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Dynamics and charge fluctuations in large-q Sachdev-Ye-Kitaev lattices
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It is known that the large-q complex Sachdev-Ye-Kitaev dot thermalizes instantaneously under rather general
dynamical protocols. We consider a lattice of such dots coupled together, allowing for r/2 body hopping of
particles between nearest neighbors. We develop a rather general analytical framework to study the dynamics to
leading order in 1/q on such a lattice, allowing for arbitrary time-dependent couplings, hence general dynamical
protocols. We find that the physics of the diffusive case r > 2 is effectively the same as the kinetic case r = 2,
assuming r = O(q0 ). Remarkably, we find that the local charge densities Qi form a closed set of equations. They,
however, only show fluctuations of the order O(Qi/q), hence remaining constant in the limit q → ∞. Despite
this effective lack of charge dynamics, the dots do not in fact behave as isolated lattice sites which would ther-
malize instantaneously. Indeed, we show via a proof by contradiction that such instantaneously thermalization
is not generally possible for a connected lattice. Importantly, the results are shown to be independent of the
dimensionality of the lattice.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model is a generalization
of Sachdev-Ye model [1] proposed by Kitaev [2] as a model
for quantum holography where q Majorana fermions interact
via random matrix coupling in a total of N particles. The
SYK model is a (0 + 1)-dimensional strongly coupled quan-
tum field theory. Given this, it has attracted attention due
to its analytical tractability in the large-N limit where the
Schwinger-Dyson equations can be written in a closed form.
This is despite the model being maximally chaotic [3].

To bring the model closer in contact with a condensed mat-
ter system, one usually considers complex charged fermions
[4–6]. Such a natural generalization is known as the complex
SYK model. Unlike the Majorana case, here the number of
particles is a definable quantity associated with a conserved
U(1) charge due to the presence of fermionic charges. This
charge may be varied by introducing a chemical or mass po-
tential term in the Hamiltonian. When considering this model
at charge neutrality, the Majorana case is recovered.

Despite its simplification at large N , the model is usually
only fully solvable via numerics. At low energies, an emergent
conformal symmetry does, however, allow one to extract cer-
tain analytical results [6]. In considering q-body interactions,
one may in fact analytically solve the model order by order
in 1/q [7]. The leading-order results are often qualitatively
reflective of the q � 4 models. For instance, quantitatively
and qualitatively similar phase transitions are observed at
all q � 4 [8–11]. This system has a tendency to thermalize
rapidly [12]. In particular, given a general nonequilibrium
protocol to a single large-q SYK model, the system will
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thermalize instantaneous [13]. A better understanding of this
thermalization process is still lacking. For instance, under
which conditions would a large-q SYK model not thermalize
instantaneously?

Moreover, one may for instance study charge transport
along a chain of complex SYK dots. In this setup each
lattice site (or blob for a better physical picture) is occu-
pied by a complex SYK model. The blobs are connected
by transport terms with nearest-neighbor hopping. Such a
one-dimensional chain is intimately connected to strongly
correlated quantum matter and strange metals, which are con-
sidered to be at the heart of modern condensed matter theory.
They have been shown to exhibit non-Fermi-liquid transport
behavior [5,14,15], for instance, a linear in T resistivity [5]. In
other words, their behavior is not captured by a quasiparticle
picture.

One analytically tractable construction considers such a
chain where each lattice site is occupied by large-q complex
SYK model. Naturally, this construction has been studied in
the literature [16], where the transport terms also include
q/2-body hopping. The analytically tractable property of the
large-q SYK model is then exploited to extract exact analyti-
cal results. This then provides analytical insight into strongly
correlated matter. For instance, by imposing uniform tempera-
ture and chemical potential gradients, thermoelectric transport
properties may be calculated.

In this work, we consider a similar construction: a one-
dimensional lattice where each blob has large-q complex SYK
model and the blobs are connected by r/2-particle trans-
port between nearest neighbors. Standard (quadratic) hopping
would correspond to r = 2, while we also allow for diffusive
hopping r > 2. We consider r to be order of O(q0). Due to
analytic tractability, this has become one of the prototypical
examples for analytic calculations of various transport prop-
erties. We develop a rather general framework required to
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FIG. 1. One-dimensional chain where each blob contains large-q
complex SYK model with onsite strength for ith site is given by Ji

while the nearest-neighbor coupling strength is given by Di.

study the dynamical properties of this system. Our framework
is well suited to handle general dynamical protocols such
as quenches and ramps in order to study the nonequilibrium
behavior of the system. Such dynamical protocols will be
the focus of this work, instead of temperature and chemical
potential gradients considered in [16]. The 1/q expansion
drastically simplifies the analysis. For instance, we find that
to leading order in 1/q, the equation of motion for the charge
is closed under the charge density. In other words, the compli-
cated Green’s functions do not enter.

With this, we may analytically calculate the charge trans-
port dynamics in the system. In particular, we focus on a
quench from a disconnected, with transport terms switched
off, to a connected chain. We find a discrete wave equation for
the charge transport. Solving this equation, we show how
current flows directly after transport is switched on. We find,
however, in the large-q limit, that the local charge remains
constant. From this, one might assume that each dot behaves
as an isolated (instant thermalizing) large-q SYK system. We
show that this is in fact not the case. This is done via a
proof by contradiction. Assuming the chain does thermalize
instantaneously, implies a certain consistency relation. This
relation is not satisfied for our quench, hence, the system can-
not thermalize instantaneously. One may, however, consider
when the consistency relation would be fulfilled. This would
then provide a set of conditions under which instantaneous
thermalization cannot be ruled out. One of these cases is when
all transport coefficients are set to zero. Thus, our proof is
consistent with the instantaneous thermalization of isolated
blobs of large-q complex SYK models [13].

Lastly, we show that these results are immediately general-
izable to a d-dimensional lattice.

II. MODEL AND FRAMEWORK

A. Model

We consider a chain consisting of 2L lattice blobs where
each blob is occupied by a large-q complex SYK model. The
Hamiltonian is given as follows (see Fig. 1):

H(t ) =
2L∑
i=1

(Hi(t ) + Hi→i+1(t ) + H†
i→i+1(t )), (1)

where the onsite large-q complex SYK Hamiltonian is given
by

Hi(t ) = Ji(t )
∑
{μ}q/2

1

{ν}q/2
1

X (i)μν c†
i;μ1

. . . c†
i;μq/2

ci;νq/2
. . . ci;ν1

(2)

summing over {ν}q/2
1 ≡ 1 � ν1 < · · · < νq/2 � N . The trans-

port of r/2 fermions from site i to i + 1 is given by

Hi→i+1(t ) = Di(t )
∑
{μ}r/2

1

{ν}r/2
1

Y (i)μν c†
i+1;μ1

. . . c†
i+1;μ r

2

ci;ν r
2

. . . ci;ν1
.

