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We present a theory of optical excitations in binary plasmonic supercrystals that are made out of two types of
metal nanoparticles. Compared to monodisperse supercrystals, binary crystals have a larger number of plasmonic
bands. Their dispersion is governed by the lattice symmetry, unit cell parameters, and shape and material
composition of the nanoparticle building blocks. We develop a quantum description of the plasmon polaritons
in supercrystals that starts from the dipole and quadrupole excitations of the nanoparticles, their interaction,
and their coupling to photons. We show how to use group theory to analyze the plasmon- and photon-induced
supercrystal states and their interaction. Plasmon-polaritons of binary metallic supercrystals are in the regime
of ultrastrong and deep strong light-matter interaction; i.e., the coupling strength is on the same order as the
photon energy. One consequence of the strong interaction is that quadrupolar plasmon modes and photons with
energies well above the plasmon energies have to be taken into account to calculate the polariton dispersion. A
cesium chloride crystal of two nanoparticles with different dipole and quadrupole energies serves as the example
structure to show how the plasmon-polariton dispersion depends on the properties of the nanoparticles and
supercrystal structure. The tools presented here can be used to predict and analyze any type of optically active
excitation in supercrystals. The results show how to differentiate the optical properties of binary nanoparticle
supercrystals into properties that inflexibly depend on lattice symmetry and properties that can be finely tuned
by choosing the nanoparticle composition and shape.
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I. INTRODUCTION

Nanoparticle supercrystals are promising artificial materi-
als for tailoring exquisite physical properties [1]. The proper-
ties of these three-dimensional arrangements of nanoparticles
with long-range crystalline order [1–5] are determined by
the interparticle interactions and can be controlled by the
choice of the composing particles and their crystalline ar-
rangement. Supercrystals composed of metallic nanoparticles
have drawn considerable interest in the last few years [4–8]
as they can be used to explore phenomena in the ultrastrong
regime of light-matter coupling (USC) [4,6,9]. The optical or
plasmonic excitations of the metallic nanoparticles give rise to
plasmon-polaritons in the supercrystals that are propagating
and collective excitations of the entire crystal lattice. Exciting
the polaritons creates a dense pattern of electromagnetic hot
spots of potential use in ultrasensitive analytic spectroscopy
and photomediated catalysis [6,10]. We recently developed a
quantum microscopic formalism appropriate to describe the
plasmon-polaritons in metallic nanoparticle supercrystal and
its dependence on key crystal parameters such as packing
density and nanoparticle oscillator strength [11]. The model
predicts the optical excitations of supercrystals, agreeing with
experiments as well as numerical simulations based on finite
difference methods.

So far the optical properties of plasmonic nanoparticle su-
percrystals have been studied for monodisperse nanoparticles
and cubic structures [4,11,12]. We want to extend the descrip-
tion to binary supercrystals, in which there are two or more
inequivalent sites in the crystal unit cell that naturally provide

a much richer class of compositions and structures [13–17].
Just as atoms arranged in different crystalline lattices give rise
to a wide range of properties, binary supercrystals offer more
freedom in tailoring. Different from the case of the atomic
crystals, the bonding between the nanoparticles in supercrys-
tals is governed more by the surface-terminating ligands and
less by the properties of the nanoparticles. This separates
the choice of nanoparticle properties from their bonding in
contrast to atoms as building blocks creating more freedom
in manipulating the crystal properties. Previous theoretical
work on binary supercrystals so far has focused on supercrys-
tal self-assembly and structure [18–21]. When dealing with
more complex crystal structures, the number of excitations in-
creases leading to a large number of plasmon-polariton bands.
The presence of so many different branches, each with their
specific features, poses a major challenge for understanding
the properties of this system and how it depends on the
supercrystal parameters. For instance, one can use different
materials and nanoparticle sizes for each site, tuning their res-
onance energies and coupling parameters in order to control
the properties of the supercrystal. Furthermore, the fact that
each particle can hold higher order multipole excitations, such
as the quadrupole excitations discussed here, opens up a wider
range of possibilities for matching the energies of the different
excitations (dipole, quadrupole, and photon).

In this paper we show how to extend the microscopic de-
scription of plasmonic supercrystals to include structures with
two or more atoms in the unit cell. We study the formation
of plasmon-polaritons in nanoparticle supercrystals and its
dependence on key parameters of the nanoparticles (dipole
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FIG. 1. (a) Nanoparticle supercrystal with caesium chloride
structure in real space. NP1 is the particle with a large diameter and
NP2 with a smaller diameter. (b) First Brillouin zone of the simple
cubic lattice in reciprocal space. The high-symmetry points and lines
are indicated with their usual labels.

and quadrupole energies, oscillator strength) and the crystal
(packing density, lattice constants, crystal structure). We pro-
pose the use of the symmetry properties of the dipole and
quadrupole plasmons in the supercrystals as a tool for track-
ing and understanding the physics of the plasmon-polariton
excitations. Using the example of CsCl crystal structure, we
show that introducing more than one particle into the unit cell
can lead to interesting effects, such as lattice site localization
of the modes. Furthermore, it provides several degrees of free-
dom for manipulating and tuning the physical properties of the
supercrystal. This results in various plasmonic and polaritonic
bands giving rise to a rich selection of combinations similar
to the solid-state chemistry of the electrons in regular atomic
crystals.

