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The nature of correlated states in twisted bilayer graphene (TBG) at the magic angle has received intense
attention in recent years. We present a numerical study of an interacting Bistritzer-MacDonald (IBM) model of
TBG using a suite of methods in quantum chemistry, including Hartree-Fock, coupled cluster singles, doubles
(CCSD), and perturbative triples [CCSD(T)], as well as a quantum chemistry formulation of the density matrix
renormalization group method (DMRG). Our treatment of TBG is agnostic to gauge choices, and hence we
present a new gauge-invariant formulation to detect the spontaneous symmetry breaking in interacting models.
To benchmark our approach, we focus on a simplified spinless, valleyless IBM model. At integer filling (ν = 0),
all numerical methods agree in terms of energy and C2zT symmetry breaking. Additionally, as part of our
benchmarking, we explore the impact of different schemes for removing “double-counting” in the IBM
model. Our results at integer filling suggest that cross validation of different IBM models may be needed
for future studies of the TBG system. After benchmarking our approach at integer filling, we perform the
first systematic study of the IBM model near integer filling (for |ν| < 0.2). In this regime, we find that the
ground state can be in a metallic and C2zT symmetry breaking phase. The ground state appears to have low
entropy, and therefore can be relatively well approximated by a single Slater determinant. Furthermore, we
observe many low entropy states with energies very close to the ground-state energy in the near integer filling
regime.
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I. INTRODUCTION

The correlated insulating and superconducting phases of
magic angle twisted bilayer graphene (TBG) have received
intense research attention in the past few years [1–15]. Since
each moiré unit cell of magic angle TBG contains around ten
thousand carbon atoms, to take into account electron corre-
lations among different moiré unit cells, a faithful atomistic
model of TBG would involve hundreds of thousands of carbon
atoms. This is extremely challenging for numerical studies of
TBG even at the level of tight-binding models. As a result, the
Bistritzer-MacDonald (BM) model [16], which is a continuum
tight-binding model, has been widely adopted as the starting
point for further numerical studies. However, a noninteracting
tight-binding model cannot support either the correlated in-
sulating or the superconducting phase, and electron-electron
correlations must be properly taken into account. The BM
model reveals that the flat bands of interest are energetically
separated from the other bands. Therefore, as a reasonable
starting point, one can study the interacting moiré physics
“downfolded” to the flat bands. This gives rise to the “inter-
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acting Bistritzer-MacDonald” (IBM) model, which takes the
form of an extended Hubbard model with pairwise long-range
interactions. Although the IBM model is not uniquely defined,
and a unifying physical description of the correlated phases
has yet to emerge, such a downfolding procedure has been
used by a number of recent works for studying phase diagrams
of TBG beyond the tight-binding approximation [5–15].

To solve the IBM model numerically, the simplest ap-
proximation is Hartree-Fock (HF) theory. The IBM model
at the HF level can host a diverse range of phases due to
spontaneous symmetry breaking [5,8,17]. In certain parameter
regimes, the Coulomb energy scale (10 ∼ 20 meV) of the
IBM model is larger than the dispersion of the flat bands
(∼5 meV). Hence electron correlation effects may become
significant, and post-Hartree-Fock calculations are needed in
order to validate and/or correct the physical picture provided
by HF theory. Recent studies using exact diagonalization
(ED) [15,18] and the density matrix renormalization group
(DMRG) [7,19–21] suggest that HF theory provides a good
approximation to the description of ground-state properties of
TBG at least at integer filling (ν = 0) (the filling parameter
ν refers to the number of electrons per k point relative to the
charge neutrality point).

As compared to many other models of interacting physics,
such as the Hubbard model, the IBM model includes a
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long-range Coulomb interaction, which complicates the nu-
merical description. The techniques to treat such long-range
interactions are well studied in the ab initio quantum chem-
istry community. Using mature quantum chemistry software
packages, it is thus possible to study a wide range of ground
state and excited state properties of the IBM model at the
correlated electron level. In addition, away from integer filling
or the chiral limit, we expect in some scenarios that the HF so-
lution can still be a good starting point for post-Hartree-Fock
calculations. This is the regime where many common quan-
tum chemistry approximations, such as the coupled cluster
approaches (see [22,23]), often excel in terms of a balance be-
tween efficiency and accuracy. In particular, these approaches
can be less expensive than ED or DMRG, and therefore can
be applied to systems of larger sizes. This paper provides
a description of the IBM model compatible with quantum
chemistry language and implementations, and an initial study
of the performance of various quantum chemistry methods for
the ground-state properties of the IBM model.

A. Overview of implementation

The BM Hamiltonian is defined by taking two copies of
graphene, rotating them relative to each other by an angle θ ,
and adding interlayer coupling terms. The relative strength of
this interlayer coupling is controlled by two parameters w0

and w1, which control the strength of AA hopping and AB
hopping, respectively. Following Ref. [7], we fix θ = 1.05 and
w1 = 109 meV and vary the ratio w0/w1 between 0 and 0.95.
The value used in Ref. [7] is w0 = 80 meV, w1 = 109 meV,
which corresponds to a ratio w0/w1 ≈ 0.73. However, in-
plane lattice relaxation, which expands AB regions and
contracts AA regions [24], as well as out-of-plane relaxation,
which increases the interlayer separation in AA regions rel-
ative to AB regions [25], could change the value of w0/w1.
The limit w0/w1 = 0 is referred to as the chiral limit [26].
The (noninteracting) BM model at the chiral limit exhibits
additional symmetries, which have been used extensively in
the theoretical studies of the BM model (e.g., the existence of
flat bands at certain magic angles) [26–33].

In this paper, we follow Ref. [7] and assume that the IBM
model contains only valley K and spin ↑; in other words,
the model is spinless and valleyless. In this case, the charge
neutrality point refers to the setting of one electron per k
point. This model neglects certain electron-electron interac-
tions (even at the mean-field level) and limits the exploration
of certain phases, such as the Kramers intervalley-coherent
(K-IVC) state [5] in the full model. On the other hand, ED
calculations for the full model suggest that the TBG system
is often spin and valley polarized [15]. Post-Hartree-Fock
calculations of the phase diagram for the IBM model with
valley and spin degrees of freedom will be studied in the
future. Our implementation is based on the Python-based
Simulations of Chemistry Framework (PySCF) [34,35]. After
constructing the quantum many-body Hamiltonian by means
of the form factors from the BM model [5,7], HF and post-
HF calculations, as well as calculations with integer and
noninteger fillings, can be carried out on the same footing.
Our post-HF calculations are performed using the coupled
cluster singles and doubles (CCSD) method, the perturbative

noniterative energy correction to CCSD [called CCSD(T)]
[36], and the density matrix renormalization group (DMRG)
[37] method, in particular its quantum chemical formula-
tion (with specific algorithmic choices designed for quartic
Hamiltonians, sometimes called QC-DMRG [38–40]) as
implemented in Block2 [41].

B. Symmetry breaking order parameters

In order to study the phase diagram of TBG, we need
to define order parameters to quantify the spontaneous sym-
metry breaking in the density matrix. The order parameters
are often basis dependent, and hence basis changes (some-
times called gauge fixing) tailored for each symmetry may
be needed. For instance, one of the most important sym-
metries of TBG is the C2zT symmetry, which characterizes
the quantum anomalous Hall (QAH) state. The C2zT order
parameter is defined in the Chern band basis [5,7,11,19],
which needs to be carefully constructed due to the topological
obstruction in constructing the Wannier states. We present
a new set of gauge-invariant order parameters defined us-
ing the sewing matrices [11,42], which can be applied to
both unitary and antiunitary symmetries without the need
for basis changes. These gauge-invariant order parameters
can therefore be computed conveniently in the band basis
of the BM model, and can be used to quantify the sym-
metry breaking in the density matrix. Our numerical results
verify that the phase diagrams obtained from the gauge-
invariant and gauge-dependent order parameters previously
reported in the literature are consistent.