(3)
The operators c†

i;α and ci;α are spinless fermionic creation
and annihilation operators (associated with lattice site i and
flavor α), respectively. Here Ji(t ) and Di(t ) are the coupling
strengths of the onsite and the transport interactions, respec-
tively. Both X (i)μν and Y (i)μν are independent random matrices
whose components are derived from Gaussian ensemble with
zero mean and variances

|X |2 = q−2[(q/2)!]2

(N/2)q−1

|Y |2 = 1

q

(1/r)2[(r/2)!]2

(N/2)r−1
. (4)

In order to introduce competition between the transport terms
and the onsite interactions, we need to introduce a 1/q scaling
in the variance for the random matrix Y (i)μν . For r = 2, the
hopping is kinetic while r > 2 corresponds to a diffusive-type
transport. We also allow for a local mass term of the form

H0(t ) = −
∑

i

η̇i(t )NQi, Qi ≡ 1

N

N∑
α=1

[c†
i;αci;α − 1/2],

(5)

where Qi is the local charge density on the ith blob, ηi(t ) is
an arbitrary function playing a role as of chemical potential,
and N is the number of particles on the blob. Using the benefit
of the hindsight, we have introduced the derivative η̇i(t ) here.
With this, the total Hamiltonian would be H(t ) + H0(t ). Al-
though the Hamiltonian is of diffusive type, it is an interesting
feature of charged SYK lattices that their transport properties
are more dependent on the ratio between r and q. For instance,
one may show that, beyond the coherent regime, that the
resistivity behaves as ρ ∼ T 2(r/q−1) [17]. In other words, for
large q, the properties will not be strongly affected by the
order of the transport. To have qualitative and quantitative
diffusive transport, in the large-q limit, one would thus have
to scale r with q.

We can assume both periodic as well as nonperiodic
boundary conditions over the lattice. If we assume periodic
boundary conditions, then we consider the blob 2L + 1 ≡2L

1 where the subscript 2L denotes the periodicity. For non-
periodic boundary conditions, we set the coupling strength
transporting fermions from blobs 2L → 2L + 1 equal to zero.

B. Schwinger-Dyson equations

Our main interest is in the nonequilibrium dynamics of
our chain. We consider the general time evolution along the
Keldysh contour C, with focus on the flavor-averaged Green’s
functions which are defined as follows:

Gi j (t1, t2) ≡ −1

N

N∑
α=1

〈TCci;α (t1)c†
j;α (t2)〉. (6)
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Here TC is the time-ordering operator with respect to C. We
are in the Heisenberg picture in the Keldysh formalism where
the averaging is taken with respect to the initial noninteracting
Hamiltonian [18]. These Green’s functions are the solution to
Dyson’s equation Ĝ = Ĝ0 + Ĝ0�̂Ĝ = Ĝ0 + Ĝ�̂Ĝ0. Here �̂ is
the 2L × 2L self-energy matrix, which is diagonal �̂i,i+d ≡
δd0�i for the SYK chain. We consider diagonal initial condi-
tions Ĝi,i+d = δd0Gii, hence, we need to only consider the local
Green’s functions Gi ≡ Gii corresponding to each blob in the
lattice.

Similar to one complex SYK model, we write the partition
function corresponding to the Hamiltonian in Eq. (67), intro-
duce the fields Gi and �i through delta functions, and then
integrate out the fermions to get

Z =
∫

DGiD�ie
−NS0;i[G,�]−NSI;i[G,�], (7)

where S0;i is the effective action on ith blob while SI;i is the
effective transport action corresponding to the transport from
blobs i − 1 and i + 1 to and from the ith blob. They are given
by1

S0;i = − ln Tr
(
G−1

o;i − �i
) −

∫
dt1dt2

(
�i(t1, t2)Gi(t2, t1)

+ Ji(t1)Ji(t2)

2q2
[−4Gi(t1, t2)Gi(t2, t1)]

q
2

)
(8)

as well as

SI;i ≡
∫

dt1dt2 LI;i[G](t1, t2), (9)

where the Lagrangian LI;i corresponding to the Hamiltonian
[Eq. (67)] is given by

LI;i[G] = D∗
i−1(t1)Di−1(t2)

qr
[−4Gi−1(t1, t2)Gi(t2, t1)]r/2

+ Di(t1)D∗
i (t2)

qr
[−4Gi+1(t1, t2)Gi(t2, t1)]r/2. (10)

This is similar to that found in [16]. The differences lie only in
a redefinition of the couplings and allowing them to be time
dependent. Clearly when Di = 0 ∀ i, we obtain the discon-
nected SYK blobs whose effective action is given by Eq. (8)
as expected. Therefore, the total effective action is given
by

Seff,i = S0;i + SI;i, (11)

where S0;i and SI;i are given in Eqs. (8) and (9) and (10),
respectively.

Having obtained the effective action in the large-N limit for
the Hamiltonian [Eq. (67)], we take its functional derivative
to get the local self-energy �i. We see that there are two
contributions to the local self-energy �i, namely, �J,i and �D,i

where �J,i is the onsite contribution and �D,i is the transport
contribution at the ith blob. Thus, we can write

�i(t1, t2) = �J,i(t1, t2) + �D,i(t1, t2), (12)

1A combinatorial argument to get the effective action (conse-
quently, the Schwinger-Dyson equations) is provided in Appendix A.

where

q�J,i = 2Ji(t1)Ji(t2)Gi(t1, t2)[−4Gi(t1, t2)Gi(t2, t1)]
q
2 −1 (13)

and

q�D,i = D∗
i−1(t1)Di−1(t2)[−4Gi(t2, t1)Gi−1(t1, t2)]

r
2 −1

× 2Gi−1(t1, t2) + Di(t1)D∗
i (t2)[−4Gi(t2, t1)

× Gi+1(t1, t2)]
r
2 −12Gi+1(t1, t2) (14)

from which one can read off the same conjugate relation
�i(t1, t2)� = �i(t2, t1) as the Green’s functions.

C. Kadanoff-Baym equations

Using Langreth rules [19], Dyson’s equations yield the
Kadanoff-Baym (KB) equations which can be expressed as
follows where we take t2 >C t1 without loss of generality
(chosen to lie on different halves of C) [13]:

[∂t1 − ıη̇i(t1)]G≷
i (t1, t2)

=
∫ t2

t1

dt3
(
�

≷
i (t1, t3)GA

i (t3, t2)
) − ı

2q
αi(t1, t2). (15)

Here the forward (backward) Green’s functions G≷
i corre-

spond to t1 being ahead (behind) of t2 on the Keldysh contour
C, respectively. They are defined as

G>
i (t1, t2) ≡ − 1

N

N∑
μ=1

〈ci;μ(t1)c†
i;μ(t2)〉,

G<
i (t1, t2) ≡ 1

N

N∑
μ=1

〈c†
i;μ(t2)ci;μ(t1)〉. (16)

For t2 >C t1 the advanced Green’s function is given by

GA
i (t1, t2) = G<

i (t1, t2) − G>
i (t1, t2), (17)

while it is zero otherwise. Finally, αi in Eq. (15) is defined as

αi(t1, t2) ≡ ı

∫ t1

t0

dt3 q�>
i (t1, t3)2G<

i (t3, t2)

− ı

∫ t1

t0−ıβ

dt3 q�<
i (t1, t3)2G>

i (t3, t2),

where we define the forward and backward self-energies �
≷
i

in the same manner as the Green’s functions G≷
i whose ex-

plicit expressions can be obtained using Eqs. (12)–(14) as
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follows:

q�>
i (t1, t2) = 2Ji(t1)Ji(t2)

[−4G>
i (t1, t2)G<

i (t2, t1)
]q/2−1G>

i (t1, t2)+2Di−1(t2)D∗
i−1(t1)

[−4G>
i−1(t1, t2)G<

i (t2, t1)
]r/2−1G>

i−1(t1, t2)

+ 2Di(t1)D∗
i (t2)

[−4G>
i+1(t1, t2)G<

i (t2, t1)
]r/2−1G>

i+1(t1, t2),

q�<
i (t2, t1) = 2Ji(t1)Ji(t2)