This paper is organized as follows. We first introduce
in Sec. II the calculations in a chosen binary system and
then present the group theory analysis for the symmetries of
the photons and plasmon excitations in this particular crys-
tal structure (Sec. III). With that in hand, we analyze the
light-matter interaction on the dipole excitations (neglecting
quadrupoles) and discuss how the interaction with the electro-
magnetic field affects the symmetry-related properties of these
supercrystals. Finally, we include the quadrupole excitations
and discuss how they interact with the dipoles and light, also
from the perspective of their symmetry, and how these proper-
ties can be tailored by properly choosing the nanoparticle size
and their composing materials.

II. PLASMON POLARITONS IN BINARY CRYSTALS

In most of this paper we will illustrate the plasmonic and
polaritonic properties of nanoparticle supercrystals using the
examples of the cesium chloride (CsCl) crystal structure. By
this we mean an artificial lattice that is composed to two
types of nanoparticles, NP1 and NP2, with different diameter,
which are arranged like the cesium and chloride atoms in
CsCl [Fig. 1(a)]. The CsCl structure consists of a simple cubic
lattice with one atom or nanoparticle at the corner (NP1 in
our case) and the other atom or nanoparticle in the center of
the cubic unit cell (NP2). This structure is often mistaken as
body-centered cubic, but the sites of its Bravais lattice are
at the corner of the cube. The CsCl structure is similar to

the more widely known NaCl structure, which has the same
atomic basis but an FCC Bravais lattice. When the ions or
nanoparticles are of similar size, the CsCl structure is adopted,
but with increasing size difference (r2/r1 < 0.5) the NaCl
structure becomes stable [22]. We selected the CsCl structure
for our work because simple cubic is the most straightforward
three-dimensional Bravais lattice and its first Brillouin zone
is also simple cubic, allowing for a clear and straightforward
analysis. The properties of other prototypical cubic structures
will be discussed in a later study.

We are interested in the optical excitations of a lattice of
two types of plasmonic nanoparticles that are arranged in
the CsCl structure. The nanoparticles are characterized by
their material and plasmon frequency as well as their radii r1

(NP1) and r2 (NP2). To calculate the plasmon-polariton band
structure, we employ the formalism introduced in Ref. [11]
where the total Hamiltonian is written as

H = HM + HL + HLM . (1)

HM describes the matter Hamiltonian for the bare excita-
tions of the nanoparticles, HL gives the evolution of the
free photons, and HLM gives the light-matter interaction. The
Hamiltonian for the matter part is

HM =
∑

σ

h̄ωσ bk,σ , b†
k,σ +

∑
σ,σ ′

h̄
√

�σ�σ ′Sν̄ν̄ ′
σσ ′ (k)

× (bk,σ + b−k,σ )(bk,σ ′ + b−k,σ ′ ), (2)

where σ = { j, ν}, with j = 1, 2 specifies the site in the unit
cell and ν = x, y, z, x2 − y2, x2 + y2 − 2z2, xy, yz, xz
specify the dipole (ν̄ = D) or quadrupole (ν̄ = Q) bands. ωσ

is the bare energy for dipole and quadrupole excitations for
each of the nanoparticles, and the factor Sσ̄ σ̄ ′

σσ ′ (k) differs de-
pending on whether σ̄ is ( j, D) for ν = x, y, z and ( j, Q)
for ν = x2 + y2 − 2z2, xy, yz, xz. Expressions for SDD

σσ ′ , SDQ
σσ ′ ,

and SQQ
σσ ′ can be found in the Supplemental Material [23] and

describe, in reciprocal space, the interaction between dipoles
and quadrupoles in the crystal lattice. We also assume that
the frequency of the plasmons in the metallic nanoparticles
can described by the Drude model ε = ε∞ − ω2

p/ω
2. In the

quasistatic approximation, these plasmon frequencies are

ωD = ωp√
ε∞ + 2εm

(3)

and

ωQ = ωp√
ε∞ + (3/2)εm

, (4)

where εm is the dielectric constant of the surrounding material.
The coupling parameters �σ are given by

� j,D = 9εmω j,D

8π (ε∞ + 2εm)
Fj (5)

and

� j,Q =
(

3

4π

)5/3 5εmω j,Q

12(ε∞ + (3/2)εm)
F 5/3

j , (6)

where Fj = Vj/Vuc is the ratio between the particular nanopar-
ticle volume (Vj) and the volume of the supercrystal unit cell
(Vuv). The packing factor of the structure F can be obtained
by the sum F = ∑

j Fj .
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FIG. 2. Plasmon polariton dispersion of a CsCl supercrystal with different fill fraction f , nanoparticle plasmon frequency difference δ,
and lattice parameter a. The bands are colored in accordance with the calculated contributions of dipole (blue), quadrupole (red), and photon
(yellow) bare excitations to each of the states. Frequencies are plotted in units of the dipole frequency of NP1 that we set to ω

(1)
D = 2πc/a.

Dashed black lines show the uncoupled photon dispersion. (a) The larger nanoparticle has a higher dipole frequency (δ = −0.3). (b) The
nanoparticles have the same plasmon frequency (δ = 0). (c) Parameters chosen for this work; see Fig. 3(a). The smaller particle has a
higher plasmon frequency (δ = 0.3), f = 0.9, and a = 60 nm in (a)–(c). (d) Very low fill fraction ( f = 0.05); dipoles and quadrupoles are
nondispersive. (e) Low fill fraction ( f = 0.2); quadrupoles are nondispersive, but dipoles become dispersive and mix with photons. (f) Lattice
parameter a = 10 nm, which leads to a photonic band with large dispersion.