C. Subtraction schemes

The construction of the BM model already implicitly
takes electron interactions into consideration via the single-
electron dispersion. Hence, adding an additional Coulomb
interaction term to the BM model leads to double-counting
errors. In the literature, there are a number of different
proposals for removing the double-counting effects. These
different choices lead to model discrepancies, which can
be an important source of uncertainty in TBG model-
ing. We compare the average scheme (AVG) [11,19], and
the decoupled scheme (DEC) [5,7,8] for removing such
double-counting effects. The former defines a model that is
particle-hole symmetric, and the latter uses a more physical
reference density matrix. While the results obtained from
the two IBM models qualitatively agree, important differ-
ences remain even when all other simulation parameters are
reasonably converged. For instance, we find that the C2zT
order parameter in the average scheme is very close to an
integer 1 near the chiral limit, indicating that the system is
fully polarized in the Chern basis, and the order parame-
ter undergoes a sharp transition to 0 around w0/w1 ≈ 0.8.
In the decoupled scheme, the C2zT order parameter is around
0.8 at the chiral limit, and the order parameter changes non-
monotonically as the ratio increases, the transition region
becomes much wider for the same system size. In the average
scheme, the interaction Hamiltonian at the chiral limit is posi-
tive semidefinite [11] and exhibits an enlarged U (4) × U (4)
symmetry [5,11]. The ground-state energy at integer filling
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is zero, which can be exactly achieved using a single Slater
determinant given by the HF solution. With the decoupled
scheme, the correlation energy is nonzero even at the chiral
limit and ν = 0, and we find that the correlation energy is gen-
erally larger than that in the average scheme. The differences
due to model discrepancies can be even larger than post-HF
electron correlation effects. As a result, in the absence of an
interacting model for the TBG system that is fully based on
first principles, we may need to investigate an ensemble of
interacting models to cross-validate the results.

D. Integer versus noninteger fillings

At integer filling (ν = 0), i.e., the charge neutral point,
we find that total energies from HF, CCSD, CCSD(T), and
DMRG largely agree with each other, and correlation energies
(defined as the difference between the HF energy and the
post-HF energy) are generally less than 0.5 meV per moiré
site. Using the gauge-invariant order parameters, our results
confirm that at integer filling, the system is either in a C2zT
symmetry breaking and insulating state, or in a C2zT trivial
and metallic state [7]. We also perform the first systematic
study of the IBM model near integer filling (for |ν| < 0.2). In
this regime, we find states that are C2zT symmetry breaking
and metallic. Furthermore, the IBM model can host many
states that are energetically close to the ground state, and it
can be difficult to converge to the “true” global minima for all
levels of theories. To highlight this difficulty, we explore three
different initialization schemes:

(1) Generate the one-particle reduced density matrix from
a random distribution in the targeted particle sector.

(2) Additionally to (1), enforce translation symmetry to the
one-particle reduced density matrix.

(3) Construct the one-particle reduced density matrix (for
doped calculations) from the band structure at the charge neu-
trality point and enforce translation symmetry (see Sec. VI E
for more details).

We observe that the energy corrections provided by post-
HF methods can be larger than that in the integer filling
case. Although this trend agrees with the exact diagonalization
calculations of the full IBM model in [15], the quantitative
magnitude of the corrections in our simulations can depend on
the local minima attained at the HF level. The various local
minima are not simply an artifact of the HF approximation.
For example, we also find that the results of the DMRG calcu-
lations can strongly depend on the HF orbitals, and all DMRG
calculations yield solutions with relatively low Fermi-Dirac
entropy, which suggests that these minima are all close to
single Slater determinants, i.e., solutions that can be described
relatively well by the HF approximation.

II. PRELIMINARIES

The tight-binding models for monolayer graphene, bilayer
graphene, and the BM model for twisted bilayer graphene
have been extensively studied in the literature. We there-
fore only provide a minimal introduction to the BM model
and the wavefunctions involved; we refer the reader to, e.g.,
Refs. [5,11] and the references therein for a more detailed
discussion. Throughout this paper, we adopt atomic units,
except for energies, which are reported in millielectron volts.

Recall that the BM model depends on two parameters w0

and w1, which control the strength of AA hopping and AB
hopping respectively. Through this article we fix θ = 1.05,
w1 = 109 meV and vary the ratio w0/w1 between 0 and 0.95.
Subsequently, we denote the moiré unit cell by �, its area
by |�|, and the moiré Bravais lattice by L. Correspondingly,
we denote the moiré Brillouin zone (mBZ) by �∗ and the
moiré reciprocal lattice L∗. The mBZ is discretized using a
Monkhorst-Pack (MP) grid [43] of size Nk = nkx · nky . When
the MP grid includes the � point of the mBZ, the computation
can be identified with a moiré supercell consisting of Nk unit
cells with a sample area Nk|�|. A given BM wavefunction,
i.e., a BM band, can be labeled by a tuple (n, k, s, τ ), where n
is the band index, k ∈ mBZ is the k-point index, s ∈ {↑,↓} is
the spin index, and τ ∈ {K, K′} is the valley index. Since the
spin and valley indices often do not appear explicitly in the
Hamiltonian, they are also referred to as flavor indices. For
simplicity, we follow the assumption in Ref. [7], and drop the
flavor indices s, τ , i.e., the system is spinless and valleyless.

Let r be the real space index in the moiré supercell,
by Bloch’s theorem, we can express a BM orbital in real
space as

ψnk(r, σ, l ) = 1√
Nk

eik·runk(r, σ, l )

= 1√
Nk|�|

∑
G

ei(k+G)·runk(G, σ, l ). (1)

Here G ∈ L∗ is the plane-wave index, σ ∈ {A = 1, B = −1}
is the sublattice index, l ∈ {1,−1} is the layer index. We also
refer to (G, σ, l ) or (r, σ, l ) as internal indices. Note that
unk(r, σ, l ) is periodic with respect to L, i.e., unk(r, σ, l ) =
unk(r + R, σ, l ),∀R ∈ L. The normalization condition is
chosen such that unk is normalized within the moiré unit
cell. Moreover, the factor 1√

Nk
ensures that ψnk is normalized

within the moiré supercell. With some abuse of notation, we
use unk(r, σ, l ) and unk(G, σ, l ) to denote the coefficients of
a BM wavefunction in real space and reciprocal space, re-
spectively. In practical calculations, the number of plane-wave
indices G needs to be truncated to a finite size. Throughout
this article, we omit the range of summation unless otherwise
specified. Subsequently, we refer to the set of all plane waves
indexed by G with sublattice index σ and layer index l as the
primitive basis of the BM model and denote the corresponding
Fock space by F . Let ĉ†

k(G, σ, l ), ĉk(G, σ, l ) be the creation
and annihilation operators acting on F , respectively. Then the
creation and annihilation operators corresponding to the band
nk are

f̂ †
nk =

∑
G,σ,l

ĉ†
k(G, σ, l )unk(G, σ, l ),

f̂nk =
∑
G,σ,l

ĉk(G, σ, l )u∗
nk(G, σ, l ).

