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Phonon-induced instabilities in correlated electron Hamiltonians
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Studies of Hamiltonians modeling electron-electron (e-e) and electron-phonon (e-ph) coupling have been
fundamental in capturing the novel ordering seen in many quasi-one-dimensional condensed matter systems.
Extending such studies to quasi-two-dimensional (2D) systems is of great current interest, as e-ph couplings are
predicted to play a major role in the stabilization or enhancement of novel phases in 2D material systems. In this
work, we study model systems that describe the interplay between the Hubbard coupling and the phonon modes
in the Holstein and Su-Schrieffer-Heeger (SSH) Hamiltonians using the functional renormalization group. For
both types of e-ph couplings, we find the predicted charge density wave phases in competition with antiferromag-
netic ordering. As the system is doped, the transition shifts, with both orders showing incommensurate peaks.
We compare the evolution of the quasiparticle weight for the Holstein model with that of the SSH model as the
systems transition from antiferromagnetic to charge-ordered ground states. Finally, we calculate the self-energy
of the phonon and capture the impact of charge ordering on the phonon modes.
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I. INTRODUCTION

Many of the novel phenomena observed in low-
dimensional electronic systems are driven by the combined
effects of electron-electron (e-e) and electron-phonon (e-ph)
interactions. Interactions among electrons drive charge and
spin fluctuations which can lead to ordering of the spin
and charge densities with the remnants of the density or-
der in the doped system serving to stabilize various types
of superconducting order. Electron-phonon interactions can
dramatically modify these orders by distorting the electronic
band structure, altering the mobility in conductors and provid-
ing the mechanism for conventional superconductivity. The
interplay between these two interactions has helped explain
the physics of conducting polymers [1,2], superconducting
order in fullerenes [3], and density wave orders in charge
transfer solids [4,5]. But even in systems in which the leading
order is driven primarily by only one of these interactions,
the impact of the other interaction can be significant. The
high-Tc cuprates are a prime example, with weakly coupled
phonon modes predicted to have considerable impact on the
physics of the material despite occurring at frequencies far
below the hopping and the presence of strong e-e interactions
[6–10]. Similarly, recent studies of superconductivity in FeSe
heterostructures show an up to an order of magnitude en-
hancement in the critical temperature, much of it attributed to
the coupling of electrons to phonons in the substrate [11,12].
The interplay between these interactions also explains the

charge ordering observed in competition with superconduc-
tivity in the transition metal dichalcogenides [13–15].

Beyond the novel orderings due to the interplay between
these interactions, an accounting of the couplings is necessary
for a quantitative description of the materials. An excellent
example of this are models of conducting polymers, which
require Hubbard-like e-e couplings along with the domi-
nant Su-Schrieffer-Heeger (SSH) e-ph interactions in order
to explain the optical absorption spectra observed in these
systems [1]. In the resulting SSH-Hubbard (SSHH) models
we see the standard transition from a Peierls phase, a bond-
ordered density wave (BOW), to an antiferromagnet (AF)
with the critical e-ph coupling at the transition decreasing
to zero with phonon frequency [16]. Studies of the model
found that bond correlations are enhanced by Coulomb inter-
actions up to intermediate values of order of the bandwidth,
with retardation effects not playing much of a role [17,18].
In general systems, the distinction between intersite (SSH)
e-ph coupling and intrasite (Holstein or molecular crystal)
e-ph coupling, along with the frequency and dispersion re-
lation of the phonons, can lead to important differences, as
was demonstrated in the pioneering papers of Fradkin and
Hirsch [19,20].

A number of studies have explored the nature of possible
phases in two-dimensional (2D) models involving e-ph and
e-e interactions. Studies of the 2D Hubbard-Holstein (HH)
Hamiltonian show competition between an AF and a charge
density wave (CDW) with a possible metallic phase at the
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critical transition line. The existence and size of the finite
region of metallicity in the 2D HH model has been diffi-
cult to determine as variational Monte Carlo studies find a
metallic phase whose domain size is inconsistent for different
phonon frequencies [21,22] whereas the correlated metallic
phase captured in determinant Monte Carlo studies at phonon
frequencies of order of the hopping does not extend to the
Holstein model at U = 0 [23,24]. Earlier quantum Monte
Carlo (QMC) results suggested the CDW phase as the likely
sole ground state of the 2D Holstein and HH models with
the difference from the one-dimensional (1D) system possi-
bly due to the larger electronic susceptibility [24] and weak
coupling CDW instability [25,26]. Before extrapolation of a
finite-size response to the thermodynamic limit, the transition
to a metallic phases is found at λc = 0.61t [24] while the
sensitivity of the metallic phase to phonon frequencies larger
than the hopping remains an open question. The qualitatively
similar phase diagram for the model in one dimension shows
the domain of metallicity expanding with phonon frequency,
indicating a robust competition between the two interactions,
and an extrapolation of this behavior to the 2D system sug-
gests a metallic phase in the 2D Holstein model [27,28].
Alternatively, studies of the 2D SSH and SSHH models show
a first-order transition from an AF to a BOW phase occurring
at a finite e-ph coupling for all phonon frequencies [29–31].
The transition shows only minor changes as the local Hubbard
coupling is altered, suggesting little competition between the
two interactions [31]. Studies of the SSH phonon carried out
with a focus on polyacetylene found stronger competition
between the AF and BOW phases, but modeling polyacety-
lene requires the additional nearest-neighbor density-density
coupling (V ) to obtain agreement with the optical absorption
spectra, which has the additional effect of enhancing BOW or-
dering in 1D systems [16,32]. Finally, there have been limited
studies of the impact of doping on these systems with most
results confined to one dimension. Density matrix renormal-
ization group (DMRG) studies of the doped HH model show
little change due to doping, with superconducting fluctuations
on a par with charge fluctuations for much of the doping
regime around half filling [28].

In the present work, we address a number of open questions
in these systems by analyzing the impact of doping and the
phonon frequency in the HH and SSHH models in one and
two dimensions. The models incorporate the on-site Hubbard
coupling (U ) and the nearest-neighbor density-density inter-
action (V ), along with a coupling to a phonon mode which
can be of either the SSH type or the Holstein type. We present
a functional renormalization group (fRG) study of the system
from two perspectives. First, we integrate out the quadratic
phonon fields and run the flow for the fermions with a new ef-
fective two-particle vertex. As the displacements in the lattice
are coupled to the electrons (the density operator in the case
of the Holstein phonon and the hopping operator for the SSH
phonon), the general e-ph coupling has a nontrivial momen-
tum structure. Integrating out the phonons couples these e-ph
vertices, leading to a dynamical e-e vertex. Within this picture,
the fRG captures the transition from an AF phase to a charge-
ordered phase as a function of the e-ph coupling. Further
access to the electron self-energy shows the deformation due
to the phonons with asymmetries from the modes emerging in

the quasiparticle weight as a function of the e-ph coupling. We
study the consequences of doping and changes to the phonon
frequency on this transition. Second, we study the flow of the
phonon vertices as the e-ph coupling is the primary driver
of deformations in the fermion self-energy. Such studies can
be of general interest, as in many systems ordering in the
electronic sector can lead to a softening of phonon modes.
For example, phonon softening is seen in the FeSe supercon-
ductors at the structural transition with a smaller softening
as the system becomes superconducting [33]. Access to the
phonon self-energy enables us to capture this softening and
help quantify possible enhancements of electronic order due
to phonon modes.

