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We present a density matrix renormalization group study of the doped one-dimensional (1D) Hubbard-
Su-Schrieffer-Heeger (Hubbard-SSH) model, where the atomic displacements linearly modulate the nearest-
neighbor hopping integrals. Focusing on an optical variant of the model in the strongly correlated limit relevant
for cuprate spin chains, we examine how the SSH interaction modifies the model’s ground- and excited-state
properties. The SSH coupling weakly renormalizes the model’s single- and two-particle response functions
for electron-phonon (e-ph) coupling strengths below a parameter-dependent critical value gc. For larger e-ph
coupling, the sign of the effective hopping integrals changes for a subset of orbitals, which drives a lattice
dimerization distinct from the standard nesting-driven picture in 1D. The spectral weight of the one- and
two-particle dynamical response functions are dramatically rearranged across this transition, with significant
changes in the ground-state correlations. We argue that this dimerization results from the breakdown of the linear
approximation for the e-ph coupling and thus signals a fundamental limitation of the linear SSH interaction. Our
results have consequences for our understanding of how SSH-like interactions can enter the physics of strongly
correlated quantum materials, including the recently synthesized doped cuprate spin chains.
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I. INTRODUCTION

In the Su-Schrieffer-Heeger (SSH) model for polyacety-
lene [1], the atomic motion modulates the nearest-neighbor
hopping integrals, leading to an electron-phonon (e-ph) inter-
action that is off diagonal in orbital space. This microscopic
coupling mechanism thus modulates the electron’s kinetic
energy as opposed to its potential energy as in the canonical
Holstein [2] or Fröhlich [3] models. While the SSH model
in one dimension (1D) has been studied extensively since its
inception, interest in SSH-like interactions1 in a broader class
of models and systems has recently surged [4–23]. This activ-
ity has been driven by the realization that such interactions
can lead to several novel effects, including the stabiliza-
tion of nontrivial topological states [19,20,23,24] and Dirac
points [8], novel bipolaronic charge-density wave [10,16,21]
and bond-wave [15,22] orderings, and the formation of mobile
bipolarons [9]. There is also a recent proposal that a dilute
gas of SSH bipolarons can have an instability towards a high-
temperature (high-Tc) superconducting state [14].

Many theoretical studies of the SSH interaction have fo-
cused on models without electron correlations. However,

1The SSH model initially dealt with acoustic phonons. Here, we use
the term “SSH interaction” to describe the case where the hopping
integral depends on the distance between the atoms to linear order,
independent of whether the relevant phonon branch is acoustic or
optical. This type of coupling mechanism is sometimes referred to as
a Peierls coupling in the literature.

SSH couplings are also relevant to many strongly corre-
lated materials. Notable examples include (but are not limited
to) quasi-1D [25,26] and 2D cuprates [5,27–35], mangan-
ites [36,37], the rare-earth nickelates [38,39], and other
oxides [16,40–44]. In many of these examples, the relevant
modes involve the bond-stretching motion of the transition
metal and oxygen atoms, which is naturally described by the
SSH coupling mechanism.

Given the likely ubiquity of SSH-like interactions in
strongly correlated systems, studying correlated SSH mod-
els like the single-band Hubbard-SSH model is essential.
Nevertheless, only a few nonperturbative studies of the
Hubbard-SSH model have been carried out. For example,
while the model has been studied in one and two dimen-
sions [15,18,45–47], these studies focused on half filling,
where an interesting interplay between the e-ph interaction
and antiferromagnetism has been observed. Reference [15],
for instance, studied the model with optical bond phonons
and observed a phase transition from a long-range antiferro-
magnetic state to a bond order wave state at a critical e-ph
coupling for any non-negative value of the on-site Coulomb
repulsion. They also identified an intriguing crossover from a
standard Hubbard antiferromagnet (with small electronic ki-
netic energy and doublon density) to a weak antiferromagnet
(characterized by an increased electronic kinetic energy) with
strong quantum fluctuations at a weak e-ph strength g∗.

Far fewer studies have been carried out for doped Hubbard-
SSH models. A recent functional renormalization group study
of the doped 2D model found evidence for s- and d-wave su-
perconductivity and spin-density-wave formation for ρ = 1 −
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〈n〉 = 0.15 hole doping in the weak SSH coupling limit [48].
A subsequent study on the ground-state properties of ρ =
0.125 hole-doped four-leg ladders [49] found similar super-
conducting correlations at weak coupling and stripe formation
at strong coupling. Another recent study has focused on the
1D model’s dilute limit using the density matrix renormaliza-
tion group (DMRG) method [12]. The authors found that, in
the absence of Hubbard on-site repulsion, the ground state of
the SSH model could be described as a liquid of bipolarons,
which remains stable up to large values of the e-ph interaction.
(The stability of the liquid should be contrasted with the Hol-
stein or extended-Holstein model, where bipolarons are heavy
and prone to ordering or phase separation [50–53].) However,
Ref. [12] also found that the system was prone to phase
separation if the e-ph coupling was too large. In this limit, the
carriers are separated into a single region of half-filled sites
with a bond-wave ordering surrounded by regions of empty
sites. Finally, another study of a multiorbital Hubbard-SSH
model in the strongly correlated limit at half filling also ob-
served lattice instabilities for strong e-ph couplings [18].

The SSH model’s tendency towards phase separation in
the strong coupling limit can be traced to the breakdown of
the linear approximation for the interaction. Empirical fits
to ab initio electronic structure calculations have shown that
the direct nearest-neighbor hopping in many materials scales
as t (δd ) = t[1 + δd/a]−η, where a is the equilibrium bond
distance between the atoms, δd is the net change in bond
length, and η (≈ 2–4) is a positive constant that depends on
the angular momentum of the relevant orbitals [54]. An impor-
tant feature of this form is that t (δd ) cannot change sign for
any value of δd < a. The linear SSH interaction is obtained
by expanding this functional form to first order such that
t (δd ) ≈ t (1 − η

a δd ). Crucially, the effective hopping in this
approximation can change sign whenever η

a 〈δd〉 > 1. Since
η ≈ 2–4, this condition will be met for δd values that are a
smaller fraction of the lattice spacing. Therefore, one should
regard any sign change in the effective hopping integral as un-
physical for most models2 and a signal that one should include
additional nonlinear terms in the interaction Hamiltonian.