(2)

Here u∗
nk denotes the complex conjugation of unk. The band

creation and annihilation operators satisfy the canonical an-
ticommutation relation, i.e., { f̂ †

nk, f̂n′k′ } = δnn′δkk′ , and define
the band basis of the BM model. Note that the definition of the
band creation and annihilation operators can be periodically
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FIG. 1. (a) Two monolayer graphene Brillouin zones (BZ) depicted by a dashed red line and solid blue line, respectively, aligned by their
� point and twisted by an angle 
, with the corresponding Dirac points K+ and K−. The moiré Brillouin zone (mBZ) is indicated by the grey
shaded region centered at �mBZ. (b) Choice of the rectangular unit cell in reciprocal space (green shaded area encircled by green dashed line,
see Ref. [7]) relative to the mBZ. The green crosses show a mBZ discretization grid of 8 × 4 k points. The Dirac points of the monolayers K+

and K− are included as reference points. (c) Band structure of the BM Hamiltonian over the mBZ, with the corresponding flat bands (solid
red lines) and remote bands (dashed grey lines). The interacting BM Hamiltonian is then projected onto the subspace spanned by the two flat
bands; the system’s parameters are θ = 1.05◦, w1 = 109 meV, and w0/w1 = 0.7.

extended outside the mBZ according to

f̂ †
n(k+G) = f̂ †

nk, f̂n(k+G) = f̂nk, G ∈ L∗. (3)

III. INTERACTING BISTRITZER-MACDONALD MODEL

For values of the ratio w0/w1 ∈ [0, 0.95], the spinless, val-
leyless BM Hamiltonian has a direct gap between two bands
with roughly zero energy and the remainder of the spectrum
[see e.g., Fig. 1(c) for w0/w1 = 0.7]. We refer to these two
bands as the flat bands of the BM model and label them by
the index n ∈ {−1, 1}. The Hamiltonian of the IBM model
restricted to these flat bands takes the form

ĤIBM = Ĥ0 + ĤI

=
∑
k∈�∗

∑
mn

f̂ †
mk[h(k)]mn f̂nk

+ 1

2

∑
k,k′,k′′∈�∗

k′′′=k+k′−k′′

∑
mm′nn′

〈mk, m′k′|nk′′, n′k′′′〉

× f̂ †
mk f̂ †

m′k′ f̂n′k′′′ f̂nk′′ , (4)

where Ĥ0 and ĤI are the quadratic term and the quartic term,
respectively. The ground state of the IBM model is then de-
fined as the solution to the minimization problem

E0 = min
|�〉∈F , 〈�|�〉=1

〈�|N̂ |�〉=Ne

〈�|Ĥ |�〉, (5)

where Ne = (ν + 1)Nk is the total number of electrons, and
N̂ = ∑

k

∑
n f̂ †

nk f̂nk is the total number operator. The number
of electrons per k point is given by ν + 1 and we subsequently
refer to ν as the filling factor. Note that in this convention, the
particle filling is reported with respect to the charge neutral

point. Since there are only two bands per k point, the only
nontrivial integer value for the filling factor is ν = 0, which
is also called the integer filling case (or the particle-hole
symmetric case) of the IBM model in the spinless, valleyless
regime.

The main object of interest in this paper is the one-particle
reduced density matrix (1-RDM) corresponding to the ground
state |�〉 defined as

[P(k)]nm = 〈�| f̂ †
mk f̂nk|�〉. (6)

We emphasize that the 1-RDM is well defined in the entire
moiré reciprocal space due to the periodic extension in Eq. (3).
Using the 1-RDM, we find that for any k, k′ in the moiré
reciprocal space,

〈�| f̂ †
mk f̂nk′ |�〉 = P(k)nm

∑
G∈L∗

δk,k′+G. (7)

The quartic term ĤI describes the (screened) Coulomb
interaction via the two-electron repulsion integrals (ERI)
denoted by 〈mk, m′k′|nk′′, n′k′′′〉. The coefficients of the
quadratic term can be written as

h(k) = hBM(k) − hsub(k), (8)

where [hBM(k)]mn = εBM
n (k)δmn is given by the BM band

energy. The second term hsub(k) is called the subtraction
Hamiltonian, which removes the double counting of the
Coulomb interaction within the flat bands, and is defined
in terms of the Hartree-Fock potential (see Sec. IV B). The
derivation of the Coulomb interaction term is presented in the
Supplemental Material (SM) [44].
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IV. COMPUTATIONAL METHODS
AND IMPLEMENTATION

A. Hartree-Fock theory

The Hartree-Fock approximation is the starting point for
various correlated electronic-structure methods [45]. The un-
derlying assumption is that the many-body wavefunction takes
the form of a Slater determinant, i.e.,

|�S〉 =
∏

k

∏
i∈occ

b̂†
ik|vac〉, (9)

where |vac〉 is the vacuum state, and

b̂†
ik =

∑
n

f̂ †
nk
ni(k) (10)

defines the creation operator for the Hartree-Fock orbitals for
each k ∈ �∗.

For integer filling, the number of occupied orbitals per k
point is ν + 1 (indexed by occ). The 1-RDM associated with
a given Slater determinant |�S〉 is then

[P(k)]nm = 〈�S| f̂ †
mk f̂nk|�S〉 =

∑
i∈occ


ni(k)
∗
mi(k). (11)

Following the standard derivation of Hartree-Fock theory
(see e.g., [22,46]), we begin with the characterization of the

Hartree-Fock energy, i.e.,

EHF = min
P∈M

Tr[PH] = min
P∈M

E (HF)(P), (12)

where M is the set of 1-RDMs associated with the possible
single Slater determinants of the system. A common way to
seek the solution to Eq. (12) is by finding a stationary point of
E (HF), which is equivalent to diagonalizing the Fock operator
[22] F̂ [P] = Ĥ0 + V̂HF [P], where V̂HF [P] is the Hartree-Fock
potential.

The Hartree-Fock potential can be written in terms of the
so-called form factor matrix, �k(q + G). Simply speaking,
the form factor is given by the Fourier coefficients of the
pair product of the periodic Bloch functions of the BM model
{unk}. This matrix is calculated via the following formula [see
Eq. (B8) in the Supplemental Material]:

[�k(q + G)]mn = 1

|�|
∑

G′∈L∗

∑
σ,l

u∗
mk(G′, σ, l )

× un(k+q+G)(G′, σ, l ). (13)

With this definition, the Hartree-Fock potential takes the com-
pact form

V̂HF[P] = Ĵ[P] − K̂[P] =
∑
k∈�∗

f̂ †
mk[vhf [P](k)]mn f̂nk, (14)

where the matrix elements are given by

[vhf [P](k)]mn = 1

|�|
∑

G∈L∗
V (G)

(
1

Nk

∑
k′∈�∗

Tr[�k′ (−G)P(k′)]

)
[�k(G)]mn

− 1

|�|Nk

∑
q′

∑
m′n′

V (q′)[�k(q′)]mn′ [P(k + q′)]n′m′ [�k+q′ (−q′)]m′n. (15)

We here employ the quantum chemistry notation where H0

is the core Hamiltonian, Ĵ[·] and K̂[·] are the Coulomb
and exchange operators, respectively. For completeness, the
derivation of the expressions of Ĵ[·] and K̂[·] are given in
the Supplemental Material [44]. This nonlinear eigenvalue
problem is then determined by self-consistently evaluating the
1-RDM [47].

In quantum chemistry discussions of Hartree-Fock theory,
it is also common to require that f̂ †

nk commutes with the
electronic spin operator Ŝz. When no such restriction is used,
the theory is termed generalized Hartree-Fock theory (GHF).
In the current treatment, the electronic spin is fully polarized.
However, there is a pseudospin variable, namely the sublattice
index σ . We will have no restriction that f̂ †

nk commutes with
the sublattice pseudospin operator. Thus we will refer later to
carrying out GHF calculations, in the sense of no restriction
on the pseudospin.