[−4G>
i (t1, t2)G<

i (t2, t1)
]q/2−1G<

i (t2, t1)+2Di−1(t1)D∗
i−1(t2)

[−4G>
i (t1, t2)G<

i−1(t2, t1)
]r/2−1G<

i−1(t2, t1)

+ 2Di(t2)D∗
i (t1)

[−4G>
i (t1, t2)G<

i+1(t2, t1)
]r/2−1G<

i+1(t2, t1). (18)

From them one can see �
≷
i (t1, t2)� = �

≷
i (t2, t1). The first

term in both the expressions is the onsite contribution to the
self-energies while the second and the third terms are the
transport contributions. Also for the kinetic case where r = 2,
these expressions considerably simplify, although we will al-
ways consider a general r [= O(q0)] in this work. We assume
the weakening of initial conditions at initial time t0 → −∞
(Bogoliubov principle) [20,21]. Under this assumption, the
imaginary part of the contour in αi in Eq. (18) is ignored. Con-
sidering equal times (t2 → t1), the KB equations in Eq. (15)
reduce to

αi(t1, t1) = 2ıq
[
∂t1 − ıη̇i(t1)

]
G<

i (t1, t+
1 ), (19)

where the limit t+
1 → t1 is taken only after differentiating.

D. Expectation values of energy

We are interested in finding the expectation values of local
onsite energy as well as the transport energy. Considering the
explicit definition of the backward Green’s function, we get
for the right-hand side of Eq. (19)

2ıq[∂t1 − ıη̇i(t1)]G<
i (t1, t+

1 ) = 2q

N

〈∑
α

c†
i,α[ci,α,H]

〉
(t1).

(20)

We can further evaluate using the identity [c,H] = ∂c†H
where ∂c† anticommutes with fermionic operators. This leads
to

2
∑

α

c†
i,α[ci,α,H] = qHi + rH†

i→i+1 + rHi−1→i, (21)

where we used the identity for any even n-body interaction
term and a generalized Galitskii-Migdal sum rule [13,19] (n
can be q or r in our case depending on whether we are dealing
with the onsite Hamiltonian or the transport Hamiltonian,
respectively) Plugging Eq. (21) in (20), we get

2ıq
[
∂t1 − ıη̇i(t1)

]
G<

i (t1, t+
1 )

= q2

N
〈Hi〉(t1) + qr

N
〈H†

i→i+1〉(t1) + qr

N
〈Hi−1→i〉(t1).

(22)
According to the equal-time KB equations [Eq. (19)], we
know that this expression is equal to αi(t, t ). Accordingly, we
define the local and transport expectation values as

εi(t1) ≡ q2

N
〈Hi〉(t1), εi→i+1(t1) ≡ q2

N
〈Hi→i+1〉(t1). (23)

Thus, the equal-time KB equations become

αi(t1, t1) = εi(t1) + r

q
[ε∗

i→i+1(t1) + εi−1→i(t1)]. (24)

We can extract the correspondence between these expectation
values and integrals of the Green’s functions and self-energies
by taking derivatives of the total effective action [Eqs. (8), (9),
and (11)] with respect to the corresponding coupling constants
(Ji or Di). This leads to the following expressions for the
onsite and transport contributions:

εi(t1) = Im
∫ t1

−∞
dt22Ji(t1)Ji(t2)

[−4G<
i (t1, t2)G>

i (t2, t1)
]q/2

,

εi→i+1(t1) =
∫ t1

−∞
dt2

ıq

r
D∗

i (t1)Di(t2)
[(−4G>

i+1(t1, t2)

×G<
i (t2, t1)

)r/2−(−4G>
i (t2, t1)G<

i+1(t1, t2)
)r/2]

,

(25)

respectively, where Im denotes the imaginary part. This can be
verified by plugging these expressions in Eq. (24) and using
the definition of αi in Eq. (18) for t1 = t2.

E. Functional form of Green’s functions

We express our Green’s functions in the form

G≷
i (t1, t2) = ∓(

1
2 ∓ Qi(t )

)
eıηi (t1,t2 )+g≷i (t1,t2 )/q, (26)

where we have defined the time average t ≡ (t1 + t2)/2,2

and Q is defined in Eq. (5). Considering the definitions of
Green’s functions in Eq. (16) and the local charge density, we
have g≷i (t, t ) = 0.3 Similar to the Green’s functions, for t1 >C
t2 we have gi(t1, t2) = g>

i (t1, t2) while for t1 <C t2 we have
gi(t1, t2) = g<

i (t1, t2). Given the expression (26), the proof is

shown in [8] that g≷i = O(q0), implying that it is a good
starting point of a 1/q expansion. The exponential form also
yields a larger overlap with the exact q = 4 solution [7]. In
the interaction picture, we have equations of motion such as
ċ(t ) = ı[−η̇(t )c†c, c](t ) = ıη̇(t )c(t ) solved by c(t ) = eıη(t )c
and similarly c†(t ) = e−ıη(t )c†. These suggest to conveniently
define the following quantity:

ηi(t1, t2) ≡ ηi(t1) − ηi(t2), (27)

where the KMS relation for G≷
i provides leading-order scaling

in q as ηi = O(Q) = O(q−1/2) [11].
As shown in [13], the onsite energy density is bounded

as |εi| � 2e−qQ2
Ji. Thus, for nontrivial interactions, we focus

on small charge densities in large-q limit as Qi = O(q−1/2).

2Sometimes this is also denoted as t+
12.

3In other words, for t1 = t2 + ε and t2 = t , for small ε we can write
G≷

i (t + ε, t ) ≡ Qi(t ) − sgn(ε)/2.
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Accordingly, we can conveniently move the charge densities
appearing in Eq. (26) into the exponential as

1 ∓ 2Qi(t ) ∼ e−2Qi (t )2∓2Qi (t ) (28)

which is correct to quadratic order in charge density. There-
fore, plugging this in Eq. (26), we explicitly have for the
Green’s functions at leading order in 1/q

−2G>
i (t1, t2) = e−2[Qi (t )+Qi (t )2]+ıηi (t1,t2 )+g>

i (t1,t2 )/q,

2G<
i (t1, t2) = e−2[−Qi (t )+Qi (t )2]+ıηi (t1,t2 )+g<

i (t1,t2 )/q. (29)

We can use these leading order in 1/q results to get the explicit
expressions for self-energies �

≷
i (t1, t2) using Eq. (18). The fi-

nal expressions are quite lengthy but straightforward to obtain.
We present the following results for the kinetic hopping case
where r = 2 to leading order in 1/q in the large-q limit:

− q�>
i (t1, t2) = Ji(t1)Ji(t2)e−2qQi (t )2

e(g>
i (t1,t2 )+g<

i (t2,t1 ))/2,

q�<
i (t2, t1) = Ji(t1)Ji(t2)e−2qQi (t )2

e(g>
i (t1,t2 )+g<

i (t2,t1 ))/2.

(30)

Thus, we obtained the functional form for the large-q expan-
sion of Green’s functions in Eq. (29) which also led us to
the functional form for the large-q expansion of self-energies
where we presented the results for kinetic hopping case in
Eq. (30). We already know that g≷i (t1, t2) = O(q0) and ηi =
O(q−1/2). Then starting from Eq. (15), we use these results to
obtain the leading-order KB in q in Sec. IV A.

