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We study the surface state-dependent magneto-optical properties of an ultrathin Floquet topological insulator
(FTI) under the influence of an external perpendicular magnetic field in the terahertz frequency regime. Under
the Floquet picture, we treat the circularly polarized off-resonant light as an external perturbation that introduces
a mass gap at the Dirac cone, thus, making the surface state Dirac fermions massive. By tuning the optical
field energy in the FTI thin-film system, various electronic phase transitions can be driven between the trivial
insulator state and the band insulator state. Using Kubo formalism, we derive the real and imaginary parts of the
longitudinal and Hall conductivities and demonstrate that these conductivities are sensitively influenced by the
strength of the off-resonant optical field, magnetic field, and chemical potentials. On the other hand, topological
insulators exhibit strong magneto-optic effects. We further compute the Kerr and Faraday rotation angles and
show that giant Kerr and Faraday rotations can be achieved in a FTI thin film by external tuning knobs, such as
magnetic and off-resonant optical fields. The Kerr and Faraday rotations in symmetric (top) and antisymmetric
(bottom) topological surface states can be controlled for interband and intraband transitions via gate bias voltage.
Our results reveal the FTI as an intriguing versatile system whose magneto-optical properties can be effectively
tuned optically, magnetically and electrically, thus, uncovering the strong photonics and optoelectronics device
application potentials of the FTI.

DOI: 10.1103/PhysRevB.107.235115

I. INTRODUCTION

Over the past 15 yr, the field of topological materials has
evolved rapidly and has attracted huge interest due to their
tremendous importance in fundamental physics as well as
device applications [1–4]. Topological insulators (TIs) repre-
sent an important member of the topological material family
in which the bulk is electrically insulating, but the surface
is electrical conductive with gapless surface states (SSs).
The SSs typically carry helical quasiparticles as described
by the two-dimensional massless Dirac-type Hamiltonian,
such as the quasiparticles residing at the K and K ′ points of
graphene [5] and are robust against smooth local deformations
and backscattering by time-reversal symmetry (TRS) [6]. By
breaking the TRS in TIs, exotic quantum phenomena occur in-
cluding the quantum anomalous Hall effect [7–9], topological
magnetoelectric effect [10–12], and the formation of magnetic
monopoles [13]. Culcer group has pointed out the intrinsic
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origin of the anomalous planar Hall effect in two-dimensional
(2D) heavy-hole gas in the presence of in-plane magnetic-
field B‖ [14]. Recently, second-order responses, such as the
linear photocurrents, injection currents, the nonlinear Hall
effect, quantized circular photogalvanic effect, and quantized
circular photocurrents in quantum systems have attracted huge
interest [15–23].

One of the significant challenges in the transport proper-
ties of the topological insulators has been the difficulty in
separating bulk contributions from the surface state contri-
bution. Thin-film topological insulator material provides an
ideal system when compared to semi-infinite TI slabs in this
respect as the bulk contribution to transport is significantly
reduced. A TI ultrathin film has both top and bottom surfaces,
each of which can host SS Dirac electrons. The symmetric
and antisymmetric surfaces of the TI thin film are coupled
to each other due to the finite thickness d of the film. The
overlapping of the symmetric and antisymmetric SSs wave
functions results in quantum tunneling between SSs and opens
an energy gap �H emerges at the Dirac points [24,25]. The
band gap at the top and bottom SSs can be controlled by
tuning the thickness of the thin film.

The experimental realization of the electronic phases and
quantum phase transitions (QPTs) in 2D materials, such as
graphene, Dirac-Weyl semimetals, silicene, and transition-
metal dichalcogenides, triggered a great interest in the
scientific community to discover new quantum phases of mat-
ter. QPT can be extrinsically induced in TIs through different
external stimuli, such as an external electric and magnetic
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field [26,27]. An external time-periodic perturbation driving
on a TI system generates helical edge states and is known
as Floquet topological insulators (FTIs) [28]. Recently, the
SSs of TIs driven by off-resonant circularly polarized optical
fields have become a subject of immense interest [29,30]. By
varying the optical field strength, the FTI thin film is predicted
to transition from a quantum pseudo-spin Hall insulator (QP-
SHI) phase to a photoinduced quantum Hall (P-QH) phase.
Under the application of a perpendicular external magnetic
field B, the quantization of the energy eigenstates exhibits
discrete Landau levels (LLs) in two materials. The charac-
teristics of the Dirac electrons in graphene under an external
magnetic-field B have been studied theoretically and exper-
imentally investigated [31–34]. In 2D electron gas (2DEG),
the Landau levels are equally spaced but in graphene due to
its unusual electronic energy dispersion, the Landau levels are
nonequally spaced. The energy dispersion of graphene is pro-
portional to

√
nB, where n denotes Landau levels, and B is the

magnetic field. The conduction and valence bands in graphene
are mirror-symmetric with E = 0 axis, whereas the n = 0 LLs
are residing at zero energy [31]. Optical transitions between
these discrete Landau levels produce absorption peaks in the
magneto-optical conductivity (MO) spectra. Magneto-optical
properties of 2D materials, for example, graphene [31], sil-
icene [35,36], MoS2 [37], and phosphorene [38] have been
studied in detail.