Motivated by these considerations, we present a detailed
study of the 1D-doped single-band Hubbard-SSH model using
DMRG. Our goals are twofold. First, we would like to study
the model’s ground state and dynamical correlation functions
to understand the effects of these interactions in correlated
systems like the cuprates. Second, we want to identify and
understand the consequences of inducing a sign change in
the effective hopping in the strong coupling limit, which
has yet to be addressed systematically in the literature. To
help us realize our first goal, we focus exclusively on the
strongly correlated limit (U = 8t) and a carrier concentration
of 〈n〉 = 0.75 (or ρ = 0.25 hole doping). These model pa-
rameters are relevant for the recently synthesized doped 1D

2This discussion assumes that we are concerned with the modula-
tion of the direct hopping between nearest neighbor orbitals. There
are situations where an intermediate atom can modulate indirect
hopping between orbitals (see, for example, Ref. [14]). In these
cases, one can envision cases where the sign change in the effective
hopping may be allowed.

corner-shared cuprates [26] and other strongly correlated
materials doped away from the Mott insulating regime. To
facilitate our second goal, we vary the strength of the e-
ph coupling g from weak to strong coupling. For coupling
strengths below a parameter-dependent critical coupling gc,
we find that the SSH interaction weakly dresses the model’s
static and dynamical correlations. However, for g > gc, the
system develops large displacements that result in the ex-
pected sign change in the effective hopping integral for a
subset of the orbitals. This effect subsequently drives a lat-
tice dimerization distinct from the standard weak-coupling
Peierl’s mechanism. Symptoms of the dimerization manifest
in a dramatic rearrangement of spectral weight in the one-
and two-particle dynamical response functions. These results
demonstrate that the sign inversion in the effective hopping
integral can radically alter the ground state of the model.
Since this behavior is also observed in the uncorrelated doped
SSH model [12], our results confirm that it is rooted in the
linear approximation for the interaction and should not be
underestimated when considering this microscopic coupling
mechanism.

II. MODEL AND METHODS

A. Hubbard-SSH model

The SSH model was initially introduced to describe acous-
tic phonons in polyacetylene [1], where the lattice directly
modulates the nearest neighbor hopping integrals. A variant
of the model, which we call the “optical” SSH model, treats
the atomic motion using optical phonons while retaining the
modulation of the hopping integrals introduced initially in the
SSH Hamiltonian [4].3 This model variant is quite appealing
for describing materials like transition metal oxides, where the
optical bond-stretching motion of the oxygen atoms directly
modulates the transition-metal-oxygen hopping integral.

Here we focus on the optical Hubbard-SSH model in 1D.
The model’s Hamiltonian is

H = −t
∑
i,σ

[c†
i,σ ci+1,σ + H.c.] + U

∑
i

n̂i,↑n̂i,↓

+ �
∑

i

b†
i bi + g

∑
i,σ

[c†
i,σ ci+1,σ (X̂i − X̂i+1) + H.c.],

(1)

where c†
i,σ (ci,σ ) creates (annihilates) a spin-σ (=↑,↓) elec-

tron on lattice site i, b†
i (bi) creates (annihilates) a phonon

mode with energy � at site i, and X̂i = (2M�)−1/2(b†
i + bi ) is

the displacement operator for the atom at site i. The remaining

3The equivalence of the acoustic SSH model and an optical SSH
model in one dimension at half filling has been established by Weber
et al. in Ref. [6]. However, the model considered by Weber et al.
defines the phonons to live on the bonds between sites rather than
on the sites as in our model. In the bond model, the hopping integrals
ti,i+1 and ti,i−1 are modulated independently. In contrast, in our optical
model, both hopping integrals are modulated by the motion of the ith
atom. This distinction is important because no equivalence between
the three models has been established, especially away from half
filling.
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model parameters are the nearest-neighbor hopping t , the on-
site Hubbard interaction strength U , and the electron-phonon
coupling strength g.

Throughout this paper, we consider doped 1D chains of
length L with a carrier concentration of n = 0.75 e/site (or a
hole doping ρ = 1 − n = 0.25). We set t = 1 as our unit of
energy. To study the effects of correlations that are relevant
for materials like the cuprate spin chains, we fix U = 8t . We
also perform calculations for � = t and 2t to vary the degree
of retardation in the model.

B. DMRG and observables

We solved Eq. (1) using DMRG [55] as implemented in the
DMRG++ code [56].

To assess the strength of various ordering tendencies,
we calculated the ground-state real-space correlation func-
tions 〈Ô†

cÔ j〉 ≡ 〈�gs| Ô†
cÔ j |�gs〉, where |�gs〉 denotes the

ground-state wave function. Here we employ the center-site
approximation [57], where c indicates a site in the center of
the chain and j is a site on its right half.

The ground-state magnetic and charge correlations are ob-
tained from the spin-spin

Cσ (r) = 〈Ŝc · Ŝ j〉 (2)

and density-density

Cρ (r) = 〈n̂c n̂ j〉 − 〈n̂c〉 〈n̂ j〉 (3)

correlation functions, respectively, where the distance r =
| j − c| is measured relative to the central site of the chain. The
superconducting correlations are obtained from the pair-pair
correlation functions

Cs(t) = 〈�̂†
s(t),c �̂s(t), j〉 , (4)

where

�̂
†
s, j = 1√

2
[ĉ†

↑, j ĉ
†
↓, j+1 − ĉ†

↓, j ĉ
†
↑, j+1] (5)

for spin-singlet pairing and

�̂
†
t, j = 1√

2
[ĉ†

↑, j ĉ
†
↓, j+1 + ĉ†

↓, j ĉ
†
↑, j+1] (6)

for spin-triplet pairing.
Unless otherwise stated, our DMRG calculations for

ground-state correlation functions were carried out on L = 96
site chains with open boundary conditions. We kept up to
m = 1000 DMRG states to maintain a truncation error below
10−7 and restricted the local phonon Hilbert space to keep 7
(8) phonon modes per site for phonon energies � = 2t (t). We
have checked that our results for the ground-state correlation
functions are converged with respect to the size of the local
phonon Hilbert space.