B. Subtraction Hamiltonian

Since the BM band energies already take the electron-
electron interaction between the two layers of graphene into
account, the screened Coulomb potential in the IBM model
would double count such interactions. As a remedy, one can
introduce a subtraction Hamiltonian, see Eq. (8). At the level

of Hartree-Fock theory [5], this subtraction Hamiltonian can
be evaluated by means of the Hartree-Fock potential Eq. (15)
with respect to an a priori chosen reference density P0, i.e.,
hsub(k) = vhf [P0](k). Then, since the mapping P �→ vhf [P]
is linear, the Fock operator including the subtraction part,
denoted F̂sub, can be written as

F̂sub[P(k)] = F̂ [P(k)] − V̂HF[P0(k)]

=
∑

k∈mBZ

∑
mn

f̂ †
mk[hBM(k)]mn f̂nk + V̂HF[δP(k)],

(16)

where δP(k) = P(k) − P0(k).
Following Eq. (6), P0(k) should be interpreted as the coef-

ficients of the reference density matrix in the BM band basis.
The choice of a reference density matrix P0(k) is not unique
and should also be viewed as part of the IBM model. For
instance, in Ref. [11,48], the choice is

P0(k) = 1
2 I, (17)

which is called the average scheme, and can be justified when
the particle-hole symmetry is conserved or weakly broken.
In Refs. [5,8,15], P0(k) is obtained by projecting the zero
temperature limit of the density matrix corresponding to two
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decoupled graphene layers to the BM band basis of the TBG
system; this is referred to as the decoupled scheme. In the
computational simulations presented here, we follow the pro-
cedure used in Ref. [7], where terms from the frozen negative
energy sea of the BM model are not included in the decoupled
subtraction Hamiltonian (cf. [15], Eq. 2). For additional de-
tails on the different decoupled schemes used in the literature,
see Supplemental Material [44].

The zero-temperature limit ensures that P0 is uniquely
defined even if some of the band energies of the two decou-
pled graphene layers may become degenerate. Furthermore,
the choice of P0 is only used to define the quadratic part of
the IBM Hamiltonian and is assumed to be independent of
the filling factor ν. Unless otherwise specified, we adopt the
decoupled scheme in all calculations.

C. Coupled cluster theory

Coupled cluster theory is one of the most widely used post-
Hartree-Fock correlated wavefunction methods in quantum
chemistry [45,49]. In this ansatz, the ground-state wavefunc-
tion takes the form

|�〉 = eT (t)|�0〉, (18)

where

T (t) =
∑

μ

tμXμ (19)

is the cluster operator determined by the cluster amplitudes
t, and |�0〉 is a chosen reference Slater determinant (most
commonly the Hartree-Fock solution). The operators Xμ are
the excitation operators with respect to the chosen reference
|�0〉, i.e.,

Xμ = X a1,...,ak
i1,...,ik

= â†
a1

...â†
ak

âik ...âi1 , (20)

where, for the sake of compactness, we have combined the
occupied orbital indices {il} and virtual orbital indices {al}
in the multi-index μ. The ground-state energy can then be
computed as

E (t) = 〈�0|e−T (t)HeT (t)|�0〉. (21)

The cluster amplitudes t are determined by the coupled cluster
equations, i.e., a set of polynomial equations of at most degree
four (given at most quartic terms in the Hamiltonian) with
respect to t,

0 = Fμ(t) = 〈�0|X †
μe−T (t)HeT (t)|�0〉, ∀μ. (22)

More compactly, Eqs. (21) and (22) can be combined in the
coupled cluster Lagrangian

L(t,λ) = E (t) + 〈λ, F(t)〉
= 〈�0|(I + �(λ))e−T (t)HeT (t)|�0〉, (23)

where

�(λ) =
∑

μ

λμX †
μ. (24)

The states |eT (t)�0〉 and 〈�0(I + �(λ))e−T (t)| are commonly
referred to as the right and left coupled cluster solutions,

respectively. The N-RDM in coupled cluster theory is given
by

�CC(t,λ) = |eT (t)�0〉〈�0(I + �(λ))e−T (t)| (25)

ensuring that Tr[H�CC(t,λ)] = E (t). The corresponding 1-
RDM is then given by

[PCC(t,λ)]p,q = 〈�0(I + �(λ))e−T (t)|a†
paq|eT (t)�0〉, (26)

see [45] for more details. We emphasize that this ansatz, in
its untruncated form, is equivalent to the full configuration
interaction method (i.e., the exact diagonalization method)
[50–52], and is thus computationally infeasible for large sys-
tems. In the past decades, different levels of approximation
have been suggested to reduce computational complexity (see
e.g., [49,53–55]). The variant used in the subsequent simula-
tions (and arguably one of the most widely used approximate
versions of coupled cluster theory) is the truncation of the
cluster operator in Eq. (19) to only contain one-body and two-
body excitations, also known as the coupled cluster singles
and doubles (CCSD) method. Note that due to the exponenti-
ation of the cluster operator, the corresponding wavefunction
expansion in Eq. (18) will still contain contributions from
higher excited determinants. One of the central benefits of
the exponential ansatz is that it ensures that the energy is
size consistent and size extensive, in particular, for (rank
complete) truncations of T such as in CCSD [45]. As in
the Hartree-Fock discussion above, we place no restrictions
on the (pseudo)spin properties of the excitation operators.
Thus we work with the generalized CC ansatz in this
paper.

Aside from steering the accuracy of the CC approach di-
rectly through truncations of the cluster operator in Eq. (19),
great effort has been put into developing methods that
improve the CCSD energy by means of simple, state se-
lective, noniterative energy corrections that, when added to
the CCSD energy, improve the energy of the electronic
states of interest [36,56–61]. This includes the CCSD(T) [36]
method, which yields a perturbative noniterative energy cor-
rection that accounts for the effect of triexcited clusters (i.e.,
triples) using arguments based on the many-body perturbation
theory.

D. Implementation in PySCF

We use the Python-based Simulations of Chemistry
Framework (PySCF) [34,35] to perform calculations for
the IBM model in Eq. (4), which can be defined as a
“customized Hamiltonian” accessed through the one- and
two-electron integrals referred to as h1e and eri. These
integrals are complex-valued, therefore, minor adjustments
to PySCF need to be made to enable calculations using
these customized Hamiltonians. We also use the “molecu-
lar” formulation in PySCF, i.e., the h1e and eri are stored
without taking advantage of the k-point symmetry [55]. This
can increase the storage cost by a factor of Nk, and the
computational cost by a polynomial of Nk. Interfacing the
k-point symmetry (periodic boundary condition or “pbc”)
modules of PySCF is possible and is left here for future
work.
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Once h1e and eri are constructed, the PySCF software
package allows us to perform GHF and GCCSD calculations

on the same footing with a simple code structure. Here is an
example:

Listing 1: Example code running GHF and GCCSD in PySCF from precomputed integrals.

After the calculations, PySCF also provides compact in-
structions to evaluate the 1-RDMs so that we can evaluate the
observables to detect the symmetry breaking in Sec. V.

Similarly, the h1e and eri objects may be saved and used
to define the Hamiltonian for the Block2 program for a QC-
DMRG calculation (DMRG calculations can be performed
directly through a PySCF interface). Thus DMRG calcula-
tions can be used to assess the same ground state as targeted
by the HF and CC calculations, and we will use such results
for benchmarking in this work. Further details of the DMRG
calculations are provided in the Supplemental Material [44].

V. SYMMETRIES

Both the BM and IBM models satisfy a number of sym-
metries, which have been used extensively to analyze the
properties of both models, particularly in the chiral limit
[5,11]. For TBG, the symmetries of interest are point-group
symmetries, time-reversal symmetry, and their compositions.
Point-group symmetries are unitary and the time-reversal
symmetry is antiunitary. Some relevant symmetries in the val-
ley and spin-polarized BM and IBM models are summarized
in Table I.

TABLE I. Some relevant symmetry operations for the spinless,
valleyless IBM model.