The remainder of the article is organized as follows. We
begin in Sec. II with the flow equations for the vertices of
a general e-ph system. The response in the Hubbard model
to a Holstein phonon is presented in Sec. III. The impact of
the SSH phonon on an extended Hubbard model is given in
Sec. IV. Our conclusions and a summary of our results are
given in Sec. V.

II. THE FLOW EQUATIONS IN THE FRG METHOD

The functional renormalization group (fRG) has become a
standard tool to study competing orders in interacting elec-
tron systems [34–36]. Starting from a scale-dependent action,
equations for the various interaction vertices of the system are
derived as functions of the scale (�). The flow equations track
the evolution of these vertices as, scale by scale, modes are
integrated out. RG methods have been crucial in the study of
these models and have helped elucidate the phase diagrams
of Holstein, Hubbard-Holstein, and Peierls-Hubbard models
in one dimension [37–41]. In the case of electronic systems
coupled to a phonon mode, there is some ambiguity as to how
to regulate both propagators. Previous electron-boson fRG
studies adopted a momentum regulator in both the bosonic
and fermionic sectors, but as the ph-ph vertices in the system
are irrelevant with the marginal and relevant vertices being of
the e-e and e-ph type, we choose to insert the regulator into
the electron propagator [42]. This choice simplifies the flow
equations, as scale derivatives of the phonon propagator are
set to zero. To capture deformations of the Fermi surface in
the half-filled and doped systems we utilize a pure frequency
regulator and retain all momentum modes of the lattice.

A general Hamiltonian for coupling a system of interacting
electrons to a phonon mode λ can be written as

H =
∑
kσ

ξkc†
kσ

ckσ +
∑

k1k2k3

Uk1,k2,k3,k4 c†
k1↑c†

k2↓ck3↓ck4↑

+
∑

q

�λ
qb†

qbq +
∑
k,q,σ

gλ(k, q)c†
k+q,σ

ck,σ (bq + b†
−q),

(1)

where c and b operators correspond to the electron and to the
phonon modes, ξk and �k are the electron and phonon dis-
persions, Uk is the e-e interaction, and gλ represents coupling
between the electron and phonon modes [43]. As the phonon
operators are quadratic they can be integrated out exactly,
leading to an e-e interaction mediated by the phonon. The
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FIG. 1. Equations for the electron and phonon vertices. (a) The effective dynamic vertex constructed from the e-e and e-ph vertices.
(b) Equation for the e-ph vertex in terms of the dynamic vertex given in (a). (c) Expression for the self-energy of the phonon.

interaction is of the form

U eff
k1,k2,k3,k4

= Uk1,k2,k3,k4 + gλ
k1+kph,−kph

gλ
k3,kph

Gλ
kph

, (2)

where kph= (k3 − k2) is the particle-hole singular mode and
Gλ is the phonon propagator. The fRG flow can then be con-
structed identically to a pure electronic Hamiltonian with the
only modification coming in as a change in the initial vertex.
The phonon-mediated interaction can be paramaterized by
λ = 2g2/ωphonon with g corresponding to the strength of the
e-ph coupling given by gλ

k,q = gfλ(k, q).
Alternatively, we can construct a flow for both the electron

and phonon vertices. This approach presents some difficul-
ties, as in addition to the electron vertices we need to track
the phonon self-energy and the e-ph vertices. As the regu-
lator is inserted only into the fermionic propagator, the fRG
equations for the phonon vertices flow with the electronic
single-scale propagator. The flow for the phonon self-energy
is given by

∂�	λ
q =

∑
k,σ

gk,q∂�

(
G�

k G�
k+q

)
gk+q,−q, (3)

and the flow of the e-ph vertex is

∂�gk1,q =
∑

k

gk,q∂�

(
G�

k+qG�
k

)
gk+q,−qGλ

q gk1,q

+
∑

k

gk,q∂�

(
G�

k G�
k+q

)

eff

k1,−k,−k−q,k1+q, (4)

where G is the fermion propagator. These equations are repre-
sented diagrammatically in Fig. 1. The flow of the electron
vertices is identical to the pure fermionic flows with the
two-particle electron vertex in the equations replaced by a
scale-dependent form of the effective vertex (
eff ↔ U eff )
defined in Eq. (2). The full set of fRG equations are given
in detail in Appendix A. The modification of the vertex also
accounts for the contributions to the fermion self-energy from
the e-ph coupling. We note that in the case of flowing phonon
vertices, the effective two-particle vertex has to be constructed
along each point in the flow.

Either choice leads to a system with frequency-dependent
vertices. To deal with the frequency and momentum depen-
dencies of the vertex in an efficient manner, we employ a
decoupled variant of the fRG at the two-loop level [44].
Treatment of the frequency dependence leads to stable flows
and allows us to construct the flow of the self-energy which
should capture deformations from the e-ph coupling at the
single-particle level [45]. The fRG equations for the e-ph
vertex and the phonon self-energy given above in Eqs. (3) and
(4) can be further simplified by using the basis expansion used
to derive the decoupled fRG equations [44,46]. The inclusion
of the e-ph vertex within the decoupled fRG framework can

be achieved by expanding the fermion label in the appropriate
frequency and momentum basis sets. The vertex describes a
forward scattering process due to the phonon and is already
parameterized by the particle-hole frequency and momentum.
Thus, we utilize the same auxiliary variables used for the
particle-hole channel in the decoupling of the vertex to expand
the e-ph interaction [44]. Within the decoupled framework,
the vertex 
 is expanded in the three channels along the
singular frequencies with the scaling of the vertex going from
O(N3

f N3) to O(Nf N2
ωNN2

k ) with Nf corresponding to the num-
ber of Matsubara frequencies retained, Nω representing the
number of frequency basis functions used for expansion, N
is the number of sites in the system, and Nk is number of
momentum basis functions. Using a similar expansion for the
e-ph vertex, we have

gm,i(sph) = 1

Nβ

∑
ωphx ,k

gk,kph (ω,ωph) fm
(
ωphx

)
fi(k), (5)

where ω and k represent the incoming frequency and momenta
of the fermion and the auxiliary frequency variables ωphx

=
2ω + ωph, and fm/i are the frequency and momentum basis
functions. The basis functions are Fourier modes in both cases
with the frequency basis sets modified to scale with the flow
and cover the entirety of the imaginary time axis. Applying
this expansion, the flow for the self-energy becomes

∂�	λ(sph) = g(sph)Lph
� (sph)g(sph), (6)

and the flow for the e-ph vertex is given by

∂�g(sph) = g(sph)Lph
� (sph)�(sph), (7)

where Lph
� represents an exchange propagator constructed

from the electron propagator (L[∂�(GG)]) and � is the
two-particle vertex (
k1k2k3k4 ) expanded in the particle-hole
channel. The above expressions are matrix multiplications
with g corresponding to a [1 × NωNk] matrix for all singu-
lar particle-hole frequencies. The two-loop equations for the
fermion vertices have been outlined in previous works [47,48].
The contributions to the e-ph vertex at higher loop orders
can be accounted for by the derivative of the two-particle
vertex. In particular, the projection of the fermion flows in
the particle-particle (̇pp) and particle-hole-exchange (̇phe)
channels contribute to the particle-hole vertex at the two loop
level [�2−L = P(̇pp) + P(̇phe)]. This adds to the one-loop
flow above as

∂�g2−L(sph) = g(sph)Lph
F,�(sph)�2−L(sph) (8)

with Lph
F,� corresponding to the full exchange propagator

(L[GG]). Ultimately, the momentum structure of the e-ph
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FIG. 2. Static antiferromagnetic susceptibility as a function of the e-ph coupling (λ) for different values of Hubbard coupling (U ) in the
HH model. Calculations were performed at a two-loop with T = 0.02t on a 32-site lattice at a resolution of Nω = 4, Nk = 4 with the f-fRG
(solid) and eph-fRG (dashed). The renormalized phonon dispersion and self-energy of the phonon for different couplings calculated via the
eph-fRG are shown on the right.

coupling and the dispersion of the phonon introduce e-e in-
teractions that drive charge fluctuations with a variety of
momentum structures. To allow for deformations to the elec-
tron and phonon self-energies and an unbiased treatment of
the charge fluctuations, the results throughout this work were
constructed with the litim regulator implemented over the
frequency axis of the electron propagator [49].