III. CHARGE TRANSPORT

We are interested in studying the nonequilibrium charge
transport dynamics in the chain where there is a quench done
at t = 0. Before we deal with the quench dynamics, we de-
velop a general formalism to study the charge transport. Using
the functional form of the Green’s functions in Eq. (26) where
we know already that g≷i (t1, t1) = 0, we have that G<

i (t1, t1) =
Qi(t1) + 1/2 implies that

Q̇i(t1) = ∂tG<
i (t1, t+

1 ) + ∂t1G<
i (t+

1 , t1), (31)

where the limit t+
1 → t1 is taken only after the derivative has

been taken. Due to the structure of the right-hand side, we are
interested in the real part of the KB equation at equal time in
Eq. (15). We note that the mass term η̇i is real, the real part of
Eq. (15) at equal time takes the following form in terms of the
change in local charge density:

Q̇i(t1) = Im[αi(t1, t1)]/q. (32)

But we already know the form of αi from Eq. (24) where
using the explicit form of εi→i+1(t1) from Eq. (25), we get
that εi→i+1(t1)� = −εi→i+1(t1). This then yields

Q̇i(t1) = r

q2
Im[εi−1→i(t1) − εi→i+1(t1)]. (33)

Using Eq. (25) and the functional form of Green’s functions
in Eq. (29) up to leading order in 1/q, we get

εi−1→i(t1) =
∫ t1

−∞
dt2 2ıqD�

i−1(t1)Di−1(t2)[Qi−1(t ) − Qi(t )],

εi→i+1(t1) =
∫ t1

−∞
dt2 2ıqD�

i (t1)Di(t2)[Qi(t ) − Qi+1(t )],

(34)
where we have previously defined t ≡ (t1 + t2)/2. By in-
serting this into Eq. (33), we obtain an explicit differential
equation describing the change in local charge density for the
leading order in 1/q [recall r = O(q0)]:

Q̇(t1) = r

q

∫ t1

−∞
dt2[H (t1, t2)Q(t ) + O(q−1)], (35)

where

Hi j (t1, t2) = 2 Re[Di−1(t1)D∗
i−1(t2)δ j,i−1+Di(t1)D∗

i (t2)δ j,i+1

− (Di−1(t1)D∗
i−1(t2) + Di(t1)D∗

i (t2))δ j,i], (36)

where we note that qQ̇(t ) = O(Q). Note that the above equa-
tion is closed under the local charge densities. In other words,
the Green’s functions do not enter into the expression to
leading order in 1/q. This is a drastic simplification to the
general problem. The above equation implies that the local
charge density can change on timescales t = O(q0), but the
fluctuations would then be of the order O(Qq−1). Hence,
to leading order in 1/q, the local charge density effectively
remains constant.4 In other words, if one does not consider a
rescaled time, t �= q3/2τ , then for any finite time t = O(q0),
there is no charge flow.

Having obtained this general equation of motion, let us
solve it for a particular case, which we will encounter again
at a later stage. That is the case of a quench where we switch
on the transport interactions at t = 0

Di(t ) = Ri(t ) (quench at t = 0), (37)

where Ri are any arbitrary real or complex constants. Then
taking the second derivative of Eq. (35), we obtain the result
for the charge transport dynamics as

Q̈ = r

q
HQ, (38)

where

Hi j = |Ri|2δ j,i+1 + |Ri−1|2δ j,i−1 − [|Ri|2 + |Ri−1|2
]
δi j . (39)

We have thus obtained a discrete wave equation independent
of the onsite interaction strengths and depending only on

4The physical reason for such a fine-tuned large-q model construc-
tion can be expressed as essentially being a question about which
terms will compete with one another. To have a competition between
transport terms and onsite interactions on the level of the Green’s
functions, one must consider “small” transport terms. This leads to
the small charge fluctuations, but still keeps the influence of the
transport on the level of the Green’s functions. To have competition
on both levels, one would have to consider r scaling in q, something
we plan to study in the future.
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the local charge densities as well as the transport coupling
strengths. We have taken R0 = R2L+1 = 0.

To see explicitly how charge flows, let us consider Ri = R
∀ i. Then after the quench [Eq. (37)], the solution of Eq. (38)
to leading order in 1/q is given by

Qi(t ) = Qi(0) + Qi+1(0) + Qi−1(0) − 2Qi(0)

q
2R2t2 (40)

as shown in Appendix B. Note that the only stationary state
would correspond to a uniformly charged chain. In general,
every site will gain charge assuming the neighboring sites
have a combined larger charge density or otherwise lose
charge.

IV. A NOTE ON INSTANTANEOUS THERMALIZATION

A. Leading-order Kadanoff-Baym equations

We already have the functional form of the Green’s func-
tions [Eqs. (26) and (29)]. The purpose is to plug this in
the KB equations [Eq. (15)] and derive a leading order in
1/q behavior for the KB equations. We reproduce the KB
equations here as following for convenience:

[∂t1 − ıη̇i(t1)]G≷
i (t1, t2)

=
∫ t2

t1

dt3 �
≷
i (t1, t3)GA

i (t3, t2) − ı

2q
αi(t1, t2). (41)

We start by evaluating the left-hand side of the KB equa-
tions using the functional form of Green’s functions from
Eq. (26) where we find that the ηi term cancels out to get

Q̇i(t )eıηi (t1,t2 )+g≷i (t1,t2 )/q + q−1G≷
i (t1, t2)∂t1 g≷i (t1, t2).

Plugging back in the KB equations and rearranging yields

∂t1 g≷i (t1, t2) =
∫ t2

t1

dt3
q�

≷
i (t1, t3)GA

i (t3, t2)

G≷
i (t1, t2)

−
(

ıαi(t1, t2)/2 + qQ̇i(t )eıηi (t1,t2 )+g≷i (t1,t2 )/q

G≷
i (t1, t2)

)
.

(42)

Up until this point, everything is exact. Now we start trun-
cating at the leading order in 1/q. We start by considering
the functional form of Green’s functions that appears in the
denominator above, which at leading order is given by G≷

i ∼
∓1/2. We further recall that Q = O(q−1/2) while from the
charge transport dynamical equation (35), we have qQ̇i(t ) =
O(Q) ⇒ Q̇(t ) = O(q−3/2). We also have ηi = O(q−1/2).
Moreover, from the definition of α(t1, t2) in Eq. (18), we
see that up to leading order, G≷

i ∼ ∓1/2 there too [recall
�i = O(1/q)], thereby making α(t1, t2) lose its t2 depen-
dence. Finally, using the definition of GA

i (t1, t2) from Eq. (17),
GA

i (t3, t2) = (t2 − t3) at leading order in 1/q. Thus. the KB
equations at leading order in 1/q become

∂t1
g≷i (t1, t2)

2
= ∓

(∫ t2

t1

dt3 q�
≷
i (t1, t3)

)
± ıαi(t1)

2
. (43)

We can also express the self-energies �
≷
i (t1, t2) appearing

here at the leading order using the explicit forms in Eq. (18).
We can write �

≷
i (t1, t2) = �

≷
J,i(t1, t2) + �

≷
D,i(t1, t2) [Eq. (12)]

where the onsite [same as Eq. (30)] and transport contribu-
tions at leading order in 1/q are as follows:

q�
≷
D,i(t1, t2) = ∓D2

eff,i(t1, t2),

q�
≷
J,i(t1, t2) = ∓J 2

eff,i(t1, t2)eg+
i (t1,t2 ), (44)

respectively. Here the effective onsite and transport coupling
strengths are

D2
eff,i(t1, t2) ≡ D∗

i−1(t1)Di−1(t2) + Di(t1)D∗
i (t2),

J 2
eff,i(t1, t2) ≡ Ji(t1)Ji(t2)e−2qQ2

, (45)

respectively.