In recent years, the light-induced quantum effects in
graphene and other two-dimensional quantum materials have
generated a strong interest in the condensed-matter physics
community [28,39,40]. It has been theoretically demonstrated
that the strong interaction between massless Dirac fermions
in graphene and circularly polarized photons results in metal-
to-insulator transition [41,42]. It has been also shown that a
strong interaction of a 2DEG with a dressing electromagnetic
field drastically changes its transport properties [43,44]. In
this context, it is worthwhile to mention that the Floquet the-
ory of various Dirac materials with linear electron dispersion
has been well studied. However, the systematical study of
magneto-optical responses and the optoelectronic responses
of the FTI thin film remains limited, thus, far. As the FTI can
be sensitively modulated by various external stimuli, such as
electrical, magnetic, and optical fields, a systematic study of
its magneto-optical responses may, thus, serve as a versatile
tool to probe the physical properties of the FTI and reveal its
strong potential for application in photonics and optoelectron-
ics.

In this article, we study the surface state-dependent
magneto-optical conductivity of the FTI thin film under the
influence of perpendicular magnetic and circularly polarized
optical fields using Kubo formalism. The energy dispersions
of the FTI thin film with and without a magnetic field are
discussed under distinct topological phases. We investigate
the real and imaginary components of the magneto-optical
conductivity in the presence of a quantized magnetic field
for both symmetric and antisymmetric surface states. We
study the possible optical transitions in the FTI thin film
that occur between different Landau levels by absorption of
right-/left-handed circularly polarized photons subjected to
optical selection rules. We further calculate the magneto-
optical absorption spectra versus photon energy for distinct

topological phases whereas keeping the magnetic field and
chemical potential fixed. We also explore the effects of dop-
ing of the LLs on the magneto-optical absorption spectra by
changing the electron concentration. We also study the Kerr
and Faraday rotations in the FTI thin film. The Kerr/Faraday
rotations are nonreciprocal phenomena that occur in an ac-
tive and transparent medium in which the polarization of the
reflected/transmitted linearly polarized plane wave is rotated
in a magnetic-field B. The present study of the magneto-
optical effects details the impact of an external magnetic
field, off-resonant optical field, electron concentration, inci-
dent photon energy, and incident angle.

The magnitude of Faraday rotation angle in graphene is
about 6◦ in a magnetic field of strength 7 T at low frequen-
cies [45]. In contrast to graphene, the amount of the maximum
Faraday and Kerr rotation angles in the FTI thin film ex-
ceeds ≈4.4◦ and ≈15◦ for B = 5 T respectively. The surface
state-dependent magneto-optical effects of the FTI thin film
systems may open avenues for to design of novel photonic, op-
toelectronics, and optospintronic devices. In addition, the Kerr
and Faraday rotations are important and suitable experimental
tools for probing distinct topological phases of topological
materials and can be used for practical applications, such
as Faraday rotators, magnetic-field sensing, current sensors,
isolators, optical modulation, and communication.

This article is organized in the following way. We discuss
the basic Hamiltonian of the FTI ultrathin film subjected to
circularly polarized optical and magnetic fields and calculate
the eigenenergies and eigenstates of the quantum system with
and without a magnetic field in distinct topological phases
in Sec. II A. In Secs. II B and III A, we derive the real and
imaginary components for the longitudinal and transverse
Hall MO of the FTI thin film and provide numerical results for
different values of magnetic and optical fields. In Sec. III B,
we discuss the effect of the chemical potential modulation
on the magneto-optical conductivity of the FTI thin films.
Section III C includes a discussion on the Kerr and Faraday
rotations for different magnetic, optical fields, and chemical
potentials. We conclude our results in Sec. IV.

II. FORMALISM

A. System Hamiltonian

The 2D Dirac-like Hamiltonian of the SSs of the FTI thin
films subjected to a circularly polarized optical field is as
follows [46–48]:

Hη
τz

= h̄vF (kyσx − kxσy) + �η
τz
σz, (1)

where vF = 5 × 105 m/s being the Fermi velocity [12], σx, σy,
and σz are the Pauli matrices, �η

τz
= τz�H + η�ω is the Dirac

mass, τz = ±1 is for top/bottom (symmetric/antisymmetric)
SSs, and η = ±1 represents the right/left circular polarization
off-resonant light. �H is the hybridization potential between
the symmetric and the antisymmetric SSs, which depends
on the thickness [24,25]. �ω represents the mass term in-
duced by the off-resonant circularly polarized optical field.
It must be noted that the �ω breaks the TRS. The disper-
sion relation of the FTI thin film corresponding to Eq. (1)
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FIG. 1. Energy dispersion Eη,λ
τz

of the Floquet topological thin film in distinct topological phases for right-handed circularly polarized
(RHCP) irradiated light. (a) �ω = 0, (b) �ω = 0.5�H , (c) �ω = �H , and (d) �ω = 1.5�H . The top and bottom SS bands are represented by
solid green and red curves, respectively. We set vF = 5 × 105 m/s and �H = 4 meV [46].

can be obtained as

Eη,λ
τz

= λ

√
h̄2v2

F k2 + (
�

η
τz

)2
, (2)

where λ = ±1 denotes the conduction/valance bands. The
normalized wave function of the system is given by

ψη
τz

(k) =
(

ψA

ψB

)
= 1√

2A

( √
1 + λ cos θ

λ
√

1 − λ cos θeiτzφk

)
eik·r, (3)

where A = LxLy denotes the area of the FTI thin-film sample,

k =
√

k2
x + k2

y , cos θ = �η
τz
/Eη,λ

τz
, and sin θ = h̄vF k/Eη,λ

τz
.