The main observables we use for studying the phases in the
e-ph models are the spin, charge, and superconducting corre-
lators. From these one can construct the static susceptibility
and structure factors for ordering in the three channels. In
parameter regimes with symmetry-breaking instabilities, the
flow has to be stopped due to a diverging interacting vertex,
which limits us to correlators constructed from the partially
integrated vertex at the critical scale �. In all cases we search
for local orders with a profile characterized by the form factor
fO. The spin and charge susceptibilities for a nesting vector �q
at a frequency � are given by

χc/s(�, �q) =
∑

p1,p2,σ1,σ2

〈
sσ1 fO(p1)c†

p1,σ1
cp1+pq,σ1

× sσ2 fO(p2)c†
p2,σ2

cp2−pq,σ2

〉
c (9)

with the form factor corresponding to phase of interest and
s↑,↓ = ±. We investigate forms for all harmonics associated
with the square lattice. Explicitly, searches for possible BOW
order along the x, y, or z axis can be conducted with the factors
fO = sin(pi ). The frequency content of the flow allows the
calculation of the structure factor associated with a particular
χ [SO = 1

β

∑
� χO(�, �q)], which can be ideal for determin-

ing phase boundaries. Preliminary transition lines constructed
by direct comparison between susceptibilities can be supple-
mented (especially in cases with divergent flows) with studies
of the structure factor. For cases where runs over different

lattice sizes are possible, we extrapolate the transition lines for
changes in the dominant susceptibility to the infinite lattice.

III. THE HUBBARD-HOLSTEIN MODEL

The Hubbard-Holstein (HH) model is a prototype Hamil-
tonian for capturing the interplay between e-e and e-ph
interactions. The model describes the coupling of fermions in-
teracting via the Hubbard coupling to a nondispersive optical
phonon. Studies of the model show the expected antiferro-
magnetic phase (AF) for large e-e interactions (U ) and a
charge density wave (CDW) phase for strong e-ph coupling
(g) with a metallic phase in the transition region between the

FIG. 3. Scaled CDW susceptibility of the 1D Holstein model as a
function of the e-ph coupling for different lattice sizes at β = 64 with
resolution Nω = 4, Nk = 4. The inset shows the charge correlation
ratio [1 − SCDW(π + δq)/SCDW(π )] of the susceptibilities.
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ordered phases. In both one and two dimensions the metallic
phases show strong superconducting (SU) correlations with
1D DMRG studies showing a metallic phase in the HH model
(U = 0) up to O(1) values of e-ph coupling for various values
of the phonon frequency [28,50]. Monte Carlo studies of the
model in two dimensions show a CDW phase at U = 0 for
any values of the e-ph coupling [24–26,51]. Monte Carlo
studies in Ref. [24] find that the metallic phase still exists in
two dimensions, albeit with a reduced domain restricted to
U > 0 and weaker sensitivity to the frequency of the Holstein
phonon. In terms of a full description of the model, the studies
in two dimensions have yet to address the impact of doping
and of the phonon frequency on the metallic phase. In one
dimension, DMRG studies of the model find a significant
enlargement of the metallic phase as the phonon frequency
is increased. Additionally, the 1D study finds the CDW phase
persists even as doping destroys the nested Fermi surface, and
large levels of doping are required (x > 0.1) before the super-
conducting fluctuations dominate the density wave. In what
follows we will study the role of these parameters in the 2D
models. These models offer a rich playground that captures
the interplay between superconducting and incommensurate
spin fluctuations seen in the Hubbard model with the charge
and superconducting response created by the retarded interac-
tion with the phonon mode.

The presence of the metallic phase with charge and su-
perconducting correlations complicates the usual instability
analysis carried out for vertices constructed by the fRG. Quan-
tum Monte Carlo studies of the 1D Holstein model found that
corrections for finite-size systems compounded with the ex-
ponentially small gap make the determination of the metallic
domain difficult to determine numerically [52]. With this in
mind, we separate charge fluctuations in the metallic phase
from the CDW phase by performing a finite-size scaling anal-
ysis on the charge correlation ratio [53,54]. This approach
enables the determination of the CDW phase boundary with
the charge susceptibilities for various lattice sizes as input.
Though it offers numerous computational advantages, our
current limitation to a 20×20 lattice in two dimensions re-
quires an alternative solution. DMRG studies of the 1D model
find charge and superconducting correlations in the metal-
lic phase decaying with power-law behavior, whereas in the
CDW phase charge fluctuations show little decay with other
correlations suppressed exponentially. So we will perform the
susceptibility analysis of the various orders across various
system sizes to construct a phase diagram of the models.
Given the previous studies of the model we will focus on
instabilities of s, ext − s and dx2−y2 -type with density pro-
files f (k) = 1, cos(kx ) + cos(ky) and cos(kx ) − cos(ky) in the
three channels.

The dispersion relation for electrons in the HH model
is determined by the nearest-neighbor hopping, ξ e

k =
−2t

∑D
i=1 cos(ki ), with the system coupled to a nondispersive

phonon mode (�λ = ω0). Similarly, the e-ph interaction is
local, gk,q = g0, and couples equally to all momentum modes.
Specification of electronic dispersion (ξk), the phonon disper-
sion (�q), and the e-ph coupling (gλ) define the Hamiltonian
in Eq. (1). We begin with a study of the 1D system in order to
evaluate the benefit of retaining the flow of phonon vertices.
Beyond enabling access to the phonon self-energy, flowing the

FIG. 4. Ground states of the 1D HH model at half filling via
the two-loop fRG with ω0 = t . The transition from dominant charge
to spin fluctuations is shown in green with metallic phase con-
structed by finite-size scaling of response in lattices of N � 256.
The mean-field transition line (U = λ) is plotted for reference. The
susceptibilities for N = 32 (dashed) and N = 64 along with the spin
(orange) and charge (blue) transition lines are shown in the lower
panel.

e-ph vertex modifies the electronic vertex as the effective e-e
interaction changes with the flow. A comparison between the
spin susceptibility calculated by the two approaches as we ap-
proach the CDW transition is shown in Fig. 2. Suppression of
spin fluctuations is expected as we approach the transition, as
both the metallic and CDW phases show little spin response.
The flow of the e-ph vertex leads to a stronger suppression of
the spin response with the phonon self-energy showing large
deviations of O(t ) for an initial phonon frequency, � = t .
The changes to the phonon self-energy occur over a wide
frequency window with the width of order the electronic
bandwidth (W ) centered at the π -phonon corresponding to
the CDW phase. From it we can extract the renormalized
phonon dispersion, ω2

p = ω2
p,0(1 − 2	λ

k /ωp,0), which shows
the softening of the phonon modes as we approach the transi-
tion. For the pure Holstein model (U = 0) both Monte Carlo
and DMRG studies find charge order setting in at λ = t for
a phonon mode with dispersion � = t [28,55]. The fRG re-
sults for the charge response of the Holstein model is shown
in Fig. 3. Analysis of the charge susceptibility and charge
correlation ratio (Rχ (q) = 1 − Sπ+δq/Sπ ) find the transition at
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FIG. 5. Charge (top), spin (inset), and s-superconducting (bottom) susceptibilities of the 2D Holstein model at various phonon frequencies
(left) and doping levels (right) on a 16×16 lattice at β = 32.