The free photon Hamitonian is trivially described by HL =∑
k,λ h̄ωpt,kck,λc†

k,λ while the light matter interaction is given

by two parts HLM = H(1)
LM + H(2)

LM , with

H(1)
LM = ih̄

∑
k,G,λ,σ

ων̄ξ
σ
λ,G(b†

−k,σ − bk,σ )

× (c−k−G,λ + c†
k+G,λ) (7)

and

H(2)
LM = h̄

∑
k,λ,λ′,G,G′

�λλ′
G,G′ (k)(c†

−k−G′,λ′ + ck+G′,λ′ )

× (c−k−G,λ + c†
k+G,λ). (8)

Here we defined

ξσ
λ,G(k) = fD(|k + G|)ξD

0 (k)PD
ν,λ(k + G), for ν̄ = D

ξν
λ,G(k) = ifQ(|k+ G|)|k+ G|R̄ξ

Q
0 (k)PQ

ν,λ(k+G) for ν̄ =Q
(9)

and

�λλ′
G,G′ (k) =

∑
ν

ων̄ξ
ν∗
λ′G′ (k)ξν

λG(k), (10)

with the LM coupling parameter

ξ ν̄
0 (k) =

√
2π�ν̄

ωpt (k)
(11)

and polarization tensors

PD
ν,λ(k) = êν · êλ

PQ
ν,λ(k) = 1

2 [χν : êk êλ + êλêk]. (12)

Here χν are the unit tensors for the quadrupoles [23]. The unit
vector êλ that specifies the photon polarization depends on
k. As in our previous work [11] we also introduce the form
factors

fD = 3

(kρ j )3
[sin(kρ j ) − kρ j cos(kρ j )]

fQ = 9

(kρ j )3
[Si(kρ j ) − sin(kρ j )] (13)

that take into account the finite size of the nanoparticles; Si(x)
is the sine integral function.

Within the microscopic model, the plasmon-polaritons
of the supercrystal are defined by three sets of parameters
(see Fig. 2): the plasmonic modes of the nanoparticles, the
fill fraction of the lattice, and the absolute value of the lattice
constant. The first set of parameters is determined by the
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FIG. 3. (a) Plasmon polariton dispersion of a CsCl supercrystal. Fill factor f = 0.9; the frequencies of NP1 and NP2 differ by δ = 0.3,
lattice parameter a = 60 nm, r1 = f a/2, r2/r1 = 0.732, ε∞ = εm = 1. (b) Photons of higher wave vectors and energies are folded back into
the first Brillouin zone and must be included in the calculation.

material composition of the nanoparticles (ωp and ε∞) and
the surrounding medium (εm). This affects mainly the energy
of the plasmon excitations (ωD and ωQ) and the maximum
coupling (�) for each excitation in the nanoparticles. More-
over, since the two nanoparticles in the unit cell of a binary
supercrystal are different, their plasmon frequencies may also
differ [24,25], which strongly affects the dispersion relation;
see Figs. 2(a)–2(c). To describe the different plasmon frequen-
cies, we define δ such that ω

(2)
D = (1 + δ)ω(1)

D . For negative
values of δ [Fig. 2(a)], the dipole excitation energy for the
larger particle ω

(1)
D is larger than for the smaller particle; for

δ > 0 the situation is reversed [Fig. 2(c)]. The second set of
parameters is given by the size of the particles compared to
the lattice parameter or, more precisely, by the relative fill
factors Fj for each nanoparticle, which governs the coupling
parameters between dipoles, quadrupoles, and photons. For
simplicity, we work with a ratio between the particle radii
r2/r1 = 0.732 throughout this paper, which yields the maxi-
mum packing factor for the CsCl structure FCsCl = 0.729. It
is useful now to define the fill fraction f = F/FCsCl as the
ratio between the packing factor for a given choice of r1 and
r2 and the maximum packing factor, because the CsCl struc-
ture is uniquely defined by f (r1 = f a/2, r2 = 0.732 f a/2,
and F = 0.729 f ). In Figs. 2(c)–2(e) we demonstrate how the
dispersion relation changes based on the fill fraction f . If it
is too small [Fig. 2(d)], dipole and quadrupole bands have no
dispersion and little coupling to photons. In this work we use
f = 0.9 in order to simulate crystals with deep strong light-
matter coupling. The last parameter is the lattice constant a
of the unit cell, which sets up the energy scale of the photons
compared to the plasmon energies in the system; see Figs. 2(c)
and 2(f).

For the simulations shown in this paper, we fixed the fre-
quency of the dipole excitations of NP1 to ω

(1)
D = 2cπ/a.

With this choice the wave vectors for photon energies
h̄ωpt,k = h̄ωD lie in the middle of the first supercrystal

Brillouin zone. We chose ε∞ = εm = 1, so that ω
(1,2)
Q =

1.09ω
(1,2)
D for both particles [Eqs. (3) and (4)]. With these

choices, the supercrystals investigated here are fully deter-
mined by the parameters a, f , and δ.

The calculated plasmon-polariton dispersion relation for
the CsCl lattice with f = 0.9 and δ = 0.3 is shown in
Fig. 3(a). The polariton states in Fig. 3 are superpositions of
the photons and the excitations of the two different nanoparti-
cles in the unit cell. For spherical nanoparticles, each particle
contributes three degenerate dipole states and five degenerate
quadrupole states, whereas the photon contributes two degen-
erate states within the first Brillouin zone. The Umklapp terms
that represent photons of larger wave vector and energy are
included in the calculation; see Sec. VI. They are folded into
the first Brillouin zone within the reduced zone scheme, which
leads to an even higher number of states [Fig. 3(b)].