B. Symmetric and asymmetric Green’s functions

We now introduce (a)symmetric Green’s functions

g±
i (t1, t2) ≡ g>

i (t1, t2) ± g<
i (t2, t1)

2
(46)

which can be inverted to get

g>
i (t1, t2) = g+

i (t1, t2) + g−
i (t1, t2),

g<
i (t2, t1) = g+

i (t1, t2) − g−
i (t1, t2). (47)

The physical motivation for introducing them comes from
the fact that the Green’s functions for Majorana fermions are
symmetric but they are not symmetric for complex fermions
which we are considering. Since Majorana Green’s functions
are symmetric, accordingly the asymmetric Green’s function
defined above vanishes for Majorana case, namely, g−

i = 0
[12]. For complex fermions, g−

i �= 0 and the interpretation is
that g−

i is in a sense a measure of deviations away from charge
neutrality.

We express Eq. (43) in terms of these new Green’s func-
tions by taking the derivative. Note that the order of taking
derivative matters.5 Recall Gi(t1, t2)∗ = Gi(t2, t1) and conse-
quently g≷i (t1, t2)∗ = g≷i (t2, t1).6 Doing this, we get

∂t1 g+
i (t1, t2) = −

∫ t2

t1

dt3
(
q�>

i (t1, t3) − q�<
i (t3, t1)

)
+ ı Re[αi(t1)],

∂t1 g−
i (t1, t2) = −

∫ t2

t1

dt3
(
q�>

i (t1, t3) + q�<
i (t3, t1)

)
− Im[αi(t1)]. (48)

5For instance, if the derivative is to be taken with respect to, say t2,
which is the second argument in the KB equations, we first need to
swap t1 and t2 in the arguments to keep t2 at the first place to take the
derivative and then take the conjugate.

6As shown in [12,13], g>
i (t1, t2) = g<

i (t2, t1) holds true for Majo-
rana fermions which can be derived from the complex SYK case by
taking the limit Q → 0.

235114-6



DYNAMICS AND CHARGE FLUCTUATIONS IN LARGE-q … PHYSICAL REVIEW B 107, 235114 (2023)

Then, we can also evaluate the equal-time KB equa-
tions when t2 → t1 at leading order in 1/q. Equation (48)
reduces to

∂t g
+
i (t1, t+

1 ) = ı Re[αi(t1)], (49)

∂t g
−
i (t1, t+

1 ) = −Im[αi(t1)], (50)

where we take the limit t+
1 → t1 only after taking the deriva-

tive. We already know the equal-time KB equations from
Eq. (24) where onsite and transport energies are given in
Eq. (25). At leading order in 1/q, we then get

αi(t1, t1) = εi(t1) + r

q
[ε∗

i→i+1(t1) + εi−1→i(t1)], (51)

where

εi(t1) = Im
∫ t1

−∞
dt2 2J 2

eff,ie
g+

i (t1,t2 ),

εi→i+1(t1) = 2[Qi+1(t ) − Qi(t )]
∫ t1

−∞
dt2ıqD∗

i (t1)Di(t2).

(52)

From the above expressions (52), we note that the boundary
condition on g+

i takes the form

∂t g
+
i (t1, t+

1 ) = ıεi(t1) + O(q−1), (53)

due to εi→i+1(t1) being imaginary to leading order.
Finally, we take the second derivative of Eq. (48) with re-

spect to t2, where we use Eq. (44) for self-energies and the fact
that complex conjugate amounts to switching of the two time
arguments, to get (recall that partial derivatives commute)

∂t1∂t2 g+
i (t1, t2) = 2 Re

[
Di(t1, t2) + J 2

eff,i(t1, t2)eg+
i (t1,t2 )

]
,

∂t1∂t2 g−
i (t1, t2) = 2ı Im[Deff,i(t1, t2)]. (54)

Let us recall the equation of motion describing the local
change in charge density Im[αi(t1, t1)] = qQ̇i(t1) [Eq. (32)].
Since this was of order O(Q), we note that the same order

appears in the equal time derivative (50). In fact, it is known
that for a single disconnected dot, to leading order in 1/q,
g−

i = O(Q) [13]. From (54), we note that this result only
extends over to the chain given real effective transport inter-
actions D2

eff,i(t1, t2) ∈ R. Since we are restricting our analysis
to the nontrivial onsite interactions where the local charge
density scales as Q = O(q−1/2), assuming D2

eff,i(t1, t2) ∈ R,
we have to leading order [using Eq. (47)]

g>
i (t1, t2) ∼ g+

i (t1, t2), g<
i (t2, t1) ∼ g+

i (t1, t2). (55)

C. Lack of instantaneous thermalization

If Di = 0 ∀ i, then we are left with individual disconnected
SYK blobs. We already know that a large-q complex SYK
model (which exists in each blob) instantaneously thermalizes
[13]. A natural question to ask is what happens in the case
of our chain where we connect the large-q SYK blobs with
r/2-particle nearest-neighbor hopping. We show via proof by
contradiction that this is not the case here.

One might argue that since there exist charge fluctuations,
the system would clearly not be in thermal equilibrium. How-
ever, here we are considering the large-q case, where the
Green’s functions change over a timescale t = O(q0), while
the fluctuations in charge density are of the order O(Q/q) at
such time. As such, in this limit, the local charge densities are
effectively constant, while the Green’s functions are not.

For our proof, we again start with the same quench protocol
as in Eq. (37): Di(t ) = Ri(t ) where Ri are any arbitrary real
or complex constants. Therefore, for t < 0, we have discon-
nected large-q SYK blobs which thermalizes instantaneously
thereby causing the whole system to be in equilibrium in
prequench. Then at t = 0, we connect them with r/2-particle
nearest-neighbor hopping term that leads to nonequilibrium
dynamics in the system.

We focus on the real part of the transport energies, which
is given by Eq. (25):

Re[εi→i+1(t1)] =
∫ t1

0
dt2 |Ri|2

(−2q

r

)
Im

[[−4G>
i+1(t1, t2)G<

i (t2, t1)
]r/2 − [−4G>

i (t1, t2)�G<
i+1(t2, t1)�

]r/2
]

︸ ︷︷ ︸
rA

. (56)

If we plug in the functional form of Green’s functions from
Eq. (29), we find that where the quadratic in charge density
[recall Q = O(q−1/2)] terms Q2

i+1, Q2
i cancel, leaving

A = 2[Qi+1(t ) − Qi(t )] + g>
i+1(t1, t2) + g<

i (t2, t1)

2q

− g>
i (t1, t2)� + g<

i+1(t2, t1)�

2q
.

The first term is the leading-order contribution, which
consists of local charge densities that are real. Since we are
interested in the imaginary part of A, this term drops out.
The second and third terms are the next-leading-order contri-
butions of A where clearly the Q2 terms cancel out. Recall
t ≡ (t1 + t2)/2. Thus, we are left with the g≷ terms in A,

namely,

1

2q

[
g>

i+1(t1, t2) + g<
i (t2, t1) − g>

i (t1, t2)� − g<
i+1(t2, t1)�

]
.