We also computed the model’s single- and two-particle re-
sponse functions. Each dynamical correlation function Ci j (ω)
is defined in real space using appropriate one- or two-particle
operators Âi and B̂i:

Ci j (ω) = − 1

π
Im 〈�gs| Â j

1

ω − Ĥ + E0 + iη
B̂†

i |�gs〉 . (7)

The corresponding correlation functions in momentum space
were then obtained by a Fourier transform.

The single-particle spectral function A(k, ω) is calculated
from the sum of the electron removal [A−

i j (ω)] and addi-
tion [A+

i j (ω)] spectra, which are defined using the operators

Âi = ci,σ , B̂†
j = c†

j,σ and Â†
i = c†

i,σ , B̂ j = c j,σ , respectively.
The energies of all spectra shown here have been shifted
by the chemical potential μ = (EN+1 − EN−1)/2, where EN

is the ground-state energy of the system with N particles, to
place the Fermi energy at ω = 0.

We also computed the phonon spectral function Bi j (ω) and
the two-particle dynamic spin Si j (ω) and charge Ni j (ω) struc-
ture factors. Bi j (ω) is defined using the operators Âi = X̂i and
B̂i = (X̂i − 〈X̂c〉), where c is the center site of the 1D chain.
Similarly, the dynamical spin and charge structure factors are
defined using the operators Âi = B̂i = Sz

i and Âi = n̂i and
B̂i = ñi = (n̂i − 〈n̂c〉), respectively.

When calculating the dynamical correlation functions, we
fixed the broadening coefficient to η = 0.1t and computed
the spectral functions for each ω using the correction-vector
algorithm with Krylov decomposition and a two-site DMRG
update [58], as implemented in the DMRG++ code [56]. We
kept m = 400 states and six phonon modes per site. To avoid
the necessity of reorthogonalizing the Krylov vectors, we al-
lowed up to 200 Krylov vectors and truncated the effective
Hamiltonian decomposition with a tolerance of 10−12. Our
implementation uses a matrix product state representation for
the many-body wave function, where the local fermionic and
bosonic degrees of freedom are merged into a single index
σ so that the local physical dimension d = 4 × (nph + 1). (4
is the size of the local fermionic Hilbert space and nph + 1
the size of the local phonon Hilbert space.) Although this
choice is computationally more expensive (see below) and
may seem disadvantageous, it allowed us to avoid getting
stuck in metastable solutions typical for the one-site update
algorithm. This aspect is important because getting stuck in
such metastable solutions appears to occur more frequently
in correction-vector calculations than ground-state calcula-
tions [59]. On the other hand, the most costly operation of
the correction-vector algorithm is the contraction of the effec-
tive Hamiltonian H eff

α′β ′αβ (see Refs. [60,61] for more details)
with the local two-site matrix product state tensor Mα′β ′ . Here
we have defined the indices α = {ml , σi} and β = {σi+1, mr},
with ml (mr) the left (right) bond dimension index while σi

(σi+1) is physical index at site i (i + 1). This procedure has a
computational cost of the order O(d3B2m2 + d2Bm3), where
B is the bond dimension of the Hamiltonian and m the bond
dimension of the matrix product state [61].

All data associated with this paper have been deposited in
a public Zenodo repository [62].

III. RESULTS

A. Limitations of the linear SSH model

As discussed in the Introduction, the size of the lattice
displacements generally increases with the strength of the e-
ph coupling. Therefore, we expect the average displacements
to become large enough to flip the sign of some of the ef-
fective hopping integrals −teff ≈ −t + g 〈Xi − Xi+1〉 ≡ −t +
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FIG. 1. (a) Schematic representation of the two limiting cases of the Hubbard-SSH model treated at the mean-field level. The model
reduces to a single-band Hubbard chain with lattice spacing a when the e-ph coupling g = 0, as shown in the top diagram. When g > gc,
the system enters a dimerized state where the hopping integrals alternate between −t1 = −t (1 + A) and −t2 = −t (1 − A) along the chain
direction. (b) A comparison of ground-state expectation values of the single-particle hopping 〈Hhop〉 and e-ph interaction 〈He−ph〉 with varying
g. The expectation is calculated at the center site c = 11 of a L = 24 site chain for U = 8t , � = t . (c) Ground-state expectation values of the
average occupation number 〈n̂i〉 with varying g. The expectation is calculated at each site of an L = 96 site chain for U = 8t , � = t . Inset of
(c) shows 〈n̂i〉 for g = 0.5 > gc for sites i = 40 to 64. (d) Ground-state expectation values of the lattice distortion 〈b†

i + bi〉 with varying g. The
expectation is calculated at each site of an L = 96 site chain for U = 8t , � = t . Panels (e)–(g) show similar results for � = 2t .

gδdi once the coupling is made too large [12,18], where δdi =
〈Xi − Xi+1〉. When this occurs, the system is unstable to-
wards forming a dimerized state [12], as sketched in Fig. 1(a)
[Figs. 1(d) and 1(g) show this phenomenon explicitly; see also
discussion below]. In this static picture, the hopping along
the short bond increases significantly to −t1 = −t (1 + A),
where A ≡ gδdi > 0, while the hopping along the long bond
decreases to −t2 = −t (1 − A). If gδdi � 1, then the hopping
along the long bond can actually pass zero and eventually
take large positive values, and the magnitude of this positive
hopping will continue to grow as δdi increases. This situation
is unphysical because the hopping integral t (δdi ) should tend
toward zero when the atoms are very far apart.