λ = 0.96t [53]. Usage of the renormalized charge susceptibil-
ity to accurately determine the transition out of the metallic
phase has been shown to be problematic as large system

sizes are required to resolve the spin gap [56]. Our current
implementation of the fRG is limited to N � 256; thus we
can expect some deviation in the phase boundaries constructed

FIG. 6. Antiferromagnetic, superconducting (s, dx2−y2 ), and charge susceptibilities of the 2D HH model as a function of doping for different
values of the e-ph coupling at U = 4t . Calculations were performed at the two-loop level with T = 0.02t on a 16×16 lattice at a resolution of
Nω = 4, Nk = 3.
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FIG. 7. Quasiparticle weight (Zk), phonon self-energy (	λ
q ) spin, and charge susceptibilities as a function of the e-ph coupling at U = 4t

of the doped (p = 0.18) 2D HH model on a 16×16 lattice with T = 0.02t .

by the fRG, especially in the 1D case. Given the truncation
of the fRG hierarchy and of the two-particle vertex in each
of the channels the separation of two phases with a strong
charge response can lead to discrepancies. A final issue is the
integrator utilized in constructing the flow as divergences in
the flow can affect the determination of transition lines, our
choice is detailed in Appendix D. We find a consistent system
response as we move to larger system sizes and increase the
momentum and frequency resolution of the vertex; hence we
expect the truncations in hierarchy to be the likely source of
the disagreement with previous results.

Constructing the phase diagram of the HH model requires
separating the metallic, charge-ordered, and antiferromagnetic
regions. We identify the start of charge correlations in the
the U -λ plane by utilizing the correlation ratio to find the
intersection between charge responses for different lattices. A
similar procedure can be performed on the spin response to
determine the end of the antiferromagnetic regime. The inter-
vening metallic region lacks long-range charge order which
should lead to a charge response that decreases with system
size. As the system transitions into the CDW phase the charge
response saturates, leading to a divergent susceptibility. We
use these points of intersection to construct the phase diagram

shown in Fig. 4. Our results show a qualitative agreement
with previous RG and DMRG studies with much of the error
appearing in the transition from the metallic phase to the CDW
phase [28,38]. Given that the fRG flow leads to a divergent
charge response, this discrepancy is expected. The exponential
suppression of spin fluctuations in the CDW phase allows
us to use the termination point for the spin response as an
estimate to the end point of the metallic phase. The results
for the other transition from an AF to a metallic phase show
much better fidelity, which is consistent with previous fRG
studies, as the spin gap is closed in one dimension and spin
fluctuations show power-law scaling.

In two dimensions, Monte Carlo studies of the model at
half-filling find a shrunken metallic phase nestled between
the AF and CDW [21,24]. Given the need to account for the
frequency modes of the vertex, the fRG at the two-loop level
is currently limited to lattice sizes of 20×20. With this in
mind, we carried out studies of phases in the model with two
lattices of linear dimensions 8 and 16. As we wish to study
the self-energy of the phonon, we allow the e-ph vertices to
flow independently. Important directions that have not been
explored fully in previous studies of the model are the sensi-
tivity of the metallic phase to doping and phonon frequency.
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FIG. 8. Static (π, π )-spin and dx2−y2 − SU susceptibilities of the half filled 2D HH model as a function of the e-ph coupling for different
phonon frequencies at U = 4t for Nω = 4, Nk = 2 on a 16×16 lattice. The phonon self-energy for the different frequencies is shown on the
right (λ = 4.16t).

Earlier variational Monte Carlo studies of the model find a
strong response to phonon frequency with results at ωp = 8t
showing a larger metallic phase [21]. The decoupled fRG is
versatile with respect to both parameters, so we can construct
the susceptibilities of the system at a large range of doping
levels and phonon frequencies. The performance of the fRG
for different phonon frequencies can be further improved by
adjusting the patching of the time domain we average over
to decouple the frequency dependence of the vertex to the
frequency of the phonon. Control over these two parameters
allows us to explore the proposed lack of metallic phase in
the Holstein model. Previous unbiased Monte Carlo studies
of the model at low phonon frequencies [24–26] (ωp < t)
indicate the nonexistence of the phase, with numerical re-
sults restricting possible transition to λ < 0.61t . To address
this, we calculated the response of the 2D Holstein model
at various doping values for different phonon frequencies.
The results are shown in Fig. 5. At low phonon frequencies
(ωp = 0.5t, t) the flow diverges at finite λ with the strong
charge response indicating a transition to a charge ordered
phase. The flow is convergent for larger values of the phonon
frequency with the charge susceptibility decreasing and ap-
proaching an increasing s-wave superconducting response.
We extrapolated the charge response at various doping values
and phonon frequencies to find the transition to the charge
ordered phase for ωp = t at λ = 0.64t . For higher phonon fre-
quencies (ωp � 2) the transition is beyond the parameter re-
gion (0 < λ < t) considered indicating an expanding metallic
phase.

Doping the model at finite U suppresses the strong
spin correlations seen in the Hubbard model, allowing the
spin-facilitated superconducting correlations to come to the
forefront. The presence of superconducting fluctuations in
the metallic phase of Holstein model that expands with
phonon frequency leads to the expectation of superconduct-
ing order as the combined system is doped. The response of
the system to doping is shown in Fig. 6. As expected the
antiferromagnetic correlations in the system are suppressed
by increasing the coupling to the phonon mode and the de-
struction of the perfectly nested Fermi surface due to the
doping. The CDW order generated at large values of λ shows
little sensitivity to doping, in line with the DMRG results
for the 1D system. The s-type superconducting response is
more telling, as unlike the d-type order which shows little
change as the system is doped away from half filling, the
s-type is significantly reduced as a function of doping. This
suggests that the superconducting fluctuations seen in the
metallic phase are formed due to the interplay between the
e-ph coupling and nesting of the Fermi surface, so that a
metallic phase is likely to dominate the regime of low dop-
ing. Despite the reduction of the spin fluctuations due to the
e-ph coupling, the d-type superconducting response remains
large at p > 0.15 suggesting a transition from d − SU to a
metal to the CDW in this doping regime. Incommensurate
correlations are the rule in the doped regime with both the AF
susceptibility and the phonon self-energy showing peaks at
incommensurate wave vectors. A large enough e-ph coupling
suppresses these incommensurate fluctuations, with the CDW
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FIG. 9. Phase diagram of the 2D HH model at half filling via the
two-loop fRG with ω0 = t . The transition between the AF, CDW,
and SU orders is shown for the 16×16 lattice at Nω = 4, Nk = 2, and
T = 0.02t . The susceptibilities scaled with N are shown in the lower
panel as a function of λ for an 8×8 (dashed) and 16×16 lattice along
with the spin (orange) and charge (blue) transition lines shown in the
lower panel.

order forming at large λ, as shown in Fig. 7. Large values
of the e-ph coupling lead to a stronger renormalization of
the quasiparticle weight (Zk), but the interaction destroys the
nodal structure seen in the quasiparticle weight of the Hubbard
model. This is in line with charge ordering driven by the
Holstein e-ph interaction which couples equally to all momen-
tum modes.