The coupling between the nanoparticle excitation and
light-matter interaction give rise to plasmon-polaritons with
a large Rabi splitting between the mainly photonic (yellow)
upper polariton branch at 1.46ω/ω

(1)
D at � and the dipole-like

(blue) lower polariton branch. For this particular lattice, the
Rabi splitting in the �R direction �R(�R) = 0.68ω

(1)
D , lead-

ing to a reduced coupling η = �R/ω
(1)
D ∼ 1.13, well in the

deep strong coupling regime [26]. Similar reduced coupling
strengths are observed for the other high-symmetry directions.
The dispersion relation contains many intermediate branches
between 0.8 and 1.3 ω/ω

(1)
D at � that are related to longitudinal

dipole-like collective excitations (blue) and to quadrupole-
derived (red) bands. The dispersion confirms that quadrupole
excitations need to be included as they can strongly couple to
the dipole excitations and to photons in the CsCl lattice and
many other binary lattices. This is evidenced by the fact that
the hue of the intermediate branches change from a deeper
red, for the quadrupole-related collective modes that do not
couple to the dipoles, to shades of purple, for the regions in
which the dipole and quadrupole excitations mix.
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TABLE I. Polariton symmetry in CsCl supercrystal. Listed are the symmetry of the photon and the dipole- and quadrupole-induced states
in a CsCl binary supercrystal. The dipoles and quadrupoles were placed at the Wyckhoff positions of NP1 and NP2. The high-symmetry points
and lines are indicated by their symbol and k vectors. The irreducible representations of the longitudinal direction for the photons are are given
in parentheses for completeness.

Symmetry point Dipole Quadrupole

Symbol k vector Photon NP1 (1a) NP2 (1b) NP1 (1a) NP2 (1b)

� (0, 0, 0) �−
4 �−

4 �−
4 �+

3 ⊕ �+
5 �+

3 ⊕ �+
5

X (0, 0, 1/2) X −
5 (⊕ X −

2 ) X −
3 ⊕ X −

5 X +
1 ⊕ X +

5 X +
1 ⊕ X +

2 ⊕ X +
4 ⊕ X +

5 X −
2 ⊕ X −

3 ⊕ X −
4 ⊕ X −

5

R (1/2, 1/2, 1/2) R−
4 R−

4 R+
5 R+

3 ⊕ R+
5 R−

3 ⊕ R−
4

M (1/2, 1/2, 0) M−
5 (⊕ M−

2 ) M−
3 ⊕ M−

5 M−
2 ⊕ M−

5 M+
1 ⊕ M+

2 ⊕ M+
4 ⊕ M+

5 M+
1 ⊕ M+

3 ⊕ M+
4 ⊕ M+

5

� = �X (0, 0, u) �5 (⊕ �1) �1 ⊕ �5 �1 ⊕ �5 �1 ⊕ �2 ⊕ �3 ⊕ �5 �1 ⊕ �2 ⊕ �3 ⊕ �5

� = �M (u, u, 0) �3 ⊕ �4 (⊕ �1) �1 ⊕ �2 ⊕ �3 �1 ⊕ �2 ⊕ �3 2�1 ⊕ �2 ⊕ �3 ⊕ �4 2�1 ⊕ �2 ⊕ �3 ⊕ �4

� = �R (u, u, u) �3 (⊕ �1) �1 ⊕ �3 �1 ⊕ �3 �1 ⊕ 2�3 �1 ⊕ 2�3

T = MR (1/2, 1/2, u) T5 (⊕ T1) T1 ⊕ T5 T3 ⊕ T5 T1 ⊕ T2 ⊕ T3 ⊕ T5 T1 ⊕ T3 ⊕ T4 ⊕ T5

Z = MX (u, 1/2.0) Z3 ⊕ Z4 (⊕ Z1) Z1 ⊕ Z3 ⊕ Z4 Z1 ⊕ Z2 ⊕ Z4 2Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 Z1 ⊕ Z2 ⊕ Z3 ⊕ 2Z4

S = RX (u, 1/2, u) S3 ⊕ S4 (⊕ S1) S1 ⊕ S2 ⊕ S3 S1 ⊕ S3 ⊕ S4 2S1 ⊕ S2 ⊕ S3 ⊕ S4 S1 ⊕ S2 ⊕ 2S3 ⊕ S4

III. GROUP THEORY ANALYSIS

We analyze the symmetry properties of plasmon-polaritons
in the exemplary binary lattice that has a CsCl structure to
show how the interaction and hybridization of the dipole,
quadrupole, and photonic states is controlled by the lattice
structure. The basic idea we follow in this section is to first
establish the symmetry of the matter excitations induced by
the localized plasmon modes and the photons at the vari-
ous points of the Brillouin zone. We examine the mutual
interaction of the dipole and quadrupole-derived collective
states. For the photons, we will discuss how to describe the
high-energy Umklapp states within the framework of group
theory.

The group GS of the CsCl structure is the symmorphic
space group Pm-3m (221) or O1

h [27,28]. Each nanoparti-
cle occupies one of two inequivalent Wyckoff positions 1a
(NP1) and 1b (NP2) [29]. The Brillouin zone is also cu-
bic and has four inequivalent high-symmetry points �, X ,
R, and M; see Fig. 1(b). For the plasmons, the multipole
excitations of isolated spherically symmetric nanoparticles
can be described in terms of the spherical harmonics and
their symmetries. For the dipole excitations, the irreducible
representations (irreps) should transform as that of the lin-
ear displacement (x, y, z), while the quadrupole excitations
behave as the irreps of the traceless quadratic displacements
(x2 − y2, x2 + y2 − 2z2, xy, xz, yz).