Any sign change in t (δdi ) along the long bonds should also
produce a sudden change in the system’s kinetic energy. To
confirm this, we calculated the ground-state expectation val-
ues of the single-particle hopping 〈Hhop〉 = 〈c†

c,σ cc+1,σ 〉 and

the e-ph interaction 〈He-ph〉 = 〈c†
c,σ cc+1,σ (X̂c − X̂c+1)〉, where

c = 11 is the central site of an L = 24 site chain. We have
found that larger local phonon Hilbert space is generally
needed to obtain converged results for g ≈ gc, so here we
consider seven phonon modes per site for both � = 2t and
� = t . The evolution of these quantities as a function of the
e-ph coupling is plotted in Figs. 1(b) and 1(e) for � = t and
2t , respectively. Both undergo a fairly sharp change as the
coupling is tuned across a parameter-dependent coupling gc

(= 0.494 for � = t and = 0.709 for � = 2t). In particular,
the expectation value 〈Hhop〉 changes sign at gc, signaling a
large increase in the contribution from the sign-flipped hop-
ping along the long bonds.

To confirm that these changes in the kinetic energy cor-
respond to the formation of a dimerized state, we computed
the average value of the local electron density 〈n̂i〉 and local
lattice displacements 〈b†

i + bi〉, as shown in Figs. 1(c), 1(f)
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FIG. 2. Log-log plots of the Hubbard-SSH model’s ground-state correlation functions plotted as a function of the distance r = | j − c|,
where c = 48 is a central site and j is a site along the length of the chain. The individual panels show the (a) spin, (b) charge, and (c) singlet
and (d) triplet pairing correlations. These results were obtained for L = 96, U = 8t, � = 2t , and 25% doping. The dashed lines are linear
fits of the data and the legend in panel (c) applies to panels (a)–(d). Here the critical coupling is estimated to be gc ≈ 0.709 using an L = 24
site chain. Panels (e)–(h) show results following the same layout and for the same parameters but with � = t . Here the critical coupling is
estimated to be gc ≈ 0.494 using an L = 24 site chain. The legend in panel (g) applies to panels (e)–(h).

and Figs. 1(d), 1(g) respectively, as a function of position i
along the chain direction with varying g. Here, panels (c) and
(d) show results for � = t , while panels (f) and (g) are for
� = 2t . For a weak e-ph coupling of g = 0.1, 〈n̂i〉 exhibits
a weak charge modulation for both values of �; however,
for g > gc, the charge density modulations increase such that
holes collect on alternating pairs of sites along the chain
direction. At the same time, the local displacements 〈b†

i + bi〉
[Figs. 1(d) and 1(g)] transition from an undistorted structure
to a dimerized structure for g > gc, which extends across the
entire chain length. Notably, the lattice distortion observed
here has a q = π wave vector instead of the q = 2kF = 3π/4
structure that is expected based on a weak-coupling nesting-
driven Peierls mechanism. This latter observation suggests
that the dimerization observed here is a strong-coupling effect.
Finally, our results have substantial edge effects on local den-
sity and displacements. We have not analyzed these in terms
of topological edge states and defer a more detailed study of
these effects to future work.

B. Ground-state correlations

Figure 2 shows the spin Cσ (r), charge Cρ (r), and super-
conducting correlations in the singlet Cs(r) and triplet Ct(r)
channels as a function of the distance r = | j − c| from the
center site of the chain. Results are shown in Figs. 2(a)–2(d)
for various couplings g and at a fixed U = 8t and � = 2t .
Similar results for � = t are shown in Figs. 2(e)–2(h).

For the doped Hubbard model, one expects [63,64] the
correlation functions to decay with r as

Cσ (r) ∼ Kσ

(πr)2
+ Aσ cos(2kFr)

rKρ+1
log1/2 (r/α), (8)

Cρ (r) ∼ Kρ

(πr)2
+ Aρ cos(2kFr)

rKρ+1
log−3/2 (r/α), (9)

Cs(r) ∼ As log1/2 (r/α)

r1/Kρ+1
, (10)

Ct (r) ∼ At log−3/2 (r/α)

r1/Kρ+1
, (11)

where we can substitute r → L
π

sin(πr/L) to take into ac-
count the effects of the boundary conditions [65]. Here,
Aσ , Aρ, As, At are nonuniversal model-dependent constants
and α is a cutoff used to regularize the low energy field the-
ory. In the Hubbard chain away from half filling kF = πn/2,
where n = N/L is electron density and N = N↑ + N↓. Away
from half filling, it is expected that Kσ = 1, while K−1

ρ =√
1 + U

2πt sin(2kF); thus Kρ � 0.67 for U = 8t , n = 0.75, and
g = 0. Therefore, the spin and charge correlation functions,
modulo log corrections, should decay with the same expo-
nent,4 and spin/charge power law decay dominate over the
superconducting ones.

Extracting the Luttinger liquid parameters for the Hubbard-
SSH model is more challenging because the expected form for
each correlation function is currently unknown. One might
suppose the same form applies in the weak coupling limit,
but this will not hold once the system is in the unphysi-
cal long-range dimerized state. For this reason, we have not
applied any logarithmic corrections to the fitting functions
used to analyze the correlation functions and instead plot the
absolute value of each Cα (r) as a function of r. We then fit the
resulting curve with a power law of the form Cα (r) ∼ r−Mα

(α = σ, ρ, s, t) to determine how the e-ph coupling modifies
each correlation function. (The dashed lines in each panel

4The same is true for the singlet and triplet superconducting corre-
lations.
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FIG. 3. Comparison of decay exponents extracted from various
correlation functions for different e-ph coupling parameters for L =
96, U = 8t , � = 2t , and t . The exponents are extracted by a power
law fit C(r) ∼ r−M as shown in Fig. 2. Here the critical coupling
for L = 24 and � = 2t is at gc ≈ 0.709 and gc ≈ 0.494 for � = t ,
shown with dashed lines in the plot. The legend in panel (a) applies
to all four panels.

indicate the fits.) The evolution of the extracted exponents
with g is summarized in Fig. 3. For g = 0, we obtain expo-
nents Mσ = 1.163, Mρ = 1.687, and Ms(t) = 2.07(3.021) for
the spin, charge, and singlet (triplet) superconducting correla-
tions. For our choice of parameters, field theory predicts Mρ ≈
Mσ ≈ 1.67 and Ms ≈ Mt ≈ 2.49. Thus we conclude that the
logarithmic corrections and contributions from the uniform
part of the spin/charge correlations expected from the field
theory are significant. This unfortunate situation prevents us
from reliably extracting the Luttinger liquid parameter Kρ for
the system size studied here (L = 96 sites). Nevertheless, the
evolution of our extracted exponents carries some information
about how the correlations change with respect to the case
where no SSH e-ph coupling is introduced.