(57)

Note that such a quench to constant couplings yields real ef-
fective transport couplings D2

eff,i(t1, t2) = |Ri|2 + |Ri+1|2. As
such, the leading-order equation for g−

i is of order O(Q).
Since we are restricting our analysis to the nontrivial onsite
interactions where the local charge density scales as Q =
O(q−1/2), hence Eq. (55) applies which states that all g≷i
to leading order are given by their symmetric contributions
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leaving

1

2q
[g+

i+1(t1, t2) + g+
i (t1, t2) − g+

i (t1, t2)� − g+
i+1(t1, t2)�].

(58)

This simplifies to

ı

q
Im[g+

i+1(t1, t2) + g+
i (t1, t2)]. (59)

Therefore, plugging this back in Eq. (56), we get

Re[εi→i+1(t1)] =
∫ t1

0
dt2 |Ri|2Im[g+

i+1(t1, t2) + g+
i (t1, t2)].

(60)

In order to prove by contradiction, we now assume that
the Green’s function instantaneously thermalizes which im-
plies that they can only depend on time differences, namely,
g+

i (t1, t2) = g+
i (t1 − t2) ∀ i. Then the real part of the local

transport energy term becomes

Re[εi→i+1(t1)]

=
∫ t1

0
dt2 |Ri|2Im[g+

i+1(t1 − t2) + g+
i (t1 − t2)]

=
∫ t1

0
dτ |Ri|2Im[g+

i+1(τ ) + g+
i (τ )]. (61)

But since we have assumed instantaneous thermalization, we
know that the time derivative of the real part of the transport
energy should be equal to zero. So we proceed to calculate the
derivative of Re[εi→i+1(t1)] with respect to t1:

Re[ε̇i→i+1(t1)] = |Ri|2Im[g+
i+1(t1) + g+

i (t1)]. (62)

But, we saw in Eq. (49) that the time derivative of g+
i is given

as ∂t g
+
i (t, t+) = ı Re[αi(t )]. At t = 0+, there are only onsite

interactions, therefore, this reduces to [recall the discussion
below Eq. (47) that g+

i = O(q0)]

ġ+
i (0+) = ı Re[εi(0

+)] + O(q−1) (63)

as seen from (53). Finally, taking another derivative of the
transport energy, we get

Re[ε̈i→i+1(0+)] = |Ri|2Im[ġ+
i+1(0+) + ġ+

i (0+)], (64)

thereby leading to

Re[ε̈i→i+1(0+)] = |Ri|2(Re[εi+1(0+)] + Re[εi(0
+)]). (65)

But, as aforementioned, Re[ε̈i→i+1(0+)] = 0 if the system
thermalizes instantaneously after the quench at t = 0+. This
implies that if Ri �= 0, then εi+1(0+) and εi(0+) must have
opposite signs. However, for any positive temperature, the en-
ergy densities are always negative. Hence, the assumption that
the system thermalizes instantaneously is false and there is a
lack of instantaneous thermalization for the chain even though
individual blobs thermalize instantaneously in isolation. This
is also captured by the observation that Re[ε̈i→i+1(0+)] van-
ishes when Ri = 0 which simply reproduces the result for an
individual large-q SYK model as expected [13].

Another interesting possibility is that Ji = 0 ∀ i which will
also satisfy the condition in Eq. (65). The interpretation of this
result is that in case of a pure transport chain of r/2 particles

to nearest neighbors can lead to instantaneous thermalization.
But having obtained the result for local charge density in
Eq. (38), we know that there is a flow of current for any finite
q that shows that the chain cannot be in equilibrium. But in
the limit q → ∞, the local charge density effectively becomes
constant. Note that Eq. (65) does not rule out the possibility
for a pure transport chain to thermalize instantaneously, in this
limit.

Lastly, note that at uniform coupling and charge density
our system effectively describes a single SYK dot. This can
be seen in all the equations of motion reducing to that of a
single dot together with kinetic-type and large-q coupling. As
such, the proof by contradiction remains valid for a single dot.

In the general case, however, where we have both onsite
and transport terms, the picture would be the following. While
the total energy remains conserved, there exist fluctuations
between the onsite and kinetic energies [Eq. (23)]

εi(t1) ∝ 〈Hi〉(t1), Re[εi→i+1(t1)] ∝ Re〈Hi→i+1〉(t1), (66)

which tend to their final values over a nonzero finite time. A
natural question is how, for instance, at what rate, these terms
tend to their equilibrium values to attain thermalization. Such
an analysis could be carried out by explicitly solving for the
Green’s functions. Alternatively, one may consider a linear
stability analysis around the thermal Green’s functions.

V. GENERALIZING THE CHAIN TO A
HIGHER-DIMENSIONAL LATTICE

Let us now consider the same model by on a d-dimensional
lattice � with the nearest-neighbor hopping, where the Hamil-
tonian is given by

H(t ) =
∑
x∈�

Hx(t ) +
∑

〈x,x′〉∈�

Hx→x′ (t ), (67)

where 〈x, x′〉 denotes nearest-neighbor interactions. The ex-
plicit form of Hx is the same as in Eq. (2) and the transport
Hamiltonian from site x to x′ is given by

Hx→x′ (t ) =
∑
{μ}r/2

1

{ν}r/2
1

Y (x, x′)μν c†
x′;μ1

. . . c†
x′;μ r

2

cx;ν r
2
. . . cx;ν1

. (68)

Here Dxx′ (t )∗ = Dx′x(t ) and [Y (x, x′)μν ]∗ = [Y (x′, x)νμ] en-
sures Hermiticity in the Hamiltonian. In the old notation,
we always defined Di as the coupling corresponding to right
hopping. To make it explicitly clear, for d = 1 case, we had
D∗

i−1(t ) = Di,i−1(t ) while Di(t ) = Di,i+1(t ). All expressions
remain unchanged, except that we now sum over z = 2d
nearest neighbors (which in the one-dimensional case would
reduce to two nearest neighbors). So, for instance, the action
corresponding to site x [Eqs. (8) and (9)] remains unchanged,
only with i being replaced by x. The transport Lagrangian LI;x

in (9), however, gains additional terms due to the now z nearest
neighbors∑

x′:〈x,x′〉

Dxx′ (t1)D∗
xx′ (t2)

qr
[−4Gx′ (t1, t2)Gx(t2, t1)]r/2. (69)

Here x′ : 〈x, x′〉 means summation is over x′ such that x′ is
the nearest neighbor of x. This then yields the new transport

235114-8



DYNAMICS AND CHARGE FLUCTUATIONS IN LARGE-q … PHYSICAL REVIEW B 107, 235114 (2023)

self-energy for site x:

q�D,x (t1, t2) =
∑

x′:〈x,x′〉
Dxx′ (t1)D∗

xx′ (t2)

× [−4Gx(t2, t1)Gx′ (t1, t2)]
r
2 −12Gx′ (t1, t2).

(70)

As an example, for an equilibrium and translationally invari-
ant system Gx(t1, t2) = G(t ), we simply have q�D,x (t1, t2) =
z|D12|2[−4G(−t )G(t )]

r
2 −12G(t ).

With this setup for a general nearest-neighbor d-
dimensional lattice �, we carry out the same analysis for the
charge dynamics as in Sec. III. We find that the analysis goes
through, and we still are left with a closed-form equation for
charge transport to leading order in 1/q as in Eq. (35). Explic-
itly we have for site x

Q̇x(t1) = r

q

∫ t1

−∞
dt2

∑
y∈�

[Hxy(t1, t2)Qy(t ) + O(q−1)], (71)

where

Hxy(t1, t2) =
∑

x′:〈x,x′〉
2 Re[D∗

xx′ (t1)Dxx′ (t2)](δx′y − δxy). (72)

Thus, we see that generalizing to higher-dimensional lattice
preserves the closed-form relation for charge dynamics.

