd = 8.1 eV and Upp = 5.3 eV, and (c) Udd = 8.1 eV and Upp =
5.3 eV only for the last step of the self-consistent field (SCF). The
vertical thin line inside the p band is the barycenter of the band. We
choose to put the Fermi level just below the d-like band in order to
highlight the shift of the p-like band. (c) is a calculation in which the
Hamiltonian (for Upp = 5.3 eV) is built with the DFT+Udd density
(with Upp = 0) and diagonalized without any self-consistency over
charge density.
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FIG. 12. Equilibrium volume for TiO2 calculated in LDA,
LDA+Udd (Udd = 8.1 eV), and LDA+Udd+Upp (Udd = 8.1 eV,
Upp = 5.3 eV) using atomic and Wannier correlated orbitals. The
red line is the experimental equilibrium volume [82].

calculation using Wannier functions gives a slightly larger
shift of the p-like band: The shift is −2.41 eV for the p
band between Figs. 11(a) and 11(c) and 1.54 eV between
Figs. 11(c) and 11(b).

However, globally, comparing DFT+Udd [Fig. 11(a)] and
DFT+Udd+Upp [Fig. 11(b)], we see that the global effect of
Upp is slightly larger using Wannier orbitals. More details are
given in the Supplemental Material [60] (Sec. S7).

B. cRPA calculations for TiO2

In this section, we use our cRPA implementation
[34,43,86] to compute the U interaction parameters in TiO2

(see Table III) using the models of Table I. The d − d model
calculated in LDA leads to a value of Udd = 2.7 eV. This
value is comparable to the values calculated in the literature
[87]. We carried out self-consistent calculations in the sense
of Refs. [34,43,88] where multiple cRPA calculations are per-
formed until Udd = U in

dd . We find a value of 3 eV, very close
to the non-self-consistent value.

In the d p − d p model, values of U are larger because
screening is weaker (see, e.g., Ref. [43]). Self-consistency
effect is weak, the maximum difference being 1.0 eV on Upp.
As for UO2, the final values we used for Udd and Upp in the
d p − d p model are renormalized by Ud p (see Refs. [33,64]).
Values we retain are Udd = 8.1 eV and Upp = 5.3 eV.

C. Structural parameters

We compare in Fig. 12 the equilibrium volume of TiO2

using DFT, DFT+Uf f and DFT+Uf f +Upp with experiment
(while keeping a constant c/a of 0.64.). We observe that the
trends are quite similar to what we observed on UO2 concern-
ing the role of correlated orbitals.

First the LDA-DFT underestimates largely the volume,
with a value of 60.48 Å3. Using Udd , the equilibrium vol-
ume increases. Using atomic-like correlated orbitals leads to

a larger increase than using Wannier correlated orbitals. We
then carried out the study using DFT+Udd+Upp, using Udd =
8.1 eV and Upp = 5.3 eV. The application of Upp leads to the
same effect as for UO2: With atomic orbitals, the volume de-
creases (down to a value of 60.70 Å3), whereas with Wannier
orbitals, the volume increases (up to a value of 63.74 Å3), as
expected from a physical point of view. Besides, the Wannier
calculation is somewhat closer to experiment.

In the Appendix, we decompose the energy as we have
done in UO2. The conclusions are similar. Also the numbers of
p electrons in Wannier and atomic orbitals show similar trends
to those in UO2. So the relative role of Wannier orbitals and
atomic orbitals concerning structural properties is similar in
TiO2 and UO2.

V. CONCLUSION

We conducted here a detailed study on the role of elec-
tronic interactions in p orbitals of oxides using UO2 and TiO2

as prototypical Hubbard and charge transfer insulators. We
used our cRPA implementation (allowing multiorbital inter-
action calculations) to obtain effective interactions among f
or d orbitals and p orbitals. Using the obtained U values
and DFT+U , we investigate the effect of Upp on spectral
and structural properties and discuss its physical origin in
terms of electron numbers. For structural properties, we find
a reduction in the volume when Upp is added, which is a
counterintuitive result, in agreement with previous studies
[25,31,32,41], when correlated orbitals are atomic orbitals.
We show that using Wannier orbitals as correlated orbitals
restores expected results, mainly because the number of elec-
trons and its evolution as a function of volume are more
physical. Such results shed light on the physics brought by
the Upp interaction in oxides. It is especially important to
design DFT+U schemes using Upp as a way to mimic hy-
brid functionals with the goal of performing high-throughput
calculations [19,21,37,41].
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APPENDIX: DECOMPOSITION OF ENERGY
IN ENERGY-VERSUS-VOLUME

CURVES IN TiO2

This Appendix gives for TiO2 the same decomposition of
the total energy as was given for UO2 in Figs. 5 and 6. The
results are shown in Figs. 13 and 14.

The results are very similar to those for UO2. First, using
only Udd = 8.3 eV, we found that EU decreases while the
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FIG. 13. (a)–(d) Energy decomposition for different cell param-
eters in LDA+Udd+Upp (Udd = 8.1 eV, Upp = 5.3 eV) using atomic
and Wannier orbitals for DFT+U .

volume increases, using either atomic or Wannier orbitals.
Using Udd = 8.1 eV and Upp = 5.3 eV, the effects are also
similar to what we observed in UO2. For an increase in vol-
ume, EU slightly increases using atomic orbitals and largely
decreases using Wannier orbitals. This can also be explained

FIG. 14. Occupation of one p orbital of oxygen in TiO2 as a
function of the volume in LDA+Udd+Upp (Udd = 8.1 eV, Upp =
5.3 eV). Comparison between calculations using atomic-like and
Wannier correlated orbitals.

using the occupations of the p orbitals. Results are shown in
Fig. 14. This figure clearly shows that for a volume increase,
atomic-like orbitals lead to reduced occupation of the p or-
bitals, unlike Wannier orbitals. As discussed in Sec. III C 3,
this mechanism leads to a reduction in the equilibrium volume
for atomic orbitals.
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