The ground-state correlations are weakly modified by the
e-ph coupling for both values of the phonon energy, resulting
in slight changes in the exponents Mα for g � 0.3. How-
ever, the exponents undergo more rapid and nonmonotonic
changes as the coupling increases across the critical coupling
gc, where dimerization occurs (indicated here by the vertical
dashed lines). For example, for � = t , both the spin [Mσ ,
Fig. 3(a)] and charge [Mρ , Fig. 3(b)] exponents appear to
drop for g � gc but then rebound to larger values for g � gc.
The corresponding superconducting correlations in both the
singlet Cs(r) [Fig. 3(c)] and triplet correlation Ct (r) [Fig. 3(d)]
channels are also suppressed as g is swept across the critical
coupling, resulting in a sharp increase in the exponents Ms and
Mt by nearly a factor of two before falling back towards their
initial values in the strong coupling limit.

The results in Figs. 2 and 3 demonstrate that the SSH
e-ph coupling can affect the spin, charge, and superconducting
correlations in nontrivial ways. Interestingly, the observed
behavior is nonmonotonic, with the most substantial changes
in the various correlations occurring near the coupling gc,
where the effective hopping changes sign. This nonmono-

tonic dependence is a critical difference between the SSH
and Holstein or Fröhlich models, where sharp but monotonic
transitions to the small polaron regime occur in the strong
coupling limit [66–69].

Our results show that the most dramatic changes in the
ground-state correlations can be linked to the lattice fluctua-
tions near the transition to the dimerized state. In this case,
the suppression of the superconducting correlations can be
associated with the increased tendency to localize pairs on the
short bonds and the associated fluctuations of the lattice. In
the next section, we will examine the dynamical properties
of the doped Hubbard-SSH model to understand the spectral
signatures of the different regimes identified here.

C. Dynamical correlation functions: Limiting cases

Before turning to the dynamical correlation functions of
the Hubbard-SSH model, we present and discuss the results
for two limiting cases to help guide our analysis. The first case
is the doped single-band Hubbard model with L = 40, U =
8t , corresponding to our model’s g → 0 limit. The second
is a dimerized Hubbard model with L = 40 and U = 8t but
with effective hopping integrals alternating between −t1 =
−t (1 + A) and −t2 = −t (1 − A), as shown in Fig. 1(a). In this
case, we estimate A from a static mean-field-like analysis of
the SSH interaction where A = g 〈Xc − Xc+1〉. Here, c denotes
the chains’ center site and the expectation value is evaluated
using the ground state of the Hubbard-SSH model obtained
with DMRG. We estimate A from the Hubbard-SSH model
with g = 0.6 > gc and � = t , which results in values of A =
1.46, −t1 = −2.46t , and −t2 = 0.46t , deep in the dimerized
regime. Finally, we fix the carrier concentration to 〈n〉 = 0.75
for both limiting cases.

Figures 4(a)–4(c) show the results for the doped Hubbard
model. For this case, the spectral function A(k, ω) [Fig. 4(a)]
agrees well with prior calculations [70–72]. For example,
spin-charge separation is evident in the spectral function from
the distinct spinon and holon bands, which form a triangular
spectral structure ranging from −kF to kF (kF = πN/2L =
0.75 π/2). The spin structure factor S(q, ω) [Fig. 4(b)] also
exhibits the typical two spinon continuum for a doped 1D
chain [72–76]. For our choice of U = 8t , the spectral weight
is focused in sharp peaks at the lower boundary of the con-
tinuum, corresponding to the Heisenberg limit [75], while the
spectrum is gapless at q = ± 2kF. Finally, the charge structure
factor N (q, ω) [Fig. 4(c)] exhibits a continuum of excitations
with spectral weight concentrated along the tracks at the top of
the continuum, again in agreement with prior work [72,73,77].

Figures 4(d)–4(f) show A(k, ω), S(q, ω), and N (q, ω) for
the dimerized Hubbard model. The spectral weight of the
single- and two-particle response functions are completely
reorganized in this limit. For example, the main dispersing
feature in the spectral function in Fig. 4(a) is now flipped,
reflecting the change of sign of the effective hopping −t2 =
−t (1 − A). As a result, the triangular shape formed from the
crossing of spinon and holon bands is inverted and com-
pressed around the Fermi energy. The spectrum also appears
to acquire a quasiperiodicity consistent with the enlarged unit
cell of the dimerized chain but with the spectral weight dif-
fering in the second zone. As a result, the main dispersing
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FIG. 4. Single-particle spectral function A(k, ω), spin structure
factor S(q, ω), and charge structure factor N (q, ω) for the doped
Hubbard model with L = 40, U = 8t, and n = 0.75. Panels (a)–
(c) show results for the Hubbard chain, while panels (d)–(f) show
results for a dimerized model [see Fig. 1(a)]. In the latter case, the
hopping alternates between −t1 = −t (1 + A) and −t2 = −t (1 − A)
along the chain as estimated from a mean-field analysis of SSH
interaction with g = 0.6 and � = t .

feature now has two Fermi surface crossings located at ± k′
F

and ±(π − k′
F), where k′

F = 3/8 kF.
Turning to the two-particle response functions, we find that

the spectral weight of the spin and charge excitations are now
divided into low- and high-energy branches. For example,
the low-energy spectral weight of the spin excitations has

an inverted paraboliclike shape that crosses ω = 0 at several
points. In contrast, the high-energy weight is relatively disper-
sionless and concentrated near q = ±π . The charge structure
factor N (q, ω) also becomes concentrated at low energies with
a sharp dispersive feature that crosses ω = 0 at q = 0 and
q ≈ ± π/2. A weaker high-energy part also appears, which
corresponds to charge fluctuations between the band crossing
the Fermi level and the more incoherent states far below EF

found in Fig. 4(d). In the next section, we will show that
the spectral properties of the Hubbard-SSH model interpolate
between these two limits as the strength of the e-ph coupling
increases.