In a supercrystal of a given crystal structure the nanoparti-
cles (NPs) occupy specific positions (Wyckoff positions) that
are of the same or lower symmetry than the crystal itself;
this reduces the full rotational symmetry of the individual
NP to the symmetry of the Wyckoff position. At the highest
symmetry � point, dipole excitations transform according to
�−

4 (Eu) and quadrupole excitations as �+
3 and �+

5 (Eg and
T2g) [30]. For a given wave vector k in the first Brilloin
zone, the spatial modulation of the wave function may further
lower the symmetry associated with the Wyckoff position. In
this case the relevant group is also the group of the wave
vector k, defined within the first Brillouin zone (Gk). This

is a subgroup of the space group of the crystal (GS), which
can be obtained by selecting all operations in GS that leave k
invariant by a translation of a reciprocal lattice, i.e., which
takes k → k + G. We should point out that the group of
k + G is isomorphic to that of k, a fact that will be important
when dealing with the Umklapp photons. In Table I we show
the irreps of the dipole and quadrupole excitations for the
particles in the Wyckoff positions of NP1 and NP2 in the CsCl
structure for selected (high-symmetry) points and lines of the
first Brillouin zone.

For the photon part, the symmetry of the electromagnetic
field is described in terms of the Poincaré group, which
includes translations, rotations, and relativistic boosts [31].
Therefore, the light Hamiltonian is also invariant upon any
spatial translations or rotations (within the rest frame of the
crystal structure), including all of those in GS . The electro-
magnetic field can be thought to transform as a vector within a
quasistatic approximation, and thus also behave as the �−

4 (Eu)
irrep at the � point. However, the electromagnetic field in the
Coulomb gauge has only two components (both perpendicular
to k). It cannot be described by a threefold degenerate state.
Furthermore, photons are not well defined at k = 0. This
problem is solved by moving away slightly from the � point
and lowering the symmetry, leading to irreducible representa-
tions of lower dimensions. One of the representations will be
one-dimensional and associated with the longitudinal direc-
tion. We list them in Table I in parentheses for completeness.
The other two polarization directions are transverse in char-
acter. Depending on the high-symmetry points and lines they
may be twofold degenerate or belong to nondegenerate repre-
sentations; see Table I. The R point of the reciprocal lattice of
CsCl structure is characterized by a group of the wave vector
which is isomorphic to that of the � point (Oh point group),
where a vector transforms as the three-dimensional R−

4 irrep.
This irreducible representation is such that the longitudinal
and transverse directions are, in principle, interchangeable.
In spite of that, the selection rules for the photon-plasmon
interaction can still be obtained by assuming that the photon
transforms as a vector.
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The first-order light-matter interaction term depends lin-
early on the vector potential A and is given by Eq. (7). The
coupling of the dipole- and quadrupole-induced plasmonic
states to photons can be obtained directly from Table I by
identifying the dipole and quadrupole modes that transform as
the same irrep as the photon for each high-symmetry position.
We will discuss the results in Secs. IV and V. For the interac-
tion between the electromagnetic field and matter excitations
that are characterized by the wave vector k, the relevant group
is also the group of the wave vector k, defined within the first
Brillouin zone (Gk). Plasmon-polaritons with wave vector k
should also transform according to the little group Gk. When
considering the contribution of photons with kpt = k + G,
however, the symmetry of the crystal is preserved only if all
photon wave vectors in the star of k + G are also taken into
consideration. Failure to comply with this condition unphysi-
cally breaks the symmetry of the crystal. For weakly coupled
systems the photons in the star of kpt which are outside of the
first Brillouin zone of the crystal have a much larger energy
compared to the photons inside of the Brillouin zone, and their
interaction can be disregarded. This is not the case for strongly
coupled systems, and one must make sure to include photons
with G 	= 0 in order to avoid unphysical results.

The effect of the Umklapp terms becomes especially im-
portant when considering the polarization of photons with
wave vectors kpt outsize of the first Brillouin zone (1BZ).
These photons get folded into the 1BZ by the translational
symmetry, which affects the orientation of their wave vector
and polarization. To illustrate this we take an alternative per-
spective and repeat the 1BZ throughout the crystal, fixing the
direction of polarization of the plasmons, instead of folding
the photons into the 1BZ. Since the irreps of the matter states
at k and k + G are the same, the analysis becomes much
simpler. The direction of the wave vector k + G (and of the
photon polarization) is different from that of k. This affects
symmetry-imposed coupling of plasmons and photons and
between photons. For instance, a photon with wave vector kxx̂
is polarized along the y or z direction. It should not couple to
dipole plasmons polarized along x. However, a photon with
wave vector kxx̂ + 2π/aŷ has a polarization component along
the x direction and may couple to x polarized plasmons. This
leads to a weak but nonzero coupling between longitudinal
plasmons and photons through the first-order light-matter in-
teraction term when Umklapp processes are considered.

Finally, we discuss coupling by the second-order term in
the light-matter interaction Hamiltonian. It is proportional to
|A|2 and couples different photon states; see Eq. (8). This cou-
pling originates from a summation of the products of photons
with wave vectors k + G and k + G′ and polarizations λ and
λ′ to the matter excitations ν. In a sense, this term is a measure
of the correlation between photons due to the interaction with
the plasmonic states or matter-induced photon-photon interac-
tion. The |A|2 term is invariant under any symmetry operation
of the crystal, thus transforming as the totally symmetric rep-
resentation �1 (A1g). The term vanishes if λ is perpendicular
to λ′. This condition is trivially obeyed for G = G′; however,
for G 	= G′ this may not be true as êλ and ê′

λ depend on the
relative orientation of the wave vectors of k + G and k +
G′, so that coupling between different polarizations becomes
possible.