The electronic spectra of FTI are shown in Figs. 1(a)–1(d)
for the RHCP irradiated light where solid green curves corre-
spond to the top SSs and solid red curves represent the bottom
SSs bands. First, we consider that the irradiated off-resonant
optical field �ω = 0. We can observe that the spectrum re-
mains gapped with no spin splitting in the surface bands as
depicted in Fig. 1(a). For a finite optical field (�ω < �H ), the
pseudospin degeneracy is lifted, the top (bottom) SSs energy
bands move upward (downward), and the quantum system
stays as a QPSH phase as illustrated in Fig. 1(b). As applied
circularly polarized laser intensity is increased, the band gap
between the top SSs decreases and at the charge neutrality
point (CNP) the Dirac cone closes completely as presented
in Fig. 1(c). For �ω > �H , all gaps are opened, and this
opening and closing of the band gap signify a QPT from a
QPSHI phase to a P-QH phase as shown in Fig. 1(d). For the

left-handed circularly polarized (LHCP) irradiated optical
field, the Floquet topological thin film stays the same as the
RHCP except the bands related to the symmetric (antisym-
metric) SSs move downward (upward).

We now consider the SS Hamiltonian of the FTI thin
film by including an external perpendicular magnetic-field
B. Working in the Landau gauge and employing the Peierls
substitution with vector potential (0, Bx, 0), our Hamiltonian
becomes

Hτzη = h̄vF [(ky − eBx/h̄)σx − kxσy] + �τzησz, (4)

Diagonalizing the above Hamiltonian given in Eq. (4) yields
the low-energy Landau-level dispersion,

Eη,λ
n,τz

= λ

√
E2

B|n| + (
�

η
τz

)2
, (5)

Eη,λ

0,τz
= −�η

τz
, (6)

where λ = ±1 represents the conduction/valance bands and
EB = vF

√
2eBh̄. The corresponding solutions of the normal-

ized eigenstates are as follows:

�η,λ
n,τz

= eikyy√
Ly

(−iAη,λ
n,τz

|n − 1〉
Bη,λ

n,τz
|n〉

)
. (7)

For n = 0, Landau levels,

�
η,λ

0,τz
= eikyy√

Ly

(
0
|0〉

)
, (8)
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FIG. 2. The FTI thin-film LL energies versus magnetic-field B in distinct topological phases. (a) �ω = 0, (b) �ω = 0.5�H , (c) �ω = �H ,
and (d) �ω = 1.5�H . The top and bottom SS bands are represented by solid green and red curves, respectively.

where

Aη,μ
n,τz

=
√(

Eη,μ
n,τz + �

η
τz

)/
2Eη,λ

n,τz , (9)

and

Bη,μ
n,τz

=
√(

Eη,μ
n,τz − �

η
τz

)/
2Eη,λ

n,τz , (10)

where |n〉 denotes a Fock state of the simple harmonic oscil-
lator. In Figs. 2(a)–2(d), we have plotted the Landau-levels
energy dispersion of the FTI thin film versus the mag-
netic field for the symmetric and antisymmetric SSs. The
hybridization potential �H between the symmetric and the
antisymmetric SSs leads to spin splitting into an electron
and holelike n = 0 LLs and lifts the degeneracy. The n = 0
Landau levels of the FTI thin film for the top and bottom
SSs electrons are pinned at different points in the conduc-
tion and valance bands in distinct topological phases. In the
absence of the optical field �ω = 0, the n = 0 energy LLs
are degenerate as shown in Fig. 2(a). As we further increase
the strength of the optical field, then the system is in the
QPSHI phase (�ω = 0.5�H ) as illustrated in Fig. 2(b). In the

QPSHI phase, the n = 0 LL of the bottom SS is located in the
conduction band, whereas the top SS is in the valance band.
In the CNP state (�ω = �H ), the gap of one of the bottom
SS bands closes, and the n = 0 bottom SS Landau level sits
at zero energy, whereas the n = 0 top SS Landau level is at
negative energy, which exhibits graphenelike behavior [31] as
depicted in Fig. 2(c). In the P-QHI state, the lowest-energy gap
reopens, and the locations of the n = 0 Landau levels shift to
the valance band as shown in Fig. 2(d). An opposite behavior
can be identified by changing the light polarization from the
RHCP to the LHCP.