The impact of the phonon frequency on the system re-
sponse is shown in Fig. 8 for the 2D HH model. Increasing
the frequency of the phonon suppresses spin fluctuations with
physics akin to the antiadiabatic limit (ω0 → ∞) leading
to a sharper transition out of the AF phase. In the large
frequency limit, the electronic interactions have little effect
on the phonon modes, which quickly suppress the spin re-
sponse allowing the superconducting fluctuations to come to
the forefront. In this limit the system can be approximated
by a Hubbard model with an interaction reduced by the e-ph
coupling, which is in accordance with the observed weak spin
response [21]. The evolution of the system from the antia-
diabatic limit can be clearly seen in the phonon self-energy.
In the ωp ∼ W range we see a weak softening of the (π, π )-
mode associated with charge ordering. As the frequency of the

phonon is lowered the response broadens with the self-energy
at ωp = 0.5t showing a response at all momentum modes and
the system retaining spin fluctuations into the charge-ordered
phase.

The phase diagram of the 2D HH model constructed in
accordance with its 1D counterpart is shown in Fig. 9. The
stronger response in the spin channel leads to a larger AF
phase and a further shift away from the mean field U = λ

line. A background of s − SU fluctuations is present for much
of the U -λ domain but remains subdominant to the CDW
response as the e-ph coupling suppresses AF correlations.
Both in the 8×8 and 16×16 lattices the s − SU suscepti-
bility does not increase with the coupling, which confirms
the expected metallic phase populated by superconducting
fluctuations. Though higher phonon frequencies lead to a
stronger superconducting response for the frequencies con-
sidered (ωp < 5t), we find an even stronger CDW response.
At half filling the d − SU is suppressed by the e-ph coupling,
which is in line with a suppression of the AF which serves as
its primary driver.

IV. THE EXTENDED HUBBARD-PEIERLS MODEL

Distortions of an elastic lattice due to coupling to electronic
modes drive the physics in a variety of quasi-1D materials,
including organic charge-transfer solids and perovskite sys-
tems. The study of this interplay between electrons and lattice
vibrations can frequently be modeled by the Su-Schrieffer-
Heeger (SSH) Hamiltonian [57]. The Peierls instability in the
SSH model shows a dimerization of the lattice with a bond-
ordered charge density wave (BOW) at arbitrary values of the
coupling for 1D systems. Quantum Monte Carlo studies of
the model in two dimensions find a similarly dimerized lattice
with the charge ordering on the bond along the x or y axis,
albeit with the transition to the BOW phase occurring at a fi-
nite value of the e-ph coupling (gc ≈ 0.67) [29,58]. Although
the initial intent of the SSH Hamiltonian was as a model of
dimerization in polyacetylene, a description of the material
requires the inclusion of interactions between the electrons,
as a large portion of the charge gap is due to these interac-
tions [59]. Studies of an expanded SSH model with electronic
interactions in one dimension show a transition between the
Peierls BOW phase and an antiferromagnet as a function
of interaction and phonon frequency [16]. Renormalization
group studies of the SSH model in one dimension capture this
transition with the impact of the phonon frequency studied by
a frequency-dependent RG [38,39,60]. Studies of electronic
interactions in the 2D SSH system find a similar transition
from an AF to a BOW as a function of the e-ph coupling [31].
The former reference looked at extended Hubbard interactions
expected in polyacetylene and found a transition between the
phases showing robust competition, while the latter reference
considered only a local Hubbard coupling and captured a tran-
sition showing weak dependence on the interaction. Finally,
recent studies have addressed the role of the phonon frequency
in the 2D SSH model and found fast SSH phonons inducing
AF order in the system [30].

The electronic sector of this model remains the same, but
the elastic lattice leads to the phonons dispersing as ξ

ph
k =

ω0

√
sin(kx/2)2 + sin(ky/2)2. The phonon mode couples to the
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FIG. 10. Quasiparticle weight [Zk = 1 − ∂iω=0	(iω, k)] of the 2D HH and PH models as a function of the e-ph coupling (λ) for a doped
(p = 0.18) system at U = 4t . The phonon frequency (ω0) is set to the hopping (t) with the transition to BOW occurring at λ ≈ t .

hopping of the electrons, leading to an e-ph interaction given
by gk,q = ig[sin( qx

2 ) cos(k + qx

2 ) + (x ↔ y)] which specifies
the Hamiltonian in Eq. (1). The dispersive phonon mode and
the momentum structure in the coupling lead to an extended
effective interaction between the electrons. The strength of
the effective e-e interaction can be defined by λSSH = 2g2/ω0

though interactions felt by the electrons vary with momenta.

The extended Hubbard interactions in the model are ac-
counted for by the term V = 2V [cos(qx ) + cos(qy)].

At half filling, coupling the Hubbard model to the SSH
phonon leads to a response in the spin channel. Figure 11
shows the antiferromagnetic susceptibility for the model as
a function of the strength of the e-ph coupling. We see that the
coupling to the phonon mode can enhance spin correlations

FIG. 11. Static π -spin susceptibility (left) of the 1D PH model as a function of the e-ph coupling for different phonon frequencies at
U = t . Calculations were performed at the two-loop level with T = 0.015t on a 64-site lattice at a resolution of Nω = 4, Nk = 4. The π -BOW
response and the temperature dependence of the spin susceptibility for ωp = t are shown on the right.
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FIG. 12. Quasiparticle weight (Zk), phonon self-energy (	λ
q ) spin, and charge susceptibilities as a function of the e-ph coupling at U = 4t

of the doped (p = 0.18) 2D PH model on a 16×16 lattice with T = 0.02t , Nω = 6, and Nk = 2.

for larger values of the phonon frequency (ω � t), but once
the system transitions to the BOW phase, spin fluctuations are
suppressed at all ωp. Models of materials normally occupy
this low-frequency parameter range (ω 
 t) with slow lattice
vibrations and an e-ph coupling directly related to variations
in the hopping integral due to lattice fluctuations. In this
regime the coupling to the phonon mode can be expected to
have little impact on the spin fluctuations with a λ ∼ O(U )
necessary to stabilize a BOW phase in the system. We note
that e-ph coupling scales inversely with phonon frequency
(λ = g2/ω), so that this regime is within reach of material
models. As discussed in Ref. [29], the transition to the BOW
phase comes with a breaking of the symmetry of the square
lattice; signatures of this breaking are present in the self-
energy and are shown in Fig. 10. Unlike the quasiparticle
weight generated by the Holstein system, the SSH mode de-
forms the symmetric weight of the Hubbard model as the e-ph
coupling is increased. Deep in the BOW phase (rightmost
panel), the symmetry of the nodal structure of the Hubbard
model is lost, and we see a quasiparticle weight consistent
with a stable BOW phase. The primary driver of this is the
initial momentum structure of the phonon mode, with other
phonon modes leading to possibly more exotic quasiparticle
weights.