FIG. 4. Top: Dispersion along the plasmon-polariton �(�X )
direction in a CsCl nanoparticle supercrystal (solid orange) and
uncoupled plasmonic (dashed blue) and photonic (dashed black)
states. Bottom: Symmetric (D1+D2) and antisymmetric (D1-D2)
combinations of the dipoles in the CsCl lattice unit cell.

The most important result of our group theory analysis
is the set of selection rules based on the irreducible repre-
sentations of the multipole excitations, collected in Table I.
These rules guide which bands will exist, mix, and become
degenerate independently of the nanoparticle material proper-
ties. Throughout this work we will use these selection rules
to confirm and interpret the results of our quantum micro-
scopic model. Another important conclusion is that in order
to preserve the crystal symmetry, we must consider Umklapp
processes and include photons with large wave vectors in our
calculation.

IV. DIPOLE BANDS

In the preceding sections we developed the numerical
and group-theory tools to study the formation of plasmon-
polaritons in nanoparticle supercrystals. In this section we
focus on the dipole excitations of the nanoparticles and how
they lead to collective states and couple to the electromagnetic
field. Figure 4 shows the dispersion relation for the dipole-
derived plasmon bands (blue dashed lines) and the photons
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(black dashed) in the � = �X direction without considering
light-matter interaction. The solid (orange) lines represent the
plasmon-polariton bands, i.e., including light-matter coupling.
Along the � = �X high-symmetry line, the uncoupled pho-
ton dispersion is composed of one twofold degenerate band
transforming as the �5 irrep. The dipole states are composed
of four bands (Table I): two twofold degenerate states for the
transverse dipole modes �5 and two �1 bands for the longi-
tudinal modes. As the bands approach k = 0, the symmetry
of the CsCl lattice dictates that they merge into two three-
fold degenerate states transforming as the �−

4 irrep (Table I).
However, this does not happen when neglecting light-matter
coupling. Instead, we find a splitting of the longitudinal and
transverse states (LT splitting) of ∼ω

(1)
D for the symmetric and

∼0.1ω
(1)
D for the antisymmetric combinations of the dipoles

in the CsCl lattice unit cell (Fig. 4). Longitudinal-transverse
splitting is a well-known phenomenon that is observed in
all systems with dipole-like excitations from optical phonons
to excitons [32–34]. The deviation from the predicted three-
fold degenerate states at the � point was explained by the
formation of an anisotropic macroscopic field, splitting the
longitudinal and transverse bands [35]. As we show now, this
explanation is not necessary because the inclusion of light-
matter interaction leads to the predicted degeneracy (Fig. 4)
and fully restores the integrity of the symmetry analysis.

Including light-matter interaction leads to the formation of
five plasmon-polariton bands (Fig. 4 solid lines). Along the �

direction the lower (LPP) and upper (UPP) plasmon polariton
bands are doubly degenerate and belong to the �5 irrep. In
the intermediate region, there are a twofold degenerate band
(the second lowest band) and two longitudinal nondegenerate
bands that interact very weakly with light. The number and
the type of irreducible representations remain unchanged by
light-matter interaction. For both the coupled and and the
uncoupled case the symmetry analysis predicts five bands
belonging to the �1 and �5 irreps; see Table I. As these bands
approach the � point they merge into the predicted threefold
degenerate �−

4 state. After including light-matter interaction,
the supercrystal excitations comply to the conditions imposed
by the symmetry of the supercrystal. There is no need to in-
troduce a posteriori a macroscopic electric field. This fact has
been pointed out before for the LO-TO splitting of phonon-
polaritons [36], but it is interesting to see that it appears to be
a more general concept for polariton bands.

Another prediction of the group theory analysis in Table I
is that in some high-symmetry directions the dipole bands
induced by each of the particles have different symmetries and
are forbidden to mix. For example, in the T = MR direction,
the dipole centered on NP1 transforms like T1 ⊕ T5, while
the dipole on NP2 belongs to T3 ⊕ T5. We thus expect one
plasmonic band along T that has only contributions from
the first nanoparticle and one band with contributions only
from the second nanoparticle. Figures 5(b) and 5(c) show the
contribution of the dipoles on NP1 (D1) and NP2 (D2) to the
plasmon polaritons along the Z-T or XML high-symmetry
path; see Fig. 1(b). The thickness of the line indicates the con-
tribution of the nanoparticle plasmons to each of the bands.
The lowest energy band in Fig. 5(b) transforms as the Z3 and
T1 irreducible representations and has contributions only from

FIG. 5. (a) Plasmon polariton dispersion relation without includ-
ing quadrupoles. The highlighted part is decomposed into dipole
excitations of the larger (b) and the smaller (c) nanoparticle. Dashed
lines show bands that have no contribution from the respective
nanoparticle.

the plasmons of NP1. On the other hand, the third band from
the bottom in Fig. 5(c) (crossing the M point at ∼0.8ω

(1)
D ) has

Z2 and T3 symmetry and is localized on the NP2 sites. This
is in contrast to a double set of bands that have Z1 and Z4

irreps and merge into twoold degenerate T5 bands, since they
have contributions from both particles as expected from the
analysis in Table I.