B. Magneto-optical conductivities of Floquet
topological insulators

With the knowledge of the Landau levels and eigenfunc-
tions of the FTI thin film under the application of magnetic
field, the SS-dependent magneto-optical conductivity can now
be determined. The standard Kubo formalism is utilized to
derive the expressions for the magneto-optical conductivity of
the FTI thin film by taking into account the optical, magnetic
fields, and frequency dependence. The general expression of
the Kubo formula is [31,36,49] as follows:

σμν (iω, B) = ih̄

2π l2
B

∑
γ ,τz=±1

∑
mn

fn − fm

En − Em

〈
�η,λ

n,τz

∣∣ ĵμ|�η′,λ′
m,τ ′

z

〉〈
�

η′,λ′
m,τ ′

z

∣∣ ĵν
∣∣�η,λ

n,τz

〉
h̄ω − (En − Em) + i�

, (11)
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where lB = √
h̄/eB denotes the magnetic length, the Fermi-Dirac distribution function is represented by fn = 1/(1 +

e(En−μF )/kBT ), μF is the chemical potential, ĵμ/ν is the current density operator, and � is the phenomenological transport scattering
rate. Evaluating the current density matrix elements explicitly gives

σxx(iω, B) = ih̄e2v2
F

2π l2
B

∑
η,τz=±1

∑
mn

fn − fm

En − Em

(
Aη′,λ′

m,τ ′
z
Bη,λ

n,τz

)2
δm−1,n + (

Bη′,λ′
m,τ ′

z
Aη,λ

n,τz

)2
δm+1,n

h̄ω − (En − Em) + i�
. (12)

The real and imaginary components of the longitudinal magneto-optical conductivity are given by

Re[σxx(ω, B)]

σ0
= E2

B

π

∑
η,τz=±1

∑
m,n

fn − fm

En − Em

[(
Aη′,λ′

m,τ ′
z
Bη,λ

n,τz

)2
δm−1,n + (

Bη′,λ′
m,τ ′

z
Aη,λ

n,τz

)2]Mmn, (13)

and

Im[σxx(ω, B)]

σ0
= E2

B

π

∑
η,τz=±1

∑
m,n

fn − fm

En − Em

[(
Aη′,λ′

m,τ ′
z
Bη,λ

n,τz

)2
δm−1,n + (

Bη′,λ′
m,τ ′

z
Aη,λ

n,τz

)2]M′
mn, (14)

respectively. Here, σ0 = e2/4h̄ being the universal conductivity, Mmn = �/{[h̄ω − (En − Em)]2 + �2} and M′
mn = [h̄ω − (En −

Em)]/{[h̄ω − (En − Em)]2 + �2}. Similarly, the real and imaginary components of the transverse Hall conductivity can be
obtained as

Re[σxy(ω, B)]

σ0
= E2

B

π

∑
η,τz=±1

∑
m,n

fn − fm

En − Em

[(
Aη′,λ′

m,τ ′
z
Bη,λ

n,τz

)2
δm−1,n − (

Bη′,λ′
m,τ ′

z
Aη,λ

n,τz

)2]M′
mn. (15)

and

Im[σxy(ω, B)]

σ0
= E2

B

π

∑
η,τz=±1

∑
m,n

fn − fm

En − Em

[(
Aη′,λ′

m,τ ′
z
Bη,λ

n,τz

)2
δm−1,n − (

Bη′,λ′
m,τ ′

z
Aη,λ

n,τz

)2]Mmn. (16)

In the limit, �ω = �H = 0, the magneto-optical conductivi-
ties of the monolayer graphene are recovered [31].

III. RESULTS AND DISCUSSIONS

A. Influence of off-resonant circularly polarized laser field:
Transition from the QPSHI to the P-QHI phase

To better understand the SS-dependent MO conductivities
of the FTI thin film, we discuss the numerical results here.
Landau-level energies as a function of the applied magnetic
field of the FTI thin film are depicted in Figs. 3(a) and 3(b)
for RHCP and LHCP irradiated light, respectively. We have
drawn the allowed LLs transitions for B = 1 T in the QPSHI
phase. In Figs. 3(c)–3(f), we have shown the real components
of the longitudinal and Hall conductivities as a function of
photon energy in the QPSHI phase for the symmetric and
antisymmetric SSs. We have chosen �ω = 2, �H = 4 [50],
μF = 0 meV, B = 1 T, and � = 0.15�H [51] parameters for
these simulations. In Fig. 3(c), we can observe resonant ab-
sorptive peaks in σxx spectra when the incident photon with
energy h̄ω matches the gap between the two LLs. The dotted
shaded green curve is for the bottom SS electron and the solid
red shaded curve is for the top SS electron transitions. The
resonant features corresponding to different optical transitions
Eτz=±1

m → Eτz=±1
n are labeled as T τz=±1

mn , and these transitions
are drawn in Fig. 3(a). We can observe a series of absorp-
tion peaks in σxx where each of these peaks is represented
by a Lorentzian peak. For example, the first two absorp-
tion peaks in the upper panel of Fig. 3(c) correspond to the
T −1

−01 (bottom surface) and the T +1
−10 (top surface) transitions,

which are the transitions from n = 0 to n = 1 Landau levels

as depicted in Fig. 3(b). Here, optically allowed interband
Landau-level optical transitions satisfying the selection rule
|m| = |n ± 1| for the symmetric and antisymmetric SSs. The
spectral weights or areas of the bottom SS absorption peak
are larger than the top SS peak. The other peaks at higher
magneto-excitation energies originate from T −1