Moreover, the result for lack of instantaneous thermal-
ization as done in Sec. IV still holds for such a higher-
dimensional lattice �. We start with the equal-time KB
equation as in Eq. (24) for site x which is given by

αx(t1, t1) = εx(t1) + r

q

d∑
j=1

(ε∗
x→x+ê j

(t1) + εx−ê j→x(t1)), (73)

where ê j is the unit vector pointing towards positive direction
along the dimension j and the sum is over all possible di-
mensions. Then proceeding in the same manner as in Sec. IV
for the same quench considered there [Eq. (37)], we note
that Eq. (60) is symmetric under the operation i ←→ i + 1.
Therefore, we get a similar equation as in Eq. (60) for site x
and some neighboring site x′:

Re[εx→x′ (t1)] =
∫ t1

0
dt2 |Rxx′ |2Im[g+

x′ (t1, t2) + g+
x (t1, t2)].

(74)

Then again to prove by contradiction, we assume instanta-
neous thermalization after the aforementioned quench so that
gx(t1, t2) = gx(t1 − t2) ∀ x ∈ �. We again get

Re[ε̈x→x′ (0+)] = |Rxx′ |2(Re[εx′ (0+) + εx(0+)]). (75)

But due to the assumption of instantaneous thermalization
after the quench at t = 0, we must have Re[ε̈x→x′ (0+)] = 0
and this implies that if Rxx′ �= 0, then εx(0+) and εx′ (0+) must
have opposite signs. However, the onsite energy for any site
x ∈ � is always negative for any positive temperature. Thus,
our proof for lack of instantaneous thermalization holds true
for any higher-dimensional nearest-neighbor lattice consisting
of large-q complex SYK models.

VI. CONCLUSION AND OUTLOOK

We considered in this work a chain of large-q SYK dots
connected by r/2 particles hopping to nearest neighbors. We
assumed that r does not scale with q so that r = O(q0). We
already know that the case of r = 2 amounts to quadratic
hopping, which has been shown to exhibit strange metal be-
haviors [5]. We considered an even more general case of
r/2-particles hopping, where we developed a rather general
analytical framework and obtained the dynamical results at
leading order in 1/q. Surprisingly, we found that the physics
of the diffusive r > 2 is effectively the same as the kinetic
case r = 2 at leading order in 1/q, assuming r = O(q0).

In Sec. II, we have developed a rather general framework
of dealing with a general chain as described above. Starting
with calculating the effective action in the large-N limit, we
calculated the Schwinger-Dyson equations that translated to
the Kadanoff-Baym (KB) equations using the Langreth rules.
Providing explicit expressions for self-energies, we evaluated
the expectation values of energies and showed their con-
nection with the equal-time KB equations. Working with a
functional form for Green’s functions, we were able to study
the KB equations in the large-q limit in Sec. IV A that controls
the nonequilibrium dynamics of the system at the leading
order in 1/q. Dealing with complex fermions necessitated the
introduction of symmetric and antisymmetric Green’s func-
tions g±

i in Sec. IV B where we evaluated their equations of
motion. We gave an interpretation for both g±

i and expressed
the leading-order KB equations in terms of g±

i .
With this rather general framework developed, we pro-

ceeded to study the quench dynamics of the system. The
quench is given in Eq. (37) where we have instantaneously
thermalized and disconnected large-q complex SYK blobs for
t < 0. Then, the transport coupling of r/2 particles to nearest
neighbors is switched on at t = 0. We found closed-form ex-
pressions for the local charge transport dynamics in a general
scenario in Eq. (35) and consequently Eq. (38) for a quench
dynamics. The corresponding closed-form result obtained in
Eq. (38) is quite fascinating in the sense that this is a discrete
wave equation which is completely independent of the onsite
couplings Ji. So the r/2-particles charge transport somehow
does not feel the onsite coupling strengths of the individual
SYK blobs. Furthermore, we see that for any finite q, there
is indeed a local change in charge density, albeit of the or-
der O(Q/q). Only in the limit q → ∞ do these fluctuations
become vanishing small.

Having known that a single large-q SYK model instan-
taneously thermalizes [13], we asked the natural question
about our chain in consideration. We again considered the
same aforementioned quench and assumed that the system
does indeed thermalize instantaneously. This led us to the
consistency relation (65) which must vanish for the system
to be in equilibrium. Thus, we realized that if Ri �= 0 and
Ji �= 0, then the onsite energies must have opposite signs to
cancel each other but this cannot be true because for any
positive temperature, the onsite energy densities are always
negative. Hence, by contradiction, we proved that the chain
does not instantaneously thermalize. The consistency condi-
tion [Eq. (65)] also provides the necessary condition when it is
satisfied by either Ri = 0 or Ji = 0. First considering the case
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of Ri = 0, this means that the system has disconnected SYK
blobs which we already know from [13] that individually all
the blobs instantaneously thermalize. The other Ji = 0 implies
that the system is a pure transport chain of r/2 particles
hopping to nearest neighbors. But having obtained the result
for local charge density in Eq. (38), we know that there is a
flow of current for any finite q that shows that the chain cannot
be in equilibrium. But in the limit q → ∞, the local charge
density effectively becomes constant. Our result obtained in
Eq. (65) does not rule out the possibility for a pure transport
chain to thermalize instantaneously, in this limit.

Finally, in Sec. V, we generalized our analytical framework
from a one-dimensional nearest-neighbor chain to an arbitrary
d-dimensional nearest-neighbor lattice �. To leading order in
1/q, we found that the equations describing the local charge
density still remain closed, as explicitly shown in Eq. (71).
Moreover, our proof by contradiction for the chain to show
lack of instantaneous thermalization, after a quench, also
holds true for the lattice �.

We have solved for the case of r/2-particle hopping. This is
the general diffusive case where r scales as O(q0). The subset
case of r = 2 is the kinetic hopping, which has been studied
in [5] to exhibit strange metal behaviors. One of the natural
generalizations of this work is when r scales as q such that
r = κq where κ is some scalar constant. Moreover, we know
that the SYK model shows maximally chaotic behavior [3].
We did not address the chaotic behavior of the chain that might
lead to chaotic-integrable phase transitions as observed in a
single SYK model [11]. We already know for a single large-q
complex SYK model that the critical exponents corresponding
to this phase transition belong to the same universality class
as that of AdS black holes [8], so a natural question to ask is
what happens if we connect those SYK models in the form
of a chain as considered in this work. Another crucial feature
of the SYK model is that it serves as a model for quantum
holography [2]. This begs a natural question as to whether the
chain that we have considered does have a holographic dual
or not. We leave these to future works.
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APPENDIX A: COMBINATORIAL ARGUMENT
FOR ANY SYK-TYPE EFFECTIVE ACTION

1. Combinatorics of a disordered averaged action

Here we describe the mathematics describing the leading-
order SYK action. We do this in a rather abstract combinato-
rial way and then proceed to relate it to the SYK case.