Beyond signatures in the electronic self-energy, the e-ph
coupling enhances the phonon self-energy and spin suscep-
tibility as we approach the transition to the BOW phase.
Figure 12 shows the response of the system doped away from
half filling as the transition to BOW is approached. The e-ph
coupling enhances the incommensurate response with the AF
and BOW susceptibilities showing peaks at an incommen-
surate wave vector. The interaction magnifies asymmetries
between (π, π − δq) vector and (π − δq, π − δq) normally
seen in the Hubbard model with BOW ordering occurring
firmly at the former vector for p = 0.18. This preference is
seen in the self-energy of the phonon with a clear trend to-
wards the (π, π ) mode associated with the BOW phase as the
e-ph coupling is increased. The impact of doping on the AF
and BOW response at the transition point between the phases
is shown in Fig. 13. Doping the electronic sector appears to
have little impact on the self-energy of the phonon apart from
moving its peak away from (π, π ). The impact is much larger
on the BOW response with an incommensurate response seen
for p > 0.15. In this regime we see the appearance of a novel
incommensurate dx2−y2 charge response that dominates over
the BOW phase for U = 4t . The charge response in the d-
channel is shown in Fig. 14. Previous studies have considered
possible BOW configurations for the 2D SSH model with
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FIG. 13. Phonon self-energy (	λ
q ),spin and charge susceptibilities as a function of the doping at U = 4t , g = t of the 2D PH model on a

16×16 lattice with T = 0.02t , Nω = 6, and Nk = 2.

the dx2−y2 and px/y charge orders with the latter showing the
larger energy gain at half filling [61]. Monte Carlo studies
confirmed the bond order for the half-filled SSH model, but
the impact of doping at finite U remains unexplored [29].
The vector at which we observe the d-type charge shows an
asymmetric shift between the x and y directions, essentially
aligning the bond charge of the BOW phase into the plaquettes
corresponding to dx2−y2 order.

The phase diagram of the extended Peierls-Hubbard model
is shown in Fig. 15. We find that a large enough e-ph coupling
stabilizes the BOW phase over the AF phase for all values
of V . The density-density interaction enhances charge order
leading to an expansion of the BOW for all values of the e-ph
coupling. In the 1D system the interaction not only drives
charge order but also stabilizes a finite BOW phase that ex-
pands as a function of U in the absence of the e-ph interaction.

FIG. 14. dx2−y2 -charge susceptibility of the 2D PH model for g = t at U = 4t at various values of doping on a 16×16 lattice with T = 0.02t ,
Nω = 6, and Nk = 2.
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FIG. 15. Phase diagram of the extended PH model as a function of extended Hubbard coupling (V ) for SSH phonon with ω = t in one and
two dimensions calculated with Nω = 4 and Nk = 2 at half filling. The spin response of the system across the AF → BOW transition is shown
on the right.

This leads to a significant reduction of the AF domain for the
case of V = U/2. The behavior of the spin susceptibilities is
similar in one and two dimensions with the system showing
the expected enhancement as we approach the transition to
BOW followed by a suppression in the BOW phase for all
values of V .

V. CONCLUSIONS

In this work we have applied the decoupled fRG to study
the phases in the Hubbard-Holstein and extended Peierls-
Hubbard Hamiltonians in one and two dimensions. The
decoupled fRG allows for a computationally efficient inclu-
sion of frequency modes in the vertex which are crucial for
the study of the role played by interactions between the elec-
trons and lattice. The fRG enables, given a phonon mode and
e-ph vertex, access to the self-energies of the electron and
phonon modes, at low temperatures (β ∼ 50) for large system
sizes. We account for the impact of these interactions on the
response of the system by calculating the charge, spin, and
superconducting correlators. The fRG captures the various
phases seen in these systems with different e-ph couplings,
for different e-e interactions as function of phonon frequency,
doping, and temperature. Our results for the two e-ph sys-
tems considered here were cross-checked against DMRG and
Monte Carlo studies in one and two dimensions. Despite
limitations to moderate coupling, the success of the fRG in-
dicates the possibility of addressing the impact of arbitrary
phonon modes that couple locally to electronic Hamiltonians.
The fRG also allows the study of systems with large phonon
frequencies which are beyond the realm of material models.
Such systems have been proposed in the cold atom setting,

and the study of faster lattice dynamics on electronic orders
can help paint a more complete picture of e-ph interactions
[62].

We applied the two-loop fRG to the HH model with the
two-pronged goal of validating the approach and exploring the
impact of doping and phonon frequency on the 2D variants of
the system. In one dimension, the fRG captures the metallic,
AF, and CDW phases in the system and reproduces the ex-
tension of the metallic phase to the Holstein model (U = 0).
The transition line shifted from U = λ is reproduced with the
extent of the metallic phase in line with previous DMRG and
RG studies. In two dimensions we explored the impact of
doping and phonon frequency on the metallic phase in the HH
model. Our results for charge response of the system at vari-
ous phonon frequencies and doping indicate a metallic phase
that extends to the Holstein model (U = 0) and expands with
phonon frequency. The accompanying s-wave superconduct-
ing response grows with the e-ph coupling and doping though
a finite U coupling suppresses these correlations leaving just
the d-type superconducting fluctuations usually seen in the
Hubbard model.

For the Peierls-Hubbard model, we find a transition to
a BOW phase in one and two dimensions. The e-ph cou-
pling in the model enhances AF correlations with the system
showing strong antiferromagnetic response even deep in the
BOW phase. As noted in previous works [29], the stabilization
of the BOW phase does break the symmetry of the square
lattice. With the fRG we find evidence of this symmetry
breaking in both electron and phonon self-energies. Doping
the system leads to an incommensurate BOW response which
appears stable even at large e-ph coupling and shows sen-
sitivity only to the frequency of the phonon. In this doped
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regime at moderate U we found the incommensurate bond
order switching to an dx2−y2 charge order suggesting a change
in the optimal bond ordering pattern for the doped regime.
Inclusion of a nearest-neighbor density density interaction
shifts the transition line in favor of the BOW phase. The mag-
nitude of the shift appears much smaller in two dimensions,
which suggests that it has little impact on the nature of the
transition.

Our results for the two models suggest many further di-
rections to explore, with the most rewarding possibly being
the study of exotic phonons such as the A1g and B1g modes
seen in the cuprates. Given the 2D results, a more thor-
ough study of the interplay among the phonon frequency,
doping, and e-ph coupling coupling for a three-dimensional
model should further clarify the nature of the metallic phase
in the HH model. Work along these directions is currently
in progress.
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APPENDIX A: FRG EQUATIONS FOR
ELECTRON-PHONON SYSTEMS

The general interacting Hamiltonian that describe such
systems are of the form given in Eq. (1) and require the
description of the interaction between fermionic and bosonic
fields. Of interest is the renormalization of the bosonic fields
captured by the phonon self-energy which details the soften-
ing of the phonon modes at intermediate levels of coupling
followed by the onset of a charge ordered phase. The renor-
malization also affects the coupling between the modes. The
Hamiltonian of the system can be separated into a free piece
describing the noninteracting electron and phonon systems

FIG. 16. CDW and AF response of a 32-site 1D HH model at
β = 64 and U = t as a function of the e-ph coupling for different
frequency basis sets. The AF response for different Nω with Nk (4)
fixed is in the top left, and the CDW response is shown on the right.
The phase boundaries for the various Nω are also shown (bottom).