−12, T +1
−12, T −1

−21,
and T +1

−21 transitions, respectively. All the peaks gradually shift
towards higher magneto-excitation frequencies with reduced
spectral weights. Next, we calculate the real component of the
Hall conductivity as a function of h̄ω in Fig. 3(d). The main
characteristics of the real part of the transverse Hall conduc-
tivity are its antisymmetric nature about its zero value. We can
see the first positive (negative) and negative (positive) peaks
at h̄ω = 20.3 and h̄ω = 25.12 meV, for top (bottom) SSs, re-
spectively. These peaks in the conductivity spectra result from
n = 0 to n = 1 LLs transitions. The other pairs of positive
and negative peaks can be seen at higher magneto-excitation
energies for T −1

−12, T +1
−12, T −1

−21, and T +1
−21 transitions. We have

plotted the real components of the surface state-dependent
longitudinal and Hall conductivities of the FTI thin film for
the LHCP irradiated light in Figs. 3(e) and 3(f). Reversing the
optical field polarization from the RHCP to the LHCP leads
to an exchange of SSs in both the valence and the conduction
bands as shown in Fig. 3(b).

An irradiated off-resonant optical field �ω, controls
the electronic band structure of the TI as illustrated in
Figs. 2(a)–2(d). Here, we use an alternative approach to un-
derstand the interplay between the surface state-dependent
MO conductivities and the TQPTs in the FTI thin film.
We plotted the real part of the longitudinal and imaginary
parts of the transverse Hall conductivity as a function of
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FIG. 3. Landau-level dispersion of the FTI thin film versus applied magnetic field for (a) RHCP and (b) LHCP irradiated light. (c) The real
components of the longitudinal and (d) transverse Hall conductivity for RHCP light at B = 1 T and μF = 0 meV in the QPSHI phase. (e) The
real part of longitudinal and (f) transverse Hall conductivity for LHCP light at B = 1 T and μF = 0 meV in the QPSHI phase. The top and
bottom SSs conductivities are represented by solid shaded green and red curves, respectively.

normalized optical field �ω/�H and photonic energies
h̄ω/�H in Figs. 4(a) and 4(b). The CNP state appears at the
critical point between the QPSHI and the P-QHI phases as
shown in Fig. 4(a) for B = 1 T and μF = 0 meV. Figure 4(b)
depicts the imaginary part of the transverse Hall conductivity
as a function of the normalized optical field and photonic
energies. At critical point, the sign of the conductivity peaks
switches which indicates a QPT. From Figs. 4(a) and 4(b), it
is clear that the optical transitions caused by the n=0 Landau
levels scale nearly linearly for different optical fields, whereas
the other optical transitions approximately parabolically.

In the following, we explore the real parts of the sur-
face state-dependent magneto-optical conductivities of the
FTI thin film in distinct topological phases. The absorptive
part of the longitudinal conductivity versus the photon en-
ergy is shown in Fig. 4(c) for varying �ω whereas keeping
μF = 0 meV and B = 1 T for the RHCP light. From the
top panel of Fig. 4(c), it is clear that as the intensity of the
laser field �ω is increased, each interband transition splits
into two transitions corresponding to the symmetric and an-
tisymmetric SSs. In the QPSHI regime (�ω = 0.5�H ), the
first and second absorption peaks originate from the T +1

−10 and
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FIG. 4. (a) The real component of the longitudinal and (b) the imaginary component of the Hall magneto-optical conductivity for B = 1 T
and μF = 0 meV in distinct topological phases. (c) The real component of the longitudinal and (d) the imaginary component of the Hall
magneto-optical conductivity as a function of normalized optical field (x = �ω/�H ) and photonic energies (y = h̄ω/�H ) for B = 1 T and
μF = 0 meV in distinct topological phases. The top (bottom) SS-dependent conductivities are represented by solid (dotted) shaded curves,
respectively.

T −1
−01 transitions. In each of these optical transitions, one of the

participating levels is an n = 0 level. The spectral weight of
the top SS peak is larger compared to the bottom SS. In the
CNP state (�ω/�H = 1), the first two transitions originated
from the n = 0 to n = 1 LLs move apart: the T +1

−10 (T −1
−01)

absorptive peak is red- (blue)shifted, which shows that the top
SS electron band gap closes as shown in the middle panel
of Fig. 4(c). In this state, the magneto-excitation energies
corresponding to the first and second absorption peaks are
18.2 and 27.8 meV, respectively. For �ω > �H , the system
is in the P-QHI regime. Due to the lowest gap reopening,
all interband transition magneto-excitation energies move to

higher energy in this regime as presented in the lower panel of
Fig. 4(c). To fully understand the SS-dependent MO absorp-
tion spectra of the Hall conductivity, we show the imaginary
component of the Hall conductivity with photon energy in
Fig. 4(d) in distinct topological regimes for the RHCP light.
For �ω = 0.5�H , the imaginary component of the σxy only
shows a positive (negative) peak for the top and bottom SS
transitions as depicted in the top panel of Fig. 4(d). In the
CNP state, we can observe a similar trend as shown in the
QPSHI phase, but the bottom (top) SS transition excitation
energies are moving to the right (left). The spectral weights
of the absorption peaks are also enhanced in the CNP state
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FIG. 5. (a) Schematic representation of optically allowed Landau-level transitions for the symmetric and antisymmetric SSs in the QPSHI
phase for three different values of electron concentrations subjected to selection rules. The longitudinal conductivity and Hall conductivity
versus photon energy for different chemical potentials. (b) The real component of longitudinal and (c) the imaginary component of the Hall
magneto-optical conductivity as a function of photonic energy for B = 1 T. The top (bottom) SS-dependent conductivities are represented by
solid (dotted) shaded curves, respectively.

as depicted in the middle portion of Fig. 4(d). In the P-QHI
phase, both of the absorptive peaks originating from the n = 0
to n = 1 Landau-leve transitions are negative as presented in
the lower panel of Fig. 4(d). The spectral weight of the top SS
transition is larger than the bottom SS transition.