Symmetry Real space Momentum space Type

C2z swap sublattice swaps valleys;
k → −k Unitary

C3z rotate by 120◦ k → C3zk Unitary

T swaps valleys;
k → −k Antiunitary

C2zT swap sublattice k → k Antiunitary

In this section, we propose a set of gauge-invariant order
parameters, which can be used to detect spontaneous sym-
metry breaking in the 1-RDM P(k). Our final results are
summarized in Table II. We defer proofs of the claims given
in this section to the Supplemental Material [44].

A. Detecting symmetry breaking: Unitary case

We begin by considering the simpler case of unitary sym-
metries. For a point-group symmetry g, due to the properties
of the Bloch transform, there exists a unitary D(g), called
the representation matrix, so that the creation operators, c†

k,
transform via the rule

(gĉ†
kg−1)(α) =

∑
α′

ĉ†
gk(α′)[D(g)]α′,α,

(gĉkg−1)(α) =
∑
α′

ĉgk(α′)[D(g)]∗α′,α.
(27)

For instance, C3z is a unitary symmetry, and it maps k to C3zk.
Its representation matrix in the primitive basis can be written
as

[D(C3z )]G′σ ′l ′,Gσ l = δG′,C3zG
(
ei 2π

3 σz
)
σ ′,σ δl ′,l . (28)

Since the IBM model is defined in terms of the band
creation operators { f †

nk}, we need to determine how the sym-
metry g acts on the band creation operators. The object, which
encodes this symmetry action is known as the sewing matrix
[11,42]. Given a set of bands {unk} and a unitary symmetry
operation g, the sewing matrix [B(g)]k is defined as

[B(g)]k,mn := 〈um,gk|D(g)|unk〉. (29)

235123-7



FABIAN M. FAULSTICH et al. PHYSICAL REVIEW B 107, 235123 (2023)

TABLE II. The definitions of the sewing matrix and symmetry order parameter for a unitary symmetry g and an
antiunitary symmetry gK.

Sewing matrix Order parameter

Unitary (g) 〈um,gk|D(g)|unk〉 ‖P(gk)[B(g)]k − [B(g)]kP(k)‖
Antiunitary (gK) 〈um,gk|D(g)|u∗

nk〉 ‖P(gk)[B(gK)]k − [B(gK)]kP(k)∗‖

Assuming [B(g)]k is unitary, the band creation operators trans-
form under g by the rule (see Supplemental Material [44])

g f̂ †
nkg−1 =

∑
m

f̂ †
m,gk[B(g)]k,mn,

g f̂nkg−1 =
∑

m

f̂m,gk[B(g)†]k,mn.
(30)

The unitarity of [B(g)]k is satisfied when the energy bands
{unk} are isolated, i.e., there is an energy gap between
the chosen bands and the rest of the energy bands (see
Supplemental Material [44]).

Using this transformation rule and recalling that the 1-
RDM for a state |�〉 is defined by [P(k)]mn = 〈�| f̂ †

nk f̂mk|�〉,
we can conclude that if the following commutator-like quan-
tity

Ck(g) = ‖[B(g)]†
kP(gk)[B(g)]k − P(k)‖

= ‖P(gk)[B(g)]k − [B(g)]kP(k)‖ (31)

does not vanish, then the 1-RDM breaks the symmetry g. Here
‖ · ‖ can be any unitarily invariant norm. Additionally, it can
be shown that Ck(g) is invariant under gauge transformations
of the band creation operators (see Supplemental Material
[44]).

B. Detecting symmetry breaking: Antiunitary case

We now turn to consider the case of antiunitary symme-
tries. Any antiunitary symmetry g̃ can be written as g̃ = gK.
Here g is a unitary symmetry and K is complex conjugation
satisfying K(a|G, σ, l〉) = a∗|G, σ, l〉 for any a ∈ C. For an
antiunitary symmetry gK, we define the representation matrix
as D(gK) := D(g). For instance, C2zT is an antiunitary sym-
metry. It satisfies (C2zT )k = k, and its representation matrix
in the primitive basis can be written as

[D(C2zT )]G′σ ′l ′,Gσ l = δG′,G(σx )σ ′,σ δl ′,l . (32)

Given a set of bands {unk} and an antiunitary symmetry
operation gK, the corresponding sewing matrix [B(gK)]k is
defined by the formula

[B(gK)]k,mn := 〈um,gk|D(g)|u∗
nk〉. (33)

As before, when these bands are isolated, [B(gK)]k is unitary
(see Supplemental Material [44]) and the band creation op-
erators transform under gK by the same rule as in Eq. (30).
Similar to calculations to the unitary case, if the following
commutator-like quantity

Ck(gK) = ‖[B(gK)]�k P(gk)∗[B(gK)]∗k − P(k)‖
= ‖P(gk)[B(gK)]k − [B(gK)]kP(k)∗‖ (34)

does not vanish, then the 1-RDM breaks the antiunitary
symmetry gK. Furthermore, Ck(gK) is invariant under gauge

transformations of the band creation operators (see Supple-
mental Material [44]).

C. Connection with the C2zT order parameter
in the Chern band basis

Let us also show the connection between Ck(C2zT ) and the
order parameter used in [7] using a particular gauge fixing
called the Chern band basis. According to the gauge choice of
the Chern band basis, the sewing matrix takes the form

[B(C2zT )]k = σxeiθ (k).

The sewing matrix in this basis resembles the representation
matrix in the primitive basis in Eq. (32), except that θ (k) is
a k-dependent phase factor. In this basis, the C2zT symmetry
breaking can be detected by computing

γz(k) = Tr[P(k)σz] = P11(k) − P22(k). (35)

Note that the commutator for the C2zT symmetry satisfies

P(k)[B(C2zT )]k − [B(C2zT )]kP(k)∗

= eiθ (k)

(
P21(k) − P12(k)∗ P22(k) − P11(k)

P11(k) − P22(k) P12(k) − P21(k)∗

)
,

where we have used the fact that P11(k) and P22(k) are real.
Therefore γz(k) can be interpreted as checking the magnitude
of the off-diagonal element of the commutator in the Chern
band basis. However, the order parameter γz(k) is designed
specifically for the Chern band basis and C2zT symmetry, and
does not generalize to other band bases and other symmetries.
On the other hand, the commutator can be used with any
symmetry of interest and works for any band basis.

VI. NUMERICAL RESULTS

Throughout our tests, we will use a k mesh of size
(nkx , nky ), and we always fix nkx = 2nky . The number of G
vectors is controlled by the number of shells nshell, which
specifies a number moiré reciprocal lattice vectors used in
the interlayer coupling term in the BM model (see Fig. 2).
The number of included moiré reciprocal lattice vectors is
bounded by 3(nshell + 1)2. The inverse temperature used in the
decoupled subtraction scheme [Eq. (A1) ] is β = 1000 eV−1.
We express Ck(C2zT ) in Eq. (34) in the spectral norm, and
report the order parameter averaged over the number of k
points. We begin by studying the convergence of the IBM
model with respect to discretization parameters in Sec. VI A.
Then we report the results of HF and post-HF calculations
in the integer filling regime in Sec. VI B and compare the
effects of different subtraction schemes in Sec. VI C. Finally,
we report the effects that initialization has on HF and post-HF
calculations in the noninteger filling regime in Sec. VI D.
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FIG. 2. A plot of the moiré reciprocal lattice points included for nshells = 2, 4, 6 with the two valleys (K+, K−) and the Gamma point (�mBZ)
marked. Note that the points are closed under C3x rotation and can be given by the formula {Gmoiré[m, n]� : |m + n| � nshells, (m, n) ∈ Z2}
where Gmoiré is the generating matrix for the moiré lattice.