FIG. 17. CDW and AF response of a 32-site 1D Hubbard Hol-
stein model at β = 64 and U = t as a function of the e-ph coupling
for different momentum basis sets. The AF response for different Nk

with Nω(4) fixed is in the top left, and the CDW response is shown
on the right. The phase boundaries for the various Nk are also shown
(bottom).

and an interacting piece consisting of interactions between
electrons (
(2)) and couplings between the electron and the
phonon modes of the lattice (gλ). The action for the full
Hamiltonian H is given by

S�[ψ, φ] = −
∑
ω,k,σ

ψ̄ωkσ

(
G−1,�

0,ωk − 	�
ω,k

)
ψωkσ

−
∑
s,q

φ∗
sq

(
D−1

0,sq + 	λ
s,q

)
φsq

+
∑
kqσ

g�
λ,k,qψ̄k+qσ ψkσ (φ∗

q + φ−q)

×
∑

k1k2k3k4



(4),�
k1,k2,k3,k4

ψ̄k1ψ̄k2ψk3ψk34, (A1)

FIG. 18. BOW and AF response of a 32-site 1D SHHH model at
β = 64 as a function of the e-ph coupling for different frequency
basis sets (Nk = 3). The AF response for different Nω is in the
top left, and the BOW response is shown on the right. The phase
boundaries for the various Nω are also shown (bottom).
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FIG. 19. BOW and AF response of a 32-site 1D SHHH model at
β = 64 as a function of the e-ph coupling for different momentum
basis sets (Nω = 4). The AF response for different Nk is in the
top left, and the BOW response is shown on the right. The phase
boundaries for the various Nk are also shown (bottom).

where G0 is the regulated electronic propagator given by

G−1,�
0,ωk = iω + R�(ω) − ξk, (A2)

and D0 is the free phonon propagator

D0,sq =
(

1

is − �λ
q

− 1

is + �λ
q

)
(A3)

with �λ
q corresponding to the dispersion of the λ phonon mode

of the free Hamiltonian, φ corresponds to the bosonic phonon
mode, ψ, ψ̄ are anticommuting Grassmann fields, and 
(2) is
the interacting two particle vertex.

Tracking the evolution of these vertices as a function of
scale enables analysis of instabilties away from the normal
state associated with the noninteracting Hamiltonian. Exten-
sive reviews of the fRG flow of fermion vertices and their

FIG. 20. Momentum dependence of the renormalized phonon
dispersion, �q, of a 32-site 1D Holstein model at β = 64 for various
e-ph couplings. The renormalized phonon dispersion at the CDW
nesting vector (π ) for different Hubbard couplings is also shown
(inset).

FIG. 21. Phonon self-energy at the CDW nesting vector [(π, π )]
of an 8×8 2D Hubbard Holstein model at β = 32 for different
Hubbard couplings. The extrapolation of the phonon dispersion is
shown in gray.

derivation can be found in previous works [36,63]. The flow
of the interacting two particle vertex is given by

d

d�

p1 p2 p3 p4 =

∑
k1k2

∂�,S
(
G�

k1
G�

k2

)(



(4)�
p1k1k2 p4



(4)�
k2 p2 p3k1

− 

(4)�
p2k1k2 p4



(4)�
k2 p1 p3k1

)
− 1

2
∂�,S

(
G�

k1
G�

k2

)



(4)�
p1 p2k2k1



(4)�
k1k2 p3 p4

, (A4)

where G is the full electronic propagator and 
(4) is the
two-particle vertex. For the case where the phonon modes are
integrated at the start of the flow the change amounts to an
alteration of the initial condition with the initial vertex given
by the effective vertex defined in Eq. (2). The effective interac-
tions facilitated by the phonon mode can be extracted directly
from the e-ph interactions, g(k1, q)c†

k1+qck1 (bq + b†
−q ), cou-

pled via the phonon mode as



ph
k1+q,k2−q,k2,k1

=
∑

k1,k2,q

gλ
k1,qgλ

k2,−q

× 〈(bq + b†
−q)(b−q + b†

q)〉︸ ︷︷ ︸
D−1

�,q

c†
k1+qc†

k2−qck2 ck1 (A5)

with the initial phonon vertices replaced by their flowing
counterparts if the phonon modes are not integrated out at
the start of the flow. This modification to the interaction
(
(4)� → 
(4)� + gλGphgλ) carries through to the flow of the
e-ph vertex given in Eq. (4) with 
eff corresponding to the
modified vertex. The equation for the electronic self-energy is
similarly modified with the flow in the purely fermionic case
given by

d

d�
	p =

∑
k

∂�G�
k 


(4)�
pkkp (A6)

235120-15



YIRGA, TAM, AND CAMPBELL PHYSICAL REVIEW B 107, 235120 (2023)

FIG. 22. Charge and spin correlation ratio of the 1D HH model for various system sizes constructed by the BS3 [O(3)] and DP5[O(5)]
integrators. The momentum and frequency resolutions were set at Nk = 4 and Nω = 4.

undergoing a change to account for the e-e interaction medi-
ated by a phonon. Equations (A6), (A4), (4), and (3) make up
the full set needed to describe Hamiltonians of the form (1).

The decoupled flow involves the expansion of the two-
particle vertex (
(4)) and the e-ph vertex (gλ) in fermion
bilinears. The four fermions in the two particle vertex are
expanded in each of the three channels (PP, PH, PHE), while
the e-ph vertex is expanded solely in the PH channel. These
bilinears are clustered at long times, parameterized by Nω,
then truncated based on their separation, parameterized by Nk .
The expansion for the e-ph vertex is given in Eq. (5). The
expansion of the e-e vertex is given by


p1 p2 p3 p4 =
∑

m,n,i, j

�m×i,n× j (ωpp, kpp)

× fm
(
ωppx

)
fn

(
ωppy

)
gi(k2)g j (k3), (A7)

where fm and gm correspond to frequency and momentum
basis functions. Full details of the decoupling can be found
in previous work [44,64].

APPENDIX B: DEPENDENCE OF THE VERTEX
ON THE DECOUPLING PARAMETERS

The truncation of the vertex in each channel enables the
efficient construction of the flow but the reduced basis set
coarsens the frequency and momentum content of the vertices
leading to results that are sensitive to the size and choice of
basis set. The dependence of the results on these parameters
is of particular importance near phase transitions where strong
fluctuations can occur in multiple channels. The calculations
carried out in this work for the 2D models (Nω = 4, Nk = 2,
Ns = 16×16) requires tracking arrays of size ∼107 in the
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FIG. 23. Scaled BOW susceptibility of the 2D SSH model as
a function of the e-ph coupling (λ = 2g2/ωp) for different lattice
sizes at β = 64 with resolution Nω = 4, Nk = 2. The inset shows the
corresponding BOW correlation ratio.

three channels throughout the flow; thus conducting sweeps
of the computational parameters at this level is unfeasible. In
what follows we will consider the dependence of the results
on the 1D variants.

The dependence of spin and charge susceptibilities of the
HH model on the e-ph coupling is shown in Figs. 16 and
17 for different sizes of the frequency and momentum basis
sets, respectively. The two transition lines from AF → M and
M → CDW show differing levels of sensitivity as a function
of Nω. We note that the transition out of the metallic phase
can be estimated via the charge susceptibility, χc(π )/L > 1,
which is shown shaded in red in Fig. 16 or from spin suscep-
tibility χs(π ) → 0. Though we utilize the former the latter
appears less sensitive to the level of frequency resolution.
The lowest frequency resolution (Nω = 2) involves simply
averaging over the time dependence of the auxiliary channels.
As the frequency resolution is increased the transition lines
converge though all choices of frequency basis sets seem to
resolve the AF, M, and CDW phases. For the momentum basis
sets this analysis is simplified as both the CDW and AF phases
are local with a flat density profile ( fO(k) = 1) across mo-
mentum space. This local level of approximation captures the
divergence of the charge response in CDW and the power-law
AF response. Higher levels of momentum resolution affect
the transition out of the metallic phase with the transition
converging to λ = 1.6t for U = t .