B. Chemical potential dependence on the magneto-optical
conductivity of Floquet topological insulators

We now examine how the chemical potential μF affects
the magneto-optical conductivities of the Floquet topological
insulator thin film. The electron densities in the FTI thin film

can be tuned by using external bias or by optical pumping. In
Fig. 5(a), we have shown the energy dispersion of the FTI thin
film with magnetic-field B for allowed and forbidden (Pauli
blocked) optical transitions. We have chosen three different
values of electron densities or chemical potentials for B = 1 T
in the QPSHI phase for the LHCP light, respectively. In the
first case, we consider μF = 0 meV and falls within the n = 0
Landau levels. In the second case, μF is varied, and it moves
to μF = 10 meV where it falls between the n = 0 and the
n = 1 Landau levels. In the third case, we have chosen μF =
22 meV, and it is residing in between the n = 1 and the n = 2
Landau levels. For μF = 0, we have pure interband transitions
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for the symmetric and antisymmetric SSs as depicted in the
top panel of Fig. 5(b). These interband transitions for the sym-
metric and antisymmetric SSs are presented by green and red
arrows, respectively, in Fig. 5(a). They identify as T −1

−10 = 20.3
and T +1

10 = 25.1 meV for the symmetric and antisymmetric
SSs respectively in Fig. 5(b). The intensity of the first peak is
smaller, which is associated entirely with bottom SS electrons
compared to the top SS peak. Including a finite chemical po-
tential μF = 10 meV, causes various LL transitions to become
Pauli blocked. For example, the optical transition originating
from bottom SS T −1

−10 = 20.3 meV becomes Pauli blocked
(shown by black dashed arrow) and, in its stead, the intraband
Landau-level transition T −1

01 = 16.0 meV appears, whereas
for the top SS electron, we can see the allowed interband LL
transition T +1

01 = 25.1 meV. The intraband and Pauli-blocked
optical transitions are shown by purple and black dashed up-
ward pointing arrows in Fig. 5(a). The lowest interband peak
redistributes its intensity between itself and an intraband peak
as depicted in the middle panel of Fig. 5(b). These intraband
transitions result entirely from bottom SS electrons, whereas
the second peak is associated entirely with top SS electrons.
The spectral weight of the second interband peak reduces as
compared to the intraband transitions.

In the third case, μF is sitting between the n = 1 and the
n = 2 Landau levels, both interband transitions starting from
n = 0, i.e., T −1

−10 and T +1
01 now disappear due to Pauli block-

ing. These Pauli-blocked optical Landau-level transitions are
again presented by the dashed arrows in the rightmost part of
Fig. 5(a). In their place, however, the intraband optical transi-
tions (shown by purple arrows) arise. It is worth mentioning
that for different chemical potentials, some of the optical
features are strong, whereas others are weak as shown in
Fig. 5(b). We also observe that the intraband transitions in the
lower portion of Fig. 5(b) are closely spaced. We note that the
transitions involving the n = 0 Landau levels of the bottom
and top SSs completely disappeared from the conductivity
spectrum. We can see that the intensity of the next peak is
reduced as interband transitions to the n = 1 Landau levels are
forbidden and Pauli blocked as presented by the black-dashed
arrows in Fig. 5(b). Note that the peaks corresponding to
higher-energy Landau-level optical transitions are not affected
by the variation of the chemical potentials.

We now consider the absorptive component of the imagi-
nary magneto-optical Hall conductivity for different chemical
potentials. Figure 5(c) presents the imaginary absorptive com-
ponent of the magneto-optical transverse Hall conductivity
with photon energy in a magnetic-field B = 1 T. In the upper
panels, μF is taken to be zero meV. It is clear from Fig. 5(c)
that the positive and negative peaks corresponding to T −1

−10 and
T +1

01 , respectively. The transitions originating from the n = 1
and n = 2 Landau levels (T −1

−12, T +1
−12, T −1

−21, and T +1
−21). The

magnitude of n = 1 and n = 2 Landau-level peaks is fewer
than those for n = 0 and n = 1 Landau levels as shown in
the top panel of Fig. 5(c). For μF = 10 meV, we can see an
absorptive intraband and interband features for the lowest-
energy transitions for the bottom and top SSs, respectively,
as depicted in the middle portion of Fig. 5(c). With increased
μF = 22 meV, the spectral weight of bottom and top SSs in-
terband transitions is redistributed to a single strong intraband

peak. We observe that the intraband transition peaks of the
imaginary absorptive component of the Hall conductivity are
redshifted with the increase in the doping due to the decreas-
ing Landau-level spacings as depicted in the bottom panel of
Fig. 5(c).