A. Convergence of parameters at the Hartree-Fock level

As mentioned in Sec. IV D, we do not exploit k-point sym-
metry in our current implementation using PySCF. As such,
for larger k meshes we incur significantly higher memory
costs as compared to code, which does exploit this symmetry.
For our convergence tests, we test system sizes nkx = 4, 8, 12
exclusively using PySCF, and system sizes nkx = 16, 20 are
tested using a separate code used in Ref. [7].

In Fig. 3(a), we show the results of testing the conver-
gence of Hartree-Fock energy with respect to the number
of shells nshell = 2, 4, 6, 10 at ratios w0/w1 = 0, 0.3, 0.6, 0.9
with the k mesh fixed to nkx = 12. In Fig. 3(b), we show
the results of the convergence test of Hartree-Fock energy
per electron with respect to the number of k-points nkx =
4, 8, 12, 16, 20 at ratios w0/w1 = 0.0, 0.3, 0.6, 0.9 with the
number of shells fixed to nshell = 6. The energy differences
reported in Figs. 3(a) and 3(b) are the differences between
consecutive energies of nshell and nkx , respectively. From these
experiments, we find that the choice nkx = 8 and nshell = 8

provides a good compromise between accuracy and required
computation time.

Aside from the Hartree-Fock energy, we investigate the
convergence of the HOMO-LUMO gap with respect to the
number of k points nkx = 4, 8, 12, 16, 20, see Fig. 4(a). The
computations suggest that when w0/w1 = 0.9, the band gap
is significantly smaller than its value when w0/w1 < 0.7
(∼30 meV), and that the gap decreases as the Brillouin
zone sampling refines. By extrapolating to the thermodynamic
limit, we find that the limiting value of the band gap when
w0/w1 = 0.9 is 3 meV, see Fig. 4(b). On the other hand, when
w0/w1 = 0.9, the fact that the two band, single valley model
has a nonzero Wilson loop winding number [62] combined
with the numerical observation that the density matrix pre-
serves the C2zT symmetry, implies that the Hartree-Fock gap
must close somewhere in the Brillouin zone [63]. To verify
this statement, we perform an additional non-self-consistent
Hartree-Fock calculation with a fine Brillouin zone sampling
scheme (see Supplemental Material [44]). This confirms that

FIG. 3. (a) The convergence test of Hartree-Fock with respect to the number of shells nshell at ratio w0/w1 = 0.0, 0.3, 0.6, 0.9. nkx = 2nky =
8 is fixed. (b) The convergence test of Hartree-Fock with respect to the number of k points nkx = 2nky at ratio w0/w1 = 0.0, 0.3, 0.6, 0.9.
nshell = 6 is fixed. Calculations with nkx = 4, 8, 12 are computed using the molecular structure module provided by PySCF, while nkx = 16, 20
are computed using a separate code exploiting k-point symmetry.
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FIG. 4. (a) Convergence test of the HOMO-LUMO gap with respect to the number of k points nkx = 2nky at ratio w0/w1 =
0.0, 0.3, 0.6, 0.9. nshell = 6 is fixed. Calculations with nkx = 4, 8, 12 are computed using the molecular structure module provided by PySCF.
(b) Extrapolation of the HOMO-LUMO gap as a function of nkx at w0/w1 = 0.9. The fitted function is f (x) = a

x + c where a = 101, and
c = 3. The residual value of the 3 meV band gap at the thermodynamic limit should be attributed to the extrapolation error from finite-size
self-consistent Hartree-Fock calculations.

the Hartree-Fock gap should indeed vanish, and the residual
value of the 3 meV band gap should be attributed to the
extrapolation error from finite-size self-consistent Hartree-
Fock calculations.

B. Integer filling

We here present HF, CCSD, CCSD(T), and DMRG cal-
culations for twisted bilayer graphene at integer filling, i.e.,
ν = 0, which amounts to one electron per moiré site. The sub-
sequently presented results are obtained for a discretization of
TBG using nkx = 2nky = 8, nshell = 8, and using the decou-
pled subtraction scheme. The computations are performed for
different ratios of the interlayer moiré potential parameters,

i.e., w0/w1 ∈ [0, 0.95]. The correlation energy per moiré site
is defined to be the difference between the total energies from
the correlated wavefunction method, i.e., CCSD, CCSD(T),
or DMRG, and the HF energy. All energies are reported per
moiré site.

Figure 5(a) shows that the total energy is not mono-
tone with respect to ratio w0/w1, and attains a maxi-
mum around w0/w1 = 0.5. However, the correlation en-
ergy monotonically decreases with respect to the ra-
tio until w0/w1 = 0.8, see Fig. 5(b). The magnitude of
the correlation energy per site is small, which qualita-
tively agrees with the theoretical prediction that the cor-
relation energy vanishes (i.e., Hartree-Fock theory gives
the exact ground-state energy) at the chiral limit [5].

FIG. 5. (a) The HF, CCSD, CCSD(T), and DMRG—bond-dimension is BD = 1200 and extrapolated to the infinite bond dimension limit
[DMRG (extr.)]—energies per moiré site in meV as a function of the ratio w0/w1. (b) The absolute value of CCSD, CCSD(T), and DMRG—
bond-dimension BD = 1200 and extrapolated to the infinite bond dimension limit [DMRG (extr.)]—correlation energies in meV per moiré site
as a function of the ratio w0/w1.
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FIG. 6. The HOMO-LUMO gap as a function of the ratio w0/w1.

However, the reason why the correlation energy does not
exactly vanish at the chiral limit is due to the choice of
the subtraction Hamiltonian, which we elaborate on in more
detail in Sec. VI C. Compared to the energy evaluated at
the CCSD level, the additional correlation energy obtained
by CCSD(T) is negligible, see Fig. 5(b). Further comparison
of the CCSD and CCSD(T) energies with DMRG energies
extrapolated to the infinite bond-dimension limit shows that
CCSD and CCSD(T) recover 95.4–100% and 98.5–100% of
the correlation energy, respectively. Note that due to the high
computational cost, we only compute extrapolated DMRG
results for every other point in Figs. 5(a) and 5(b); this suffices
since there are no significant details in the intermediate range.

We also report the Fermi-Dirac entropy per basis function,

SFD = − 1

2nkx nky

∑
i

(pi ln pi + (1 − pi ) ln(1 − pi )), (36)

where {pi} are the eigenvalues of the 1-RDM. By construction,
SFD = 0 in the Hartree-Fock theory. We find that the Fermi-
Dirac entropy is between 0.009 and 0.032 from the DMRG
calculations. This reveals that the solutions for all parameter
ratios are close to being single Slater determinants.

Investigating the HOMO-LUMO gap, we observe a gap
closing as we transition from the chiral limit to w0/w1 = 1,
see Fig. 6. The HOMO-LUMO gap closes around w0/w1 =

0.85, indicating a transition from an insulating to a metallic
phase. This is in agreement with the finding in Fig. 4(a).

Next, we investigate the effect of electronic correlations on
the order parameter Ck(C2zT ) in Eq. (34). Figure 7 reports
the C2zT order parameter as a function of the ratio w0/w1,
which shows a transition from the C2zT broken phase to a
C2zT symmetric phase, and the phase transition occurs around
w0/w1 = 0.8. This agrees with the result in [7], where the
order parameter uses the expression Eq. (35) in the Chern
band basis. Figure 7(b) shows that compared to CCSD, HF
slightly overestimates the symmetry breaking, and the differ-
ence between HF and CCSD decreases as the ratio w0/w1

increases.

C. Model discrepancies due to the subtraction Hamiltonian

To assess the effect of the subtraction Hamiltonian ob-
tained from the decoupled scheme, we report the results using
another subtraction Hamiltonian obtained from the average
scheme (see Sec. IV B). We demonstrate the differences of
the total energy and the C2zT order parameter. Additionally,
we compute and compare the effect of the subtraction Hamil-
tonians on the band structure, see Supplemental Material [44].