The comparison of the two flows conducted for the HH
model in the section above can also be readily applied to
the SSHH model. The BOW phase requires some degree of
momentum resolution, so at the level of Nk = 0 the effects of
the SSH phonon are not observed. The competition between
the AF and BOW phase for increasing momentum basis sets
in the SSHH model is shown in Fig. 19. Both response func-
tions converge as Nk → N . The sensitivity of the model to
different frequency basis sets is shown in Fig. 18. Though the
suppression of spin response and enhancement of the BOW
are observed for all choices of Nω, the response and transition
lines converge for large Nω. The computational cost scales
roughly as O(N2

ωN2
k ) with the basis sets, which quickly makes

such an analysis intractable for the 2D case; however, our
choices Nk and Nω were informed by the basis sets required
to capture the phases in the 1D system.

APPENDIX C: PHONON SELF-ENERGY

The renormalization of the phonon near the charge insta-
bility is a commonly observed phenomena which involves an
increased linewidth at the nesting vector of the instability and
a softening of the phonon dispersion. As the e-ph interaction
drives ordering in the electron sector, we can expect antifer-
romagnetic and superconducting fluctuations in the electronic
sector to renormalize the e-ph vertex. The phonon dispersion
is renormalized by the phonon self-energy and can be ex-
tracted from phonon propagator. Utilizing Eq. (A3) we have
the full propagator given as

D(ω, q) = −2�0
q

ω2 + (
�0

q

)2 − 2�0
q	

λ
q (ω)

, (C1)

which at ω = 0 leads to the renormalized phonon dispersion,
�2

q = �0,2
q (1 − 2	λ

q (0)/�0
q). The renormalized dispersion

shows a softening of phonon modes as the system approaches
the transition to the charge ordered phase. The phonon self-
energy shown above in Figs. 2 and 8 captures the structures
in the frequency domain with significant softening seen at the
CDW nesting vector Q. Though the analysis is invalid after the
system transition to the charge ordered phase, we can equate
the transition point with the zero of the phonon dispersion,
ωq = 0.

The behavior of the renormalized phonon dispersion as
we approach the CDW transtion in the 1D Holstein model is
shown in Fig. 20. Though all phonon modes are softening, the
impact is more drastic at the CDW nesting vector, �q = π . As
the fRG is limited to moderate coupling, the flow diverges at
λ = 0.7t with the renormalized phonon dispersion at 0.1. We
can used the data from the converged fRG flow to estimate the
transition to the CDW. Extrapolation of the converged flow for
the 1D Hubbard Holstein model is shown in gray in the inset
of Fig. 20. A similar analysis is shown for the 2D HH model in
Fig. 21. In line with the discussion above, the phonon modes
in the 2D Holstein model soften up to λ = 0.4t before we see
a divergence in the charge sector indicating the onset of the
CDW phase. This strongly suggests the existence of a metallic
phase in the 2D system.

APPENDIX D: INTEGRATORS FOR FRG FLOW

Throughout this work the integration of the flow has
been carried out primarily via the Bogacki-Shampine (BS3)
method. The primary motivation for this choice was the
reduced memory requirements offered by the method. In-
tegrating the flow for the 16×16 lattices of the 2D HH
and 2D SSHH models required retaining a subset of the in-
termediate vertices, determined by the order of the solver,
in the three channels. An additional advantage of the BS3
solver is the adaptive stepping through the flow which al-
lows the flow to move fast at � � W scales and slowly at
lower scales (� ∼ �c). As the system approaches a phase
transtion our choice of integrator can introduce noise in
our determination of the transtion line. Recent study of
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FIG. 24. Scaled SDW and BOW charge response of the 1D extended PH model for various values of U , V , and N as function of the e-ph
coupling. The momentum and frequency resolutions were set at Nω = 4 and Nk = 2 with β = 64.

integrators for the fRG have found the Dormand-Prince solver
(DP5) to be the most accurate integrator, so in this sec-
tion we compare the results obtained by the BS3 and DP5
methods [65].

The 1D HH model offers the best testing ground as it
contains transitions to a gapped charge phase (M → CDW)
in the absence of spin fluctuations (U = 0) and at finite U
as function of the e-ph coupling. The results for the charge
and spin correlation ratio, Rx = 1 − Sx(π + δq)/Sx (π ), as a
function of the e-ph coupling is shown in Fig. 22. The spin
correlation ratio for the transition from M → CDW shows lit-
tle change between the two integrators, while the charge ratio
is very sensitive with the flow from the DP5 outperforming
the BS3 and showing stability up to λ = t . Sensitivity at the
point of transition to a long-range ordered phase is expected
as there is no gap opening in the fRG flow; rather, the charge

response diverges as system enters the CDW phase, leading
to a divergent flow. The determination of the phase transition
from the metallic to the CDW region can be performed by
analyzing the crossings in the charge correlation ratio for
different system sizes. Such an analysis is impossible for the
case of the BS3 method as divergence in the flow leads to an
unstable ratio beyond λ = 0.84t . For the DP5 integrator we
find a λ of 0.96t .

APPENDIX E: BOW SUSCEPTIBILITY
FOR 1D EXTENDED PH MODEL

The onset of the BOW phase for the SSH model (U =
V = 0) as a function of the phonon coupling is shown in
Fig. 23. Strong coupling to the SSH phonon induces a BOW
order at Q = π in the extended PH model for all values of
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FIG. 25. Scaled AF and BOW charge response of the 2D Extended PH model for various values of U , V , and N as function of the e-ph
coupling. The momentum and frequency resolutions were set at Nω = 4 and Nk = 2 with β = 32.

the nearest-neighbor density-density interaction (V ). The ex-
tended Hubbard interaction drives charge ordering so there is
some interplay between the two interactions at weak coupling,
The system response is particularly intricate in the 1D system
due to the existence of a BOW phase in the extended Hubbard
model around the U = 2V line. We construct the phase dia-
gram for the model (Fig. 15) by analyzing the scaled BOW
response for various system sizes. The response observed for
the 1D and 2D PH models is shown in Figs. 24 and 25,
respectively.

APPENDIX F: FINITE TEMPERATURE RESPONSE
OF THE HOLSTIEN MODEL

The phase diagrams for the models above were con-
structed at small but finite temperatures, which leaves open

the possibility for finite temperature phase transitions. Though
low-temperature fRG flows can be computationally expensive
to construct, the response at high temperatures is a relatively
cheap calculation with the change in cost tied primarily to the
difficulty of performing Matsubara sums for the modes of the
vertex. The temperature dependence of the charge response
of the 1D and 2D Holstein models is shown in Fig. 26. The
divergence of the CDW charge response is clearly observed in
the Holstein models as a function of temperature for λ > 0.9t
for the 1D model and for λ > 0.4t for the 2D model. Limita-
tion of the method to β � 64 stops us from utilizing the CDW
response from completely ruling out a possible finite temper-
ature transition from metal to CDW in the Holstein model.
However, the temperature dependence of the charge response
at q = 0, which is proportional to the charge compressibility,
increases for all T in the metallic domain. Combining this
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FIG. 26. Temperature dependence of the charge response of the 1D and 2D Holstein model for different values of the e-ph coupling. The
frequency resolutions was set at Nω = 4 with the momentum resolution at Nk = 3 for N = 64 site 1D system and Nk = 2 for the 8×8 2D
system.

with the observed peak in the compressibility and its decrease
as we approach the CDW domain both in the 1D and 2D

systems, a finite temperature metal to CDW transition appears
as an unlikely scenario for the 2D Holstein model.
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