C. Faraday and Kerr effects in Floquet topological insulators

In this section, we demonstrate the Faraday and Kerr
effects in the FTI thin film when subjected to an external off-
resonant optical and magnetic fields. We consider an ultrathin
film of the Floquet topological insulator (such that d → 0).
In these situations, the FTI thin-film top and bottom surface
states can be treated as two-dimensional surfaces as far as
light-matter interaction is concerned. We consider a linearly
polarized light beam interacting with the Floquet topological
insulator thin-film-substrate system with an incidence angle
θ1. In this scenario, a linearly polarized electromagnetic beam
of frequency ω is propagating through the FTI thin film.
The Fresnel reflection and transmission coefficients under the
influence of a magnetic-field B of a two-dimensional material
can be computed by using Maxwell’s equations and matching
the appropriate electromagnetic boundary conditions on either
side of the FTI thin film [36,49],

rpp(k, iω, B) = �T
+�L

− + Z2
0 μ1μ2q1zq2zσ

2
xy(iω, B)

�T+�L+ + Z2
0 μ1μ2q1zq2zσ 2

xy(iω, B)
, (17)

rss(k, iω, B) = −�T
−�L

+ + Z2
0 μ1μ2q1zq2zσ

2
xy(iω, B)

�T+�L+ + Z2
0 μ1μ2q1zq2zσ 2

xy(iω, B)
, (18)

tpp(k, iω, B) = 2
Z2ε2

Z1

q1z�
T
+

�T+�L+ + Z2
0 μ1μ2q1zq2zσ 2

xy(iω, B)
,

(19)

tss(k, iω, B) = 2μ2
q1z�

L
+

�T+�L+ + Z2
0 μ1μ2q1zq2zσ 2

xy(iω, B)
,

(20)

rsp(k, iω, B) = tsp(k, iω, B)

= −2Z2
0 μ0μ1μ2q1zq2zσxy(iω, B)

Z1
[
�T+�L+ + Z2

0 μ1μ2q1zq2zσ 2
xy(iω, B)

] ,

(21)

rps(k, iω, B) = −k1q2z

k2q1z
tps(k, iω, B)

= −2
Z2

0 μ1μ2

Z1

× q1zq2zσxy(iω, B)

�T+�L+ + Z2
0 μ1μ2q1zq2zσ 2

xy(iω, B)
, (22)

where

�L
± = [q1zε2 ± q2zε1 + q1zq2zσxx(iω, B)/(ε0ω)], (23)

�T
± = [q2zμ1 ± q1zμ2 + μ0μ1μ2σxy(iω, B)ω]· (24)

Here, we denoted the permittivity and permeability of the
media by εn and μn, respectively, and impedances by
Zn = Z0

√
μn/εn and Z0 = √

μ0/ε0 where n = (1, 2). The
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FIG. 6. (a) The s-polarized Faraday rotation for different magnetic fields and (b) p-polarized Kerr rotations in the QPSH phase (�ω =
0.5�H ) for different magnetic fields for the RHCP light. The top and bottom SS conductivities are represented by solid and dotted shaded
curves, respectively. The parameters chosen are � = 0.15�H and θ1 = 45◦.

incident and transmitted wave vectors are represented by
q1z = k1 cos(θ1) and q2z = k2 cos(θ2), respectively. For the
FTI thin-film substrate system, we consider ε1 = 1 and μ1 =
1 for medium 1 and μ2 = 1 for medium 2 (nonmagnetic). The
reflection and transmission coefficients, which are strongly
dependent on the surface state-dependent MO conductivities,
subsequently, determine the Faraday and Kerr rotations. The
Faraday and Kerr rotation angles for the incident s- and p-
polarized beam can be written as

�
τz=±1,γ=1
F,s(p) = 1

2
tan−1

(
2

Re
(
χ

s(p)
F

)
1 − ∣∣χ s(p)

F

∣∣2

)
, (25)

�
τz=±1,γ=1
K,s(p) = 1

2
tan−1

(
2

Re
(
χ

s(p)
K

)
1 − ∣∣χ s(p)

K

∣∣2

)
, (26)

where χ s
F = tps/tss, χ

p
F = tsp/tpp, χ s

K = rps/rss, and χ
p
K =

rsp/rpp. In the next section, we calculate the Faraday and
Kerr rotations of the transmitted and reflected lights by using
Eqs. (25) and (26).

We first demonstrate the magnetic-field modulated Fara-
day and Kerr rotation angles as a function of h̄ω in the FTI
thin film for μF = 0 meV in the QPSHI phase. In Figs. 6(a)
and 6(b), we plot �

τz=±1,γ=1
F,s and �

τz=±1,γ=1
K,p at B = 1, 3, and

5 T shown in the upper, middle, and lower panels of Figs. 6(a)
and 6(b) respectively. We have presented the s-polarized

Faraday rotation versus photonic energy for the RHCP light
in the top panel of Fig. 6(a). The Floquet topological insu-
lator thin-film Landau-level dispersion is strongly dependent
on the perpendicularly applied magnetic field as obvious by
Eq. (5). The Faraday rotation signal originating from any SS
is dispersive Lorentzian. We can observe a positive (negative)
Lorentzian followed by a negative (positive) signal for the
symmetric and antisymmetric SSs of the FTI thin film, re-
spectively. We can call this dispersive Lorentzian an antiphase
peak. The Faraday rotation angle for the first two antiphase
peaks is ∼± 2◦ and ∼± 1.5◦ for both SSs at B = 1 T, re-
spectively. A discernible Faraday rotation antiphase peaks
for both SSs are also observed at higher magnetoexcitation
terahertz (THz) frequencies with a maximum value of Faraday
rotation angle ∼± 0.8◦. For larger values of the B field, the
magneto-optic excitation energies shift towards the right (i.e.,
towards higher-THz frequencies) with a consequent increase
in the amount of the Faraday rotation angle �

τz=±1,γ=1
F,s . For

example, the maximum value of the rotation �
τz=±1,γ=1
F,s =

±4.4◦ at B = 5 T, which is really a large amount of rotation
compared to previous work on Bi2Se3 TIs [52,53]. The ex-
ternally applied magnetic field only shifts the position of the
photonic energies, which also modifies the magnitude of the
Faraday rotation angle. Figure 6(b) illustrates the p-polarized
magneto-optical Kerr effect spectra versus photonic energy
for both SSs in the QPSHI phase for different magnetic fields.
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FIG. 7. (a) The s-polarized Faraday rotation with h̄ω in distinct topological phases and (b) s-polarized Faraday rotation versus photon
energy for different chemical potentials in the QPSH phase for the RHCP light. The top and bottom SSs conductivities are represented by solid
and dotted shaded curves, respectively. The parameters used are B = 1 T, θ1 = 45◦, � = 0.15�H , and refractive index n2 = 1.84.

We noted that the giant Kerr rotations are originating from the
first two antiphase peaks (T −1

−01 and T +1
−10 transitions). On the

other hand, we can observe a relatively small Kerr rotation
antiphase peaks corresponding to second and third magneto-
excitation transitions (T −1

−12, T +1
−12, T −1

−21, and T +1
−21). For

B = 5 T (see the bottom panel), the Kerr rotation angle reaches
�

τz=±1,γ=1
K,p = ±15◦.
Figure 7(a) represents the Faraday rotation versus photon

energy h̄ω for different off-resonant optical fields in the THz
regime at B = 1 T, whereas keeping μF = 0. In the upper
panel of Fig. 6(a), we already explained the Faraday rotation
in the QPSHI regime (�ω = 0.5�H ). In the middle panel of
Fig. 6(a), we plot the SS-dependent Faraday rotation with
photonic energy in the CNP state. The magnitude of surface
state-dependent Faraday angles for both QPSHI and CNP
states are ≈±2.0◦ for both SSs transitions. In the P-QHI
phase (�ω/�H = 1.5), the antiphase pair is blueshifted as
shown in the lower panel of Fig. 6(a). Here, the amount
of the Faraday rotation is relatively small as compared to
the QPSHI and CNP states. In the subsequent analysis, we
examine how doping affects the Faraday rotation angle. Re-
cent experiments have demonstrated that the Landau levels
of the FTI thin film can be adjusted by employing back and
topgate electrodes [54,55]. The s-polarized Faraday rotation
angles are shown in Fig. 7(b) for different chemical potentials.
The top panel of Fig. 7(b) presents the Faraday rotation for
μF = 0 meV, which is originating from purely interband tran-
sitions. The Faraday rotation angle for the top SS is larger

compared to the bottom SS transition. As we increase μF =
10 meV, we observe that the maximum Faraday rotation is
achieved at the bottom SS as depicted in the middle panel of
Fig. 7(b). This large rotation is due to the intraband (T −1

01 =
16.3-meV) transition. For μF = 22 meV, these Faraday ro-
tation signatures originate from the two intraband transitions
T +1

12 = 7.2 and T −1
12 = 7.5 meV as illustrated in the bottom

portion of Fig. 7(b). We further note that the top and bottom
SS antiphase peaks switch signs, which show the modulation
of the Faraday rotation angle by switching the chemical po-
tential. The Faraday rotation angle is enhanced due to the
intraband transitions.

IV. CONCLUSION

We have computed the Landau-level energy dispersion
and magneto-optical conductivity of the FTI thin-film system
based on linear-response theory. We discussed the energy
dispersion of the FTI thin film with and without magnetic field
in distinct topological phases. We derived analytic expres-
sions for the surface state-dependent MO conductivities of
the Floquet topological insulator thin film for the LHCP- and
RHCP-irradiated light. The surface state-dependent magneto-
optical conductivity spectra reflect the structure of the
Landau levels. By changing the intensity of the off-resonant
laser field, the behavior of the longitudinal and transverse
conductivities signature quantum phase transitions. We
demonstrated that the magneto-optical conductivities are
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hugely dependent on the intensity of the applied optical
and magnetic fields. We further studied the magnetic, op-
tical fields, and chemical potential-modulated surface states
dependent on Faraday and Kerr rotations. We found that
the amount of the maximum Faraday and Kerr rotation an-
gles exceeds ≈4.4◦ and ≈15◦ for B = 5 T, respectively. our
simulation results shed light on the surface state-dependent
magneto-optical effects of the FTI thin-film systems and open
a promising route to design novel photonic, optoelectronics,
and optospintronic devices.
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