D. Single-particle spectral functions

The limiting cases discussed in the previous subsection
assume that the lattice distortions are static. In this section, we
examine the dynamical properties of the Hubbard-SSH model,
where the lattice dynamics are treated fully and on an equal
footing as the electron degrees of freedom.

We begin with the single-particle spectral function A(k, ω),
shown Figs. 5(a)–5(d) for U = 8t and � = 2t . For weak
values of the e-ph coupling [g = 0.2, Figs. 5(a)], the spectra
resemble that of the doped 1D Hubbard model [Fig. 4(a)]; the
spectra bear the classic signatures of spin-charge separation,
and no apparent kinks [78,79] or other electronic renormal-
izations can be seen in the data. As g increases, however,
various renormalizations become noticeable in the electronic
structure at the phonon energy (indicated by the dashed white
line). For example, for g = 0.6 and � = 2t [Fig 5(b)], the
spectral weight is split up as it crosses the phonon energy and
the spectral features above � are pushed upward in energy.
This behavior indicates a slight renormalization of the carri-
ers by the e-ph interaction, leading to an overall increase in
the effective mass and a reduction in the holon bandwidth.
(This behavior causes the apparent squeezing of the triangular
spectral structure.) It is important to mention that, for g < gc,

FIG. 5. Single-particle spectral function A(k, ω) for the doped Hubbard-SSH model. The left set of panels shows results for varying SSH
coupling g as indicated in each panel, a fixed U = 8t and � = 2t , and an average filling of n = 0.75 (corresponding to 25% hole doping).
The right set of panels shows similar results for fixed U = 8t , � = t , and n = 0.75. All spectra were computed using L = 40 site chains. For
U = 8t, � = 2t , and L = 24 the critical coupling is at gc ≈ 0.709 and for U = 8t and � = t , gc ≈ 0.494.
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FIG. 6. Phonon spectral function B(q, ω) for the doped Hubbard-SSH model. The left set of panels shows results for varying SSH coupling
g as indicated in each panel, a fixed U = 8t and � = 2t , and an average filling of n = 0.75 (corresponding to 25% hole doping). The right
set of panels shows similar results for fixed U = 8t , � = t , and n = 0.75. All spectra were computed using L = 40 site chains. Here, for
U = 8t, � = 2t , and L = 24 the critical coupling is at gc ≈ 0.709 and for U = 8t and � = t , gc ≈ 0.494.

the spectral functions show a spectral feature [see Figs. 5(b)
and 5(f)] consistent with the so-called holon folding mode at
intermediate SSH coupling [26,80]. However, our data sug-
gest that this feature does not have enough spectral intensity
to account for the observed weight in Ba2−xSrxCuO3+δ [26].

Once the coupling is increased beyond the critical cou-
pling gc, we observe a complete reorganization of the spectral
weight, consistent with the dimerization of the system.
Figure 5(d) illustrates this for g = 0.8 > gc (= 0.709 for U =
8t and � = 2t). In this case, the spectral function resembles
the dimerized limit shown in Fig. 4(d) but with additional
incoherent weight at higher binding energies. Figure 5(c)
shows the spectra for g = 0.7 � gc. The spectrum has a mix
of features from the dimerized and undimerized cases for this
coupling value, suggesting that the system fluctuates between
the two states, possibly on short-length and time scales. There
are also weak indications of a gap opening near the Fermi
level.

Figures 5(e)–5(h) show similar results for U = 8t and
� = t . The critical coupling is reduced to gc ≈ 0.494 for
these parameters due to the softer harmonic lattice potentials.
Nevertheless, the same behavior with increasing coupling is
observed but with additional band renormalizations appear-
ing at higher multiples of the phonon energy. For example,
Fig. 5(f) shows results for g = 0.4, where the characteristic
triangular structure of spinon and holon bands has been bro-
ken up by the band renormalizations appearing at � and 2�.
For g = 0.5 (� gc) [Fig. 5(g)], the spectrum already begins to
resemble the ones for the static dimerized case.

E. Phonon spectral functions

Next, we present results for the phonon spectral func-
tion B(q, ω). Figure 6 shows the results for the same
parameters used in the previous section following the layout

of Fig. 5. For weak coupling, g = 0.2 [Figs. 6(a) and 6(e)],
the spectra consist of a single weakly dispersing peak centered
near ω = � = 2t and t , respectively, as expected for an opti-
cal phonon branch. However, both curves also exhibit a weak
softening near the Brillouin zone boundary, which is more ap-
parent in the � = t spectra. Such softening effects are similar
to what is observed for the half filled Holstein model, where
charge-density-wave correlations develop near q = π [81]. As
g increases, the phonon dispersion softens more significantly,
leading to soft zero-energy modes at q = ±2kF [Figs. 6(b)
and 6(f)]. We also observe a spectral weight depletion at
the bare phonon energy, which seems inconsistent with an
avoided level crossing picture between the flat phonon branch
and particle-hole charge excitations often invoked to under-
stand the dispersion softening in the Holstein model [81].
As the coupling approaches the critical value gc [Fig. 6(c)],
more spectral weight is transferred to low energies at the
zone boundaries, with additional weight concentrating at low
energy near q = ±π . For g > gc [Figs. 6(d), 6(g) and 6(h)],
spectral weight is transferred back to high energies and the
low-energy gapless excitation disappears.