Comparing energies at the HF and CCSD level of the-
ory we first note that using the decoupled scheme yields a
more pronounced maximum in the energy, i.e., the curva-
ture around the maximum is greater when employing the
decoupled scheme, see Fig. 8(a). Moreover, we observe that
employing the average scheme subtraction Hamiltonian yields
an overall lower correlation energy, see Fig. 8(b). Interest-
ingly, both subtraction Hamiltonians yield a similar amount of
electronic correlation near w0/w1 � 0.8. Aside from the mag-
nitude of the correlation, we find that the electronic correlation
increases as a function of w0/w1 when using the aver-
age scheme subtraction Hamiltonian whereas the electronic
correlation decreases as a function of w0/w1 when using the
decoupled scheme subtraction Hamiltonian.

The different subtraction Hamiltonians also affect the order
parameter, see Fig. 9. We observe a very clean first-order
phase transition when employing the average scheme subtrac-
tion Hamiltonian whereas the decoupled scheme subtraction
Hamiltonian yields a more continuous transition. This agrees

FIG. 7. (a) The HF and CCSD C2zT symmetry predictions as a function of the ratio w0/w1. (b) The absolute value of the difference of the
C2zT symmetry characteristic of CCSD and the HF as a function of the ratio w0/w1.
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FIG. 8. (a) The HF and CCSD energies per moiré site in meV as a function of the ratio w0/w1 for decoupled and average scheme subtraction
Hamiltonians. (b) The absolute value of CCSD correlation energies in meV per moiré site as a function of the ratio w0/w1 for decoupled and
average scheme subtraction Hamiltonians.

with earlier numerical results in [[19], Fig. 6]. Correlation
effects on the order parameter appear to be larger in the
decoupled scheme near the chiral limit, see Fig. 9(b).

In the noninteger filling regime, we observe that the de-
coupled and average scheme subtraction Hamiltonian yield
qualitatively similar results, see Fig. 10(a). We here ini-
tialize the HF computations with a one-particle reduced
density matrix following [7]. We find that for the decoupled
scheme subtraction Hamiltonian, the total energy changes
more rapidly with respect to ν (i.e., a larger curvature in
ν), and the energy correction through post-HF methods is
smaller than the energy corrections using the average scheme,
i.e., using the decoupled scheme subtraction Hamiltonian
yields stronger electronic correlation effects.

D. Noninteger filling

We now proceed to HF, CCSD, CCSD(T), and DMRG
calculations at noninteger fillings. The subsequently presented
results are again obtained for a discretization of TBG using
nkx = 2nky = 8, nshell = 8. The TBG is here modeled with

nelec ∈ {26, 28, 30, 32, 34, 36, 38}, i.e., with a filling factor of
ν = nelec/32 − 1, and |ν| < 0.2. We moreover fix the initial-
ization of the HF calculations following [7] while adjusting
the particle number correspondingly. We will investigate the
effect of correlated methods first by varying the filling factor
ν at the chiral limit, and then by varying both the filling
factor ν and the interlayer coupling ratio w0/w1. In the next
subsection, we will see that the “true” HF global minimum can
be sensitive to the initial guess and difficult to reach. Hence,
we will refer to the difference between post-HF energies and
the HF energy only as an “energy correction” rather than the
“correlation energy”.

At the chiral limit, Figs. 11(a) and 11(b) show that the
energy correction by means of post-HF methods increases as
ν deviates from 0. However, DMRG benchmark computations
reveal that the Fermi-Dirac entropy in Eq. (36) is very small
for all filling factors under consideration (see Table III). This
indicates that the solution is relatively well described by a
single Slater determinant, and thus by the HF theory.

We find that at this point, DMRG calculations are too ex-
pensive to be applied to evaluate the entire 2D phase diagram.

FIG. 9. (a) The HF and CCSD C2zT symmetry predictions as a function of the ratio w0/w1 for decoupled and average scheme subtraction
Hamiltonian. (b) The absolute value of the difference of the C2zT symmetry characteristic of CCSD and the HF as a function of the ratio
w0/w1 for decoupled and average scheme subtraction Hamiltonian.
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FIG. 10. (a) The HF and CCSD energies per moiré site in meV in the chiral limit as a function of the filling for decoupled and average
scheme subtraction Hamiltonian. (b) The CCSD energy correction per moiré site in meV in the chiral limit as a function of the filling for
decoupled and average scheme subtraction Hamiltonian.

Hence we investigate the landscape of the energy correction
provided by CCSD with respect to the filling and the ratio
w0/w1, we observe that the magnitude of the energy cor-
rection increases with respect to |ν| [see Fig. 12(a)]. Note
that Fig. 12(a) is on a logarithmic scale, that is, we here
depict the absolute values of the obtained energy corrections.
The computed energy corrections are consistently negative.
We also investigate the HOMO-LUMO gap landscape with
respect to the filling and the ratio w0/w1 in Fig. 12(b). We
observe that the HOMO-LUMO gap reaches its maximum at
the chiral limit at ν = 0. When transitioning into the fractional
filling regime (i.e., at |ν| > 0.0625), the HOMO-LUMO gap
decreases by one order of magnitude, indicating a metallic
phase. In Fig. 13(a) we report the phase diagram of the order
parameter for the C2zT symmetry with respect to the filling ν

and the ratio w0/w1. We find that the difference between the
order parameters obtained by HF and CCSD also increases as
|ν| deviates from 0, but the phase diagrams qualitatively agree
with each other, see Fig. 13(b). The phase diagram indicates
that the location of the phase transition from a C2zT broken
phase to a C2zT symmetric phase is a function of the filling

ν. We highlight this dependence with a dotted red line in
Fig. 13(b). Recall that at integer filling, the system is either
in a C2zT symmetry breaking and insulating state, or in a
C2zT trivial and metallic state [7]. However, in the noninteger
filling case, we find that the system can be in a C2zT symmetry
breaking and metallic state. We also find that the difference
between CCSD and HF is negative except for a few points
on the phase diagram, indicating that HF tends to slightly
overpolarize the C2zT order parameters.

E. Impact of the initial one-particle reduced density matrix

In the previous section, we employed a particular initial
1-RDM for the HF calculations. We now investigate the effect
of the initial guess, by drawing initial 1-RDMs from three
different schemes:

Scheme 1: Generate 1-RDM from a random distribution.
Scheme 2: Construct 1-RDM from a random distribution

and enforce translation symmetry.
Scheme 3: Build 1-RDM from the band structure at the

charge neutrality point and enforce translation symmetry.

FIG. 11. (a) The HF and CCSD, CCSD(T), and DMRG energies per moiré site in meV in the chiral limit (w0/w1 = 0) as a function of the
filling. (b) The CCSD, CCSD(T), and DMRG correlation energies per moiré site in meV in the chiral limit as a function of the filling.
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TABLE III. Fermi-Dirac entropy of the DMRG computations with bond dimension 1100 in the chiral limit for different fillings ν.

Filling (ν) −0.188 −0.125 −0.062 0 0.062 0.125 0.188
SFD 0.067 0.051 0.107 0.033 0.107 0.052 0.069

Specifically, Ref. [64] finds that with the average subtraction
scheme and at the chiral limit w0/w1 = 0, the charge ±1
excitations from the charge neutrality point can be derived
analytically. The charge +1 state can be identified with the
Hartree-Fock state by adding an orbital at the conduction
band minimum (CBM), and the charge −1 state with the
Hartree-Fock state by removing an orbital at the valence band
maximum (VBM), respectively. We generalize this observa-
tion to larger dopings by adding/removing |ν|Nk orbitals in
the conduction/valence bands to obtain an initial guess in
Scheme 3. We then introduce a small amount of numeri-
cal noise by adding Gaussian random matrices, and impose
physical constraints (pure state and translation symmetry con-
ditions).