Let us consider an action A = ∑N
i=1 Si where Si are identi-

cally distributed and independent random variables with zero
mean. They scale as N−1/2 which ensures an extensive aver-
aged action. We would like to evaluate the following average:

e−Seff ≡ eıA =
∞∑

n=0

ı2n

(2n)!
A2n, (A1)

where we have already taken into account that odd powers
average to zero due to the zero mean. We note that whenever
two random variables average together, this implies that they
are the same random variables with the same indices, reducing
the number of free summations. For instance, a simple case
will be

A4 =
∑

i1,i2,i3,i4

Si1 Si2 Si3 Si4 . (A2)

There are three ways in which two random variables average
together and one way where all of them average together,
namely, when i1 = i2 = i3 = i4. This implies that

A4 = 3
∑
i1,i2

S2
i1

S2
i2

+
∑

i1

S4
i1
. (A3)

Each sum contributes a factor N , hence, S4 = 3N2S2 S2 +
NS4. Each power scales as Sn ∼ N−n/2, indicating that the
first term is of order O(N0) while the second term is over
order O(1/N ), thereby becoming irrelevant for large N . Hence
in situations like these, we need only consider the averages
between two random variables. The same holds true in the
SYK model where to leading order in 1/N , we only have to
consider two random variables averaging together (recall that
the odd numbers of random variables average to zero). There
are (2n − 1)(2n − 3) . . . 1 different pairs of SiS j . Written dif-
ferently, this implies that

A2n ∼ (2n)!

2nn!
A2

n
, (A4)

hence reducing Eq. (A1) to the effective action Seff = A2/2.
Note that this argument does not rely on having Gaussian
random variables.

2. Relation with SYK-type action

The above problem relates to any SYK-type actions where
the Hamiltonian is described by the Grassmann expectation
value

(ψ̄ (t1), ψ (t1)) =
N∑

i=1

XiFi(ψ̄ (t1), ψ (t1)), (A5)

where Xi is the random variable and Fi is an arbitrary function
of ψ̄ and ψ . What this means is that for any SYK-type Hamil-
tonian, the effective averaged action is given as follows:

SI =
∫

dt1dt2
1

2
H(ψ̄ (t1), ψ (t1))H(ψ̄ (t2), ψ (t2)). (A6)

3. Lagrange multipliers and effective action

Even when we combine many SYK models such as a chain
as done in this work, the partition function takes on the form

Z =
∫

D(�̄,�)e−SI [G]+Tr{Ĝ−1
0 ◦G}, (A7)

where the quadratic field G is given by

Gi j (t1, t2) ≡ − 1

N

N∑
α=1

ψ̄i;α (t1)ψ j;α (t2). (A8)
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The matrix field multiplication is defined as

(Â ◦ B̂)(t1, t2) =
∫
C

dt3 Â(t1, t3)B̂(t3, t2) (A9)

which defines the trace over matrix fields’ time components
as

Tr{Â ◦ B̂} ≡
∫
C

dt1 (Â ◦ B̂)(t1, t1). (A10)

Lagrange multiplier G is introduced via a delta functional
which further is expressed in terms of another Lagrange mul-
tiplier �̂ as follows:

Z =
∫

D(�̄,�)
∫

dĜδ[Ĝ − G]eTr{Ĝ−1
0 ◦ G}e−SI [Ĝ]

=
∫

D(�̄,�)
∫

dĜ
∫

d�̂eTr{�̂◦[Ĝ−G]}eTr{Ĝ−1
0 ◦G}e−SI [Ĝ]

=
∫

dĜ
∫

d�̂e−S0[Ĝ,�̂]e−SI [Ĝ],

where we have Gaussian-type integrals of Grassmann fields
in the definition of G [Eq. (A8)]. After integrating out the
Grassmann fields, we get the effective noninteracting action

S0[G, �] ≡ −Tr
{
�̂ ◦ Ĝ + ln

[
Ĝ−1

0 − �̂
]}

. (A11)

By varying the action with respect to �̂, we obtain the Dyson’s
equation

Ĝ − [
Ĝ−1

0 − �̂
]−1 = 0. (A12)

APPENDIX B: CHARGE TRANSPORT SOLUTION

Here we provide the full solution to the vector equa-
tion Q̈ = HQ, with

Hi j = 4

q

[
R2

i δ j,i+1 + R2
i−1δ j,i−1 − [

R2
i + R2

i−1

]
δi j
]
, (B1)

where R0 = R2L+1 = 0 and Ri = R ∀ i. Then

H = −16R2

q
M,

M = 1

2
− 1

4

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0
1 0 1 0 . . . 0
0 1 0 1 0 . . .

. . .

0 . . . 0 1 0 1
0 . . . 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦, (B2)

where charge conservation is seen in all columns summing to
zero. The near Toeplitz matrix M can be diagonalized � =
UMU † via the unitary matrix Ui j . With this, the solution to
the time-dependent charge density is given by

Q(t ) = U † cos(τ
√

�)UQ(0)

(
τ ≡ 4R√

q
t

)
(B3)

or, explicitly,

Qi(t ) =
2L∑
j=1

ci j (τ )Q j (0), (B4)

ci j (τ ) ≡
2L∑

k=1

cos(τ
√

�kk )U †
ikUk j . (B5)

Now we need to find an explicit form of Ui j . We define
U1 j = 1/

√
2L and for k �= 1

Uk j =
√

1

L
cos

(
pk−1

2
[2 j − 1]

)
, pk ≡ πk

2L
. (B6)

Then the diagonalized matrix � is the matrix of eigenvalues
which is given by

�kk = sin2 (pk−1/2). (B7)

The coefficients in Eq. (B5) become

ci j (τ ) ≡
2L∑

k=1

cos(τ
√

�kk )U †
ikUk j = 1

L
+ di j (τ ) (B8)

with

di j (τ ) ≡ 2

π

π

4L

2L−1∑
m=0

2 cos

[
τ sin

[
pm

2

]]
cos

[
pm

2
[2i − 1]

]

× cos

[
pm

2
[2 j − 1]

]
, (B9)

where the inner term may be expressed as

2 cos [x[2i − 1]] cos [x[2 j − 1]]

= cos[2(i − j)x] + cos[2(i + j − 1)x]. (B10)

Now for large 2L the sum

2

π

π

4L

2L−1∑
m=0

cos [τ sin(pm/2)] cos(2npm/2) (B11)

can be approximated by the integral

An(τ ) = 2

π

∫ π/2

0
dx cos [τ sin x] cos(2nx)

= J2n(τ ), (B12)

where the Bessel functions are defined by

Jn(τ ) ≡ 1

π

∫ π

0
dx cos(nx − τ sin x). (B13)

So, we have that for large 2L

ci j (τ ) ∼ J2|i− j|(τ ) + J2|i+ j−1|(τ ). (B14)

Total charge conservation is then ensured by the Bessel
function property [22]

1 = J0(τ ) + 2
∞∑

n=1

J2n(τ ) (B15)

from which one can show that

Q(t ) =
2L∑
j=1

2L∑
i=1

ci j (τ )Q j (0) (B16)

is equal to Q(t ), by showing that
∑∞

i=1 ci j (τ ) = 1. To leading
order we have Jn(τ ) = (τ/2)n/n! + O(τ n+2). As such, if τ =
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O(q−1/2), then the dynamics of Qi are dominated by

cii(τ ) ∼ 1 − τ 2/4, ci,i±1(τ ) ∼ τ 2/8. (B17)

Explicitly, we have

Qi(t ) = Qi(0) + [Qi−1(0) − 2Qi(0) + Qi+1(0)]τ 2/8.

(B18)
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