Interestingly, our results in Figs. 6(b) and 6(f) bear a
strong resemblance to the anomalous softening of the bond-
stretching modes observed in the high-Tc cuprates near the
CDW ordering vector [35,82]. Here, however, we observe
a strong asymmetry of the spectral intensity for q > qCDW

as opposed to q < qCDW with a maximum intensity at about
ω � �/2 for � = t [see Fig. 6(f)]. This difference may be
related to the fact that the RIXS intensity is weighted by the
bare e-ph coupling constant [83], which further modulates the
intensity of the phonon features.

F. Dynamical spin structure factors

We now examine the effects of the SSH interaction on the
magnetic excitations encoded in the dynamical spin structure
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FIG. 7. Dynamical spin structure factor S(q, ω) for the doped Hubbard-SSH model. The left set of panels shows results for varying SSH
coupling g as indicated in each panel, for a fixed U = 8t and � = 2t , and an average filling of n = 0.75 (corresponding to 25% hole doping).
The right set of panels shows similar results for fixed U = 8t , � = t , and n = 0.75. All spectra were computed using L = 40 site chains and
shown for qa ∈ [0, π ]. The red solid lines correspond to the spin velocity for each g indicated in each panel. Here, for U = 8t, � = 2t , and
L = 24 the critical coupling is at gc ≈ 0.709 and for U = 8t and � = t , gc ≈ 0.494.

factor S(q, ω). Figure 7 shows DMRG results for S(q, ω)
for an L = 40 site chain with 〈n〉 = 0.75. Results are shown
here for the same parameters used in Fig. 5 and the panels
follow in a one-to-one correspondence with the previous fig-
ures. As with the single-particle response functions, S(q, ω) is
weakly modified for small e-ph couplings [g = 0.2, Figs. 7(a)
and 7(e)] and closely resemble the spinon continuum typical
for a 1D doped Hubbard chain in the Heisenberg limit [74,75].
Specifically, spectral weight is focused in a sharp peak at
the lower boundary of the continuum while the spectrum is
gapless at q = 2kF [84].

As the g increases [Fig. 7(b)], the lower-energy spin excita-
tions begin to soften and the spectral weight of the continuum
is spread out over a larger range of energy. As g approaches
the critical coupling gc [Fig. 7(c)] the spinon continuum near
the lower boundary appears to break up, with weight trans-
ferred to features at higher energy close to the boundary of
the original spinon continuum. We find no evidence for the
opening of a spin gap for g < gc, which suggests that the
SSH coupling does not drive the system to a spin-gapped
Luther-Emery liquid state, expected for the doped Hubbard
model at negative U [63], where on-site pairing is expected
to dominate. Finally, a more significant reorganization of the
magnetic excitations occurs once g > gc [Fig. 7(d)]. For ex-
ample, the two-spinon continuum is no longer apparent for
g = 0.8 > gc [Fig. 7(d)], which is well within the dimerized
regime. Instead, the low-energy magnetic excitations form a
relatively sharp inverted parabolic structure that crosses ω = 0
at q ≈ 2kF and 3/8 (2kF). At the same time, the high-energy
weight becomes incoherent and is pushed to energies well
above the boundaries of the original spinon continuum. These
spectra resemble the magnetic excitation spectrum obtained
for the Hubbard dimer model in Fig. 4. The reorganization

of the magnetic excitations thus reflects the transition from
a doped 1D Hubbard chain to a chain of connected Hubbard
dimers.

Similar results follow for U = 8t and � = t , for g � 0.5,
as shown in Figs. 7(g) and 7(h).

We end this section by commenting on the changes in
the spin velocity vσ induced by the SSH coupling, which
can be estimated from the slope of the excitation energies
in the S(q, ω) as q, ω → 0. Here, we restrict ourselves to
the region g < gc. For the larger phonon energy (� = 2t),
we find that the spin velocity progressively increases as a
function of the e-ph coupling (vσ ≈ 0.76 for g = 0.2 and
g = 0.4, while vσ ≈ 0.82 for g = 0.6 and vσ ≈ 0.98 for g =
0.7). This result suggests that weak SSH coupling increases
the spinon bandwidth, at least in the antiadiabatic regime
(� � t). For � = t , we instead observe that the spin velocity
drops quickly by increasing the SSH e-ph coupling strength
(vσ ≈ 0.76 for g = 0.2 and vσ ≈ 0.63 for g = 0.4). This sec-
ond observation suggests that there are significant retardation
effects entering the magnetic properties of the single-orbital
Hubbard-SSH model for realistic values of the phonon en-
ergy � � t , which may be necessary for understanding
the interplay between e-ph coupling and magnetism in this
system. In this context, we note that a recent determinant
quantum Monte Carlo study of a multiorbital corner-shared
CuO4 chain model [18] found that SSH coupling to high-
energy phonons suppresses the superexchange coupling for
g < gc. Collectively, these results suggest that the way in
which the SSH interaction modifies the magnetic properties
of oxides can depend strongly on the phonon energy and
whether one adopts a single- or multiband description of the
system.
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FIG. 8. Dynamical charge structure factor N (q, ω) for the doped Hubbard-SSH model. The left set of panels shows results for varying
SSH coupling g as indicated in each panel, a fixed U = 8t and � = 2t , and an average filling of n = 0.75 (corresponding to 25% hole doping).
The right set of panels shows similar results for fixed U = 8t , � = t , and n = 0.75. All spectra were computed using L = 40 site chains and
shown for qa ∈ [0, π ]. The red solid lines correspond to the charge velocity for each g indicated in each panel. Here, for U = 8t, � = 2t , and
L = 24 the critical coupling is at gc ≈ 0.709 and for U = 8t and � = t , gc ≈ 0.494.