We perform computations at the HF and CCSD level of
theory for different fillings in the chiral limit. At half-filling,
HF and CCSD can robustly converge to the global minimum
for all three schemes. On the other hand, the outcome obtained
away from the charge neutrality point can vary significantly
depending on the method used to generate the initial guess.
When we draw the initial 1-RDM from Scheme 1, even
after employing various techniques in quantum chemistry cal-
culations (e.g., level-shifting, second-order optimizers, and
temperature annealing), the HF result can still depend on the
initial random guess, indicating the existence of multiple local
minima. The energy differences of these local minima are
small, but the magnitude of these differences can be compara-
ble to that of the CCSD energy correction [see Figs. 14(a) and
15(a)].

Figures 14 and 15 illustrate that that the magnitudes of the
energy fluctuation in Scheme 1 (random initial guess without
translation symmetry) and Scheme 2 (random initial guess
with translation symmetry) are comparable. Remarkably, the

physically motivated initial guess (Scheme 3) significantly
reduces the energy fluctuation across all independent runs
and provides consistent Hartree-Fock and CCSD energies.
While there are many local minima that are energetically close
to the ground state, the amount of variation in the gauge-
invariant C2zT order parameter can be significantly larger for
many initial guesses. This is the case both for HF and CCSD
calculations. As depicted in Figs. 16 and 17, enforcing the
translation symmetry (Scheme 2) reduces the magnitude of
the fluctuation in the C2zT order parameter, and consistent or-
der parameters can be obtained using the physically motivated
initialization strategy as in Scheme 3.

Figure 18 shows the 2D HF phase diagram obtained by per-
forming 15 independent calculations and evaluating the C2zT
order parameter from the lowest energy state. The resulting
phase diagrams qualitatively agree with that of Fig. 13(a). De-
spite the existence of multiple local minima causing numerical
fluctuations in the C2zT order parameters at different points
in the phase diagram, the qualitative features of the diagram
remain unchanged.

To further study the behavior of the local minima and
robustness of the numerical methods, we extract two 1-RDM
initializations from the above performed experiment at filling
ν = −0.125 that yield different C2zT order parameters, and
we perform DMRG calculations with bond dimension 1800
using Scheme 1. We find that the result from DMRG is close
to that of HF and CCSD in this regime, in terms of the energy
and the value of the C2zT order parameter. In particular, the
DMRG results are also sensitive to the choice of the initial
guess, see Table IV. Both CCSD and DMRG calculations
show that the Fermi-Dirac entropy of these local minima is
consistently low, suggesting that the solution is again close to
being a single Slater determinant.

FIG. 12. (a) Energy surface of the CCSD energy correction per moiré site in meV with respect to the filling and the ratio w0/w1. (b) Phase
diagram of the HOMO-LUMO gap in meV with respect to the filling and the ratio w0/w1.
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FIG. 13. (a) Phase diagram of C2zT symmetry predictions at the HF level of theory. The dotted red line indicates the phase transition as
a function of the filling ν. (b) Phase diagram of the difference of C2zT symmetry predictions comparing CCSD and HF. The dotted red line
indicates the phase transition as a function of the filling ν.

FIG. 14. Boxplot showing the initial 1-RDM dependence of energy calculations at the HF level of theory for 20 random initializations
from (a) Scheme 1, (b) Scheme 2, and (c) Scheme 3.

FIG. 15. Boxplot showing the initial 1-RDM dependence of energy calculations at the CCSD level of theory for 20 random initializations
from (a) Scheme 1, (b) Scheme 2, and (c) Scheme 3.

FIG. 16. Boxplot showing the initial 1-RDM dependence of C2zT calculations at the HF level of theory for 20 random initializations from
(a) Scheme 1, (b) Scheme 2, and (c) Scheme 3.
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FIG. 17. Boxplot showing the initial 1-RDM dependence of C2zT calculations at the CCSD level of theory for 20 random initializations
from (a) Scheme 1, (b) Scheme 2, and (c) Scheme 3.

VII. DISCUSSION

In this paper, we demonstrated that the techniques of cor-
related quantum chemistry can be fruitfully applied to study
interacting models of the magic angle TBG system. We com-
pared Hartree-Fock, coupled cluster, and DMRG calculations
for ground-state properties at both integer and noninteger fill-
ings for a spinless, valleyless IBM model. Full-flavored IBM
models, excited state properties, and other quantum chemistry
methods are also within reach and will be studied in the future.

We find that model discrepancies can be an important
source of uncertainty. An ensemble of interacting models may
be needed to cross validate the results. To some extent, this
model discrepancy is baked into the design of the IBM model:
We start from a noninteracting continuum BM model, and the
electron-electron interaction is added as an afterthought. A
more reductionist approach could be to start from an interact-
ing electron model at the continuum level, tune the parameters
at a simplified level of theory (such as Hartree-Fock), and
study the electron-correlation effects by projecting the model
onto a smaller number of degrees of freedom. Such an ap-
proach would be at least self-consistent, and all errors and
discrepancies could eventually be attributed to the errors in
the continuum model. The gauge-invariant order parameters,
which are applicable to both unitary and antiunitary sym-
metries, could also be convenient in this setting since their
implementation does not depend on the choice of the basis.
Methods based on quantum embedding theories [65–67] may

also become useful in mitigating the modeling errors and in
studying electron correlation effects in this process.

Our current implementation treats all degrees of freedom
equally. This includes the BM band index (or the sublattice
index in the Chern band basis) and the k-point index in the
current model, but can also include other flavor indices such
as spin and valley degrees of freedom. This supercell treat-
ment of the IBM model significantly reduces implementation
efforts. Proper consideration of the crystal momentum conser-
vation can reduce the scaling of both the computational and
the storage cost with respect to Nk (see e.g., [55,68]) and will
be considered in the future. Quantum chemistry packages are
often designed to treat one particular flavor (spin). Therefore
some further modifications may be needed if we would like
to perform flavor-restricted/unrestricted calculations (which
generalizes the spin restricted/unrestricted calculations in
standard quantum chemistry methods).

Our numerical results indicate that even in the near inte-
ger filling regime (|ν| < 0.2), it can be very challenging to
converge to the global minima starting from random initial
guesses. This is not only for mean-field theories such as HF,
but also DMRG calculations, which are often considered to be
more robust and less sensitive to the initial guess. On the other
hand, careful initialization strategies and enforcing symme-
tries (such as translation symmetry) can significantly improve
the robustness of the procedure. We find that in the near
integer filling regime, the system can be in a C2zT symmetry
breaking and metallic phase. Nonetheless, the entropy of these

FIG. 18. Phase diagram of C2zT symmetry predictions at the HF level of theory from (a) Scheme 1, (b) Scheme 2, and (c) Scheme 3. The
dotted red line indicates the phase transition as a function of the filling ν.
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TABLE IV. Energy, C2zT order parameter, and Fermi-Dirac entropy using two instances of initialization from Scheme 1 and different
methods at filling ν = −0.125.

Initialization EHF C2zT SFD ECCSD ecorr C2zT SFD EDMRG ecorr C2zT SFD

Sample 1 –87.522 0.81 0.00 –87.865 –0.343 0.64 0.14 –87.823 –0.301 0.78 0.10
Sample 2 –87.426 0.33 0.00 –87.832 –0.404 0.22 0.14 –87.747 –0.321 0.31 0.09

states is observed to be small, and can thus be relatively well
described by a single Slater determinant. It seems reasonable
to expect that the nature of the states can become qualitatively
different as |ν| increases, as recent results indicate that at
ν = −2/3 (or 1/3 filling), the state of the system can be
related to a fractional quantum Hall state (FQHE), which is
distinct from a Slater determinant [69].
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