V. QUADRUPOLE BANDS

The higher-order modes of plasmonic nanoparticles do
not interact with electromagnetic fields within the quasistatic
approximation and are considered dipole forbidden excita-
tions. Collective modes of nanoparticle agglomerates that are
induced by the higher-order modes of the individual nanopar-
ticles, however, are often dipole active and may mix with the
dipole-derived collective states [37]. A mixing of the dipole
and quadrupole-derived plasmonic band and their coupling to
photons was already observed in fcc crystals [11]. In the CsCl
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FIG. 6. CsCl supercrystal dispersion, decomposed into contributions. (a) Dipole contribution from the larger particle. (b) Quadrupole
contribution from the larger particle. (c) Dipole contribution from the smaller particle. (d) Quadrupole contribution from the smaller particle.
(e) Photon contribution. f = 0.9, δ = 0.3, a = 60 nm.

structure dipole-quadrupole mixing is forbidden at the � and
R point, but allowed at least for some of the states throughout
the rest of the Brillouin zone (Table I).

As the dipole-quadrupole and quadrupole-quadrupole in-
teractions are much weaker than dipole-dipole coupling, the
quadrupole-derived bands appear nearly flat in Fig. 3(a) with
little dispersion. If the quadrupole excitations of the two parti-
cles differ in energy, the two sets of quadrupole-derived bands
appear almost independent. This is evident in Fig. 6, where
despite the dense packing ( f = 0.9) there is little overlap
between the quadrupole contributions of the the lattice sites
(Q1 and Q2), because of their energy difference (δ = 0.3).
This is in contrast to the strongly dispersive dipole-derived
bands, except if mixing is prohibited by symmetry (as dis-
cussed in the previous section). The weak interaction between
the hybrid dipole-quadrupole states and the photons [Fig. 6(e)]
indicates that the dispersion of these intermediate bands is
mainly governed by matter-matter coupling. The interaction
between dipole and quadrupole bands is allowed only for
states which transform according the the same irreducible rep-
resentation of the group of the wave vector for that particular
point in the Brillouin zone. For instance, at the � and M point
dipoles and quadrupoles transform as different irreps and thus
cannot mix. In the other high-symmetry directions, dipoles
and quadrupoles induced from either site share the same irreps
and mix to form hybrid states. The detailed analysis of this
mixing for specific directions is left for a future publication,
but it can be straightforwardly deduced by matching irreps for
dipoles and quadrupoles in Table I.

When the quadrupole and dipole bands have com-
parable energy D-Q hybrid states may change from

predominantly dipole-like to quadrupole-like as one moves
through the Brillouin zone. The dipole-quadrupole and
quadrupole-quadrupole interactions are tunable by materi-
als composition of the nanoparticles. In our simulation the
quadrupole excitation energy of the larger particle (Q1) nearly
matches the energy of the dipole excitations of the smaller par-
ticle (D2), which promotes D-Q mixing between Q1 and D2
in the bands with ωpp = 0.8-1ω

(1)
D in Fig. 6. The quadrupole

of the smaller particle (Q2) interacts more weakly with the
dipoles becoming less dispersive and more confined to the
energy region near ωpp = 1.2ω

(1)
D [Fig. 6(d)].

We now study how the polaritons depend on the frequency
mismatch between NP1 and NP2. In Fig. 7 we show the
plasmon polariton energies for a fixed k along � as a function
of δ. The color of the bands indicates their dipole, quadrupole,
or photon nature. For the full dispersion relation at δ = −0.3,
0 and 0.3, see Figs. 2(a)–2(c). The dipole bands are strongly
mixed into bonding and antibonding combinations; they also
couple strongly to the photons even for large values of |δ|.
For this reason, the dipole- and photon-related bands show
a nearly parabolic dispersion with δ. For instance, the top
two bands in Fig. 7(a) correspond to the bonding longitudinal
dipole (blue) and the upper polariton (yellow) state that are
degenerate at � but split away from zero (Fig. 4). The energies
of these states follow a parabolic behavior with a minimum
for δmin < 0. This behavior is understood from the perspective
of the longitudinal plasmon, which mainly involves dipole-
dipole interactions. The particles contribute proportional to
δ. The interaction between the two particles adds a contribu-
tion to the Hamiltonian that scales as ±δ2, where ± is for
the bonding-and antibonding configurations. At the minimum
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FIG. 7. (a) Dependence of the plasmon-polariton energies on
δ for k = 0.25�X and f = 0.9. The colors indicate the dipole,
quadrupole, and photon contributions to each of the states. (b) De-
pendence of the plasmon-polariton energies on f for k = 0.25�X
and δ = −0.3. (c) Dependence of the plasmon-polariton energies on
f for k = 0.25�X and δ = 0.3.

energy these two effects cancel; the minimum depends on
the relative packing factors Fj of the particles. A similar
dependence is expected for the other dipole-related plasmon-
polariton bands; however, their exact behavior is changed
by the dipole-photon and dipole-quadrupole interaction. The
lower dipole-related bands (with energy ∼0.92ω

(1)
D for δ =

0.5) correspond to the antibonding longitudinal and transverse
bands, which are also degenerate at � (�−

4 ) and transform
as the �1 and �5 irreducible representations for k in the �

direction; see Fig. 4.
In contrast to the dipole bands, the quadrupole bands are

not strongly mixed for large |δ|. For instance, for δ = 0.5
the top quadrupole bands mainly originate from the larger
particles Q1, whereas the bottom quadrupole bands originate
from the smaller particles Q2. As δ decreases, the Q2 states
move up in energy and mix with the antibonding dipoles if
they belong to the same representation (�1, �5). These are the
bands that change from red to blue for δ < 0.4 in Fig. 7(a). As

δ gets closer to zero, the Q1 and Q2 form bonding and anti-
bonding quadrupole states. As δ increases further into positive
values, the quadrupoles start to separate again into mainly Q1
(lower energies) and Q2 (higher energies). Also, the energy
of the antibonding dipoles start to move away from that of
the quadrupoles leading to a much weaker dipole-quadrupole
coupling for this particular k.