G. Dynamical charge structure factors

Finally, we present results for the dynamical charge struc-
ture factors. Figure 8 shows N (q, ω) for the same parameters
used in the earlier figures, following the same panel labeling.
As with the spectral function and dynamical spin structure
factor, the dynamical charge structure factor is very weakly
dressed for weak e-ph coupling g = 0.2 for � = 2t [Fig. 8(a)]
and � = t [Fig. 8(e)] and the phonon renormalizations can-
not be easily discerned. Weak renormalizations appear as the
coupling is increased. For example, for � = t and g = 0.4
[Fig. 8(f)], the main peak in N (q, ω) has kinklike structures
and broadens as it crosses multiples of the phonon energy.
The renormalizations become more pronounced as g increases
toward gc, with spectral weight flattening in regions between
multiples of �. This behavior is a direct consequence of the
Franck-Condon shake-off states forming in the spectral func-
tions shown in Fig. 5. We envision that such spectral features
could be experimentally observed in future experiments on
doped cuprate chains at the oxygen K edge [85], where charge
excitations are expected to dominate at low energy.

As the coupling increases beyond the critical coupling
g > gc, the system transitions into the dimerized state and the
low-energy N (q, ω) spectra more closely resemble the static
dimerized limit shown in Fig. 4(f). However, we also observed
a significant amount of incoherent spectral weight at higher
energies, which is absent from the static calculations. This
difference highlights that the dimerization process involves a
substantial coupling between the lattice and the electrons. In
this case, the electrons in the dimerized structure should be
viewed as (bi)polarons, where carriers are bound to the sites
that form the short bond with a cloud of bond phonons [60].

Finally, we end this section commenting on the charge
velocity vρ , which can be extracted from the slope of the
excitation energies in N (q, ω) as q, ω → 0. As with the

spin excitations, we restrict ourselves to g < gc. Contrary
to the case of spin excitations, we observe that both for
� = 2t and � = t , the charge velocity progressively re-
duces by increasing the e-ph coupling strength (for � = 2t ,
vρ ≈ 1.72, 1.4, 1.145, 0.76 for g = 0.2, 0.4, 0.5, 0.6, while
for � = t , vρ ≈ 1.68, 0.76 for g = 0.2, 0.4), pointing towards
a strong holon bandwidth renormalization induced by the SSH
e-ph coupling. A similar reduction occurs in the doped 1D
Hubbard-Holstein model [79].

IV. DISCUSSION AND CONCLUSIONS

We have studied the doped one-dimensional SSH-Hubbard
model using the density matrix renormalization group
method and presented results for its ground-state correla-
tions, single-particle electron and phonon spectral functions,
and its two-particle dynamical spin and charge structure
factors.

The SSH interaction modulates the nearest neighbor hop-
ping integrals at linear order in the displacements. Due to
this linear approximation, the interaction can dimerize the
effective nearest-neighbor hopping integrals leading −teff =
−t (1 − A) and −t (1 + A) alternating along the chain, where
A ≈ g〈Xi − Xi+1〉 in a mean-field picture. Importantly, if A �
1, the effective hopping integral along the long bond will
have an inverted sign relative to the undistorted lattice. Our
results demonstrate that this dimerization persists in a nu-
merically exact treatment of the problem and is accompanied
by a significant reorganization of the ground- and excited-
state correlations. Because of this dimerization, the spectral
properties of the SSH model are substantially different from
the more widely studied Holstein model of e-ph coupling in
the strong coupling limit. For example, in addition to the
expected reduction of spinon (observed for � = t but not
for � = 2t for g below the critical e-ph coupling gc) and
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holon bandwidths, the SSH interaction introduces spectral
features in A(k, ω) that have no counterpart in the Holstein
model.

It is also important to consider our results in the con-
text of the recent ARPES experiments on the doped 1D
spin chain Ba2−xSrxCuO3+δ [26]. Excess spectral weight was
observed in the backfolded holon bands that could not be
accounted for using the standard single-band Hubbard model
with local repulsive interaction. Instead, it was found that this
additional weight could be recovered if a substantial next-
nearest-neighbor attractive interaction V ∼ −t was included
in the model. Subsequent theoretical works [80,86,87] have
argued that an extended Holstein coupling could account for
this additional interaction. However, there is also strong ev-
idence for a connection between the Cu-O bond-stretching
phonons and charge order in 2D cuprates [28,32,35]. There-
fore, it is natural to wonder whether the corresponding SSH
coupling could also be relevant for quasi-1D spin chain
cuprates. While our numerical results show a spectral feature
[see Figs. 5(b) and 5(f)] consistent with the so-called holon
folding mode at intermediate SSH coupling, this feature does
not have enough spectral intensity to account for the observed
weight in Ba2−xSrxCuO3+δ [26].

Our results for the phonon spectral function also high-
light some interesting differences between the SSH model’s
dimerization process and more conventional nesting-driven
Peierls scenarios in 1D. In the latter case, the dimerization
process is driven by perfect Fermi surface nesting and one
would expect a sharp Kohn anomaly to develop in the phonon
dispersion, where the modes near q ∼ 2kF soften to zero.
While our results exhibit a softening at this wave vector, we
also observe a significant softening of the modes near the
zone boundary. Interestingly, further increases in the coupling
cause the phonon spectrum to harden, thus eliminating the soft
mode once the dimerized state has formed.

Finally, we summarize our main results from the spin and
charge dynamical structure factors. The spin excitations of
the hole-doped Hubbard-SSH chain for g < gc show at low
energy the main features of the spectrum of a doped Hubbard
chain with gapless excitations at q = ±2kF with minor spec-
tral weight reorganizations at higher energies. For larger e-ph
couplings corresponding to the sign inversion of the effective
hopping, they interestingly display a strong depletion of spec-
tral weight at intermediate energies (of the order of the phonon
energies) while the remaining spectral weight is pushed at
lower and higher energies, respectively. In the charge dynam-
ical structure factors, and for g below gc, a strong depletion of
spectral weight at intermediate to high energies (of the order
of the phonon energies, and also multiple of it) appears at a
moderate e-ph coupling strength. This characteristic signature
of the SSH coupling could be experimentally verified in fu-
ture RIXS experiments on doped cuprate chains at oxygen K
edge [85], where non-spin-flip charge excitations are expected
to dominate the signal. For g > gc, instead, the spectral weight
becomes largely incoherent at high energy while showing the
same spectral features of a statically dimerized model at low
energies.
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