We can also tune the dipole-quadrupole interaction by
changing the fill fraction f . In Fig. 7(b) we fix δ = 0.3 and
vary f = 0–1, finding that the DQ interaction increases with
f . Full dispersion relation at different fill fractions is shown
in Figs. 2(c)–2(e). The lower quadrupole band, composed
mainly of states that originate from NP2, is strongly affected
by the interaction with the dipoles, leading to mixed dipole-
quadrupole bands that spread over a wide energy region. On
the other hand, the top quadrupole bands are weakly affected
by dipole-quadrupole and quadrupole interactions. This is ex-
pected since the main contribution to DQ mixing comes from
the interaction between an excitation in one nanoparticle with
the other nanoparticle, so that the excitations of the smaller
particle NP2 are more sensitive to the larger dipole moments
of NP1. The situation is reversed for δ = −0.3; see Fig. 7(c)
and Fig. 2(a). In this case the top quadrupole band originates
from NP2; it is strongly affected by DQ and QQ interactions,
whereas the bottom quadrupole state remains almost indepen-
dent of f . Similar effects are observed for other values of
k throughout the Brillouin zone, suggesting the possibility
of finely tuning the supercrystal properties and promoting
dipole-quadrupole coupling for specific wave vectors.

VI. PHOTONS

Finally, we turn our attention to the photons. Essentially, all
polariton states contain contributions by photons [Fig. 6(e)]
with the highest contribution in the transverse upper po-
lariton close to ωpp = 1.2ω

(1)
D in Fig. 6(e). The latter is

the consequence of the deep strong light-matter coupling in
the supercrystal simulated in Fig. 6 and will be discussed
later. The finite contribution of the photons to the longi-
tudinal plasmon-polaritons may be surprising at first. After
all, photons are transverse in polarization. This contribution
originates from the coupling with high-energy photons in
Umklapp processes, which also explains the photon coupling
to nondipolar plasmon states. Briefly, in addition to G = 0
states, the light-matter interaction Hamiltonian HLM takes into
account photons with G 	= 0. They represent photons with
kpt outside of the first Brillouin zone that are folded into
this zone by the crystal translational symmetry; see Fig. 3(b).
The contribution of these states to the polariton band struc-
ture is usually disregarded due to their much higher energy.
For supercrystals in the ultrastrong and deep strong coupling
regimes, however, light-matter interaction is on the same order
as the photon energy, and photon wave vectors (and energies)
outside the first Brillouin zone must be taken into account.
This is especially true for the symmetry-related properties
of these systems and the polarization of the plasmons and
photons as discussed in Secs. III and IV. We found that we
need to include at least eight Brillouin zones in the calcula-
tion in order to reach convergence and properly describe the
plasmon-polariton states.
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FIG. 8. Relative contribution of photons to the plasmon-
polaritons as a function of f (for δ = 0.3) and as a function of
δ (for f = 0.9). The relative contribution is calculated considering
the high-symmetry path around the Brillouin zone. LP refers to the
bottom two bands which form the lower polariton, UP refers to the
top two bands in Fig. 3, and IP refers to all the intermediate modes
between the two.

In Fig. 8 we show the mean contributions of photons to
the lower, intermediate, and upper polaritons as a function
of f and δ. The photon contribution to the lower polariton
decreases with increasing f [see Fig. 8(a)] as was previously
observed for the fcc lattice [11]. This is a manifestation of
the decoupling of light and matter due to the A2 term in
the interaction Hamiltonian [26,38]. The upper polariton is
mainly composed of photons with increasing f . Finally, the
photon contribution to the intermediate bands is much smaller
and almost independent of the fill fraction, indicating that

light-matter interaction has only a weak effect on these modes.
The intermediate bands are mainly composed of longitudinal
modes or are antibonding combinations of transverse modes.
Both types of modes will not couple strongly to light, the first
due to the fact that light is transverse and the second due to
the reduced effective dipole of the antibonding combinations.
To verify this, we plot in Fig. 8(b) the average contribution
of photons to the bands as a function of δ for f = 0.9. The
photonic character of the intermediate polaritons is largest for
large |δ| because of the different plasmon frequencies of the
dipoles and quadrupoles. The minimum contribution occurs
for δ < 0 due to the fact that the particles in the two sites have
different size and thus different dipole moments.

VII. CONCLUSIONS

In conclusion, we studied the plasmon-polariton dispersion
for a binary nanoparticle supercrystal. We further devel-
oped a microscopic model that contains the dipole and
quadrupole modes of the nanoparticle building blocks and
their coupling to photons to simulate structures with more
than one particle per unit cell, significantly increasing the
amount of bands. We used group theory to obtain selec-
tion rules for the photon-plasmon interaction and predict
such behaviors as degeneracy and mixing of the dipole and
quadrupole-derived states, demonstrating the dependence of
the plasmon-polariton dispersion on symmetry-related prop-
erties of the crystal structure. We verified the necessity of
including quadrupoles into plasmon-polariton calculation, as
they can strongly couple to dipole excitations and photons
even when the individual particles are well described by the
quasistatic approximation. Photons with wave vectors outside
the first Brillouin zone must be taken into account when sim-
ulating plasmonic supercrystals. Our methods can be applied
to different lattice configurations with multiple particles in
the basis, permitting a broad investigation into the symmetry
properties and excitations of binary nanoparticle supercrys-
tals. Furthermore, with this model we were also able to change
the material attributes of the structure, such as nanoparticle
plasmon frequency and fill fraction, which strongly affect
light-matter interaction and the mixing of bands of different
origin, suggesting that such structures may be finely tuned to
achieve a desired optical response.
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